View Item 
      •   Home
      • 1. Schools
      • College of Science
      • School of Physical and Mathematical Sciences (SPMS)
      • SPMS Student Reports (FYP/IA/PA/PI)
      • View Item
      •   Home
      • 1. Schools
      • College of Science
      • School of Physical and Mathematical Sciences (SPMS)
      • SPMS Student Reports (FYP/IA/PA/PI)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by Country/RegionMost Popular Authors

      About DR-NTU

      Biomolecule nanosensing

      Thumbnail
      FYP Report.pdf (2.515Mb)
      Author
      Neo, Yong Yee
      Date of Issue
      2019
      School
      School of Physical and Mathematical Sciences
      Abstract
      Detection of genetically modified food through Real-Time Polymerase Chain Reaction (RT PCR) involves the use of expensive fluorescence labels. In this study, comparison between three nano-graphene oxide (GO) materials (HO Nano-400, TO SGNF, and HO PyroG) was conducted in order to find out which nano-GO material would be a more suitable candidate as electrochemical labels in place of the traditional fluorescence labels. Electrochemical characterization including X-ray photoelectron spectroscopy (XPS), cyclic voltammetry, differential pulse voltammetry, square-wave voltammetry as well as electrochemical impedance spectroscopy (EIS) was performed across varying concentrations of nano-GO. Conjugation of nano-GO materials with single-stranded DNA via covalent bonding was carried out and electrochemical characterization was repeated on the conjugated nano-GO materials. A significant electrochemical signal for all nano-GO materials was still observed after conjugation with single-stranded DNA corresponding to the DNA primer sequence. Hybridization of one of the conjugated nano-GOs (HO PyroG) with complementary strand (Sequence 1) was carried out as a preliminary study due to its better electroanalytical performance. Electrochemical characterization was also performed where a reduction of electrochemical signal of the hybrid was observed. Further characterization was performed using techniques including attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy and fluorescence were carried out on these materials to monitor if the conjugation of sequence to nano-GO materials was successful. With that, the findings in this study are essential toward finding a strategy for electrochemical PCR, in place of the traditional and thus expensive RT PCR.
      Subject
      Science::Chemistry
      Type
      Final Year Project (FYP)
      Collections
      • SPMS Student Reports (FYP/IA/PA/PI)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG