View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Computer Science and Engineering (SCSE)
      • SCSE Student Reports (FYP/IA/PA/PI)
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Computer Science and Engineering (SCSE)
      • SCSE Student Reports (FYP/IA/PA/PI)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by Country/RegionMost Popular Authors

      About DR-NTU

      Reinforcement learning in path planning and obstacle avoidance for autonomous vehicles

      Thumbnail
      Final Year Report - Reinforcement Learning in Path Planning and Obstacle Avoidance for Autonomous Vehicles (2.679Mb)
      Author
      Bolisetty Sai Tejaswi
      Date of Issue
      2019
      School
      School of Computer Science and Engineering
      Abstract
      Path planning and trajectory planning is an important aspect of navigation in the field of robotics and automation. It involves studying the environment space, evaluating the obstacle positions or the potential areas of danger, computing the cost and then eventually planning a route from one point to another point. During the planning of routes, the cost is aimed to be kept minimal in terms of saving time, avoiding obstacles and fewer casualties. Most literature reviews and experiments that used this approach have applied these to mobile robots so as to measure the accuracy, reliability and efficiency. This has shown great progress but with enormous research, there is another potential problem that arises. The uncertainty that lies in a real-time environment due to changes in the map, the addition of objects and changes in the orientations results in the inaccuracy of the routes planned. This aspect can be addressed through the application of reinforcement learning techniques that allows the robots to learn by itself. Therefore, the objective of this project is to test path planning algorithms and implement reinforcement learning in a simulated environment.
      Subject
      DRNTU::Engineering::Computer science and engineering
      Type
      Final Year Project (FYP)
      Rights
      Nanyang Technological University
      Collections
      • SCSE Student Reports (FYP/IA/PA/PI)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG