dc.contributor.authorKamaraj, Aravinth
dc.date.accessioned2018-08-03T01:46:45Z
dc.date.available2018-08-03T01:46:45Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/10356/75920
dc.description.abstractNumerical study of cold spray is required for optimizing performance and process parameters and design of nozzle and powder injector for spraying metals onto the surface. The objective of this dissertation is to study and review the principles and existing modelling techniques for the Metal Cold Spray using Computational Fluid Dynamics (CFD) to understand the influence of the direct process parameters (i.e. pressure, velocity and carrier gas composition) and how it affects the particles that are sprayed on to the substrate. This work describes a detailed study of CFD approach and carrier gas composition and how it affects the average particle velocity. A model of 3-dimensional nozzle with chamber and particle injector was used to generate the flow field of particles(Ti6Al4V) with help of compressed carrier gas such as nitrogen, helium at supersonic speed. Particles are dragged by the carrier gas up to high velocity magnitudes, resulting in plastic deformation process upon impact with a solid substrate positioned at specific standoff distance. It has been found experimentally that the Ti6Al4V has suitable bonding properties when it comes to cold spray application. An optimum average particle velocity is found using Computational Fluid Dynamics for various compositions of carrier gas for a given particle size distribution. The computational domain is analyzed for the real time scenario of boundary conditions and results are plotted.en_US
dc.format.extent57 p.en_US
dc.language.isoenen_US
dc.subjectDRNTU::Engineering::Mechanical engineeringen_US
dc.titleCFD simulation of metal cold spray processen_US
dc.typeThesis
dc.contributor.supervisorZhou Weien_US
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.description.degreeMSC(Manufacturing and Systems Engineering)en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record