View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Civil and Environmental Engineering (CEE)
      • CEE Student Reports (FYP/IA/PA/PI)
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Civil and Environmental Engineering (CEE)
      • CEE Student Reports (FYP/IA/PA/PI)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Effect of varying food to biomass ratios on the performance of sludge bioreactors for wastewater treatment

      Thumbnail
      Final Year Project Report (3.174Mb)
      Author
      Tan, Jing Yi Jolene
      Date of Issue
      2017-12-15
      School
      School of Civil and Environmental Engineering
      Related Organization
      Singapore Centre for Environmental Life Sciences Engineering
      Abstract
      In response to the world’s growing population, engineers are seeking for better wastewater treatment alternatives to meet the inevitable growing demand of water. Amongst the various types of wastewater treatment technologies, the activated sludge system has been proven to be one of the most promising technologies due to its high treatment efficiency albeit its low cost. Sequencing Batch Reactors (SBRs) minimize the carbon footprint required as well as the overall operational cost for the system as they eliminate the need for clarification tanks. They can be deemed as ‘three-in-one’ reactors in which all three treatment processes; equalisation, aeration and clarification can be achieved in a single reactor. The fluctuations in the daily municipal wastewater influent have been of rising concern since they affect the treatment performance of wastewater treatment units. Therefore, perturbations in the wastewater treatment process caused by the organic ‘shock loading’ in the influent quality should be properly studied to minimize their impact on large-scale wastewater treatment plants (WWTPs). The Food to Biomass ratio (F: M ratio) represents the concentration of organics present in the sludge relative to the biomass concentrations, and is thus related to the organic loading into the biological system. Studying F: M ratio pulse-press disturbance effects on wastewater treatment is relevant and essential, as too much organics could promote the growth of filamentous bacteria causing foaming and bulking problems. On the other hand, if organics in the treatment unit is too low, the microbes are unable to carry out its respective functions in the treatment units. In this project, a bench-scale microcosm experiment was set up using 50mL tubes as SBRs filled to 25mL mark with sludge from a full-scale WWTP in Singapore. To test the effects of food to biomass ratio (F: M) and carbon to nitrogen (C: N) ratio on microbial performance using a complex synthetic feed, two batches of experiment were conducted. The first batch employed different frequencies of F: M ratios (0.2 and 0.4) with a constant C: N ratio (6.8), and involved quadruplicate reactors at eight levels (n= 32) and only ran for seven days. The second batch operated six sets of five replicate SBRs (n= 30) for 42 days, in which both F: M (0.2 and 0.4) and C: N (6.7 and 12.9) ratios were imposed at varying frequencies. During this period, several indicators of wastewater performance were monitored on a weekly basis, and sludge samples were collected for DNA extraction and next generation sequencing. The process performance data obtained from this experiment generally indicated that reactors operated at lower F: M ratios had better ammonia removal and nitrifying activity. However, there were also indications of higher denitrifying activity at high F: M ratios. Chemical Oxygen Demand (COD) removal efficiency across the disturbance levels was lower in the initial phase of the experiment but was later observed to remain constant in the subsequent weeks of the experiment. Sludge Volume Index (SVI) were in the range of 40 to 90 mL/g, which indicated that the activated sludge could settle quickly within the reactors.Phosphate (PO4-P) had better removal efficiency in the reactors receiving lower F: M ratios. The comparison between the results yielded on Day 7 for phase 1 and 2 of the experiment revealed that varying the C: N ratios in the synthetic feed generally resulted in a better microbial treatment performance in the microcosm reactors. Altogether, the observed differences in ecosystem function suggest that reactors operated at different F: M ratio regimes would harbour different microbial communities. However, microbial DNA sequencing of these samples is still ongoing and hence microbial community analysis is not covered in this report, but will be carried out as part of future research. Altogether, these results will aid our understanding of how F: M ratios affect the wastewater treatment process from a functional and microbiological perspective, which will in turn enhance the management of organic ‘shock loadings’ entering WWTPs. Managing the organic “shock loadings “entering the wastewater treatment plants is of paramount importance as too much organics could promote the growth of filamentous bacteria whereas if organics in the treatment unit is too low, the microbes are unable to carry out its respective functions in the treatment units.
      Subject
      DRNTU::Engineering
      Type
      Final Year Project (FYP)
      Rights
      Nanyang Technological University
      Collections
      • CEE Student Reports (FYP/IA/PA/PI)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG