dc.contributor.authorLim, Wei Kai
dc.date.accessioned2017-05-15T06:59:06Z
dc.date.available2017-05-15T06:59:06Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/10356/71186
dc.description.abstractThroughout the past century, there have been numerous structural collapse incidents all over the world. Progressive collapse is one of the most devastating types of structural collapse, usually resulting in hefty damages, serious injuries and even possibly endangering people’s life. This prompts research works into improving the toughness of building structures in a bid to mitigate progressive collapse. This study examines the effects of connection types on the behaviour of precast concrete (PC) structures and its ability to mitigate progressive collapse. In this study, three one-third scaled beam-slab substructures comprising of a cast-in-place reinforced concrete (RC) specimen and two PC specimens are tested under pushdown loading regime. The PC slabs and PC beams are connected by a special link, which has been designed to improve the connection between them. This report presents the test results, which include the load-displacement curve, ultimate load capacity, ultimate deformation capacity and local strain. Thereafter, it discusses on the failure mode and mechanisms of load redistribution. From the test results, it is conclusive that the PC specimen with welded connections achieved brittle failure with the lowest ultimate load capacity and deformation capacity. The PC specimen with pinned connections has a large rotational ability which ensured that the specimen failed in a ductile manner, allowing substantial tensile membrane actions to develop in the topping layer even though the specimen has the lowest initial stiffness and has already achieved its first peak load capacity. Despite severe separation occurring between the PC slabs and beams, even at the maximum displacement of more than double that of the beam span, no PC slab collapsed.en_US
dc.format.extent65 p.en_US
dc.language.isoenen_US
dc.rightsNanyang Technological University
dc.subjectDRNTU::Engineering::Civil engineering::Structures and designen_US
dc.titleThe behaviour of precast concrete building to resist progressive collapseen_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorLi Bingen_US
dc.contributor.schoolSchool of Civil and Environmental Engineeringen_US
dc.description.degreeBachelor of Engineering (Civil)en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record