View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Student Reports (FYP/IA/PA/PI)
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Student Reports (FYP/IA/PA/PI)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Analysis of air traffic controllers' situation awareness and workload : a physiological approach

      Thumbnail
      FYP Final report_YEOLEEGUAN.pdf (50.77Mb)
      Author
      Yeo, Lee Guan
      Date of Issue
      2017-05-12
      School
      School of Mechanical and Aerospace Engineering
      Abstract
      Today, Air Traffic Controllers (ATCO) plays an important role in aviation safety. The nature of Air Traffic Control (ATC) is fast paced and requires high concentration where lapses in concentration can result in fatal accidents. By measuring Human Factors Variables such as Workload and Situation Awareness (SA) of an ATCO, preventive measures can be taken before errant human mental states lead to accidents. In order to do this, however, detection and measurement of human factors has to be on a real-time basis which cannot be done by existing methods. Currently, the existing methods to measure Workload and SA either require ATCOs to perform secondary tasks that can be intrusive to their work or are questionnaires- based done on a post-activity basis. Physiological approach such as using Electroencephalography (EEG), on the other hand, is non-intrusive and can measure human factors variables on a real-time basis. Despite the huge potential of EEG to overcome the short-comings of current methods, currently there is only little research done on topics related to implementing EEG for evaluating SA. The aim of this project was therefore to develop an algorithm to assess real-time SA using EEG data in order to address the limitations of current traditional methods. This project first proved the hypothesis that there is a negative relationship between Workload and SA. This project then made use of Machine-Learning to develop an algorithm to predict SA of ATCO using EEG data and it was found to be as reliable as traditional methods after validating with the proven hypothesis.
      Subject
      DRNTU::Engineering
      Type
      Final Year Project (FYP)
      Rights
      Nanyang Technological University
      Collections
      • MAE Student Reports (FYP/IA/PA/PI)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG