View Item 
      •   Home
      • 1. Schools
      • College of Science
      • School of Biological Sciences (SBS)
      • SBS Student Reports (FYP/IA/PA/PI)
      • View Item
      •   Home
      • 1. Schools
      • College of Science
      • School of Biological Sciences (SBS)
      • SBS Student Reports (FYP/IA/PA/PI)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Molecular dynamics simulations of the interactions between plant antimicrobial peptides and lipid membranes

      Thumbnail
      Molecular Dynamics Simulations of the Interactions between Plant Antimicrobial Peptides and Lipid Membranes.pdf (1.857Mb)
      Author
      Lim, Melvin Wei Sheng
      Date of Issue
      2017
      School
      School of Biological Sciences
      Abstract
      Knottin-type peptides constitute the largest superfamily of gene-encoded plant antimicrobial peptides, which can act as molecular weapons to protect hosts from pathogen attacks. They exist either in a cyclic form as cyclotides or in a linear form as acyclotides. This study is focused on cyclotides, which are further sub-classified into Möbius and bracelet cyclotides. They share a signature core comprising a cyclic cystine knot formed by six cysteine residues, and this often gives the presumption that the same loops in all cyclotides are responsible for interactions with membranes. However, findings from an NMR spectroscopy experiment showed that different binding modes are adopted for Möbius and bracelet cyclotides. Therefore, this study employed molecular dynamics simulations to compare the different ways by which the two families of cyclotides interact with membrane-mimicking micelles. Consequently, analysis of the interaction interface has shown that loops 1, 2, 5, and 6 of kB2 were identified at the peptide-micelle interface, whereas loops 2 and 3 of cO2 were consistently in contact with the micelle surface. In addition, these simulations have discovered two configurational states for kB2, which were previously not demonstrated. More importantly, this study confirms that hydrophobic interactions largely govern cyclotide-membrane interactions.
      Subject
      DRNTU::Science::Biological sciences::Biophysics
      Type
      Final Year Project (FYP)
      Rights
      Nanyang Technological University
      Collections
      • SBS Student Reports (FYP/IA/PA/PI)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG