View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Student Reports (FYP/IA/PA/PI)
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Student Reports (FYP/IA/PA/PI)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Contraction theory analysis of echo state networks

      Thumbnail
      finalreport.pdf (1.784Mb)
      Author
      Yang, Taozheng
      Date of Issue
      2017-05-02
      School
      School of Mechanical and Aerospace Engineering
      Research Centre
      Robotics Research Centre
      Abstract
      Nowadays, the more and more intelligent and inter-disciplinary industrial tasks impose an increasingly strict requirement on the control system design, and thus, a more intensive research in the field of dynamic computation, control stability and robustness, as well as a deeper exploitation of implementing the ar- tificial intelligence methodology, for instance, recurrent neural networks (RNNs); such as precise control, motion planning and events detection for industry robots; stochastic events prediction in natural language processing. This report discusses the relationship between a nonlinear contraction control theory and echo state network (a specific type of neural network belonging to RNN), various proper- ties of echo state network (ESN), and applications of echo state network (ESN). Specifically, various sufficient conditions for a system to have echo state property (ESP) are investigated and compared, a sufficient condition for nonlinear con- traction theory was derived mathematically, the connections as well as nuances between these two properties are explored, and the short-term memory capacity of an echo state network is studied. It is discovered that with the contracting property, an echo state network is faster and easier to be trained to tackle com- plicated practical tasks, especially the nonlinear dynamical system.
      Subject
      DRNTU::Engineering
      Type
      Final Year Project (FYP)
      Rights
      Nanyang Technological University
      Collections
      • MAE Student Reports (FYP/IA/PA/PI)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG