View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Student Reports (FYP/IA/PA/PI)
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Student Reports (FYP/IA/PA/PI)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Fabrication and characterization of electrospun human hair keratin templates

      Thumbnail
      Weiqian FYP 1617 Report - Final.pdf (2.133Mb)
      Author
      Liang, Weiqian
      Date of Issue
      2017
      School
      School of Materials Science and Engineering
      Abstract
      Fibers electrospun from keratin obtained from various sources such as wool and feathers have been studied extensively, but little research has been done on keratin extracted from human hair even though it is one of the most abundant resources in the world. Thus, this study was performed with the intention to fabricate and subsequently characterize human hair keratin fibers produced by electrospinning. By blending keratin with polyethylene oxide (PEO), the processibility of the solution as well as the mechanical properties of the produced fiber can be improved. Various recipes of keratin blended with PEO were attempted, varying the solution concentration, polymer concentration, keratin concentration and incubation time. Seven successful formulations were discovered and these formulations were electrospun on a grounded collector to obtain a randomly oriented fiber mat. This fiber mat was subsequently characterized using various characterization techniques such as rheology, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and fourier transform infra-red spectroscopy (FTIR) and it was observed that the electrospun keratin fibers behave similarly to the original human keratin extract. The best formulation was determined to be obtained by mixing sodium sulfide nonahydrate (Na2S·9H2O) with a keratin: PEO ratio of 60:1. The resulting solution had the most reproducible results and had the smallest average fiber diameter. A viscosity range that could electrospin fibers with the current materials and procedures was also identified. However, as a proper fiber mat could not be produced, certain characterization techniques such as mechanical testing and contact angle tests could not be carried out. Further optimization of the parameters is necessary as the fibers obtained displayed beading in their structure. The significance of this project is to produce microfibers made from human hair keratin, mainly for biomedical applications, and to understand the behaviour of keratin fibers for further applications.
      Subject
      DRNTU::Engineering::Materials
      Type
      Final Year Project (FYP)
      Rights
      Nanyang Technological University
      Collections
      • MSE Student Reports (FYP/IA/PA/PI)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG