View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Computer Science and Engineering (SCSE)
      • SCSE Student Reports (FYP/IA/PA/PI)
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Computer Science and Engineering (SCSE)
      • SCSE Student Reports (FYP/IA/PA/PI)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Development of a 2 wheel balancing robot

      Thumbnail
      Main Article (1.897Mb)
      Author
      Jagan Somaiah
      Date of Issue
      2017-04-21
      School
      School of Computer Science and Engineering
      Abstract
      This report presents the development of a 2 wheel balancing robot using a state space modelling approach. In control engineering, a state-space representation is a mathematical model of a physical system based on a set of input, output and state variables related by first-order differential equations. Once the robot is physically modelled using the state space equation, we are able to determine the state variables to control to enable stability. The main components used in the robot are a gyroscope and accelerometer for angle readings, while 2 encoder based motors are used as actuators for movement and collecting movement feedback. A Texas Instrument launchpad will serve as the microcontroller to carry out the controller algorithm. A Linear Quadratic Regular (LQR) algorithm is designed as it is a commonly used digital control algorithm using a state space approach to process the state variables. System dynamics are simulated on Matlab to simulate actual performance to collect the appropriate feedback gains required for each state variable. Finally an android based application is implemented to wirelessly connect with the microcontroller using Bluetooth. This allows maneuvring of the robot wirelessly, rapid prototyping instead of hardcoding and enables collecting of state variable data from the robot in real time. The end product is a robot that is able to balance with extremely little oscillation and able to withstand gentle forces, showing that the state-space based robotic control design and implementation is successful.
      Subject
      DRNTU::Engineering
      Type
      Final Year Project (FYP)
      Rights
      Nanyang Technological University
      Collections
      • SCSE Student Reports (FYP/IA/PA/PI)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG