View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Student Reports (FYP/IA/PA/PI)
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Student Reports (FYP/IA/PA/PI)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Investigating the formulation of conductive Cu nanoparticles ink and its properties and behaviours

      Thumbnail
      Seah Jian Qiang_FYP - v5.pdf (2.066Mb)
      Author
      Seah, Jian Qiang
      Date of Issue
      2017
      School
      School of Materials Science and Engineering
      Abstract
      Printable functional materials opened up a new area of applications that have immense market potential of flexible electronics. There are a few types of ink and conductive ink are focused in this research. There is a rising interest to develop copper based ink because of its low cost and low resistivity. However, copper nanoparticles are highly prone to agglomeration and oxidation which requires the use of surfactant for stabilization. Sintering is required to remove the organic compound in the ink and it is a challenge to achieve a low temperature sintering. In addition, there are various properties that the ink needs to be fulfil in order to be compatible with specific printing technologies. In this study, conductive copper inks are formulated and coated on polyimide substrate followed by sintering to achieve copper thin film. 1-hexanol, 1-octanol and 1-decanol and the corresponding surfactant was used in the formulation for the ink and their wetting capabilities on substrate are evaluated based on the contact angle measurement. Different substrates such as glass, silicon, polyimide and polyester substrate was tested. Polyimide had the lowest contact angle (<10°) with the inks while glass had the highest. Surface tension and conductivity of the ink was found to increase with the alcohol chain length. TGA results showed that higher temperature is required to remove the longer chain 1-decanol. Hence, 1-octanol was found to be the optimum to achieve low sintering temperature and high conductivity. Subsequent samples uses 1-octanol ink and polyimide substrate. Different sintering temperature, 50,100,150,200 and 250 °C was conducted on the 1-Octanol ink. Sintering removes the organic compound and allows the Oswald ripening of copper nanoparticles followed by necking in the film to enable better conductivity. TGA analysis showed 150°C was significant enough to remove majority of the organic compound. SEM shows higher density of fused particles at 150°C and this increases when sintered at higher temperature. Resistivity drops with higher temperature and 200°C was found to be optimal between the balance of low temperature and resistance value. Study on the conductive ink’s pH (12-8) was done and found little impact on the stability. Resistivity was found to be the lowest at pH 10 ink, thus could be the threshold pH. SEM revealed crack density increases as the ink pH decreases. Viscosity of ink was modified with an additive (EC) and the viscosity increases with the concentration. SEM reveals this additive remain in the film and the resistivity increases with the concentration. It was concluded that the optimum concentration of EC in the ink was 1wt%. This study presented the formulation of ink that were able to tune the mentioned properties. It is hoped that this research will provide a stepping stone for the subsequent studies to improve on the formulation of this ink to cater to different printing technologies. This will then set a new path in being a part of fabricating devices for many industries such as medical, communication, defence, security, manufacturing etc. in the future.
      Subject
      DRNTU::Engineering::Materials
      Type
      Final Year Project (FYP)
      Rights
      Nanyang Technological University
      Collections
      • MSE Student Reports (FYP/IA/PA/PI)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG