View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Theses
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Theses
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by Country/RegionMost Popular Authors

      About DR-NTU

      Hybrid online surface roughness measurement using a robotic arm

      Thumbnail
      QIN_QIN_2016.pdf (6.788Mb)
      Author
      Qin, Qin
      Date of Issue
      2017
      School
      School of Mechanical and Aerospace Engineering
      Abstract
      Surface roughness is an important property in the engineering field. It is often used to determine the availability and function of finished parts in both assembly and machinery. However, commercial machines available currently for roughness distinguishing require high maintenance cost and are usually not precise enough. The objective of this project is to create a durable, effective and precise sensor useable in roughness discrimination. With the development of technology and science in the recent decades roughness testing has been brought to a whole new degree, especially the application concerning robots in the area of high technology such as medical, automobiles and semiconductor industries. Robot is known to use a technique called tactile sensing to distinguish the shape, texture or roughness of an object. Recent researches indicate that tactile sensors are used to simulate functions of a human finger in robotic finger. Tactile sensors are used to imitate the human mechanoreceptors which are divided into the Fast Adapting (FA) and Slow Adapting (SA). In this project, an artificial finger with piezoresistive sensors used to represent the SA mechanoreceptors and piezoelectric sensors used to represent the FA mechanoreceptors is used. Besides, a commercial optical sensor for roughness testing is also used in this project. The sensors adapted are able to produce signals and the signals generated will be processed and analyzed to evaluate the effectiveness of the two sensors in surface roughness testing.
      Subject
      DRNTU::Engineering::Mechanical engineering
      Type
      Thesis
      Collections
      • MAE Theses

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG