View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Theses
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Theses
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Case study of cascading failure models on temporal variations of the power network

      Thumbnail
      VermaNishant16.pdf (1.535Mb)
      Author
      Verma Nishant
      Date of Issue
      2017
      School
      School of Electrical and Electronic Engineering
      Abstract
      Modern day power systems are becoming more and more complex and this has resulted in the increased vulnerability of these systems. Understanding the mechanism by which cascading outages propagate is challenging. Power system network failures often bring about devastating effects on our personal and professional lives. Therefore, failure regularity and reliability issues of power system networks are primary concerns for researchers of power systems. The project is a case study for cascading failures that occur in the power system. The reasons for cascading failures and its impact on the system is studied. The variation of generation and loads in the power system often brings about drastic changes in the system. Hence, the project deals with the temporal variations of generation units and loads connected to the system. Different cases of first and second order contingencies due to generator outages and line outages were simulated and corresponding limit violations of voltage and power were scrutinized. The simulation results of these cases list down major contingencies that could occur due to a disturbance created by generators or line outages. The system stability was examined and methods for improving the system stability by reactive power compensation are proposed. Major contingencies were ranked based on its severity and then tackled by means of reactive power compensation.
      Subject
      DRNTU::Engineering::Electrical and electronic engineering
      Type
      Thesis
      Collections
      • EEE Theses

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG