View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Theses (Open Access)
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Theses (Open Access)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Integrated vehicle scheduling and routing policies for cross-dock systems

      Thumbnail
      PhD Thesis (2.081Mb)
      Author
      Agustina, Dwi
      Date of Issue
      2016
      School
      School of Mechanical and Aerospace Engineering
      Abstract
      Cross-docking has become an increasingly popular logistics strategy in which products from several suppliers are consolidated into a single shipment to enable FTL, rather than LTL, shipments. The cross-dock warehouse ships the received goods directly to the customers, with little or no storage in between. The advantages of implementing cross-docking include shortened delivery time, improved customer satisfaction, and increased cost savings. Cross-docking depends heavily on the use of information technology and sophisticated planning software that coordinate the physical product flows and information flows. However, unavailability of effective IT systems is one of the biggest barriers faced by companies implementing cross-docking. In addition, contemporary research only considers vehicle scheduling, product consolidation and routing issues separately, leading to sub-optimal solutions. This research takes a step towards integrating operations planning issues at a cross-dock, and develops vehicle scheduling and routing policies at a cross dock warehouse using an integrated model. There are four key contributions of this research. (1) First is a comprehensive literature review of cross-dock operations planning issues. Extensive literature review in cross-docking is done and research gap identified. The main research gap identified and addressed in this research is the integration of scheduling and vehicle routing policies at cross docks. This research focuses on delivery vehicle scheduling and routing problem at a cross-dock facility by combining these two problems, and considering the customer delivery time window and the product consolidation decision. (2) Second contribution of this research is a model for vehicle routing and scheduling problems at a cross-dock, namely VRSP, and modelled as a MILP. The model consists of suppliers, inbound trucks, cross-dock facility, outbound trucks, and customers, and tries to determine the vehicle routing and scheduling policies jointly. The objective of VRSP is to determine the schedule of inbound and outbound vehicles at the cross-dock and the routing of outbound vehicles to deliver products within customer specified time windows. VRSP aims to minimize the total cost, which consists of the earliness penalty cost, the tardiness penalty cost, the inventory holding cost, and the transportation cost of deliveries. The performance of VRSP is experimented using CPLEX Solver version 12.3 running on an Intel® Celeron® CPU N2840 2.16 GHz computer. The experiments show that CPLEX Solver can solve the VRSP in a reasonable and acceptable time only for small scale problems. The CPLEX Solver takes a long time to solve medium size problems, and is unable to solve large-scale, real-life size problems. (3) The third contribution of this research is a modified model incorporating customer zones and hard-time windows to eliminate late and early delivery costs and substantially reduce the solution space. Through experiments using the same software and computer platform as VRSP, it is shown that the modified model (VRSP-CZHTW) can be solved for medium to large scale, real-life problems within an acceptable time. Only when the number of customers reaches five hundred or higher does the Solver reach its time limit without a solution. (4) The fourth and final contribution of this research is a meta-heuristics (TS algorithm) based approach to solve the original VRSP. Further experiments are done to validate and test the TSA-VRSP on an Intel® Celeron® CPU N2840 2.16 GHz computer. The algorithm is coded using MATLAB version 7.9.0. The experiments show that TSA-VRSP can be solved even for large scale problems in an acceptable time. The experiments also show that TSA-VRSP has better performance than the two previously developed methods (VRSP and VRSP-CZHTW, using CPLEX Solver). Thus, TSA-VRSP has the potential to be the foundation of a decision support tool for cross-dock managers, and help develop effective and integrated vehicle routing and scheduling policies for day-to-day operations.
      Subject
      DRNTU::Engineering::Industrial engineering::Operations research
      DRNTU::Engineering::Industrial engineering::Supply chain
      DRNTU::Engineering::Systems engineering
      Type
      Thesis
      Collections
      • MAE Theses (Open Access)

      Show full item record

      Related items

      Showing items related by title, author, creator and subject.

      • Wearable technology for holistic entertainment experience 

        Zhu, Lingfei (2016)
        A solution for immersive holistic entertainment system, including the hardware feedback jacket, a Head Mount Device, and a PC game interface. It can interact with the user's head and hand movement or gestures, and provide ...
      • Markerless motion capture and analysis based on depth images 

        Bian, Zhenpeng (2015)
        The works presented in this thesis focus on depth images based human motion capture in realistic daily scenarios and two novel motion analysis frameworks on fall detection and human-computer interface based on motion capture ...
      • DNA mediated transistors based on multi-valued logic 

        Arjun Kudva. (2013)
        Multi-valued logic systems are domains in which logical operations, such as negations, conjunctions and disjunctions are performed on inputs that can take more than two truth-values. While current computing devices perform ...

      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG