View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Theses
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Theses
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by Country/RegionMost Popular Authors

      About DR-NTU

      Control study of energy storage for all electric ship under extreme conditions

      Thumbnail
      Main report (12.32Mb)
      Author
      Menon Tushar
      Date of Issue
      2016
      School
      School of Electrical and Electronic Engineering
      Abstract
      Increasing fuel costs and environmental concerns are driving the trend towards more or all electric ships. However, replacing existing diesel engine driven on-board generators with cleaner sources of energy is easier said than done. One major impediment to this structural overhaul is the response of the system under fault conditions and dynamic loading. Unlike land based systems, isolated marine systems have very less inertia and this manifests itself in severe fluctuations in voltage and frequency under harsh conditions. Frequency fluctuation in an AC system occurs due to imbalance in the energy generated and consumed. Li traditional rotating machine driven AC systems, the kinetic energy stored in the rotating elements helps tide over these frequency fluctuations. Higher penetration of energy storage elements will seriously diminish the rotational inertia of the system and also affect its robustness under faults. Voltage control on the other hand is more to do with the relation between reactive power and system voltage. The system has to constantly track the reactive power demand which becomes difficult in the case of operations like dynamic positioning wherein the propellers are constantly switched on and off to position the ships on moving waters. All said and done, the allure in case of energy storage devices in ships lies in the far quicker dynamic response of these systems. It is this feature that has been leveraged in this project. It is aimed as part of this project to create a model of a ship-board power system on which different energy storage devices can be tested. The choice of the energy storage to be incorporated takes into account factors like cost, space, availability etc. Therefore the energy storage has been modeled as a DC voltage source and emphasis has been laid on interfacing this system with existing grid using power electronic converters and controls. Having said that, most of the existing energy storage technologies have been studied in detail and based on that, battery, Supercapacitor and flywheel technologies have been chosen as most suited for this application.
      Subject
      DRNTU::Engineering::Electrical and electronic engineering
      Type
      Thesis
      Collections
      • EEE Theses

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG