View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Student Reports (FYP/IA/PA/PI)
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Student Reports (FYP/IA/PA/PI)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Themal Patterns Of An Evaporative Sessile Droplet With The Interfacial Temperature Variation

      Thumbnail
      FYPReport.pdf (3.906Mb)
      Author
      Mohammad Rifdi Bin Mohamed Anwar Ersalle
      Date of Issue
      2016
      School
      School of Mechanical and Aerospace Engineering
      Abstract
      The use of volatile fluids have produced interesting thermal patterns from which the internal fluid dynamics and heat transfer can be understood using a non–intrusive infra-red camera. Various studies have been conducted on a droplet that evaporates to dryness. However, the changing droplet geometry becomes a variable should we want to analyse the underlying cause of the thermal patterns. Therefore, this study focuses on a stable droplet under the influence of different stage geometry and temperature and would discuss the behaviour, thermal motion and evolution of hydrothermal waves in ethanol, novec–7100 and deionized water. Two sets of experiments, droplet evaporation on a flat stage and on a stage with a raised edge were conducted to achieve the experimental objective. Prior to that, the flow-rate and contact angle were the parameters investigated for a stable, sessile droplet. HW1 waves were characterized by spirals at low temperatures and became linear and thinner convective rolls at higher temperatures. HW2 waves were found to be petal-like in shape and behaved differently in ethanol and novec. A greater number of hydrothermal waves and maximum interfacial temperature difference were produced by the stage with a raised edge. The relationship between the two were discussed. Also, Rayleigh convection and Marangoni flow were found to have complemented each other in the droplet on a stage with a raised edge. Finally, a finding on a prolonged effect (due to new fluid being pumped) of Phase 1 as proposed by Sefiane and Bennacer [7] was made.
      Subject
      DRNTU::Engineering
      Type
      Final Year Project (FYP)
      Rights
      Nanyang Technological University
      Collections
      • MAE Student Reports (FYP/IA/PA/PI)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG