dc.contributor.authorGong, Chunzhu
dc.date.accessioned2016-05-30T02:30:16Z
dc.date.available2016-05-30T02:30:16Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/10356/68610
dc.description.abstractCompliant mechanism plays an important role in precision applications, providing better repeatability and options of monolithic structures with lower manufacturing cost and easier maintenance. The existing design method is a complex process combining analytical modelling, topological optimization and iterative calculations. Especially, the critical characteristic of a multiple-DOF compliant mechanism, its stiffness ratio is difficult to formulate and implicit to express. Therefore, this report proposes a design method purely utilizing the optimization abilities of CAE software, ANSYS Workbench, with simpler expressions of objectives. In this paper, a novel parallel compliant mechanism of 3-DOF (θx-θy-θz) is designed using software modelling and optimization, following testing and simulation of its 3D-printed prototype. Throughout the report, the methodology is shared, a feasible design is obtained and its stiffness properties are discussed. The experimental results are proven close (3% to 23% depending on directions) to the simulation results. This project is an experiment to utilize more of software potentials in compliant mechanism design, and it’s recommended that computational power of computers could be further exploited in the future work.en_US
dc.format.extent56 p.en_US
dc.language.isoenen_US
dc.rightsNanyang Technological University
dc.subjectDRNTU::Engineeringen_US
dc.titleDesign and analysis of a multiple-DOF flexure-based parallel mechanismen_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorYeo Song Huaten_US
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.description.degreeBachelor of Engineering (Mechanical Engineering)en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record