dc.contributor.authorLau, Andy Ying Cheng
dc.description.abstractComputational tools can be used to accurately represent the behaviour of complex biological pathways. This report describes the computational model chosen, specific to Vanillin production pathways and describes how these pathways can be modelled using a “top-down” approach relating to its metabolites. Furthermore, a simulation on the production of Vanillin is produced to predict the concentrations of each involving metabolites within the pathways. This is to done to accurately analysis the production pathway of Vanillin with ferulic acid being its source. The simulation of this vanillin production pathway was further investigated. After running different simulations, the sensitivity of each enzyme, trans-feruloyl-CoA and synthase enoyl-CoA hydratase, in this pathway were analysed. Trans-feruloyl-CoA was determined to have a higher sensitivity than synthase enoyl-CoA hydratase. This analysis enables further researchers to alter the concentration of trans-feruloyl-CoA enzyme production to increase the overall vanillin production. Overall, this computer model can be used as a tool to guide wet bench based experiments. This successfully accelerates the biological research and simplifies the biological pathways to be worked on.en_US
dc.format.extent67 p.en_US
dc.rightsNanyang Technological University
dc.titleModeling engineered microbes that uses renewable resource as feedstock to produce useful productsen_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorPoh Chueh Looen_US
dc.contributor.schoolSchool of Chemical and Biomedical Engineeringen_US
dc.description.degreeBachelor of Engineering (Chemical and Biomolecular Engineering)en_US

Files in this item


This item appears in the following Collection(s)

Show simple item record