View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Student Reports (FYP/IA/PA/PI)
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Student Reports (FYP/IA/PA/PI)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Development of small scale DC microgrid testbed for power sharing

      Thumbnail
      FYPFinalReport-Xiao Qun.pdf (2.782Mb)
      Author
      Xiao, Qun
      Date of Issue
      2016
      School
      College of Engineering
      Abstract
      One of the most important issues in microgrid control is power sharing. Proper power sharing ensures each power modules in microgrid to output according to their rated power. This paper focus on developing a control method to solve the power sharing problems in DC microgrid. The control method applied in this project is a modified droop control with adaptive virtual impedance. This DC microgrid testbed project involves hardware circuit design, theoretical controller design and controller implementation on the Arduino UNO microcontroller using C language. The project uses Arduino as the main controller to perform the two main objectives of this DC microgrid testbed project, grid voltage regulation and power sharing among the power modules. The functions and features of Arduino are studied independently. In general, Arduino UNO controller is chosen because of following advantages: inexpensive, versatile and robustness. The main testbed circuit design is based on the DC-DC buck converter. The controlling techniques of the project is based on a novel droop control with an adaptive droop impedance control parameter. The conventional droop control in paralleling power modules suffer from some salient disadvantages of poor power sharing and trade off in voltage regulation. With an innovative concept of power sharing index (PSI) which utilizes a cooperative control processing network, an adaptive virtual impedance is updated to generate a set point voltage correction term. As a result, local set point voltage is continuously updated to match up with power sharing condition. The proper power sharing among paralleling power converters according to their nominal ratings is achieved.
      Subject
      DRNTU::Engineering::Electrical and electronic engineering::Control and instrumentation::Control engineering
      Type
      Final Year Project (FYP)
      Rights
      Nanyang Technological University
      Collections
      • EEE Student Reports (FYP/IA/PA/PI)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG