View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Student Reports (FYP/IA/PA/PI)
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Student Reports (FYP/IA/PA/PI)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Automatic generation of keywords from images

      Thumbnail
      FYP Report (3.886Mb)
      Author
      Ho, Galvin Yuan Hao
      Date of Issue
      2016-05-19
      School
      School of Electrical and Electronic Engineering
      Related Organization
      A Star I2R
      Abstract
      Every year, there are approximately 700 movies released into cinema. As a result, movies contribute a large portion of database in the entertainment industries. While movie genre is an important tool for film industries, simply classifying huge collection of movies without automation is not an easy task. A commonly used method by film industries is classifying genre based on movie synopsis. This approach is considered to be semi-automatic as it requires manual process of collecting synopsis from movie viewers. While this method yields a decent performance of 64.34%, 54.42% and 79.77% for Recall, Precision and Accuracy respectively, it suffers from the need of manual work and may potentially prone to human error. Hence there is a demand for fully automation to speed up classifying process and eliminate human error. This report presents MovieNet, a designed framework for automatic movie genre classification. MovieNet preprocess raw movie film into image frame via scene change detection. Image classifier, consist of image captioning and object recognition is used to give caption and labels to every single image frame. These sentences are combined together simulating a movie synopsis which is later convert into feature of vector using bag-of-words. Classifier such as SVM and ELM are used for classifying the features to predict genres. The robustness of MovieNet was tested with 396 movies, consisting of 10 popular movie genres which are Action, Animated, Comedy, Crime, Epic, Horror, Romance, Science Fiction, War and Western. Results show MovieNet yield a 57.57%, 51.26% and 76.04% for Recall, Precision and Accuracy respectively. Even though it is slightly underperformed to first approach, it enjoys the benefit of automation and human free error. Final studies also shows that MovieNet is capable of recommending and identify existing human error made in current database on genre. Possible recommendations such as retraining image classifier, implement spatial localization or detection, noise removal, extracting closed caption or subtitle methods and exploiting audio features are consider to be feasible and beneficial to the current MovieNet framework in improving its performance significantly.
      Subject
      DRNTU::Engineering
      Type
      Final Year Project (FYP)
      Rights
      Nanyang Technological University
      Collections
      • EEE Student Reports (FYP/IA/PA/PI)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG