View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Computer Science and Engineering (SCSE)
      • SCSE Student Reports (FYP/IA/PA/PI)
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Computer Science and Engineering (SCSE)
      • SCSE Student Reports (FYP/IA/PA/PI)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by Country/RegionMost Popular Authors

      About DR-NTU

      Supervised news topic detection

      Thumbnail
      Mokshika-FYP Report.pdf (2.557Mb)
      Author
      Gaur, Mokshika
      Date of Issue
      2016
      School
      School of Computer Engineering
      Abstract
      With the advancement of technology, there has been much improvement in the automatic recording of broadcast news by utilizing speech recognition. However the continually increasing dynamic information pool is posing challenges for efficient information retrieval techniques. This pain-point creates the need to develop systems that can automatically categorize this information under relevant topics for the purpose of easy information retrieval. In recent years, much focus has been given to the subject of topic detection of broadcast news more through unsupervised techniques such as clustering as a few studies focusing on supervised classification techniques. In this project, we propose a simple yet effective approach for this purpose by drawing inspiration from previously conducted studies. In this thesis, we experiment with a supervised machine learning algorithm namely Logistic Regression along with language processing techniques to automatically detect topics from broadcast news comprised in the TDT2 English corpus. We consider the input documents, as a stream of sentences and use the trained classifier to predict the topics they are associated with and accordingly assign these news documents to the most appropriate topic. This approach includes various pre-processing techniques along with feature selection and natural language processing. It can be inferred from the results obtained that the chosen model is able to detect relevant topics of new articles by adopting a simplistic topic detection approach that uses the Logistic Regression classifier while taking inspiration from conducted studies. The proposed model performs in comparison to some state-of-the-art topic classifiers.
      Subject
      DRNTU::Engineering
      Type
      Final Year Project (FYP)
      Rights
      Nanyang Technological University
      Collections
      • SCSE Student Reports (FYP/IA/PA/PI)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG