View Item 
      •   Home
      • 1. Schools
      • College of Science
      • School of Physical and Mathematical Sciences (SPMS)
      • SPMS Theses (Open Access)
      • View Item
      •   Home
      • 1. Schools
      • College of Science
      • School of Physical and Mathematical Sciences (SPMS)
      • SPMS Theses (Open Access)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by Country/RegionMost Popular Authors

      About DR-NTU

      Fuel cell sensor and biosensor based on Prussian blue nanotube membrane

      Thumbnail
      Fuel cell sensor and biosensor based on PB nanotube membrane.pdf (2.954Mb)
      Author
      Wei, Yanyan
      Date of Issue
      2016
      School
      School of Physical and Mathematical Sciences
      Abstract
      In this thesis, we presented a system of fuel cell sensor and biosensor with simple two-compartment design based on a Prussian blue nanotubes membrane. Firstly, we proposed a unique Prussian blue nanotubes sensor using a two-compartment cell derives the current signal from the chemical energy of the hydrogen peroxide analyte, without input of electrical potentials. This strategy can be further demonstrated in a model glucose biosensor when coupling with glucose oxidase. This H2O2 powered sensor was extended to fabricate a virus sensor based on the formation of antibody-virus complexes within the sensor’s membrane nanochannels for direct detection of unlabelled virus particles. This fuel cell virus sensor offered an impressive short response time of ~5 min toward the specific virus target, at low concentration values of 3 to 45 pfu mL-1. As low as 0.04 pfu mL-1 of detection limit was achieved, which was comparable to state-of-the-art PCR based methods. To simplify the sensing design, we fabricated an integrated PB-nt membrane filled with Nafion®perfluorinated resin as a standalone fuel cell based virus sensor, which offered promising potential to develop a sustainable, low cost and rapid low power virus detection tool. Inspired from the integrate membrane probe, we demonstrated a hand-held H2O2 fuel cell sensor based on Prussian blue nanotubes membrane. This H2O2 fuel cell sensor was constructed using four standalone nafion-filled PB-nt membranes connected in parallel, which employed the PB-nt membrane as both electrodes and fuel reservoir. An open-circuit potential (OCP) of 0.54 V with a maximum power density of 0.7 mW cm-2 has been achieved at a low concentration of 10 mM H2O2. The analytical performance of the fuel cell sensor was monitored using a micro-current meter to record the responding signal towards varying H2O2 concentrations. An excellent linear relationship has been established between the responding current signal and low concentrations of H2O2.
      Subject
      DRNTU::Science::Chemistry::Physical chemistry::Electrochemistry
      Type
      Thesis
      Collections
      • SPMS Theses (Open Access)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG