View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Student Reports (FYP/IA/PA/PI)
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Student Reports (FYP/IA/PA/PI)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by Country/RegionMost Popular Authors

      About DR-NTU

      Reducing pressure drop in microscale channel using constructal theory

      Thumbnail
      FYP report_Cheng Kai Xian (1).pdf (3.622Mb)
      Author
      Cheng, Kai Xian
      Date of Issue
      2015
      School
      School of Mechanical and Aerospace Engineering
      Abstract
      The augmented heat transfer in the semiconductor industry proves the effectiveness of microchannels in enhancing heat transfer. In order to tap the microscale heat transfer into macro geometries, overcoming the cost and technological constraints, microchannels are created in macro geometries using conventional methods to achieve a heat transfer coefficient exceeding 10 kW/m2•K [1]. Surface profiles were created on the heating region of the insert to enhance steady-state single-phase liquid heat transfer. However, the heat transfer enhancement was accompanied by undesirable pressure drop increment. This project aims to address the high pressure drop issue using the Constructal theory, a universal design law for both animate and inanimate systems. Two designs based on Constructal theory were used to study the effectiveness of constructal features in reducing the pressure drop increment as compared to parallel channels which are ubiquitous in microchannel fabrication. The hydrodynamic and heat transfer performance for Tree insert and Cfin insert were studied using experimental methods, and the underlying mechanism was substantiated by numerical results. In technical terms, the objective is to achieve at least comparable increment in both heat transfer coefficient and pressure drop, if not higher increment in the former parameter Results show that the Tree insert improved the heat transfer of the microchannel by more than 16 percent at low flow rates, as compared to the Tree-parallel insert. However, the heat transfer enhancement reduced to less than 5 percent beyond the laminar region. On the other hand, the pressure drop increment stayed almost constant at 20 percent. This suggests that the Tree insert has desirable heat transfer and hydrodynamic effects, particularly in the laminar region. More importantly, results show that, the Cfin insert improved both the heat transfer and hydrodynamic performance, as compared to Cfin-parallel insert, at all flow rates in this study. The enhancement of heat transfer was more than 30 percent at 2 L/min at only 20 percent pressure drop increment as compared to Cfin-parallel insert. Furthermore, comparable increment in both heat transfer coefficient and pressure drop was observed at 8 L/min. This phenomenon is rarely seen in conventional microchannels. This suggests that the Cfin insert successfully achieved the objective of this project. Analysis of the results suggests that bifurcation of flows is effective in reducing the increment in pressure drop relative to heat transfer enhancement. Optimizing the geometries of the constructal fins is therefore the potential future study in achieving bigger stride in energy efficiency at much lower costs.
      Subject
      DRNTU::Engineering::Mechanical engineering
      Type
      Final Year Project (FYP)
      Rights
      Nanyang Technological University
      Collections
      • MAE Student Reports (FYP/IA/PA/PI)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG