dc.contributor.authorTian, Qian
dc.identifier.citationTian, Q. (2014). Development of the nodal based discontinuous deformation analysis and its engineering applications. Doctoral thesis, Nanyang Technological University, Singapore.
dc.description.abstractDiscontinuous Deformation Analysis (DDA) and Finite Element Method (FEM) belong to two different numerical approaches, the discontinuum-based method and the continuous-based method. The Nodal-based Discontinuous Deformation Analysis (NDDA) introduced in this thesis is a coupled method of DDA and FEM. By incorporating the finite element mesh into the discrete block, the unique block kinematics of the DDA is inherited and the stress field within the block is refined. To make the NDDA method a more powerful tool in the rock engineering analysis, a “crack propagation procedure” is implemented into the NDDA program to describe the failure process in a fully automatic way. Also, the rockbolt element is implemented in the NDDA framework to numerically simulated the rock/bolt interaction when the rock mass is reinforced by rockbolts. An alternative contact mechanism, the Augmented Lagrangian Method (ALM) is introduced into the standard DDA method, and the efficiency and the accuracy of the method are discussed. Finally, the potential use of the new method is demonstrated through the slope sliding and topping analysis.en_US
dc.format.extent240 p.en_US
dc.subjectDRNTU::Engineering::Civil engineering::Geotechnicalen_US
dc.titleDevelopment of the nodal based discontinuous deformation analysis and its engineering applicationsen_US
dc.contributor.supervisorZhao, Zhiyeen_US
dc.contributor.schoolSchool of Civil and Environmental Engineeringen_US
dc.description.degreeDoctor of Philosophy (CEE)en_US

Files in this item


This item appears in the following Collection(s)

Show simple item record