View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Theses
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Theses
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Design and characterisation of an automatic stethoscope

      Thumbnail
      MAE-THESES_1092.pdf (11.85Mb)
      Author
      Wang, Ping.
      Date of Issue
      2003
      School
      School of Mechanical and Aerospace Engineering
      Abstract
      The work embodied in this dissertation reports the development of an automatic diagnostic system for characterizing phonocardiogram signals obtained using an electronic stethoscope. The use of Hidden Markov Model (HMM) is proposed and implemented for analysis and diagnosis. HMM is a double stochastic process, composed of a stochastic process with an underlying stochastic process which is not observable. Because of HMM's suitability to provide solutions for recognition, segmentation and training problems, it can be used in a predictive statistical heart sound analysis system. There are two core parts to the system: (1) feature extraction, (2) feature recognition. In feature extraction, Mel Frequency Cepstral Coefficients (MFCC) are extracted automatically after filtering and segmentation. Consequently, the feature recognition part builds HMM models according to different heart conditions. With the features extracted in the former part, ten different HMM models can be set up and trained by using left-to-right model, which is a time-based uni-directed model. Each model can denote a particular disease of the heart and a set of models can be determined to represent the conditions of different heart status. The results can then be used for automatic recognition by a probabilistic approach.
      Subject
      DRNTU::Engineering::Bioengineering
      Type
      Thesis
      Rights
      Nanyang Technological University
      Collections
      • MAE Theses

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG