dc.contributor.authorHu, Xiao.en_US
dc.description.abstractThe project aims to establish research infrastructure, i.e., facilities Fourier Transform Infrered Laser Raman (FT-IR-Raman) spectroscopy system. FT-Raman is a powerful technique for characterisation of a wide range of materials particularly engineering and functional polymers in various of shapes and forms. This technique is particularly important in studying materials with symmetric chemical bonding. FT-Raman is a unique technique which uses an infrared laser of wavelength 1064 nm (Nd:Yag laser) instead of visible or UV lasers used in conventional Raman systems. The main objectives of the project are to develop the infrastructure equipment (i.e., FT-Raman system) to support the research in structural and optical property characterisation of conjugated polymers for photonic and microelectronics applications; characterisation of novel stress sensitive polymers for sensor applications; characterisation of novel copolymers as resist for microlithography; and experimental micro- optical stress analysis of films and microelectronics device. Efforts have been focused on capability development of FTIR-Raman techniques for polymer characterisation in terms of hardware, software and other know-how; customising techniques for stress/deformation analysis, opto-mechanical behaviour, structural and chemical analysis using Raman spectrometer, and ultimated developing novel diacetylene-containing copolymers that have potential applications as optical strain sensors (using Raman scattering as the diagnostic signals) and novel resists for microlithography. Upon developing the capability, there was follow-up collaboration with Chartered Semiconductors Manufacturing Pte Ltd on characterisation of low-k dielectric materials and chemical amplified photo resists.en_US
dc.format.extent208 p.
dc.rightsNanyang Technological Universityen_US
dc.subjectDRNTU::Engineering::Materials::Material testing and characterization
dc.titleFourier transform Raman spectroscopy techniques for engineering and functional polymers in microelectronics industryen_US
dc.typeResearch Reporten_US
dc.contributor.schoolSchool of Materials Science and Engineeringen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record