View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Theses
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Theses
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Optical and dielectric properties of self-assembled germanium nanostructures and applications

      Thumbnail
      TeG0701792L.pdf (10.60Mb)
      Author
      Goh, Eunice Shing Mei.
      Date of Issue
      2012
      School
      School of Electrical and Electronic Engineering
      Abstract
      With recent advancement in the semiconductor technology, various electronic gadgets have been designed and produced to keep up with the strong demand from end customers. Compared with the electronic products of twenty years ago, the electronic gadgets are now smaller, faster and have more functionalities as the semiconductor wafer technology now reaches the nanoscale. However, as the current transistor technology node will continue to scale down, various breakdown problems will be encountered. Alternative methods to solving the issues such as transistor breakdown in electronic devices are to integrate photonics technology with the current electronic technology and implement semiconductor nanostructures in both optical and electronic devices. With challenges on the understanding of new physics behind, nanostructures demonstrate many intriguing properties that cannot be seen from the otherwise bulk counterpart. Coupled with the advanced fabrication technology and microscopy technology, the nanostructures can be easily synthesized and characterized to understand its physics for future device applications. To our best knowledge, Si has always been the preferred choice, because Si has less leakage current, higher threshold voltage, and is less temperature dependent compared with Ge. However, in the research point of view for photonics, Si simply loses out to Ge, as Ge has larger dielectric constant, smaller band gap, and smaller electron and hole effective masses compared with bulk Si. The size effect of Ge nanostructures is more obvious than that of Si nanostructures, so the change in the properties of Ge nanostructures is more pronounced and tunable. Thus, because of the intriguing properties and exciting potential applications in microelectronics and photonic devices, this thesis focuses on the optical and dielectric properties of Ge nanostructures (i.e. thin film and nanocrystals).
      Subject
      DRNTU::Engineering::Electrical and electronic engineering::Microelectronics
      Type
      Thesis
      Collections
      • EEE Theses

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG