View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Student Reports (FYP/IA/PA/PI)
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Student Reports (FYP/IA/PA/PI)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Biofunctionalization of polydimethylsiloxane (PDMS) for tissue engineering applications

      Thumbnail
      FYP Agita Sesara Admar 086288G07 (FINAL).pdf (1.865Mb)
      Author
      Agita Sesara Admar
      Date of Issue
      2012
      School
      School of Materials Science and Engineering
      Abstract
      PDMS was used as the screening platform of stem cell differentiation as a result of matrix stiffness. PDMS was chosen because it is easy to fabricate and the modulus could be easily tuned using the different curing agent ratio. As PDMS is hydrophobic and has low surface reactivity, surface modification of PDMS needs to be carried out first. To ensure effective biofunctionalization of PDMS, an optimum material stiffness, wettability and activated surface of PDMS must be obtained. To achieve the aforementioned condition, oxygen plasma treatment is conducted on three kind of substrate with three kinds of PDMS substrate fabricated with different elastomer base to curing agent ration, 1:10, 1:50, and 1:70. The Young’s moduli of the three kinds of PDMS substrates are 399 kPa, 45.6 kPa and 5.49 kPa respectively, as assessed by rheometer. There are three variables of plasma treatment condition that can be manipulated to achieve an activated PDMS surface, namely the plasma power (50 W, 100 W, and 150 W), exposure time (30 s, 60 s, 90s, and 120 s) and oxygen flow rate (10 sccm, 15 sccm, and 20 sccm). The activity of plasma treated PDMS surface was evaluated by the free radical amount generated, which was measured by DPPH assay. Moreover, the wettability of the plasma treated PDMS surface was measured using goniometer. The maximum amount of free radical concentration was achieved under the duration of 60 s, plasma power of 50 W and oxygen flow rate of 15 sccm for 1:10 ratio sample; duration of 90 s, plasma power of 100 W and oxygen flow rate of 20 sccm for 1:50 ratio sample, and duration of 120 s, plasma power of 150 W and oxygen flow rate of 10 sccm for 1:70 ratio sample. Because of its hydrophobicity, PDMS has a water contact angle at around 108o before surface modification. After oxygen plasma treatment, the water contact angle drop to below 35o, which shows a hydrophilic properties of the treated surface and hence a better wettability.
      Subject
      DRNTU::Engineering::Materials::Biomaterials
      Type
      Final Year Project (FYP)
      Rights
      Nanyang Technological University
      Collections
      • MSE Student Reports (FYP/IA/PA/PI)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG