View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Student Reports (FYP/IA/PA/PI)
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Student Reports (FYP/IA/PA/PI)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Influence of electron-beam irradiation on in-vitro hydrolytic degradation of biodegradable polymer

      Thumbnail
      MSE11-074.pdf (1.100Mb)
      Author
      Ong, Brenda Si Ying.
      Date of Issue
      2012
      School
      School of Materials Science and Engineering
      Abstract
      Glaucoma is a group of ocular disease where the fluid pressure is elevated beyond the limit, causing irreversible damage to the optic nerve which eventually leads to a loss of vision. Glaucoma Drainage Device (GDD) is implanted when other medical treatments were ineffective in managing the disease. To avoid post-surgery complication of hypotony and ocular hypertension, a biodegradable valve is to be integrated into the GDD. The biodegradable material for the valve will be required to retain its mechanical properties for the first few weeks after surgery and yet fully disintegrate after 6 weeks. Therefore, the influence of electron-beam (e-beam) irradiation of in-vitro hydrolytic degradation of poly(DL-lactide-co-ε-caprolactone) 70/30 (PLC) were studied in this report. Solvent-casted PLC films were irradiated at 10, 20 and 30 Mrad. Subsequently, PLC samples were immersed in phosphate buffer saline (PBS) solution and incubated at 37ºC for a period of 6 weeks. Several characterization tests were carried out weekly to understand the degradation behavior. Upon e-beam radiation on PLC, Mn of PLC decreases. Despite a decrease in Mn with increasing radiation dosage, ΔHm and Tg decreased gradually. This is due to the combined effect of chain scission and crosslinking initiated by e-beam radiation. At 10 and 20Mrad e-beam radiation, crosslinking predominates and hence, tensile strain and Young’s modulus of PLC increased slightly. However, at higher e-beam radiation dosage of 30 and 40Mrad, chain scission predominates which results in a decrease in tensile strain and significant drop of Young’s modulus to less than 2.5MPa. During 6 weeks of degradation, molecular weight, tensile strain and Young’s modulus of non-radiated and radiated PLC had an overall decrease. The molecular weight and Young’s modulus was affected by the efficiency of oligomer removal. At 10 and 20Mrad, cross-linking predominates and hence oligomers are not removed from PLC. However, at 30 and 40Mrad, chain scission predominates and thus, oligomers were efficiently removed. In conclusion, PLC radiated at 20Mrad displayed unique characteristics such as retention of Young’s modulus in the first few weeks of degradation and difference degradation mechanism from other PLC samples.
      Subject
      DRNTU::Engineering::Materials::Biomaterials
      Type
      Final Year Project (FYP)
      Rights
      Nanyang Technological University
      Collections
      • MSE Student Reports (FYP/IA/PA/PI)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG