dc.contributor.authorWang, Dawei
dc.identifier.citationWang, D. (2012). All-optical processing technologies for next generation optical networks. Doctoral thesis, Nanyang Technological University, Singapore.
dc.description.abstractAll-optical processing technologies are highly desirable for next generation optical networks because they can resolve the electrical bottleneck issues. All-optical processing technologies span many research areas, which include optical buffering, optical logic gates, optical wavelength conversion/multicasting, optical signal regeneration, ultra-fast optical switching, optical signal modulation format conversion, de-multiplexing of optical time division multiplexing (OTDM) signal, optical data exchange, and etc. This thesis focuses on two aspects of all-optical processing technologies; namely, optical buffering and wavelength multicasting. First, we experimentally demonstrated an optically controlled loop buffer, which utilized a semiconductor optical amplifier (SOA)-based loop mirror as a fast switch to realize the writing and reading of optical data packets within this buffer and a circulator-based optical reflector to achieve internal re-circulations. According to the experimental results, the proposed loop buffer has better performance in terms of number of achievable re-circulations, compared to other similar loop buffer structures. In addition, the number of re-circulations can be significantly increased while maintaining acceptable performance degradation by using negative instead of positive control method.en_US
dc.format.extent163 p.en_US
dc.subjectDRNTU::Engineering::Electrical and electronic engineering::Optics, optoelectronics, photonicsen_US
dc.titleAll-optical processing technologies for next generation optical networksen_US
dc.contributor.supervisorCheng Tee Hiangen_US
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.description.degreeDoctor of Philosophy (EEE)en_US
dc.contributor.researchNetwork Technology Research Centreen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record