View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Student Reports (FYP/IA/PA/PI)
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Student Reports (FYP/IA/PA/PI)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Design and implementation of formal verification methodology using Boolean satisfiability

      Thumbnail
      ep2004-091.pdf (1.715Mb)
      Author
      Phone, Thet Khaing.
      Date of Issue
      2010
      School
      School of Electrical and Electronic Engineering
      Abstract
      Functional verification is an important phase in the design flow of digital circuits as it is used to verify a design when changes occur. It ensures that the functionality of the original design is not affected by the changes. Logic simulation is a widely used technique for the verification of a design. Formal verification is an alternative technique for logic simulation as it is impossible to verify the overall design completely and detect design bugs by logic simulation since the quality of simulation results deeply depend on given input patterns. To address this, formal verification uses mathematical techniques to compare the original representation to the new representation. Formal verification method breaks the designs into mathematical representations and then formally proves that the two design representations are equivalent. Formal verification is realized on top of the basic Boolean reasoning techniques such as binary decision diagram (BDD), automatic test-pattern generation (ATPG) and Boolean satisfiability (SAT) as logic circuits compute Boolean functions. In this report, a design methodology for formal verification of digital combinational circuit using Boolean satisfiability had been proposed and a new formal verification tool Verification-Satisfiability (VeriSat) had been implemented.
      Subject
      DRNTU::Engineering::Electrical and electronic engineering::Electronic systems
      Type
      Final Year Project (FYP)
      Rights
      Nanyang Technological University
      Collections
      • EEE Student Reports (FYP/IA/PA/PI)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG