Design of Metallic Nanostructures for Plasmonics Based Applications: Chemo/Biosensing, Solar Evaporation, and Photocatalysis

Lulu Zhang

SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES

2018
Design of Metallic Nanostructures for Plasmonics Based Applications: Chemo/Biosensing, Solar Evaporation, and Photocatalysis

Lulu Zhang

Division of Physics and Applied Physics
School of Physical and Mathematical Sciences

A thesis submitted to the Nanyang Technological University
in fulfilment of the requirement for the degree of

Doctor of Philosophy

2018
For my parents

and

my wife Houjuan Zhu.
ACKNOWLEDGEMENTS

As my Ph.D. study in NTU is approaching the end, herein, I would like to convey my sincere gratitude to my supervisor Prof. Xiong Qihua, for his generous support and continual guidance throughout my doctoral research. With the patient help and the systematic academic training offered by Prof. Xiong, I have learned how to be a professional researcher in doing research, which I believe it will also benefit me a lot in my future academic career. He has set me an example of a professional researcher, whose diligent, aggressive, rigorous attitude and enthusiasm in research has motivated me to pursue higher academic achievement.

Thanks to Dr. Cao Cuong at Queen's University Belfast for the precious advice and patient discussions on my first manuscript revision and submission. Appreciations to Dr. Xing Jun for his constant willingness in sharing exciting research ideas and useful material synthesis skills. Thanks to Dr. Zhang Jun, Dr. Xu Weigao, Dr. Wen Xinglin, Dr. Zhao Yanyuan for the meticulous instrument training.

I would also like to take this chance to acknowledge other group members and all of my friends for their kind help in the past few years, especially Dr. Yu Huakang, Dr. Zhang Qing, Dr. Yuan Yanwen, Dr. Lu Xin, Dr. Wang Xingzhi, Dr. Ye Huanqing, Dr. Peng Bo, Dr. Zhao Weijie, Dr. Zhang Chaohua, Su Rui, Bao Di, Zhao Jiaxin, Liu Sheng. I really appreciate that they can share with me good ideas and provide useful suggestions when I am suffering from the bottleneck in my research.

Last but not least, I would like to express my deepest gratitude to my beloved family for their wholehearted dedication and unconditional love. Thanks to my wife Dr. Zhu Houjuan for her unwavering understanding and support, which inspires me to overcome the hardship and be a better man.
List of Publications

Journal Papers

1. **Lulu Zhang**, Jun Xing, Xinglin Wen, Jianwei Chai, Shijie Wang and Qihua Xiong, Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination”, *Nanoscale*, 2017, 9, 12843-12849.

4. **Lulu Zhang**, Yanwen Yuan, Xinglin Wen, Yue Li, Cuong Cao and Qihua Xiong, A coordination and ligand replacement based three-input colorimetric logic gate sensing platform for melamine, mercury ions, and cysteine, *RSC Adv.*, 2015, 5, 59106-59113.

6. **Lulu Zhang**, Xinglin Wen, Jun Xing, and Qihua Xiong, Tuning surface plasmon of indium nanoparticles for plasmon enhanced photocatalysis, *in preparation*.

Conference Presentations and Posters

1. **Lulu Zhang**, Xinglin Wen, Cuong Cao and Qihua Xiong, Coordination and ligand replacement based colorimetric logic gates of melamine, Hg2+, and cysteine, *Nanoscience and Nanomedicine Workshop*, 2014, MSE, ER®N, NITHM, IGS and Chulalongkorn University.
Table of Contents

List of Tables .. VII

List of Figures .. VIII

Abstract .. XVII

Chapter 1 ... 1

Introduction ... 1

1.1 Basics of plasmonics ... 2

1.1.1 The origin of plasmonics .. 2

1.1.2 Surface plasmon polaritons and localized surface plasmon resonance .. 4

1.1.3 The Mie theory .. 6

1.2 Plasmonics based applications ... 10

1.2.1 Plasmonic colorimetric sensing based on colloid metal nanoparticles ... 10

1.2.2 Plasmonic passive solar desalination ... 16

1.2.3 Plasmonic photocatalysis ... 20

1.2.4 Surface-enhanced Raman scattering (SERS) .. 23

1.3 Thesis Scope and Structure .. 26

Chapter 2 ... 30

Fabrication and characterization of gold and indium nanostructures .. 30

2.1 Fabrication of gold and indium nanostructures .. 30

2.1.1 Synthesis and surface chemistry of Au NPs ... 30

2.1.2 Fabrication of indium nanostructures on different substrates .. 36

2.2 Characterizations of Au and In nanostructures ... 42

2.2.1 Transmission electron microscopy ... 42

2.2.2 Scanning electron microscopy ... 43

2.2.3 UV/Vis/NIR optical absorption spectroscopy .. 44
2.2.4 X-ray photoelectron spectroscopy ... 45
2.2.5 X-ray diffraction ... 47

Chapter 3 .. 49

Controllable plasmon coupling of Au NPs induced color changes for plasmonic colorimetric logic gate sensing ... 49

3.1 Introduction .. 49
3.1.1 Background .. 49
3.1.2 Plasmonic colorimetric logic gate ... 49
3.1.3 Design of a three-input colorimetric logic gate sensing system 50

3.2 Experimental section .. 51
3.2.1 Plasmonic colorimetric logic gate operations by using Au NPs solutions 51
3.2.2 Melamine sensing ... 51
3.2.3 Cysteine sensing ... 52
3.2.4 Hg$^{2+}$ sensing ... 52

3.3 Results and discussion ... 53
3.3.1 Construction of a three-input (cysteine, melamine, and Hg$^{2+}$) plasmonic colorimetric logic gate based on colloid Au NPs ... 53
3.3.2 Logic operations in the plasmonic colorimetric sensing system 55
3.3.3 Investigation of the mechanism through UV/Vis absorption spectra evolutions induced by competing coordination reactions ... 59
3.3.4 Application in sensing of different analytes .. 64

3.4 Conclusion ... 70

Chapter 4 .. 71

Plasmonic heating effect of In NPs and its application for enhanced solar evaporation .. 71

4.1 Introduction ... 71
4.1.1 Background ... 71
4.1.2 Plasmonic nanoparticles for light to heat conversion .. 71
4.1.3 Fabrication of a floating solar desalination device based on In NPs 72
4.2 Experimental setup ... 73
4.3 Results and discussion ... 74
 4.3.1 Theoretical calculation of plasmonic heating ability of In NPs 74
 4.3.2 Morphology and optical properties of In NPs on MPM 77
 4.3.3 In NPs on MPM for plasmon enhanced solar evaporation 79
 4.3.4 In NP/MPM for solar desalination of a real seawater sample 82
 4.3.5 Stability of In NP/MPM in solar evaporation ... 84
4.4 Conclusion .. 87

Chapter 5 .. 88

Near-field enhancement and LSPR induced hot carrier injection of In NPs for enhanced photocatalysis of TiO$_2$ NPs ... 88

5.1 Introduction .. 88
 5.1.1 Creation and transfer of charge carriers in photocatalysis 88
 5.1.2 TiO$_2$ in photocatalysis ... 89
 5.1.3 In NPs for plasmonic photocatalysis .. 90
5.2 Experimental section .. 91
5.3 Results and discussion ... 92
 5.3.1 Preparation of In NPs with different sizes on quartz substrate 92
 5.3.2 Fabrication of In NPs@TiO$_2$ nanostructures ... 93
 5.3.3 Optical properties of In NPs@TiO$_2$ nanostructures 95
 5.3.4 Enhanced photodegradation of MB on In NPs@TiO$_2$ 97
 5.3.5 Effect of In NPs sizes on In NPs@TiO$_2$ on photocatalysis performance 99
 5.3.6 Dependence of photocatalysis performance on excitation wavelength 100
5.3.7 Effect of a SiO$_2$ dielectric layer between In NPs and TiO$_2$ on photocatalysis performance ... 102

5.4 Conclusion ... 105

Chapter 6 ... 107

Near-field enhancement of In NPs and its application for UV SERS using 325 and 355 nm Laser .. 107

6.1 Background ... 107

6.1.1 Introduction .. 107

6.1.2 UV SERS using different metals .. 108

6.1.3 In NPs for UV SERS ... 108

6.2 Experimental setup .. 110

6.3 Results and discussions ... 111

6.3.1 Comparison of near field enhancement ability of Al and In NPs 111

6.3.2 Preparation of In NPs with different sizes on ITO glass 113

6.3.3 Optical properties of In NPs on ITO glass ... 115

6.3.4 In NPs for UV SERS using 325 nm laser ... 116

6.3.5 Effect of In NPs sizes on UV SERS performances with 325 nm laser 118

6.3.6 Comparison between 325 and 355 nm laser excitation 120

6.3.7 Effect of a SiO$_2$ dielectric layer coating on In NPs on UV SERS performance 120

6.4 Conclusions ... 122

Chapter 7 ... 124

Summary and Future work .. 124

7.1 Original contribution of this thesis ... 124

7.2 Future work .. 126

References .. 129
List of Tables

Table 2.1 Syntheses of different Au nanostructures using different methods. 35

Table 2.2 Preparation of different In nanostructures using different methods. 39

Table 3.1 Truth table of INH, OR and AND gates based on Boolean logic operations. 57

Table 3.2 Stability constants of the complexes formed through coordination with Hg$^{2+}$ 64
List of Figures

Figure 1.1 Schematic illustrations of SPPs and LSPR. (A) Propagating surface plasmon polaritons along the metal/dielectric interface. (B) Localized surface plasmon on a subwavelength metal nanosphere. ... 4

Figure 1.2 Sketch of a metal nanosphere immersed in an electrostatic field. 8

Figure 1.3 (A) Optical image of Au NPs colloid solutions upon the addition of melamine from 0 to 1.5 µM. (B) The evolution of the absorption spectra as a result of the introduced melamine. TEM images of Au NPs colloid solutions with (C) 0, (D) 1.1, and (E) 1.5 µM melamine. (F) Schematic depiction of the formation of Au NP aggregates the cross-linked by the melamine molecules. ...11

Figure 1.4 Electrodynamic modeling of the evolutions of extinction spectra of Au NPs with (A) fixed particle size and different particle distances, (B) fixed particle distance and different particle sizes, and (C) fixed particle distance and different aggregate sizes. .. 13

Figure 1.5 (A) Scheme of DTT, Cys, and GSH modified gold nanoparticles for arsenic detection. Photograph of Au NPs in aqueous solution modified with GSH/DTT/Cys upon addition of (B) different metal ions (5 ppb) and (C) As\text{III} with different concentrations. ... 14

Figure 1.6 (A) Scheme of a competition format colorimetric Assay for detection of cysteine by using DNA modified Au NPs. (B) Colorimetric responses of the assay to different amino acids (1 µM) at room temperature and 50 °C... 15

Figure 1.7 (A) Scheme of the efficient solar steam generation with highly localized plasmonic heating effect. (B) Visible-Near-Infrared (Vis-NIR) absorption spectrum of plasmonic Au NSs. Inset is the SEM images of Au NSs... 18

Figure 1.8 Schematic illustration of solar steam generation using floating plasmonic device to enable the evaporation at water-air interface. ... 19

Figure 1.9 (A) Cross-section TEM image of the Ag NPs/SiO$_2$/TiO$_2$ structure. (B) UV/Vis absorption spectra of bare TiO$_2$ film (curve a), Ag NPs/TiO$_2$ (curve b), and the Ag
NPs/SiO$_2$/TiO$_2$ structure (curve c). (C) Time dependent photo degradation of MB using bare TiO$_2$ film (curve a), the Ag NPs/SiO$_2$ (20 nm)/TiO$_2$ structure (curve b), and the Ag NPs/SiO$_2$ (5 nm)/TiO$_2$ structure (curve c).

Figure 1.10 Charge carrier generations in different systems. (A) Charge carrier in a conventional semiconducting photocatalyst. (B) Electron trapping by a metal nanoparticle (without plasmonic effect). (C) A direct electron transfer (DET) process in a plasmonic photocatalyst. (D) Plasmonic photocatalyst with local electromagnetic field (LEMF). (E) A dipole-dipole resonant energy transfer (RET) mechanism in a plasmonic photocatalyst.

Figure 1.11 Schematics of Stokes and anti-Stokes Raman scattering processes.

Figure 2.1 Cartoon showing the growth process of Au NPs in aqueous using classic Turkevich method.

Figure 2.2 Schematic depiction of the Au-S bonding interaction.

Figure 2.3 Schematics of the intrinsic surface chemistry of solution processed Au nanostructures.

Figure 2.4 Diagram of components and processes involved in a thermal evaporation system.

Figure 2.5 TEM images of (A) well dispersed and (B) aggregated state Au NPs.

Figure 2.6 SEM images of In NPs prepared on different substrates. (A) Quartz. (B) ITO glass. (C) TiO$_2$ nanorod array. (D) MPM.

Figure 2.7 UV/Vis absorption spectra of Au NPs in solution with ~13 (A) and ~30 (B) nm sizes, and (C) In NPs prepared with different thicknesses of thermal evaporated indium.

Figure 2.8 (A) SEM image of In NPs prepared on MPM. (B) XPS spectrum of indium on In NP/MPM. (C) XPS spectrum of oxygen on In NP/MPM. (D) XPS spectrum of oxygen on bare MPM.

Figure 2.9 XRD pattern of In NPs prepared on MPM.
Figure 3.1 Illustration of the design principles of the three-input colorimetric logic gate. 55

Figure 3.2 TEM images of the states of ~13 nm Au NPs after the analytes (60 μM melamine, 360 μM cysteine, and 180 μM Hg^{2+}) were added with different logic combinations. All scale bars in the images are 50 nm. 55

Figure 3.3 Logic operations performed by using Au NPs solutions with different analyte combinations. (A) UV/Vis absorption spectra of Au NPs solutions with analytes (60 μM melamine, 360 μM cysteine, and 180 μM Hg^{2+}) in different logic combinations. (B) Their corresponding A_{650nm}/A_{520nm} values. (C) Network map of the logic gate sensing system with logic operations. (D) The inputted and their corresponding outputted signals in this logic system. Inset displays the outputted color readouts. 57

Figure 3.4 An illustration to show how different combinations of analytes can be discriminated. (A) Discrimination of a single kind of analyte. (B) Discrimination of the combination of two kinds of analytes. The analytes can be discriminated step by step with the help of an additional solution of Hg^{2+} when it is known that how many kinds of targeted species are in the sample solution. There will be only one case when the number of species is three, namely, the coexistence of Hg^{2+}, melamine, and cysteine. The output of this combination will always be 1, namely the formation of Au NPs aggregates, so the discrimination of this case is not needed. 58

Figure 3.5 Competing coordination reactions induced UV/Vis absorption spectra evolutions of the analytes. (A) Hg^{2+} induced changes of UV-vis absorption spectra of 20 μM melamine. Concentration of Hg^{2+} was increased from 0 to 80 μM, (B) cysteine induced changes of UV/Vis absorption spectra of Hg^{2+}-melamine complex (60 μM Hg^{2+} + 20 μM melamine) solution. Concentration of cysteine was increased from 0 to 160 μM, (C) UV/Vis absorption spectra of cysteine alone in aqueous solution. The concentration of cysteine was increased from 40 to 160 μM, and (D) cysteine induced changes of UV/Vis absorption spectra of 60 μM Hg^{2+}. Concentration of cysteine was increased from 0 to 160 μM. 60

Figure 3.6 (A) UV/Vis absorption spectra of Au NPs solution upon the addition of cysteine at the concentrations ranging from 0 to 404 μM, (B) Au NPs solution upon the addition of melamine at the concentrations ranging from 0 to 200 μM in the presence of 6 μM cysteine, (C) Au NPs
solution upon the addition of Hg2+ at the concentrations ranging from 0 to 60 μM in the presence of 6 μM cysteine, Au NPs solution upon the addition of (D) HCl and (E) NaOH at the concentrations ranging from 0 to 120 μM in the presence of 6 μM cysteine. These results imply that cysteine can serve as a stabilizing agent against melamine induced aggregation of Au NPs. However, this stabilizing effect will be broken when Hg2+ is introduced into the system at the same time.

Figure 3.7 Control experiments to verify the role of –SH group in the logic gates. (A) Color readouts induced by melamine (60 μM) and Hg2+ (180 μM) with 360 μM alanine (top) and cysteine (bottom) in different combinations. (B) Alanine induced changes of UV/Vis absorption spectra of Hg2+-melamine complex (60 μM Hg2+ + 20 μM melamine) solution. Concentration of alanine was increased from 0 to 160 μM, (C) alanine induced changes of UV/Vis absorption spectra of 60 μM Hg2+. Concentration of alanine was increased from 0 to 160 μM, (D) UV/Vis absorption spectra of alanine alone in aqueous solution. The concentration of alanine was increased from 40 to 160 μM. Melamine (20 μM) solutions upon the addition of alanine (E) and cysteine (F) from 40 to 160 μM.

Figure 3.8 Selectivity to melamine like compounds. (A) UV/Vis absorption spectra of Au NPs solutions with the addition of six nitrogen containing compounds with the concentration of 1.5 μM, (B) their corresponding A\textsubscript{650nm}/A\textsubscript{520nm} values, (C) the photos of color readouts of the above samples, and (D) molecular structures of the six compounds.

Figure 3.9 Comparison between Au NPs with ~13 and ~30 nm sizes. (A) SEM image of ~30 nm Au NPs. UV/Vis absorption spectra responses of ~30 nm (B) and ~13 nm (C) Au NPs solutions after the addition of 1.5 μM melamine, (D) the corresponding A\textsubscript{676nm}/A\textsubscript{519nm} (13 nm Au NPs) and A\textsubscript{820nm}/A\textsubscript{527nm} (30 nm Au NPs) values, (E) the color readouts of the Au NPs solutions.

Figure 3.10 (A) 0.6 μM melamine induced evolutions of UV/Vis absorption spectra of Au NPs in 30 minutes. (B) Time dependent visual detections of Hg2+ by using 0.6 μM melamine as a reference.

Figure 3.11 Cysteine sensing. (A) UV/Vis absorption spectra of Au NPs in solution after 60 μM different amino acids are added together with 60 μM melamine, (B) the corresponding
A650nm/A520nm values of the samples, (C) the photos of the color readouts of the samples, and (D) the 13 kinds of amino acids used in this study. (E) A650nm/A520nm values of the samples obtained by adding different concentrations of cysteine together with 1.4 μM melamine, (F) the visualized color readouts of the samples, and (G) the linear relationship between the A650nm/A520nm values and the concentration of cysteine.

Figure 3.12 Hg$^{2+}$ sensing. (A) Absorption spectra responses of Au NPs solutions after 50 μM different amino acids are added together with 1.5 μM melamine, (B) the corresponding signal readouts in the form of A650nm/A520nm, and (C) the photos of the corresponding color readouts of the samples (after 2 min). (D) A650nm/A520nm values of the samples obtained by adding different concentrations of Hg$^{2+}$ together with 0.6 μM melamine, (E) the photos of their corresponding visualized color readouts of the samples (E) the linear relationship between the A650nm/A520nm values and the concentration of Hg$^{2+}$.

Figure 4.1 (A) Calculated Joule heat generation ability curves of different metal nanoparticles. (B) Calculated Joule heat generation ability curves of irregular shaped In NPs based on the ellipsoid model.

Figure 4.2 SEM images of In NPs with different deposition thicknesses (A) 10 nm, (B) 20 nm, (C) 40 nm, and (D) 80 nm on MPM. The scale bars here are 500 nm. (E) Visible and (F) NIR light absorption spectra of In NPs on MPM. (G) Optical images of MPM substrates with different deposition thicknesses of indium.

Figure 4.3 SEM images of bare MPM substrates at different scales, displaying a porous nature.

Figure 4.4 Measurements of contact angle of water drop on In NP/MPM device. Water droplets on the surface of the device can rapidly disperse, demonstrating the hydrophilic surface of the device.

Figure 4.5 (A) A schematic diagram of the device we designed for enhancing steam generation. The In NP/MPM was floating on the upper surface of water. (B) The weight change curves of water with different In NP/MPM devices under 3 sun solar irradiation. The inset illustration shows the device was floating on the surface of water. (C) The IR images of water before solar
irradiation (I), without (II) and with (III) In NP/MPM after irradiation under 3 sun for 30 minutes. The irradiation time is 30 minutes. IV is the side view of III at the same irradiation intensity. (D) The weight changes of water without and with the device as a function of irradiation time under 1 and 3 sun irradiations. (E) The weight change of water at different irradiation intensities (1 sun, 2 sun, and 3 sun) in 30 minutes with and without In NP / MPM devices................................. 81

Figure 4.6 Cycle solar evaporation performances of a seawater sample using In NP/MPM device at fixed irradiation intensities in 30 min (1 and 3 sun). ... 82

Figure 4.7 Optical photographs of the water condensation on the quartz cover after 30 minutes in the absence (A) and presence (B) of the In NP/MPM device................................. 83

Figure 4.8 The concentrations of five main ions (Na+, K+, Mg2+, B3+, and Ca2+) before and after desalination measured by ICP-OES. It was noted that the concentration of Mg2+ was lower than the detection limit (N.D.) of ICP-OES after desalination. For the shaded areas, the light blue portion and light green portions refer to the overall common salinity achieved by conventional membrane and distillation-based desalination techniques, respectively. The dashed lines represent the drinkable water salinity standards regulated by WHO and EPA................................. 83

Figure 4.9 Cycle solar evaporation performances (15 rounds) of In NP/MPM plasmonic device at 3 sun solar illumination intensity. ... 84

Figure 4.10 (A) XPS spectra of In 3d of In NP/MPM before and after solar evaporation. (B) XPS spectra of O 1s of In NP/MPM before and after solar evaporation. (C) XPS spectrum of O 1s from bare MPM substrate... 85

Figure 4.11 XRD characterizations of In NPs on MPM before and after 15 cycles solar evaporation processes. ... 86

Figure 4.12 SEM images of In NP/MPM (A) before and (B) after 15 cycles solar evaporation processes. The scale bars here are 500 nm... 87

Figure 5.1 Generation of electron-hole pair and their corresponding transfer pathways in a semiconductor in a typical photocatalysis process. ... 89
Figure 5.2 SEM images of In NPs on quartz prepared by thermal evaporation of indium with different thicknesses. (A) 5 nm. (B) 10 nm. (C) 20 nm. (D) 30 nm. (E) 40 nm. (F) 50 nm. The scale bars are 100 nm. ... 92

Figure 5.3 SEM images of TiO$_2$ film on quartz prepared by spin coating TiO$_2$ NPs (4.5 N.V. % in water) with different magnifications. (A) 1500×. (B) 3000×. (C) 5000×. (D) 10000×. The scale bars are 10 µm, 1 µm, 1 µm, and 1 µm, respectively. ... 94

Figure 5.4 SEM images of In NPs prepared on quartz before (A) and after (B) TiO$_2$ coating. ... 95

Figure 5.5 Absorption spectra of the prepared In NPs@TiO$_2$ nanostructures. 97

Figure 5.6 Evolutions of absorption spectra of MB on different structures in 36 minutes. (A) TiO$_2$. (B) In NPs@TiO$_2$. (C) Bare In NPs. ... 98

Figure 5.7 Degradation of MB on In NPs@TiO$_2$ with different indium deposition thickness ranging from 5 to 50 nm. .. 99

Figure 5.8 Degradation of MB on In NPs@TiO$_2$ with different indium thicknesses under sunlight and visible light. (A) 5 nm. (B) 10 nm. (C) 20 nm. (D) 30 nm. (E) 40 nm. (F) 50 nm. 101

Figure 5.9 SEM images of In NPs prepared by thermal evaporation of indium with 10 nm (A) and 20 nm (C) thickness before (A and C) and after (B and D) the sputtering of 10 nm SiO$_2$. . 102

Figure 5.10 (A) Absorption spectra of In NPs prepared by deposition of 5, 10, 20, and 30 nm indium before and after coating a layer of SiO$_2$ with 10 nm thickness. (B) Absorption spectra evolutions of In NPs prepared by deposition of 20 nm indium with increasing coating thickness of SiO$_2$. .. 103

Figure 5.11 SEM images of In NPs@10 nm SiO$_2$ prepared on quartz before (A) and after (B) TiO$_2$ coating. .. 104

Figure 5.12 Photodegradation of MB on In NPs@SiO$_2$@TiO$_2$ with different SiO$_2$ thickness ranging from 10 to 50 nm. .. 105

Figure 6.1 Real and imaginary part of the dielectric constants of aluminum and indium as a
function of wavelength in the UV region

Figure 6.2 Schematics of the components and setup for the UV SERS measurements

Figure 6.3 Calculated Fa values for aluminum and indium at different wavelengths in the UV region.

Figure 6.4 SEM images of In NPs on ITO prepared by thermal evaporation of indium with different thicknesses. (A) 10 nm. (B) 20 nm. (C) 30 nm. (D) 50 nm.

Figure 6.5 Absorption spectra of the prepared In NPs with deposition of 10 to 50 nm thickness of indium on ITO glass.

Figure 6.6 Raman signals of 10^{-2} and 10^{-3} M PATP on (A) ITO and (B) In NPs coated ITO. Acquisition time is set as 10 s.

Figure 6.7 Raman signals of 10^{-2} and 10^{-3} M PATP on (A) ITO and (B) In NPs coated ITO. Acquisition time is set as 100 s.

Figure 6.8 Raman signals of 10^{-2} M PATP on In NPs prepared with different indium deposition thickness ranging from 10 to 50 nm on ITO. Acquisition time is set as 100 s with 325 nm laser excitation.

Figure 6.9 (A) Raman signals of 10^{-2} M PATP on In NPs prepared with different indium deposition thickness ranging from 10 to 50 nm on ITO. Acquisition time is set as 100 s with 355 nm laser excitation. (B) Comparison of the UV SERS performances between 325 and 355 nm laser excitations on different sizes of In NPs prepared with different indium deposition thickness ranging from 10 to 50 nm on ITO.

Figure 6.10 SEM images of In NPs prepared by thermal evaporation of indium with 25 nm thickness before (A) and after (B) the sputtering of 10 nm SiO$_2$.

Figure 6.11 Absorption spectra of In NPs prepared by thermal evaporation of indium with 25 nm thickness before and after the sputtering of 10 nm SiO$_2$.

Figure 6.12 UV SERS of PATP on In NPs@SiO$_2$ with different SiO$_2$ thickness ranging from 10
to 50 nm. Acquisition time is set as 100 s with 325 nm laser excitation.

Figure 7.1 (A) SEM image and (B) absorption spectra of solution synthesized In NPs. (C) SEM and TEM image of In@SiO$_2$ core-shelled nanoparticles.

Figure 7.2 SEM image of In NPs on TiO$_2$ nanorods.
Abstract

Metallic nanostructures based plasmonics have been widely studied and proven as powerful platforms in biosensing, photocatalysis, surface enhanced Raman spectroscopy (SERS) and solar energy harvesting related studies. The broad application potentials of plasmonics make people find more and more interesting phenomena and propose even more novel and useful applications based on this fascinating technology.

The phenomena of analytes induced shift of surface plasmon resonance (SPR) of gold nanoparticles (Au NPs) and the color changes of Au NP solutions offers a simple and effective strategy of constructing colorimetric sensing systems. However, most of the Au NPs colorimetric sensing systems developed in previous studies were designed and aiming at the sensing/detection of one certain target/analyte, and unable to be employed for multiple analytes sensing/discrimination. In this thesis, by introducing the concept of logic gate in constructing plasmonic colorimetric sensing system and taking advantage of the highly specific competing coordination reactions between the targeted analytes, we designed for the first time an integrated Au NPs colorimetric sensing platform which can achieve the sensing of Hg$^{2+}$, melamine, and cysteine.

In the field of plasmonics, application-based studies were mostly relying on the limited candidate metals such as Au and Ag which are noble metals, which hampers the design of novel LSPR based systems to be employed in a broad range of practical applications. In this thesis, we have designed different plasmonic nanostructures by using indium which is a kind of poor metal for different applications: (1) Taking advantage of the superior plasmonic heating ability of In NPs and the simple device fabrication process when compared to other metals/materials, we prepared In NPs on a paper like microporous membrane (MPM) to achieve a portable device
with broad light absorbing ability, which showed enhanced solar evaporation performance. As a proof of concept, its application was demonstrated in the solar desalination of the real seawater sample with high stability; (2) In NPs with UV and Visible LSPRs prepared on quartz substrates were coated with layer of TiO$_2$ NPs, the substrate showed an enhanced photocatalysis performance for the degradation of methylene blue when compared with substrate which only had TiO$_2$ coating. The UV and Visible LSPRs can benefit the enhancement through both the hot carrier injection and near-field enhancement mechanisms, while for previous studies using Au, Ag, and Al, only one of the two mechanisms can be observed; (3) In NPs were prepared on ITO with 300 to 400 nm LSPR can be used for UV SERS using 325 and 355 nm laser, which can achieve comparable enhancement when compared to Al, and better enhancement when compared to previous study using In NPs with 266 nm excitation.

Our strategy on the Au NPs colorimetric logic gate may be extended to the design of logic gate sensing systems by using other techniques such as SERS and fluorescent sensing, or other analytes with specific coordination interactions. Our findings in In NPs based systems can help others gain further insight of the plasmonic properties of In NPs, which may on other hand inspire the design of other novel applications and broaden their capabilities in different fields.

In the future, I will try to improve the synthesis of In NPs to obtain In NPs with good size and shape control. Then we can have an in-depth fundamental study of the size and shape induced LSPR property of In NPs, such as single particle UV plasmonics of In NPs both theoretically and experimentally. I will also try to design other novel applications based on the superior plasmonic heating ability of In NPs and its UV LSPR feature, for example, to combine the plasmonic heating effect of In NPs with the photocatalysis of TiO$_2$ together, to achieve simultaneously water treatment and evaporation.
Chapter 1

Introduction

Design of unique metallic nanostructures for light-matter interactions has become a research interest across the world for a few decades. With the rapid growth of studies in this field, “plasmonics” has been emerging as a new subject which has drawn tremendous research attentions.1 The plasmonic effect is mainly the result of the collective oscillations of free conduction electrons when shining the metallic nanostructures with light, in which if the light is in resonant with the oscillation, there will be the formation of surface plasmon resonance (SPR). This resonance can create various unique optical and electromagnetic effects, such as light absorption and scattering, as well as the strong near field enhancement around the surface.2

In recent years, the rapid evolutions and innovations in material processing and synthesis have enabled the controllable fabrication of metallic structures in nanoscale, which on the other hand have provided the reliable means to tune the SPR to meet the specific requirements for different applications, such as surface enhanced Raman scattering,3 SPR sensors,4 plasmonic lasers,5 photothermal conversion,6 and solar energy harvesting.7 Meanwhile, since plasmonic nanostructure is capable of confining the light in a subwavelength volume, it can break the diffraction limit of light and propagate in the plasmonic nanowaveguide. This feature is highly desirable and will play an important role in super resolution imaging and high density integrated optical information processing related technologies.

Based on the above features, plasmonics based techniques have shown broad application prospects and are increasingly of crucial importance in the fields of physics, chemistry, material
science, biological science, energy, and environment monitoring. Therefore, both plasmonics related fundamental mechanism and practical application based studies will help us in comprehensively understanding the features of plasmonics, which is also significant in inspiring the development of novel applications of plasmonics in other fields.

1.1 Basics of plasmonics

1.1.1 The origin of plasmonics

The history of plasmonics started with gold which is a noble metal and was discovered in Bulgaria around 5000 years ago. With the shining golden color, bulk gold was originally used for decorative purpose, or severed as commodities and currency. Unlike the shining bulk gold, gold in nanoscale can display vivid colors, which had been principally used as colorants and dye in enamel pottery, ceramics, clothes, and stained glass windows and artworks, among which the most famous one was the Lycurgus cup (British Museum, London, UK) which could be dated back to the 4th century Roman times. At that time, people had no understanding of the underlying reasons for this fantastic phenomenon that this Roman chalice can appear green under ambient lighting, while the shimmered transmission light was bright red when there was illumination from the inside. Nowadays, we have known the reason for this striking phenomenon is that a trace amount of gold and silver nanoparticles are embedded in the glass and the surface plasmons generated near the nanoparticle surfaces. As surface plasmon is the electromagnetic oscillations of free electrons that occur at the surface of a metal nanoparticle, when it is in resonance with the frequency of the incoming light, the light absorption at a particular wavelength will be amplified to display a certain color which highly depends on the size and the shape of the nanoparticle, the nature of the metal, and the surrounding medium. Of course the glassmakers in 4th century were not likely to have a comprehensive understanding of the tunable
optical properties of metal nanoparticles and the relevant knowledge of plasmonics. In fact, in ancient Roman, the elemental antimony was often added by glassmakers during heating process of sand to prepare glass. On a serendipitous occasion, the added antimony could react with the gold and silver impurities to form nanoparticles which could show specific light absorption and scattering. Until 1857, it was then reported by Faraday in a scientific article that describing the production of colloid Au NPs through the reduction of chloroaurate by phosphorus in CS₂, showing a beautiful ruby color of the colloid solution. Until 1857, it was then reported by Faraday in a scientific article that describing the production of colloid Au NPs through the reduction of chloroaurate by phosphorus in CS₂, showing a beautiful ruby color of the colloid solution. 50 years later in 1908, a systematic explanation of the red color of Au NPs colloid solution was proposed by Gustav Mie by solving the classic Maxwell’s equations, which became a well-known and commonly used theory in plasmonics, namely, the Mie theory. However, it was until 1957 the concept of surface plasmon was first proposed by Ritchie who thought that there will be collective oscillations of the free electrons at metal surface upon the excitation under external electromagnetic field. This oscillatory motion of free electrons induced by the time-dependent electromagnetic field of incident light was first experimentally proven by Powell et al. in 1959. As the surface plasmon is essentially an electromagnetic mode, and its wavenumber is often higher than the wavenumber of the photon in vacuum or the surrounding medium, it can only propagate along the surface and will decrease exponentially with the depth in the metal. However, the creation of this collective oscillation often requires the metal to have negative real part with high absolute value and a small positive imaginary part of the permittivity of the material at the considered excitation wavelength. Therefore, plasmonic phenomena were usually observed on metals, such as Au, Ag, Cu, Al, and In. Recently, graphene was also found can show plasmonic effect, which further promoted the development of this discipline.
1.1.2 Surface plasmon polaritons and localized surface plasmon resonance

Generally, there are two distinct forms of SPR which are defined as localized SPR (LSPR) and propagating surface plasmon polaritons (SPPs). LSPR refers to collective but non-propagating oscillations of surface electrons in the metallic nanostructure when the wavelength of incident light is longer than the size of the metal nanostructure, while SPPs usually appear as the propagating charge oscillations along the surface of thin metal films. Both SPPs and LSPR are capable of enhancing the electromagnetic field in the near-field. Figure 1.1 shows the difference between SPPs and LSPR.3

Figure 1.1 Schematic illustrations of SPPs and LSPR.3 (a) Propagating surface plasmon polaritons along the metal/dielectric interface. (b) Localized surface plasmon on a subwavelength
metal nanosphere.

For SPPs, they are propagating charge waves along the metal/dielectric interface, and the corresponding electric field is given by:\(^\text{13}\)

\[
E_{SP}(x, z) = E_0 e^{ik_{SP}z} e^{-k_{SP}z}
\]

(1-1)

For instance, in a metal thin film, the propagation distance of the charge waves in the \(x\) and \(y\) directions can reach as long as tens of micrometers, while the propagation depth in the \(z\) direction will decrease exponentially and will decay to 1/e around 200 nm. This process can be described by using a Fabry-Pérot resonant cavity model with \(L = n\lambda_{SP}\), in which \(L\) is the length of the metal film and \(\lambda_{SP}\) is the wavelength of the SPPs mode.\(^\text{14}\) SPPs mode is then can be tuned by changing the geometry parameters of the metal film. For a continuous metal film with perfect surface smoothness, the dispersion curve of SPPs is given by:\(^\text{13}\)

\[
k_{SP}^2 = \left(\frac{\omega}{c}\right)^2 \frac{\varepsilon_m \varepsilon}{\varepsilon_m + \varepsilon}
\]

(1-2)

where \(\varepsilon\) and \(\varepsilon_m\) are the dielectric constant of the metal and the medium, respectively, while \(\omega\) and \(c\) are the frequency and the velocity in vacuum of the incident light. In the commonly investigated wavelength range of the light, \(\varepsilon < 0\) and \(|\varepsilon| > 1\), and \(|\varepsilon + \varepsilon_m| < \varepsilon\), therefore, the wave vector or momentum of the SPPs is always higher than that of the incident massless photon and cannot match with each other, in this case, a Kretschmann geometry prism or a grating are often required to provide the extra momentum to excite the SPPs. Another unique feature of SPPs is that it can enhance the electric field in the near-field of the metal film, and this effect is correlated with the dielectric constant of the metal, the surface roughness and the thickness of the metal film, which can give the near-field enhancement around the metal film surface as high as:\(^\text{13}\)
\[\left| \frac{E_{SP}^{Z=0}}{E_0} \right|^2 = \frac{2}{\varepsilon_{air}} \left| \varepsilon_1 \right|^2 \frac{\alpha}{2+|\varepsilon_1|} \]

where

\[\alpha^2 = \left| \varepsilon_1 \right| (\varepsilon_0 - 1) - \varepsilon_0 \]

where \(E_0 \) is the electric field of the incident light, \(\varepsilon_{air} \) is the dielectric constant of the air, and \(\varepsilon_0 \) is the dielectric constant of prism used to couple with the metal film, while \(\varepsilon_1 \) and \(\varepsilon_2 \) are the real and imaginary part of the dielectric constant of the metal, respectively.

Apart from the smooth metal thin film, in reality, there are also metallic structures such as metal film with rough surface or metallic nanoparticles in which there exists the LSPR modes with strong surface confinement. When there is light shining on the metal nanoparticle, there will be collective oscillations of the electron cloud against the nanoparticle core with a restoring Coulomb force which will lead to a characteristic frequency like a harmonic oscillator, which is known as LSPR. Since the geometry of the metal nanoparticle can provide the additional momentum to overcome the mismatch, LSPR can be directly excited by the incident light, benefiting the detection of LSPR using a simple UV-visible absorption spectrometer without the use of a specific prism or a grating. The highly localized feature of LSPR endows the metal nanoparticle the ability to enhance the electromagnetic field in the near-field with even higher order than that of SPPs.\(^4\)

1.1.3 The Mie theory

The optical response of a single metal nanosphere under external fields was first given by Mie in 1908 by solving the Maxwell’s equations within the framework of classic electrodynamics, which described theoretically the extinction (scattering + absorption) of spherical particles with arbitrary sizes.\(^9\) Meanwhile, as most of the standard preparations for colloidal metal particles can
produce the nanoparticles with approximately spherical morphology, and the commonly employed techniques for optically characterizing nanoparticle spectra were usually collecting the signal form the ensemble of many particles, enabling reasonably modeled results when using Mie theory.

As metallic nanostructures that can support LSPRs often with the dimensions in subwavelength scale, they will experience a uniform externally applied electric field \(E_0 \) when excited by the incident light. Under the excitation of this electrostatic field \(E_0 \), it can create an electric field \(E_i \) inside the nanosphere, which is given by

\[
E_i = E_0 \frac{3\varepsilon_m}{\varepsilon + 2\varepsilon_m}
\]

where \(\varepsilon_m \) and \(\varepsilon \) are the dielectric function of the surrounding medium and the metallic nanoparticle, respectively.

The surrounding electromagnetic field around the nanosphere can be obtained by solving fundamental Laplace’s equation of electrostatics, \(\nabla^2 \phi = 0 \), where \(\phi \) is the electric potential. Note that \(\phi \) and the field \(E_0 \) satisfy the relation \(E_0 = -\nabla \phi \), when considering the two boundary conditions that both \(\phi \) at the metallic nanosphere surface and the normal component of the electric displacement \(D \) are continuous, where \(D = \varepsilon_m E_0 \). This introduced electromagnetic field on the spherical metal nanoparticle surface leads to the polarization of the density of free conduction electrons on the nanosphere. By applying the boundary conditions, the resulting polarization of the sphere can be calculated as a whole. The resulting dipole moment, \(p = \varepsilon_m \alpha E_0 \), and the corresponding static polarizability of the particle, \(\alpha \), is given by

\[
\alpha = 4\pi a^3 \frac{\varepsilon - \varepsilon_m}{\varepsilon + 2\varepsilon_m}
\]

in which \(a \) is the radius of the sphere (Figure 1.2).
Taking into consideration the combinational contribution of the real and imaginary parts, the expression of ε for the metal nanosphere is given by

$$\varepsilon = \varepsilon_1 + i\varepsilon_2 = (n + i\kappa)^2$$ \hfill (1-7)

in which n is the refractive index and κ is associated with light absorption. Since ε_m is usually taken as a real constant throughout the visible light wavelength range, making it is possible to allow the polarization to achieve a resonance state at a certain wavelength. At this resonance state, the modified relationship in eq 1-6 will be

$$(\varepsilon_1 + 2\varepsilon_m)^2 + \varepsilon_2^2 = \text{minimum} \hfill (1-8)$$

It is apparent that the plasma resonance wavelength of this nanosphere is mainly determined by ε_1 when ε_2 is small or slowly-varied with wavelength around the resonance condition in which the relation $\varepsilon_1 = -2\varepsilon_m$ is fulfilled and the local field at the particle will be dramatically enhanced. In addition, the ε_2 value of the metal at this resonance wavelength could determine the height and width of the resonance.

![Sketch of a metal nanosphere immersed in an electrostatic field.](image)

Figure 1.2 Sketch of a metal nanosphere immersed in an electrostatic field.

In particular, the dependence of optical properties of individual metal nanoparticle on its size effect has also been intensively modeled in the framework of Mie theory which mathematically and physically described the scattering of electromagnetic wave by subwavelength metal particle placed in a continuous and isotropic medium, in which the solution starts with macroscopic Maxwell equations in the electrostatic approach in the following form
\[\nabla \cdot \mathbf{E} = 0 \quad (1-9) \]
\[\nabla \cdot \mathbf{H} = 0 \quad (1-10) \]
\[\nabla \times \mathbf{E} = i \omega \mu \mathbf{H} \quad (1-12) \]
\[\nabla \times \mathbf{H} = -i \omega \varepsilon \mathbf{E} \quad (1-13) \]

By using the Helmholtz’s equation, the two components (the electric field \(\mathbf{E} \) and the magnetic field \(\mathbf{H} \)) of the incident electromagnetic field can be written as

\[\nabla^2 \mathbf{E} + k^2 \mathbf{E} = 0 \quad (1-13) \]
\[\nabla^2 \mathbf{H} + k^2 \mathbf{H} = 0 \quad (1-14) \]

where \(k \) is the wavenumber defined as

\[k^2 = \omega^2 \varepsilon \mu \quad (1-15) \]

By inserting the series for \(\mathbf{E} \) and \(\mathbf{H} \) for the scattering amplitude functions into the appropriate integrals, and carrying out the integration term by term, the extinction and scattering cross-sections can be obtained as

\[\sigma_{\text{ext}} = \frac{2}{x^2} \sum_{n=1}^{\infty} (2n+1) \text{Re}(a_n + b_n) \quad (1-16) \]
\[\sigma_{\text{sca}} = \frac{2}{x^2} \sum_{n=1}^{\infty} (2n+1)(|a_n|^2 + |b_n|^2) \quad (1-17) \]
\[\sigma_{\text{abs}} = \sigma_{\text{ext}} - \sigma_{\text{sca}} \quad (1-18) \]

where the size parameter \(x \) is given by

\[x = \frac{2\pi R n_m}{\omega} \quad (1-19) \]

where \(n_m \) is the refractive index of the surrounding medium, \(\omega \) is the wavelength of the incident light in vacuum, \(R \) is the radius of the particle, and \(a_n \) and \(b_n \) are the coefficients expressed using the Ricatti-Bessel expressions:
\[a_n = \frac{m \psi_n(mx) \psi'_n(x) - \psi_n(y) \psi'_n(mx)}{m \psi_n(mx) \psi''_n(x) - \psi'_n(mx)} \]
\[(1-20) \]

\[b_n = \frac{\psi_n(mx) \psi'_n(x) - m \psi_n(y) \psi'_n(mx)}{\psi_n(mx) \psi''_n(x) - m \psi'_n(mx)} \]
\[(1-21) \]

where \(m = \frac{n_p}{n_m} \), in which \(n_m \) and \(n_p \) denote the real refractive index of the surrounding medium and the complex refractive index of the particle, respectively, and \(\psi_n(x) \) and \(\zeta_n(x) \) are Ricatti-Bessel cylindrical functions. In the above expressions, \(n \) is the summation index of the partial waves, for example, \(n = 1 \) and \(n = 2 \) are correspondingly representing the dipole and quadruple oscillation mode. To have a better understanding of the LSPR phenomenon, the expression can be reduced to a simpler form with the assumption that \(R \) of the particle is much smaller than the wavelength of the incident light, in which the dipole oscillation will be the dominate mode and it gives the relationship

\[\sigma_{ext} = 9 \frac{\omega}{c} \frac{3}{2} V \frac{\varepsilon_2}{(\varepsilon_1 + 2\varepsilon_m)^2 + \varepsilon_2^2} \]
\[(1-22) \]

where \(V = \frac{4\pi R^3}{3} \) is the volume of the metal sphere, while \(\omega \) and \(c \) are the angular frequency and the velocity of the incident light. Through a similar treatment, it also be obtained that

\[\sigma_{sca} = 2 \left(\frac{\omega}{c} \right)^4 \frac{\varepsilon_m^2 V^2}{\varepsilon_1 - \varepsilon_m} \frac{(\varepsilon_1 - \varepsilon_m)^2 + \varepsilon_2^2}{(\varepsilon_1 + 2\varepsilon_m)^2 + \varepsilon_2^2} \]
\[(1-23) \]

The above equations have been widely employed to explain the optical properties of subwavelength metallic nanoparticles as a both qualitative and quantitative approach.

1.2 Plasmonics based applications

1.2.1 Plasmonic colorimetric sensing based on colloid metal nanoparticles

The well dispersed Au NPs colloid could show a vivid wine-red color in aqueous solution, which was systematically studied by Michael Faraday in 1850s, whose works also inspired Mie to
propose the famous theory in plasmonics, namely, the Mie theory. According to Mie theory, when the surrounding medium for Au NPs is water with the $\varepsilon_m \approx 1.7$, the resonant condition ($\varepsilon_1 = -2\varepsilon_m$) can be satisfied at a wavelength around 520 nm, which is consistent with the experimental absorption spectrum that Au NPs colloid solution has a strong LSPR peak as a result of the extinction maximum of the incident light around that wavelength. However, the aggregated Au NPs in solution will show a purple or dark blue color depending on the aggregation degree. This aggregation effect can be easily observed by simply introducing certain chemicals into the colloid solution of Au NPs. Figure 1.3A shows the color change (from wine red to dark blue) of colloid Au NPs solution by adding different amount of melamine, correspondingly a new peak around 650 nm is emerging clearly in the absorption spectra in Figure 1.3B. The aggregation degree of Au NPs caused by the addition of different amount of melamine can be further confirmed by using Transmission Electron Microscopy (TEM) as shown in Figure 1.3C, D and E. Figure 1.3F is the schematic depiction of the formation of the cross linked Au NP aggregates induced by melamine molecules.

Figure 1.3 (A) Optical image of Au NPs colloid solutions upon the addition of melamine from 0 to 1.5 μM. (B) The evolution of the absorption spectra as a result of the introduced melamine. TEM images of Au NPs colloid solutions with (C) 0, (D) 1.1, and (E) 1.5 μM melamine. (F) Schematic depiction of the formation of Au NP aggregates the cross-linked by the melamine.
molecules.15

This phenomenon shows great perspective in controllable manipulation of the LSPR of metallic nanoparticles, which is highly desirable in designing specific systems in practical applications such as plasmonic biosensing and SERS in which unique aggregated plasmonic structures are often required. To gain a comprehensive insight of the aggregation induced evolutionary LSPR property of metallic nanoparticles, tremendous efforts have been devoted both theoretically and experimentally. As shown in Figure 1.4, it has been revealed that the distance between the metal nanoparticles, the size of the metal nanoparticles as well as the size of the as formed aggregates could significantly influence the resulting extinction spectra through theoretical calculations. One can see from the results that the formation of the aggregate accompanies a red shift of the LSPR peak, which could be ascribed to the plasmon hybridization of multiple metal nanoparticles.8
Figure 1.4 Electrodynamic modeling of the evolutions of extinction spectra of Au NPs with (A) fixed particle size and different particle distances, (B) fixed particle distance and different particle sizes, and (C) fixed particle distance and different aggregate sizes.

The inter-particle plasmon coupling induced shift of the SPR of metal nanoparticles as well as the clear visual color change of the colloid solution provide the exciting basis for developing novel plasmonic sensing assays based on this colorimetric effect. Plasmonic colorimetric detection using colloid metallic nanoparticles is thereby a simple, rapid, and cost-effective approach, in which the sensing can be completed using just naked eye observation. However, colloid metal nanoparticles in aqueous suffer from the vulnerability to introduced species to form aggregates, which may cause interference issues when applied in complex matrices.

One typical way for the construction of robust sensing system is the implementation of an effective surface-modification strategy which introduces the ligands at the surface of the metal nanoparticles. On the one hand, the ligands can expand the colloidal stability of the metal nanoparticles at harsh sensing environment. One the other hand, only the target analyte which has highly specific affinity to the ligands could induce the aggregation of the modified metal nanoparticles, thus the aggregation can be well controlled, which will endow the assay with good sensitivity and selectivity to the analyte.

The typical design of this kind of chemical coordination-based Au NPs colorimetric sensor is as reported by Ray et al. (Figure 1.5). In this assay, Au NPs were modified with glutathione (GSH), dithiothreitol (DTT), and cysteine (Cys), all of which have strong affinity to AsIII ions as ligands and the stability constants (log K) of the as formed complexes through coordination are as high as 32.0 (GSH), 37.8 (DTT), and 29.84 (Cys). As a result, upon the addition of AsIII ions to the modified Au NPs solution, the coordination between AsIII ions and the ligands on Au NPs will induce the strong aggregation of Au NPs. In addition, since the coordinations between the
surface ligands and other metal ions are much weaker and their stability constants are only 11.06 (Zn), 13.89 (Pb), 14.6 (Cd), 10.7 (Ni), 15.3 (Cu), 17.6 (Hg), the colorimetric responses of Au NPs to these metal ions are much lower, which enables selective detection of AsIII ions. Based on the colorimetric responses of the modified Au NPs upon the addition of AsIII ions, the limit of detection of this assay can reach as low as 1 ppb. Besides the commonly reported Au NPs based sensing assays, Ag NPs based colorimetric sensing systems were also developed through the rational surface modification of Ag NPs. By using 1-(2-mercaptoethyl)-1, 3, 5-triazinane-2, 4, 6-trione (MTT) and thiomalic acid (TMA) as ligands, Pb2+ and Cu2+ can be detected, respectively.17, 18

Figure 1.5 (A) Scheme of DTT, Cys, and GSH modified gold nanoparticles for arsenic detection. Photograph of Au NPs in aqueous solution modified with GSH/DTT/Cys upon addition of (B) different metal ions (5 ppb) and (C) AsIII ions with different concentrations.16

All of the systems discussed above were designed to detect the target based on the analyte induced aggregation of the metal nanoparticles. Meanwhile, if the aggregation of metal
nanoparticles induced by a chemical could be inhibited by a certain target, this could be another way of colorimetric sensing, namely the anti-aggregation of metal nanoparticles based colorimetric sensing. Mirkin group designed a typical assay based on this kind of strategy through the competing coordination between DNA modified Au NPs and cysteine with Hg^{2+}, which can be used for the detection of cysteine (Figure 1.6).19 In their design, Au NPs were first modified with DNA with T bases, upon the addition of Hg^{2+}, there will be strong coordination between Hg^{2+} and the T base pair of DNA. As a result, this coordination effect could help the DNA modified Au NPs remain the aggregation state at certain temperature. However, when cysteine was introduced to the system, there will be even stronger coordination between cysteine and Hg^{2+}, which will remove Hg^{2+} from the network structure of the T base pairs and thereby cause Au NPs to lose their aggregation state. Therefore, cysteine can be detected through this competing coordination mechanism in a colorimetric format. Because of the strong coordination between Hg^{2+} and the T base pair of DNA, the amino acids except cysteine are not capable of removing Hg^{2+} from the network. Thus, the assay shows high selectivity to cysteine and the limit of detection of this assay can reach as low as 100 nM.

\textbf{Figure 1.6} (A) Scheme of a competition format colorimetric Assay for detection of cysteine by
using DNA modified Au NPs. (B) Colorimetric responses of the assay to different amino acids (1 µM) at room temperature and 50 °C.19

1.2.2 Plasmonic passive solar desalination

Water scarcity has become an increasing issue of our time around the world and the situation may be even worse due to population and economy growth, climate change induced by greenhouse gases, contamination of freshwater resources, and expansion in industrial and agricultural activities when looking into the future. Currently the most successful commercialized technology for seawater desalination is the reverse osmosis (RO) processes. However, the RO processes consume a great amount of electric energy, and thus lead to the release of a large quantity of greenhouse gases. Moreover, a large number of marine organisms, especially juvenile-stage fish, are killed during the seawater intake process, which indicates that developing green and sustainable methods for seawater desalination is still of crucial importance.20

Metal nanostructures have the capability to confine light into subwavelength volumes, which is known as surface plasmon that is generated through the interaction between light and the free electrons of the metal. This phenomenon has been extensively investigated in the area of solar energy conversion due to their strong visible and infrared (IR) plasmonic responses. Since surface plasmon is the result of the collective oscillation of the electron cloud around the metal surface, the damping of this oscillation can efficiently generate heat in this process, which is known as plasmonic heating.6 As there is almost no radiative damping from surface, the efficiency of plasmonic heating could be very high, which makes metal nanostructures become ideal candidates for light to heat conversion for solar seawater desalination. Solar seawater desalination based on plasmonic heating from metal nanoparticles thereby can offer a simple,
efficient, green and environmental friendly strategy, which is sustainable in the future.

The heat generation process in plasmonic nanostructures is very simple, in which the incident light electric field strongly drives the collective oscillation of the free electrons at the surface, and the energy gained by the electrons turns into heat through the damping of this oscillation. The generated heat will diffuse away from the nanoparticle surface and lead to an increase of the temperature of the surrounding medium. As surface plasmon is a collective motion of a large number of electrons, heat generation becomes especially strong in the case of metal NPs in the regime of plasmon resonance. In the case of semiconductor NPs, the heat generation rate is much weaker since heat dissipation occurs through an interband absorption process with the creation of a single mobile electron and hole (exciton). The heat generation Q from metal nanoparticles can be calculated analytically when assuming that the wavelength of the incident light is much longer than the size of the nanoparticles, which is given by

$$Q = \frac{\omega}{8\pi} E_0^2 \left| \frac{3\epsilon_m}{2\epsilon_m + \epsilon} \right|^2 \epsilon_2$$

where E_0 is the amplitude of the incident radiation, ϵ is the complex dielectric constant of the metal, and ϵ_2 is its imaginary part, while ϵ_m is the dielectric constant of the surrounding medium. Based on this equation, a recent study did some approximations and using a simpler equation to quantitatively evaluate the heating abilities (Jo) of different metals, which gives the expression

$$Jo = 9 \frac{\epsilon \epsilon_2}{n_m} \left| \frac{\epsilon_m}{2\epsilon_m + \epsilon} \right|^2$$

where n_m is the refractive index of the surrounding medium, ϵ is photon energy in eV. The plasmonic heating ability of the commonly used plasmonic metals such as gold, silver, and aluminum are thus can be reasonably evaluated using the above equation.

Taking advantage of the superior plasmonic heating effects from metal nanostructures when
exposed to light radiation, Halas group previously reported that aqueous solution containing light-absorbing Au NPs exposed to sunlight can induce plasmonic heating, resulting in relatively efficient evaporation. In their design, Au nanoshells (Au NSs) were synthesized and dispersed in water with broad and strong LSPR peak to sufficiently overlap with the solar spectrum (Figure 1.7B), which can accelerate the steam generation under sunlight illumination. The unique feature of plasmonic heating is that the heat generation is highly localized at the surface of plasmonic nanoparticles, which could avoid the bulk heating of the entire solution volume to efficiently produce bubbles to achieve rapid vaporization of water (Figure 1.7A). The findings open up a broad range of solar energy conversion related applications such as desalination, distillation, and waste water treatment.

Figure 1.7 (A) Scheme of the efficient solar steam generation with highly localized plasmonic heating effect. (B) Visible-Near-Infrared (Vis-NIR) absorption spectrum of plasmonic Au NSs. Inset is the SEM images of Au NSs.

It is worth noting that for the above design, the metal nanoparticles served as localized light-to-heat converters and were dispersed throughout the solution. However, the vapor bubbles were generated inside the solution and travelled to the water-air interface to release the steam trapped inside the bubbles. The heat transfer from the traveling vapor bubbles to the bulk water still intrinsically and substantially limited the efficiency of evaporation applications where the
heating loss is inevitable. An emerging approach is to fabricate floating thin-film to focus the intense plasmonic heating effect on the water-air interface, vapor bubbles thus can be generated in proximity to the evaporative surface (Figure 1.8). Therefore, the as-formed bubbles can directly release the vapor to the air without travelling through the bulk liquid volume to reduce the heat loss and improve the evaporation efficiency.\(^7\)

![Figure 1.8 Schematic illustration of solar steam generation using floating plasmonic device to enable the evaporation at water-air interface.\(^7\)](image)

Noble metal-based plasmonic nanostructures with strong visible and infrared SPR responses have been the most extensively studied candidates for the application in solar energy conversion, because of their SPR can significantly overlap with the solar spectrum. To enable efficient and cost effective solar desalination, finding low-cost alternative candidates with broadband and efficient light absorption is the critical first step. However, for the poor metal with good plasmonic properties like aluminum, the plasmon frequency is in the ultraviolet (UV) regime.\(^23\) Therefore, tuning the structure of poor metals to achieve the plasmonic resonances in visible and IR regime is highly desirable and will be of crucial importance in the practical application. Recently, Zhu’s group reported efficient solar desalination using aluminum nanostructure fabricated through the 3D assembly of Al NPs, showing great perspective in exploring poor
metals for this application in this field.24

1.2.3 Plasmonic photocatalysis

TiO\textsubscript{2} is well known for its superior photocatalysis performance in the degradation of some organic compounds, which is important for environment protection.25 However, the band gap of commonly used anatase TiO\textsubscript{2} in photocatalysis is 3.26 eV, which implies that only light with the wavelength in the UV region can effectively excite it. Introducing plasmonic nanoparticles to TiO\textsubscript{2} photocatalysis system has been proven an effective method to improve the photocatalysis performance. On the one hand, the loading of metal nanoparticles on TiO\textsubscript{2} could enhance the absorption of the incident light, thus leading to higher excitation efficiency. On the other hand, the metal nanoparticles will also generate an intense localized electromagnetic field to boost the excitation of TiO\textsubscript{2}.23, 25, 26

Awazu \textit{et al.} innovatively designed the Ag NPs/SiO\textsubscript{2}/TiO\textsubscript{2} structure with strong light absorption ability in the near UV region (Figure 1.9A and B) in the year of 2008.26 With the strong plasmonic effect caused by the LSPR of the embedded Ag NPs in the structure, the photo-degradation performance towards methylene blue (MB) can be dramatically enhanced, in which the concept of plasmonic photocatalysis was proposed for the first time. Since Ag NPs can be easily oxidized in the air, coating a layer of SiO\textsubscript{2} on Ag NPs can effectively protect them from oxidation. Through a theoretical calculation based on Mie theory, they can also obtain the optimal size of Ag NPs and the thickness of the SiO\textsubscript{2} protection layer. In an optimized condition, the photocatalysis performance of TiO\textsubscript{2} can be enhanced by 7 times by using the Ag NPs/SiO\textsubscript{2}/TiO\textsubscript{2} structure with 5 nm SiO\textsubscript{2} thickness (Figure 1.9C). Unlike Ag NPs, the stability of Au NPs is excellent, so the protection layer is often not required for Au NPs based plasmonic photocatalysis system. Mubeen \textit{et al.} fabricated the multi-layered Au NPs/TiO\textsubscript{2} structure by
using e-beam evaporation.27 When exited by the light with a wavelength of 600 nm, the multi-layered Au NPs/TiO\textsubscript{2} structure can generate a photocurrent which is about 3 orders higher than the bare TiO\textsubscript{2} film. As it is well-known that the band gap for TiO\textsubscript{2} is more than 3 eV, it is with little possibility that the electrons on the valence band can be excited by using 600 nm light. And the photocurrent intensity is related the optical absorption spectra of Au NPs, which manifests that the enhanced photo current is due to the plasmonic effect from the Au NPs in the structure.

Figure 1.9 (A) Cross-section TEM image of the Ag NPs/SiO\textsubscript{2}/TiO\textsubscript{2} structure. (B) UV-Visible absorption spectra of bare TiO\textsubscript{2} film (curve a), Ag NPs/TiO\textsubscript{2} (curve b), and the Ag NPs/SiO\textsubscript{2}/TiO\textsubscript{2} structure (curve c). (C) Time dependent photo degradation of MB using bare TiO\textsubscript{2} film (curve a), the Ag NPs/SiO\textsubscript{2} (20 nm)/TiO\textsubscript{2} structure (curve b), and the Ag NPs/SiO\textsubscript{2} (5 nm)/TiO\textsubscript{2} structure (curve c).26

Although numerous studies have been reported regarding the construction of novel plasmonic photocatalysts through the combination of different plasmonic nanoparticles and the semiconducting photocatalysts, the mechanism involved in the plasmonic photocatalysis process
can vary with different designs in which the excitation wavelength, the configuration of the structure as well as the materials employed are all important factors. Figure 1.10 summarizes the commonly proposed mechanisms in previous reports:

(A) the conventional semiconducting photocatalyst receives the energy from the photons with energy are higher than the band gap of the photocatalyst and creates electron and hole pairs. If the carriers can migrate to the surface and the band levels can fit with certain species, the oxidation/reduction reactions will take place;

(B) the loading of plasmonic nanoparticles can create a Schottky barrier which can effectively inhibit the recombination of electron and hole by trapping of the as formed electrons, and provide additional reaction sites at the metal nanoparticle surface;

(C) if the excitation is made on the metal nanoparticles to generate strong LSPR, the LSPR induced hot electrons can be directly injected to the conduction band of the photocatalyst and thereby leaves the holes at the metal surface. This process occurs when the metal and the semiconductor are in contact with each other, enabling a direct electron transfer (DET) process;

(D) apart from the DET process, if the metal and semiconductor are not in direct contact, for instance, Ag NPs/SiO₂/TiO₂ structure reported by Awazu et al., the excitation of LSPR of metal nanoparticles induced local electromagnetic field (LEMF) can also contributed to the local generation of carriers;

(E) it has also been reported that generation of carriers in the photocatalyst can happen through a dipole-dipole resonant energy transfer (RET) mechanism in which the relaxation of LSPR can directly excites electron-hole pairs in a nonradiative manner.
Figure 1.10 Charge carrier generations in different systems. (A) Charge carrier in a conventional semiconducting photocatalyst. (B) Electron trapping by a metal nanoparticle (without plasmonic effect). (C) A direct electron transfer (DET) process in a plasmonic photocatalyst. (D) Plasmonic photocatalyst with local electromagnetic field (LEMF). (E) A dipole-dipole resonant energy transfer (RET) mechanism in a plasmonic photocatalyst.

1.2.4 Surface-enhanced Raman scattering (SERS)

When a photon is scattered by a molecule, the scattering can be either elastic or inelastic. In the first case, the photon just changes its propagation direction without losing any energy, and this phenomenon is known as Rayleigh scattering. While the incoming photon could also gain/lose part of its energy from/to the molecule, resulting in anti-Stokes and Stokes scattering lines appear symmetrically at the two sides of Rayleigh scattering line, respectively. This unique interaction between light and molecule was discover by Raman in 1928, and was named Raman scattering from then on. At that time, with the lack of strong light source, the Raman effect was often observed with very weak intensity. Until it was after 1961, the emergence of laser drove the development of this technique rapidly. Figure 1.11 briefly depicts the diagrams of Stokes and anti-Stokes Raman process. The incident photons (hν_L) can interact with the molecules in a
vibrational ground state, in which the photons lose their energy to excite the molecule to a virtual state, followed by a relaxation process to a vibrational excited state in which the scattered photons are with lower frequency ($h\nu_S$), namely, the Stokes Raman scattering. In a similar process, if the molecules are excited when they are already in the vibrational excited state and then relax to the vibrational ground state with higher frequency scattering photons ($h\nu_{aS}$), the anti-Stokes Raman scattering will be obtained. Since most of the molecules are in the ground state at room temperature, the intensity of Stokes Raman scattering is often much higher that of the anti-Stokes Raman scattering. As the Raman shift is the result of the relaxations in the vibrational states, it can probe the structure and group information of molecules as IR spectroscopy. However, the Raman scattering is a weak process, and the intensity is only 10^6 to 10^9 of the incident light, which has largely hampered the practical application of this technique.

Figure 1.11 Schematics of Stokes and anti-Stokes Raman scattering processes.\(^{29}\)

The breakthrough in this field was made by Fleischmann et al. in 1974, who observed a dramatically enhanced Raman signal from pyridine on a electrochemically etched silver electrode with rough surface.\(^{30}\) The Raman signal can be enhanced by 10^6 times, while the surface area of the rough surface is not more than 10 times of the electrode with smooth surface, which gave evidence the evidence that this huge enhancement must be a true effect. In the
following few years, Van Duyne, and Creighton et al. reported similar observations by using different molecule on different rough metal surfaces, which further confirmed this effect and produced the new term “surface-enhanced Raman scattering (SERS)” in this field.31, 32 After that SERS have drawn intensive research attention both theoretically and experimentally. The number of published papers was increasing exponentially year by year, leading to deepened insight towards the enhancement mechanism, and useful applications in different research areas. In recent years, with the development of nanofabrication technology and the increasing comprehensive theory in plasmonics, SERS has become a powerful in chemo/biosensing, which possesses the capability of ultrasensitive and nondestructive detection that can be down to a single molecule level with fingerprint information.29 Therefore, different molecules in complex sensing matrixes can be distinguished through the Raman shift, which is hard to achieve by using other techniques.

Although the SERS phenomenon has been discovered for more than 40 years, the debates still exist regarding the mechanism of the enhancement, which is the result of the complicated factors that may be involved in the process such as the surface roughness, the configuration of the nanoparticles and the molecules, and the possible chemical interaction between the nanoparticles and the molecules. So far, it is widely acknowledged that the enhancement mechanism can be classified into two categories: electromagnetic field enhancement and chemical enhancement. The electromagnetic field enhancement is often considered as the dominate mechanism which could contribute to the enhancement factor on the order that can reach as high as 10^6 to 10^{14}, whereas the chemical enhancement is commonly observed in the range of 10 to 10^2.29 As the electromagnetic field enhancement mainly originates from the LSPR induced near-field enhancement at the metal nanoparticle surface, it is not directly related to the chemical nature of
the molecule and chemical bonding between the metal and the molecule. Typically, for the spontaneous Raman scattering, for a molecule in the electric field \(E \), the intensity of Raman signal can be given as

\[
I_{\text{Raman}} \propto |\mu_{\text{ind}}|^2 = |\alpha E|^2
\]

(1-26)

where \(\mu_{\text{ind}} \) is the induced dipole moment in the molecule, and \(\alpha \) is the molecular polarizability.

When the incident laser light frequency is in resonance with the LSPR of the metal nanoparticles, the energy sucked by the nanoparticles will be re-emitted through Mie scattering and generate an intense scattered field \(E_{\text{surf}} \) which can be given as

\[
E_{\text{surf}}^2 = 4E_0^2g^2
\]

(1-27)

where \(E_0 \) is the incoming electric field, and \(g \) can be expressed as

\[
g = \frac{\varepsilon - \varepsilon_m}{\varepsilon + 2\varepsilon_m}
\]

(1-28)

in which \(\varepsilon \) is the complex dielectric constant of the metal, while \(\varepsilon_m \) is the dielectric constant of the surrounding medium.

As the Raman shift is usually very small, leading to the closed wavelengths of the incident and scattering radiations. Thus, an approximation can be made, resulting in the famous fourth-power relationship of SERS intensity \(I_{\text{SERS}} \) with the incoming electric field \(E_0 \)

\[
I_{\text{SERS}} = 16E_0^4g^4
\]

(1-29)

1.3 Thesis Scope and Structure

The research on SPR based nanostructure systems has become one of the most fascinating research fields that experiences rapid growth, namely, plasmonics. Plasmonic colorimetric sensing based on Au NPs has been widely used in chemo/biosensors for the detection of various analytes owing to its integration of simplicity and rapidness. Up to now, most of the colorimetric
platforms based on Au NPs are designed to detect one certain target and cannot be employed for the discrimination of different species in various target scopes within a single sensing platform. By designing molecular logic gates using Au NPs to construct chemo/biosensors, we have demonstrated a possible way of solving the above problem.

The development of novel LSPR based systems to be employed in a broad range of practical applications is still constrained by the limited candidate metals. Previous studies were mostly relying on Au and Ag which are noble metals, and the cost of using them is still a concern if a large amount of the metals is required in some practical applications. In this thesis, we have designed different plasmonic nanostructures by using indium which is a kind of poor metal for different applications, such as plasmonic solar desalination, plasmonic photocatalysis, and UV SERS. Our findings can help others gain further insight of the plasmonic properties of In NPs, which may on other hand inspire the design of other novel applications and broaden their capabilities in different fields.

The motivation of this thesis is presented as the above discussions. After giving the introduction of some basics and background information in Chapter 1, the organization of the rest thesis will follow the sequence listed below:

In Chapter 2, we will discuss explicitly the synthesis procedure of colloid Au NPs via a solution chemistry method. The reaction mechanism, the experimental setup as well as the control of the particle size will be introduced in detail. We will also present the versatile fabrication of indium nanostructures on different substrates through a simple thermal evaporation method. Different characterization methods including UV/Vis/NIR absorption spectrometer, scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction meter (XRD), and X-ray photoelectron spectroscopy (XPS) were employed, in which
the optical property, the morphology information, the crystal structure, and the chemical state of the as fabricated plasmonic nanostructures can be well understood.

In the following **Chapter 3**, we will introduce the design of a plasmonic logic gate sensing platform based on Au NPs, which achieved the sensing of different analytes among various scopes of targets on one sensing platform. The competing coordination-based mechanism, the formulation of the logic gate system, the detection of different analytes (Hg$^{2+}$, melamine, and cysteine), and the discrimination strategy of different species will be discussed in detail.

Chapter 4 will be the discussion of fabricating a paper like floating plasmonic device for plasmon enhanced solar desalination, which was motivated by a theoretical calculation of the superior plasmonic heating ability of In NPs and the simple preparation of the indium nanostructure. We have investigated the size effect of In NPs on the solar evaporation performance, the stability of the plasmonic device fabricated after multi-cycles usage, and the desalination of a real seawater sample followed by the check of the salinity using inductively coupled plasma optical emission spectrometry (ICP-OES).

It will be presented in **Chapter 5** that the tuning of LPSR of In NPs on quartz for plasmon enhanced photocatalysis performance of TiO$_2$ NPs, in which the photo-degradation of MB under sunlight and visible light will be systematically discussed. The SPR shift induced by the coating of TiO$_2$ and a thickness dependent photocatalysis performance of a dielectric SiO$_2$ layer between In NPs and TiO$_2$ NPs were observed in the experiment, which will help us in understanding the enhancement mechanism.

For **Chapter 6**, it will be the presentation of UV SERS observed on In NPs on indium-tin oxide (ITO) substrate using 325 and 355 nm laser. The theoretical calculation of the near-field enhancement ability and its comparison with aluminum, and size effect of In NPs and a dielectric
SiO$_2$ layer on In NPs on UV SERS will be introduced in detail.

In the final Chapter 7, we will give the summary of the major contribution of this work, and then give the proposal for future research plans based on some preliminary results.
Chapter 2

Fabrication and characterization of gold and indium nanostructures

2.1 Fabrication of gold and indium nanostructures

2.1.1 Synthesis and surface chemistry of Au NPs

Gold appears in the nature as one of the most stable elements, while Au NPs can exhibit unique physical and chemical properties distinct from bulk gold, including the generation of LSPR and its corresponding optical effects, and the multifunctional surface chemistry. The Lycurgus cup and church windows with stained glass in ancient times represent a few examples of the original applications of manmade Au NPs. However, the preparations at that time were mostly relying on personal skill and experience due to the lack of scientific understanding for the underlying mechanism, hampering the development of a controllable and reproducible synthesis procedure. The revolution of this situation occurred in 1857, which was reported by Michael Faraday for the first time in a scientific journal the preparation of colloid Au NPs through reducing (hydrogen tetrachloroaurate) HAuCl₄ in aqueous solution with phosphorus dissolved in CS₂, which produced Au NPs dispersed in solution with a beautiful ruby color.⁸ In 1951, Turkevich and coworkers improved the synthesis strategy of Au NPs by using sodium citrate as an alternative reducing agent for HAuCl₄.³³ Later in 1973, Frens refined the synthesis by changing the molar ratio of sodium citrate to AuCl₄⁻ to a serial of values, and obtained Au NPs with controllable size ranging from 16 to 147 nm.³⁴ From then on, this method became a routinely followed method in Au NPs synthesis and is still the most popular method among the plasmonics community due to its simplicity.³⁵

In a typical process for preparing colloidal Au NPs using the classic Turkevich method, it
involves combining hydrogen HAuCl$_4$ and sodium citrate (Na$_3$C$_6$H$_5$O$_7$) in a boiling aqueous solution. Upon dissociation, the citrate ions (C$_6$H$_5$O$_7$$^{3-}$) reduce Au$^{3+}$ resulting in the formation of Au particles in tens of nanometer size. The net ionic equation for the reaction is

$$4\text{HAuCl}_4 (aq) + 3\text{C}_6\text{H}_5\text{O}_7^{3-} (aq) + 3\text{H}_2\text{O} \rightarrow 4\text{Au} (s) + 6\text{CO}_2 (g) + 3\text{C}_6\text{H}_6\text{O}_4 (aq) + 7\text{H}^+ (aq) + 16\text{Cl}^- (aq)$$

The corresponding schematic illustration of the formation of the Au NPs is sketched in Figure 2.1. As is shown in the cartoon, after dissolving the water-soluble gold salt HAuCl$_4$ in an aqueous solution, followed by heating it up to boiling under continuous stirring, a solution of sodium citrate which is a reducing agent is then rapidly added to reduce AuCl$_4^{-}$ ions to form Au0 atoms. As Au0 atoms are increasingly generated, they will become supersaturated in the solution, leading to the crystallization of Au0 atoms to form subnanometer Au seeds. The crystallized Au seeds keep growing up and eventually become Au NPs.

![Cartoon showing the growth process of Au NPs in aqueous using classic Turkevich method.](image)

Figure 2.1 Cartoon showing the growth process of Au NPs in aqueous using classic Turkevich method.

The kinetics of growth in terms of the size evolution of Au NPs using this method was systematically investigated by Peng and co-workers.37 The formation of Au NPs is highly dependent on the pH value of the solution, which shows two distinct pathways with a critical pH value around 6.2. When the pH of the growth solution is below this value, the growth of Au NPs can be formulated into mainly three steps: nucleation of small Au seeds; formation of wavy Au
nanowire intermediates attributed to the random attachment of Au0; intraparticle ripening and smoothing of the as formed Au nanowires to result in Au NPs. Another pathway will dominate the growth when the pH is higher than the critical value, following the well-known LaMer model which was proposed for the explanation of crystallization of colloidal particles. By optimizing the reaction condition with appropriate pH value, they can achieve the controllable synthesis of Au NPs in the range of 20 to 40 nm with relatively narrower size distribution.

The side reaction which is caused by the thermal decomposition of sodium citrate can create various species in the growth process of Au NPs, including acetoacetate, acetone or dicarboxyacetone. Puntes et al. demonstrated these species could have influenced the final morphology of Au NPs.38 The sequence for adding the reagents (HAuCl$_4$ and sodium citrate) in synthesis process using the Turkevich method was also reported can lead to better size uniformity of the Au NPs synthesized. Conventionally, HAuCl$_4$ aqueous solution was heated to boiling prior to the rapid addition of sodium citrate to initialize to reaction. By altering the sequence, namely, introducing HAuCl$_4$ to a boiling aqueous solution of sodium citrate, after which Au NPs can be obtained with better monodispersity in size distribution. Based on this simple innovation in the experimental operation, Santhanam et al. prepared more uniform 5 to 10 nm Au NPs when compared to the unmodified Turkevich approach.39 In an in-depth study, Puntes et al. further explored the isotopic effect in Au NPs preparation. The size evolution of Au NPs was recorded by using D$_2$O instead of H$_2$O as the reaction solvent.40 The replacement of the reaction medium from H$_2$O to D$_2$O will lead to formation of smaller Au NPs, which could be ascribed to the faster reaction kinetics in the D$_2$O solvent system. Essentially, they claimed that the coordination between HAuCl$_4$ and sodium citrate will result in a complex of [AuCl$_3$(C$_6$H$_5$O$_7$)]$,^-$, which can disproportionate into the Au NPs in the rate-limiting step in the
As a noble metal, Au is found to display extraordinary resistance against oxidation and is commonly impressing people by its chemical inertness. When exposed to ambient condition, even a single oxidation layer can hardly be detected on Au surface, which makes Au become the only colored metal which can retain its luster feature almost permanently. The inert nature of Au NPs thus endows it to have superior biocompatibility for a broad range of in vitro and in vivo biological systems. Another amazing feature of Au NPs is its versatile capability to form the strong gold-thiolate (Au-S) bond (about 184 kJ/mol) with molecules which have the disulfide group (S-S) or thiol (-SH) in their molecular structure. This kind of chemical bonding has been extensively built to introduce different surface chemistry on Au NPs with various self-assembled monolayers (SAMs) (Figure 2.2). The functionality of Au surface can be simply realized by using compounds with specific functional group in the configuration of the thiol or disulfide containing molecule. For instance, Au surfaces are often functionalized with poly(ethylene glycol) (PEG) which can serve as a biocompatible layer to protect the surface from interference binding of proteins and therefore improve the targeted binding performance. Au NPs can also be modified with molecules with specific targeting capability, such that the Au NPs can selectively assemble at some targeted surface such as cancer cells or antigens, or serve as probes.
in chemo/biosensing which we have discussed in last chapter.

Apart from the employment of the Au-S linkage in Au surface modification, for Au NPs synthesized through wet chemistry method, the intrinsic capping ligands bonded to Au surface which serve as stabilizer could also be a type of functionality which could be with different surface charges, solvent compatibility, and functional chemical groups. As illustrated in Figure 2.3, for Au NPs prepared using the Turkevich method, there are capped citrate ions at Au surface, which is the reason for the negatively charged Au surface, and thus their electrostatic interactions with some positively charged surface, benefiting the self-assembly of novel hybrid nanostructures. Moreover, many surfactants were demonstrate can induce the growth of well-defined Au nanoparticles, the explanation for this phenomenon is that the surfactants could bind to certain Au crystal faces, leading to the growth along selected directions and thus the well-defined morphology (Figure 2.3). The surfactant could also act as stabilizers or surface ligands, which endow Au NPs with plentiful surface charges or chemistry, which is favorable in assembling well-ordered nanoarrays or nanostructures. In Table 2.1, we summarized the syntheses of different Au nanostructures using different methods and their corresponding LSPR features.

Figure 2.3 Schematics of the intrinsic surface chemistry of solution processed Au nanostructures.
Table 2.1 Syntheses of different Au nanostructures using different methods.

<table>
<thead>
<tr>
<th>Au nanostructures</th>
<th>LSPR wavelength (nm)</th>
<th>Synthesis method</th>
<th>Size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional particles</td>
<td>520-650</td>
<td>Turkevich method</td>
<td>13-160</td>
</tr>
<tr>
<td>Spheres</td>
<td>520-650</td>
<td>Seed mediated growth</td>
<td>5-200</td>
</tr>
<tr>
<td>Rods</td>
<td>600-1300</td>
<td>Seed mediated growth</td>
<td>30-500</td>
</tr>
<tr>
<td>Prisms</td>
<td>1200-1500</td>
<td>Seed mediated growth</td>
<td>150-220</td>
</tr>
<tr>
<td>Shells</td>
<td>520-900</td>
<td>Templated growth</td>
<td>60-400</td>
</tr>
<tr>
<td>Hollow structures</td>
<td>400-1200</td>
<td>Galvanic replacement</td>
<td>20-200</td>
</tr>
<tr>
<td>Polyhedra NPs</td>
<td>560-1000</td>
<td>Polylo process, seed mediated growth</td>
<td>20-250</td>
</tr>
<tr>
<td>Branched NPs</td>
<td>550-800</td>
<td>One-pot synthesis, seed mediated growth</td>
<td>50-300</td>
</tr>
</tbody>
</table>

In this thesis, we synthesized ~13 nm colloidal Au NPs using the above discussed Turkevich method for the application of plasmonic colorimetric sensing, namely, reduction of HAuCl₄ in aqueous solution, in which trisodium citrate was the reducing agent. Therefore, the as obtained Au NPs were capped with citrate ions as the ligands, and correspondingly the surface charge will be negative. In a detailed synthesis procedure, HAuCl₄ (100 mL, 1 mM) aqueous solution was heated to boiling under stirring, then trisodium citrate (10 mL, 38.8 mM) aqueous solution was injected rapidly. After refluxing the mixture for 15 min, a wine-red of the solution could be observed. After its gradual natural cooling at room temperature, UV-vis spectrometry measure was conducted to confirm the concentration of the Au NPs was ~10 nM. Then 50 mL of ultrapure water was added to 10 mL of the above Au NPs solution to make a total volume of 60 mL solution, which will be used as a stock liquid in the following sensing experiments. By changing the molar ratio of HAuCl₄ to sodium citrate, we were also able to synthesize ~30 nm colloidal Au NPs, in which a similar procedure was adopted. Briefly, HAuCl₄ (100 mL, 1 mM) aqueous solution was heated to boiling under stirring, then trisodium citrate (1.5 mL, 1%) aqueous solution was injected rapidly. After refluxing the mixture for 30 min, the ~30 nm Au NPs were obtained. Then 10 mL of ultrapure water was added to 10 mL of the above Au NPs
solution to make a total volume of 20 mL solution for use.

2.1.2 Fabrication of indium nanostructures on different substrates

With the remarkable LSPR effect which shows the great application potentials in catalysis,25 energy conversion,6 sensing,4 and clinical imaging/diagnostics/therapeutics,35 developing controllable and effective synthesis approaches to obtain specific metal nanoparticles have attracted enormous research efforts in the field of plasmonics. To date, amongst the studies of the investigated metals, gold and silver have taken an overwhelming majority, which could be ascribed to their compelling plasmon responses to the visible light radiation, the versatile and well-established chemistry, as well as their chemical inertness towards oxidation or in biological systems. Unfortunately, the high ohmic losses and the poor LSPR responses when using UV excitations strongly hamper their applications that involve a variety of photophysical/chemical processes that can take place only in the UV light range. Moreover, as silver and gold are typically scarce nature resource, they often appear as expensive commodities or are stashed as currency. Taking into account the above limitations, there are increasing efforts in looking for other alternative materials including poor metals or alloys,52, 53 carbon based material such as graphene,12 semiconducting material like indium-tin oxide (ITO),54 and other broad kinds of materials.55

By far, the most promising results come from the reports using the poor metals such as aluminum and indium, both of which can be tuned to achieve LSPR from UV to visible and even NIR region experimentally.24, 56 However, although both of the approaches of preparing In and Al nanostructures have been reported, the number and diversity of the methodologies in the literatures are only taking a tiny fraction, and the quality are often far from expectation when compared to those developed for noble metals. In particular, the situation for Al based
nanostructures is even worse and it is still a big challenge until now. The existing methods are limited in a narrow range such as vapor/electrochemical deposition with nanopatterns or nanotemplates,57, 58 pulsed laser irradiation of Al film,59 and chemical aerosol flow.60

As a group III element, indium metal in its bulk form has been found to show some unique and important characteristics, it can exhibit the superconducting phenomenon with a critical temperature at 3.4 K, and serve as a soldering material, as well as a solid state lubricant.61 In NPs have been previously reported can be a catalyst in promoting anisotropic growth of semiconducting III-V and II-IV compounds into high aspect ratio nanorods or nanowires.61 More importantly, it has been demonstrated that In NPs could lead to comparable or even better LSPR responses as Al NPs.62, 63 Considering also the relative ease of preparation of In NPs when compared to Al NPs, In NPs could be a better choice in designing some plasmonics based applications.

Taking advantage of the unique property of indium metal and the promising LSPR effect as well as the catalysis ability of In NPs, synthesis of In NPs have been demonstrated from different chemical and physical approaches. In 2008, indium nanowires (In NWs) and nanoctahedras (In NOs) with well-defined shapes were prepared through reduction of InCl\textsubscript{3} by sodium borohydride (NaBH\textsubscript{4}) in the presence of polyvinylpyrrolidone (PVP), resulting in In NPs size can be down to 80 nm by controlling the dropping rate of the reducing solution (NaBH\textsubscript{4} in tetaethylene glycol).64 Later on, Hammarberg \textit{et al.} developed a two-step procedure to prepare In NPs with 10 to 15 nm sizes in diethylene glycol (DEG), in which the reducing agent was also NaBH\textsubscript{4}.65 By carrying out the phase transfer using oleylamine, the resultant In NPs in DEG can be easily transferred to the nonpolar solvents such as pentane and dodecane. This report represents an innovative and important improvement; however, as there are the two steps involving in the
synthesis route, it may on the other hand induce more difficulties in achieving scale-up production. Particularly, the phase transfer step often spends a large volume of the two immiscible solvents, which may in the end lead to low yield of In NPs. To improve the synthesis yield of In NPs, Yu et al. reported a system using decomposition of cyclopenta-dienyl-indium assisted by methanol for the production of In NPs, in which the particle size can be controlled through a seed growth process mediated by poly(styrene$_{0.86}$-co-vinylpyrrolidinone$_{0.14}$) which plays the role as a surfactant.66 The seeds are small gold clusters [Au$_{101}$(PPh$_3$)$_{21}$C$_{15}$] of 3 nm in size, which can serve as the cores for the growth of In NPs, and the as obtained monodisperse In NPs were smaller than 10 nm. However, concerns still exist if there is a demand for large scale production, because all the reagents including the indium precursor cyclopenta-dienyl-indium, the Au clusters seeds, and the polymeric surfactant, whose availabilities are mostly relying on in-house synthesis. Moreover, it should also be noted that the yield of In NPs was determined by the amount of gold clusters introduced. However, since the fact is that the yield for Au clusters is often very low (26%), the large-scale production of In NPs using this method would be not cost-effective. In this context, the development of a simple, controllable, and cost-effective method for preparing In NPs is still highly desirable and of crucial importance. In 2014, Kumamoto et al. reported the preparation of In NPs on quartz substrates through a simple one step thermal evaporation method, in which the only source used is indium metal, and the size of In NPs can be simply controlled by changing the deposition thickness of indium on the substrate, showing a great potential in promoting the practical application of In NPs.63 We summarize here the preparation of different In nanostructures using different methods and their corresponding LSPR features in Table 2.2.

Table 2.2 Preparation of different In nanostructures using different methods.
<table>
<thead>
<tr>
<th>In nanostructures</th>
<th>LSPR wavelength (nm)</th>
<th>Synthesis method</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>In NWs and In NOs</td>
<td>380 nm for In NOs</td>
<td>Reducing In salt by NaBH₄ in TEG</td>
<td>50 nm-4 µm</td>
</tr>
<tr>
<td>Spheres</td>
<td>ND</td>
<td>Two-step method in DEG</td>
<td>10-15 nm</td>
</tr>
<tr>
<td>Spheres</td>
<td>ND</td>
<td>Seed mediated growth</td>
<td>7-16 nm</td>
</tr>
<tr>
<td>Spheres</td>
<td>350</td>
<td>Laser ablation</td>
<td>43 nm</td>
</tr>
<tr>
<td>Spheres</td>
<td>ND</td>
<td>Ultrasonication</td>
<td>50 nm-2 µm</td>
</tr>
<tr>
<td>Spheres</td>
<td>240-280</td>
<td>One-pot synthesis</td>
<td>10-100 nm</td>
</tr>
<tr>
<td>Spheres and irregular shapes</td>
<td>200-600</td>
<td>Thermal evaporation</td>
<td>10-300 nm</td>
</tr>
<tr>
<td>In NWs</td>
<td>ND</td>
<td>Decomposition of In complex</td>
<td>200 nm in diameter</td>
</tr>
</tbody>
</table>

As an extension of the thermal evaporation approach, we demonstrate that well defined In NPs could also be prepared on different substrates, which inspires us to design different In NPs plasmonic systems for a broad range of applications. The configuration of a typical thermal evaporation system usually contains two main parts: a chamber and a high vacuum generation system. The high vacuum of the system is achieved through a two-level pumping process. In the first roughing pumping process, a mechanical pump can pump the chamber to reach the vacuum around 10^{-2} Torr. Then the Cryo pump will further pump the chamber after the vacuum of the roughing process have reached a critical value, in which the vacuum can achieve 10^{-7} to 10^{-8} Torr, providing superior safe condition for the evaporation of some metal sources which are not stable in the air at high temperature. The general configuration of the commonly used thermal evaporation system is illustrated in Figure 2.4 (Semicore Equipment, Inc).
Figure 2.4 Diagram of components and processes involved in a thermal evaporation system.

The source material with high purity is placed on the thermal filament, upon applying power through the electrode to thermal filament, the heat generation from the thermal filament will quickly melt the source material to result in the evaporation of the source. The real-time evaporation rate of the source and vacuum value in the chamber are monitored by corresponding sensors. The substrate is fixed and face down on the substrate holder with appropriate distance to the source. The as formed vapor of the source material will then condense at the substrate surface.

The evaporation process can be divided into two processes: 1) the vaporization of the source material, in which thermodynamics is given by the Hertz-Knudsen equation

\[
\frac{dN}{Adt} = a(\frac{2\pi mkT}{\alpha})^{-1/2}(p^* - p)
\]

(2-1)

where \(\frac{dN}{dt}\) is the evaporation rate in which \(N\) is the number of vaporized molecules and \(t\) is the
corresponding time. A denotes the surface area of the source, α is the sticking coefficient of the molecule, k is the Boltzmann constant, m is the mass of a molecule, T is the temperature, p and p^* refer to the hydrostatic pressure on the source surface and the equilibrium vapor pressure of the evaporant, respectively. From the above equation, we can see that the evaporation rate is dependent on temperature, and the sticking coefficient which is determined by the material used, as well as the vacuum of the system; 2) the vapor transport between the source and the substrate, in which high vacuum is required to avoid the collisions of the vapor molecules before they condense at the substrate surface. The transport length can be obtained through the calculation of the average free path λ for every two consecutive collisions using the following equation

$$\lambda = \frac{kT}{\sqrt{2\pi P}d^2}$$

in which P denotes the pressure, while d is the diameter of the molecule. For instance, if gold whose atom diameter is 0.2 nm is used as the source material under a normal pressure of the thermal evaporation system around 10^{-5} Pa, the calculated λ is around 1200 m which is much longer than the distance between the source and the substrate, which implies that the collision between molecules can be effectively inhibit by using the thermal evaporation system with good vacuum condition.

In our thermal evaporation system (Elite Engineering, Singapore), the equipped Cryo pump can maintain a temperature around 10 K through the helium gas compressing and create the vacuum in the chamber to reach down to 10^{-8} Torr which is monitored by a Pirani gauge. The evaporation rate can be known by using a SQM-160 film thickness monitor, whose working mechanism is that the resonant frequency shift of the quartz crystal sensor is proportional to the deposition thickness of the material on it, whose attainable accuracy can reach as high as 1 Å/sec. To achieve the best accuracy, different materials will be set with different parameters in the
controlling program such as the material density and the Z factor. In the thesis, we performed the evaporation of indium on different substrates such as quartz, microporous membrane (MPM) and ITO at a base pressure of 3×10^{-7} Torr, in which we can obtain high quality In NPs on all of the substrates. And the sizes of In NPs can be easily controlled by simply changing the deposition thickness of the indium source, which have inspired us to design a serial of applications based on the as obtained In NPs plasmonic nanostructures.

2.2 Characterizations of Au and In nanostructures

2.2.1 Transmission electron microscopy

In 1931, the first TEM instrument was invented by a group at the Technical University of Berlin. From then on, TEM has experienced rapid innovations and quickly become a powerful tool for scientists in performing material characterizations.72, 73 In this thesis, JEOL JEM 1400 TEM system was employed for the characterization of the prepared Au NPs. The acceleration voltage was 100 kV for our characterizations. In our experiments, we dropped 10 μL of the Au NPs solution on a copper TEM grid with a filter paper under it to absorb the redundant water and make it dry quickly, Au NPs could remain their dispersion state on TEM grid as in solution, for this reason, TEM has been widely used in confirming the dispersion state of Au NPs in solution. Figure 2.5 shows the TEM images of Au NPs with well dispersed and aggregated state in aqueous solution we have intentionally prepared, from which we can confirm Au NPs we prepared is homogeneous and the size is ~13 nm.
Figure 2.5 TEM images of (A) well dispersed and (B) aggregated state Au NPs.

2.2.2 Scanning electron microscopy

SEM is a useful technique which can provide information for investigating the surface structures of materials. We performed our SEM characterization of In NPs nanostructures using a field emission JEOL 7001F model SEM. The acceleration voltage in our characterizations was 10 kV with a working distance of 10 mm. Figure 2.6 shows the SEM images of In NPs on different substrates such as quartz, ITO, TiO₂ and MPM. We took advantage of the poor wettability of indium for solid surface, through which well-separated grains will form when indium vapor meets a cold surface, thus we can prepare In NPs on different substrate through a thermal evaporation method.
Figure 2.6 SEM images of In NPs prepared on different substrates. (A) Quartz. (B) ITO glass. (C) TiO$_2$ nanorod array. (D) MPM.

2.2.3 UV/Vis/NIR optical absorption spectroscopy

Optical absorption spectroscopy has been routinely used in characterizing the optical properties of different materials, for instance, the excitonic states of semiconductors, the energy states of organic molecules, the transparency of thin films, as well as the LSPR of plasmonic nanoparticles. In this study, we use a Lambda 950 UV/Vis/NIR absorption spectrometer to characterize the LSPR properties of colloid Au NPs in aqueous solution (Figure 2.7 A and B) and In NPs prepared on a specific substrate (Figure 2.7 C). By measuring the absorption data of Au NPs in aqueous solution, we can see their LSPR features. For ~13 and ~30 nm size Au NPs with well dispersed state in solution, both they can show a wine-red color, corresponding to their LSPR peaks at 519 and 527 nm, respectively. It also can be observed in their aggregation states that strong peaks appear at 676 nm for ~13 nm size Au NPs and 820 nm for ~30 nm Au NPs,
which is due to the aggregation induced plasmon coupling of Au NPs. We can measure the In NPs prepared on a quartz substrate. By controlling the deposition thickness of indium on quartz, we can prepare In NPs with different sizes on the substrate. Due to the increasing size and the formation of irregular shape of In NPs prepared with larger thickness of indium, the LSPR of In NPs becomes broader because of the appearance of higher order plasmon modes, which can be monitored in the UV/Vis absorption spectra.

![Figure 2.7 UV/Vis absorption spectra of Au NPs in solution with ~13 (A) and ~30 (B) nm sizes, and (C) In NPs prepared with different thicknesses of thermal evaporated indium.](image)

2.2.4 X-ray photoelectron spectroscopy

With the increasing importance of developing high performance materials for different applications, accurate characterization technique for materialist in confirming the surface chemical and elemental state of the material is highly desirable to provide the basis for achieving
effective surface engineering. The surface can provide the point where different interactions can take place, and many problems encountered in modern material researches are related the surface chemical or physical properties, which will affect many factors of a material such as wettability, adhesive properties, catalytic activity, corrosion rates. X-ray photoelectron spectroscopy (XPS) is a technique which is capable of analyzing the surface chemistry of a material such as electronic state and chemical state of the elements, empirical formula, as well as elemental composition within a material. In this thesis, we use a VG ESCALAB 220i-XL XPS system equipped with a monochromatic Al Kα X-ray source to characterize the chemical state of the In NPs we prepared on MPM (Figure 2.8 A), which is then used as a plasmonic device for solar evaporation. The XPS spectrum of indium (Figure 2.8 B) shows two distinct peaks at ~443 and ~451 eV with asymmetric shapes, and a weak peak around 454 eV, which are well agreed with the feature of indium metal. For the O1s spectra, the In NP/MPM structure shows a peak around 528.5 eV (Figure 2.8 C) which is absent in the bare MPM structure (Figure 2.8 D). This is due to the formation of an intrinsic oxidation layer on In NPs, in this case, the chemical environment of O changed due to the formation of In-O bond. Therefore, we can observe the appearance of a new peak.
2.2.5 X-ray diffraction

The properties of a material can experience a dramatic change with the different arrangements of the building block atoms in its crystal structure. Therefore, figuring out the crystal structure of a material is helpful in understanding its physical and chemical properties. In the past few decades, X-ray diffraction has contributed powerful support in providing non-destructive characterizations of materials by yielding the unique fingerprint diffraction peaks of X-ray which is highly dependent on the crystal structure. In our study, we conduct the XRD characterizations of In NPs prepared on MPM using a high-resolution Phillips PANalytical X'Pert Pro diffractometer, and the X-Ray source is Cu Kα radiation (1.5406 Å). The as obtained XRD
pattern of In NPs on MPM is consistent with a standard reference of indium (ICSD collection code: 064794) (Figure 2.9), showing a body-centered tetragonal crystal structure.

Figure 2.9 XRD pattern of In NPs prepared on MPM.
Chapter 3

Controllable plasmon coupling of Au NPs induced color changes for plasmonic colorimetric logic gate sensing

3.1 Introduction

3.1.1 Background

With the rapid growth of public concerns on environmental issues, food safety, and human healthcare, topics of keeping healthier lifestyles have also drawn greater attentions across the world in the past few decades. Particularly, melamine was found in infant formula in 2008, which quickly became a shocking scandal, and warned human society that there is still a long-lasting battle to solve the issues on food safety. Heavy metal contaminations caused by hazardous metal such as mercury, on the other hand, gives rise to severe threats to both human health and the environment. Cysteine is generally known as a sulphur-containing amino acid, however, its biological function in human body is also irreplaceable. Therefore, it is demanding for the general public to explore a simple and cost-effective sensing system for detecting these targets, which will also benefit the public in food and environment safety, medical diagnostics, and even for fundamental researches. However, conventional sensing methods for Hg$^{2+}$, melamine and cysteine were often time-consuming, costly, procedure-complicated, and non-portable. For this reason, it is highly desirable to develop rapid, inexpensive, simple, and portable methods.

3.1.2 Plasmonic colorimetric logic gate

Plasmonics based colorimetric sensing which aims at designing controllable aggregation or anti-aggregation system of Au NPs has been proven a powerful tool in chemo/biosensors. Hence, the
detection systems for various analytes were widely developed based on this simple, rapid and cost effective technique. More importantly, accompanied with the aggregation or anti-aggregation process of Au NPs, there is always a shift of the SPR peak of Au NPs, which can be explained by the inter-particle plasmon coupling. At the same time, it will also cause a distinct color switch between blue and red, which only simple UV-vis spectroscopy measurement or even naked eye observation is needed to perform the sensing process. However, colorimetric sensing has its own weaknesses because of its own limitations. Until now, the majority of the colorimetric systems were using Au NPs to fabricate the assays to detect one certain target. Therefore, most of them were not capable of discriminating different analytes in different target scopes in one sensing system. Constructing molecular logic gate in chemo/biosensors that employs the concept of logic gate which is commonly used in semiconductor industry offers an effective way of overcoming the above weakness of plasmonic colorimetric biosensing. As is well known, a variety of logic operations including AND, NOT, YES, NAND, INH, OR, NOR, and XOR are existing based on the number as well as the logic relationship between the inputs in a logic gate. By changing the inputs to a logic gate sensing assay, different targets can be discriminated by using outputted signals as references. For this reason, all kinds of molecular logic gate sensors were constructed for different sensing purposes.

3.1.3 Design of a three-input colorimetric logic gate sensing system

Up to now, most of the formulated plasmonic colorimetric sensing systems based on Au NPs were two-input systems because of the poorly specific interactions among multiple analytes and Au NPs, therefore, developments of logic gate sensing systems that includes more inputs were seldom reported. Moreover, if interactions between analytes that serve as inputs are poorly specific, aggregation and dispersion of Au NPs may not be controllable. Therefore, making sure
inputted analytes have high specific interactions between each other is the key to successfully design a multiple-input logic gate sensor. Herein, we have developed a three-input colorimetric logic gate sensing system which can achieve the detection of cysteine, melamine and Hg$^{2+}$, in which the mechanism is target-induced controllable aggregation and anti-aggregation of Au NPs which can be ascribe to the highly specific competing coordination reactions between the analytes and Au NPs. Hence, a serials of logic operations which includes OR, INH, and AND as well as an inter-connected logic gate was built based on these highly specific interactions, which endows the as constructed logic gate system the ability in performing highly sensitive and selective detections to the analytes. Moreover, Au NPs are intrinsically sensitive to melamine in plasmonic colorimetric sensing15 which makes the logic sensing system also have good performance in the detection of cysteine, and Hg$^{2+}$.

3.2 Experimental section

3.2.1 Plasmonic colorimetric logic gate operations by using Au NPs solutions

Combinational mixtures of melamine, cysteine and Hg$^{2+}$ were first prepared and then added into 1 mL of the above ~13 nm Au NPs solutions. The final effective concentrations of the analytes were fixed at 1.8×10^{-4} M (Hg$^{2+}$), 3.6×10^{-4} M (cysteine), and 6×10^{-5} M (melamine). The effect of dilution was eliminated by fixing the volume of the combinational mixtures of the targets not more than 30 μL. Absorption spectra of the above Au NPs solutions were measured with UV/Vis absorption spectrometer after 2 minutes. Their corresponding digital photos were also taken by a digital camera at the same time.

3.2.2 Melamine sensing

For melamine sensing, the aggregation degree of 1 mL Au NPs solutions upon the addition of 10 μL melamine with certain concentrations were investigated. For selectivity analysis, different
nitrogen containing compounds in aqueous solutions were added into 1 mL of Au NPs solutions and mixed thoroughly, all the final effective concentration of these samples was 1.5×10^{-6} M. The incubation time was all 2 minutes, UV/Vis absorption spectra and photos of Au NPs solutions were recorded with spectrometer and the digital camera, respectively.

3.2.3 Cysteine sensing

In the selectivity experiments, different amino acids in aqueous solutions were mixed with melamine thoroughly one by one first, and then the mixture were added into 1 mL of Au NPs solutions. The final concentrations of melamine and the amino acids in all samples were fixed at 60 μM. After incubating for 2 minutes, their corresponding digital photos and absorption spectra were taken by a digital camera and UV/Vis absorption spectrometer, respectively. To investigate the sensitivity of the assay, the sample of 1 mL of Au NPs solution caused by the addition of 1.4 μM melamine was chosen as a control sample. Then 10 μL of cysteine with a serial of concentrations were mixed with 10 μL of melamine thoroughly, after which the mixtures were injected into 1 mL of Au NPs stock sensing solutions. Absorption spectra of the above Au NPs solutions were measured with UV-vis spectrometer after 2 minutes. Their corresponding digital photos were also taken in the meantime by a camera.

3.2.4 Hg$^{2+}$ sensing

To perform the selectivity experiments, different metal ions in aqueous solutions were mixed with melamine thoroughly one by one first, and then the mixture were added into 1 mL of Au NPs solutions. The final effective concentrations of the metal ions and melamine were all fixed at 50 and 1.5 μM, respectively. After incubating for 2 minutes, their corresponding digital photos and absorption spectra were taken by a digital camera and UV/Vis absorption spectrometer, respectively. To conduct the sensitivity experiments, the sample of 1 mL of Au NPs solution
caused by the addition of 0.6 μM melamine with 15 mM NaCl was chosen as the control sample. Then 10 μL of Hg$^{2+}$ with a serial of concentrations were mixed with 10 μL of melamine thoroughly, after which the mixtures were injected into 1 mL of Au NPs stock sensing solutions. Absorption spectra of the above Au NPs solutions were measured with UV/Vis absorption spectrometer after 2 minutes. Their corresponding digital photos were also taken in the meantime by a camera.

3.3 Results and discussion

3.3.1 Construction of a three-input (Hg$^{2+}$, melamine, and cysteine) plasmonic colorimetric logic gate based on colloid Au NPs

Figure 3.1 is an illustration of the working principles of our as designed colorimetric logic gate. In our design, the inputs are the analytes and the outputs will be the induced colors of Au NPs. To be more specific, since we are aiming at the combinational detections of three kinds of analytes (Hg$^{2+}$, melamine, and cysteine), if there is only one analyte presenting in the sensing matrix, the inputs can be expressed as 100, or 001, or 010. In the case of the co-existence of two analytes, the inputs will be 110, 101, or 011. Along this way, the inputs without and with the presence of all the three analytes will be 000 and 111, respectively. The outputs 0 and 1 of the logic gate correspond to the dispersed (red color) and aggregated (dark blue color) state of Au NPs in solution, respectively. Melamine molecule in aqueous solution often carries positive charges, this is due to its amine groups can be protonated by H$^+$ in an aqueous solution. On the contrary, Au NPs prepared by reduction of HAuCl$_4$ with sodium citrate in aqueous solution are negatively charged because of the deprotonated citrate ligands on Au surface. Since there will be strong counter charge interactions, once melamine is added to Au NPs solution, Au NPs will form aggregates quickly, in which the color of the Au NPs solution will change from red to blue.
This aggregation process of Au NPs caused by melamine will be easily inhibited when Hg$^{2+}$ is added with melamine together. It has been reported that strong coordination reaction exists between the nitrogen atoms of melamine and Hg$^{2+}$, which on the other hand could explain the inhibition effect from Hg$^{2+}$ to melamine induced aggregation of Au NPs. It is anticipated that melamine which is bound by Hg$^{2+}$ cannot lead to the formation of Au NPs aggregates, thus red color of Au NPs solution remains (input 101, output 0). Sulfhydryl group (-SH) has been well known for its excellent affinity for Au surface and a kind of Au-S bond can form between them, which makes it become a widely used method for surface modification of different molecules on Au surface. Cysteine is a well-known amino acid as it contains sulfhydryl group which can lead to the formation of a cysteine molecule layer on Au NPs when it is added to the Au NPs solution (input 010, output 0). Since the Au-S bond can form in this process, compared with the electrostatic reaction between melamine and Au NPs, Au-S bond is much stronger, which could protect Au NPs to stay in a well dispersed state even when melamine is introduced (input 011, output 0). A unique feature of the as formed Au-S bond is that it can be destroyed by Hg$^{2+}$ through the formation of a stable cysteine-Hg$^{2+}$ complex, which will result in the removal of the thiolates that have been chemisorbed on the Au surface. As a result, Au NPs without surface ligands that help stabilize them in solution will quickly aggregate (input 110, output 1). It is worth noting that Hg$^{2+}$ ions themselves will not have any effects on the well dispersed state of Au NPs in solution (input 100, output 0). However, if all the three analytes are introduced to Au NPs solution together, dramatic aggregation of Au NPs will be observed (input 111, output 1), which is due to the competing coordination reactions between the analytes, in which only the cysteine-Hg$^{2+}$ complex can form. The competing formation of different complexes when different analytes are introduced is the key in designing this logic gate sensing
3.3.2 Logic operations in the plasmonic colorimetric sensing system

The size of the as prepared Au NPs was confirmed by TEM, displaying a size of ~13 nm (Figure 3.2).

Figure 3.2 TEM images of the states of ~13 nm Au NPs after the analytes (60 μM melamine, 360 μM cysteine, and 180 μM Hg$^{2+}$) were added with different logic combinations. All scale bars in the images are 50 nm.
Figure 3.3A is the UV/Vis absorbance of Au NPs solutions with the addition of analytes (60 μM melamine, 360 μM cysteine, and 180 μM Hg$^{2+}$) in different logic combinations. The spectra with analyte combinations in 001, 111, and 110 can show obvious changes when compared with those in the conditions of 000, 100, 010, 101, and 011. The strong absorption bands around 600 to 700 nm are the result of the appearance of aggregates of Au NPs in these samples, which are induced by the analytes, demonstrating that aggregation of Au NPs occurred in these solutions. It is consistent with TEM result (Figure 3.2) that aggregates appear only under the combination conditions 001, 111, and 110. Their aggregation degrees can be evaluated by calculating the corresponding $A_{650\text{nm}}/A_{520\text{nm}}$ values (Figure 3.3B). Figure 3.3C shows the network map of the logic gate sensing system in which different logic operations are incorporated. Both Hg$^{2+}$ and cysteine cannot make Au NPs become aggregates alone unless they are added to the Au NPs solution together. Therefore, this phenomenon agrees well with the function of AND gate. On the other hand, melamine alone is enough to cause the aggregation effect of Au NPs, thus an OR operation could convey the inter-relationship between AND gate of cysteine/Hg$^{2+}$ and melamine. Moreover, either cysteine or Hg$^{2+}$ can inhibit the formation of melamine induced Au NPs aggregates when they were separately added together with melamine. Hence, two INH gate functions are required in the network map of the logic gate. To illustrate in detail how the AND, OR, and INH functions in the as designed logic gate system, Table 3.1 is presented as a reference. In Figure 3.3D one can read the inputs and their corresponding outputs by using our logic gate sensing system in which the readouts from the color (only red or blue) can be clearly distinguished.
Figure 3.3 Logic operations performed by using Au NPs solutions with different analyte combinations. (A) UV/Vis absorption spectra of Au NPs solutions with analytes (60 μM melamine, 360 μM cysteine, and 180 μM Hg^{2+}) in different logic combinations. (B) Their corresponding A_{650nm}/A_{520nm} values. (C) Network map of the logic gate sensing system with logic operations. (D) The inputted and their corresponding outputted signals in this logic system. Inset displays the outputted color readouts.

Table 3.1 Truth table of INH, OR and AND gates based on Boolean logic operations.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Therefore, different analytes can be distinguished by using their inter-connected reactions step by step. An illustration to show how different combinations of analytes can be discriminated is presented in Figure 3.4. In addition, for an unknown solution that may contain 0, 1, 2 or 3
components of the analytes (melamine, cysteine and Hg2+), we cannot determine how many components are in the solution. However, we can discriminate the analytes or their combinations when the number of components in the unknown solution is fixed. For instance, the discrimination of one kind of analyte (melamine, cysteine and Hg2+) or the combination of two kinds of analytes (melamine/cysteine, melamine/ Hg2+ and cysteine/Hg2+).

Figure 3.4 An illustration to show how different combinations of analytes can be discriminated. (A) Discrimination of a single kind of analyte. (B) Discrimination of the combination of two kinds of analytes. The analytes can be discriminated step by step with the help of an additional solution of Hg2+ when it is known that how many kinds of targeted species are in the sample solution. There will be only one case when the number of species is three, namely, the coexistence of Hg2+, melamine, and cysteine. The output of this combination will always be 1, namely the formation of Au NPs aggregates, so the discrimination of this case is not needed.
3.3.3 Investigation of the mechanism through UV/Vis absorption spectra evolutions induced by competing coordination reactions

To have a better understanding of the competing coordination reactions between the three targets, we first performed a titration experiment to investigate the coordination reaction between melamine and Hg$^{2+}$ (Figure 3.5A). Melamine in aqueous solution shows two typical peaks at 204 and 234 nm, which is consistent with previous report. It can be observed that the strong absorption peak of melamine located at 204 nm decreases when more amount of Hg$^{2+}$ is added, whereas its weak absorption peak around 234 nm at the same time shows dramatic enhancements, which is an indication of the formation of complex through coordination. On can still see this change when the concentration of Hg$^{2+}$ is increased from 60 to 80 μM, from which we can make sure 60 μM Hg$^{2+}$ can be totally coordinated to 20 μM melamine. Then the Hg$^{2+}$-melamine complex (60 μM Hg$^{2+}$ + 20 μM melamine) solution was chosen for ligand replacement study for this reason. It can be seen in Figure 3.5B that the absorbance of the bands with wavelength ranging from 200 to ~230 nm increases dramatically with the increasing amount of the added cysteine, and the maxima appears when 120 μM cysteine is added. To confirm whether this increment is caused by the effect of cysteine’s addition, the effect induced by a same amount of cysteine was studied for comparison (Figure 3.5C). The result shows that cysteine induced increments in the absorbance without the formation of complex is almost 8 times lower, which demonstrates that ligand replacement reaction indeed has occurred in the case of Figure 3.5B. In this process, the Hg$^{2+}$-melamine complex is transformed into the Hg$^{2+}$-cysteine complex. Similar phenomenon is also observed when Hg$^{2+}$ is added in cysteine solution, in which the maxima of absorption bands in 200 to ~230 nm also appear when 120 μM cysteine is added, suggesting the complete transition between the two forms of complex of Hg$^{2+}$. It agrees well with many
published works that cysteine and Hg2+ can form a kind of Hg2+(cysteine)\textsubscript{2} complex whose stability constant could reach as high as 2×10^{40}85, 86

Figure 3.5 Competing coordination reactions induced UV/Vis absorption spectra evolutions of the analytes. (A) Hg2+ induced changes of UV-vis absorption spectra of 20 μM melamine. Concentration of Hg2+ was increased from 0 to 80 μM, (B) cysteine induced changes of UV/Vis absorption spectra of Hg2+-melamine complex (60 μM Hg2+ + 20 μM melamine) solution. Concentration of cysteine was increased from 0 to 160 μM, (C) UV/Vis absorption spectra of cysteine alone in aqueous solution. The concentration of cysteine was increased from 40 to 160 μM, and (D) cysteine induced changes of UV/Vis absorption spectra of 60 μM Hg2+. Concentration of cysteine was increased from 0 to 160 μM.
Figure 3.6 (A) UV/Vis absorption spectra of Au NPs solution upon the addition of cysteine at the concentrations ranging from 0 to 404 μM, (B) Au NPs solution upon the addition of melamine at the concentrations ranging from 0 to 200 μM in the presence of 6 μM cysteine, (C) Au NPs solution upon the addition of Hg\(^{2+}\) at the concentrations ranging from 0 to 60 μM in the presence of 6 μM cysteine, Au NPs solution upon the addition of (D) HCl and (E) NaOH at the concentrations ranging from 0 to 120 μM in the presence of 6 μM cysteine. These results imply
that cysteine can be served as a stabilizing agent against melamine induced aggregation of Au NPs. However, this stabilizing effect will be broken when Hg$^{2+}$ is introduced into the system at the same time.

To further study the interactions between Hg$^{2+}$, melamine, cysteine, and Au NPs, detailed experiments were conducted. Only minimal changes in absorption spectra of Au NPs are observed upon the additions of cysteine ranging from 0 to 404 μM (Figure 3.6A). The additions of melamine with concentrations from 0 to 200 μM to Au NPs solution in the presence of 6 μM cysteine almost have no effect on the absorption spectra of Au NPs (Figure 3.6B). These results imply that cysteine can be served as a stabilizing agent against melamine induced aggregation of Au NPs. However, this stabilizing effect will be broken when Hg$^{2+}$ is introduced into the system at the same time. The absorption band of Au NPs around 650 nm increases remarkably with the addition of Hg$^{2+}$ in the presence of cysteine (Figure 3.6C). The effects of strong acid and base on the absorption spectra of Au NPs in the presence of cysteine were also investigated by using HCl and NaOH (Figure 3.6D, E). These results indicate that Hg$^{2+}$ can strongly destabilize the well-dispersed solution of Au NPs in the presence of cysteine.

To verify the important role of the sulfhydryl group of cysteine in our as-designed colorimetric logic gate, alanine, an amino acid which has the same structure as cysteine except the absence of sulfhydryl group was used for comparison. It can be seen from Figure 3.7A that completely different results were obtained when alanine and cysteine is added to the Hg$^{2+}$-melamine complex solution. Alanine with chelating ligands has also been reported can bind with Hg$^{2+}$ to form a stable complex and the stability constant is about 10^{20}, however, this value is much lower than that of Hg$^{2+}$ (cysteine)$_2$ due to the high affinity of Hg$^{2+}$ for the sulfhydryl group of cysteine (Table 3.2). Absorption spectra the Hg$^{2+}$-melamine complex (60 μM Hg$^{2+}$ + 20 μM melamine) in aqueous solution shows minimal response upon the addition of alanine, which demonstrates that
Hg2+-melamine complex is very stable and cannot be damaged upon the addition of alanine without sulphydryl group (Figure 3.7B). Furthermore, adding alanine alone to Hg2+ aqueous solution almost has no effect on the absorption spectra of Hg2+ aqueous solution (Figure 3.7C), which suggests that the increment of the absorption band of Hg2+ aqueous solution upon the addition of cysteine in Figure 3.5D should be ascribed to the coordination between Hg2+ and sulphydryl group of cysteine. Absorption spectra of alanine, alanine/melamine and cysteine/melamine aqueous solutions suggest that the presence of alanine or cysteine also has no effect on the absorption spectra of melamine (Figure 3.7D, E and F).
Figure 3.7 Control experiments to verify the role of –SH group in the logic gates. (A) Color readouts induced by melamine (60 μM) and Hg^{2+} (180 μM) with 360 μM alanine (top) and cysteine (bottom) in different combinations. (B) Alanine induced changes of UV/Vis absorption spectra of Hg^{2+}-melamine complex (60 μM Hg^{2+} + 20 μM melamine) solution. Concentration of alanine was increased from 0 to 160 μM, (C) alanine induced changes of UV/Vis absorption spectra of 60 μM Hg^{2+}. Concentration of alanine was increased from 0 to 160 μM, (D) UV/Vis absorption spectra of alanine alone in aqueous solution. The concentration of alanine was increased from 40 to 160 μM. Melamine (20 μM) solutions upon the addition of alanine (E) and cysteine (F) from 40 to 160 μM.

Table 3.2 Stability constants of the complexes formed through coordination with Hg^{2+}.86

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Stability constant-β(ML₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>19.6</td>
</tr>
<tr>
<td>Cysteine</td>
<td>39.4</td>
</tr>
</tbody>
</table>

3.3.4 Application in sensing of different analytes

To study the melamine-induced aggregation mechanism of Au NPs, different nitrogen containing compounds were employed to compare the colorimetric selectivity of the 13 nm citrate-stabilized Au NPs. Figure 3.8A shows the UV-vis absorption of Au NPs colloidal solutions upon the addition of these compounds at the concentration of 1.5 μM. It can be seen that only melamine and an analog of melamine (cyromazine) can induce the aggregation of Au NPs, while the other types of compounds do not show obvious influences on Au NPs at the same concentration. The very small A_{650nm}/A_{520nm} ratios of Au NPs solutions with cyanuric acid, dicyandiamide, butylamine and acetonitrile are almost show no difference to the stock Au NPs sensing solution, suggesting no obvious aggregation of Au NPs formed in these solutions (Figure 3.8B). Meanwhile, clear color change of the solution with such a low concentration of melamine or cyromazine can be directly observed by naked eye (Figure 3.8C), indicating the high selectivity
of the assay to melamine like molecules among various nitrogen containing compounds (Figure 3.8D).

Figure 3.8 Selectivity to melamine like compounds. (A) UV/Vis absorption spectra of Au NPs solutions with the addition of six nitrogen containing compounds with the concentration of 1.5 μM, (B) their corresponding $A_{650\text{nm}}/A_{520\text{nm}}$ values, (C) the photos of color readouts of the above samples, and (D) molecular structures of the six compounds.

To study the effect of Au NPs size on their sensitivity to melamine, Au NPs with the size of ~30 nm were also investigated. Compare to ~13 nm Au NPs, ~30 nm Au NPs show lower sensitivity to melamine both by instrument measurements and naked eye observation under the same condition (Figure 3.9). Under optimized condition, even 6×10^{-7} M melamine could induce the severe aggregation of ~13 nm Au NPs, demonstrating the high sensitivity of ~13 nm Au NPs to melamine (Figure 3.10).
Figure 3.9 Comparison between Au NPs with ~13 and ~30 nm sizes. (A) SEM image of ~30 nm Au NPs. UV/Vis absorption spectra responses of ~30 nm (B) and ~13 nm (C) Au NPs solutions after the addition of 1.5 μM melamine, (D) the corresponding \(A_{676\text{nm}}/A_{519\text{nm}} \) (13 nm Au NPs) and \(A_{820\text{nm}}/A_{527\text{nm}} \) (30 nm Au NPs) values, (E) the color readouts of the Au NPs solutions.
Figure 3.10 (A) 0.6 μM melamine induced evolutions of UV/Vis absorption spectra of Au NPs in 30 minutes. (B) Time dependent visual detections of Hg$^{2+}$ by using 0.6 μM melamine as a reference.

Cysteine is widely used in Au NPs community for different applications due to its well-known ability to cause Au NPs to form aggregates when its concentration is high, or it is used at low pH condition, by forming the zwitterionic networks. The deprotonated carboxylate (−COO⁻) and protonated amine (−NH₃⁺) groups of cysteine will have head-to-head interaction between adjacent particles, thus aggregation of Au NPs will happen. Besides this well-known phenomenon, we found that cysteine could serve as a surface ligand to protect Au NPs to stay in a well dispersed state by inhibiting the melamine induced aggregation effect. Therefore, in our unusual design, the INH relationship between melamine and cysteine was applied in cysteine sensing. Figure 3.11A shows the UV-vis absorption spectra of Au NPs in solution after different amino acids are added with 60 μM melamine together. We can see the selectivity for cysteine is very high based on the $A_{650\text{nm}}/A_{520\text{nm}}$ values and the corresponding color readouts of the samples (Figure 3.11B and C). It can be explained by the molecular structure differences between cysteine and other amino acids. Only cysteine with sulfhydryl group could inhibit the formation of Au NPs aggregates when melamine is added to Au NPs solution (Figure 3.11D). In Figure 3.11E, one can see that the $A_{650\text{nm}}/A_{520\text{nm}}$ values decreases when more amount of cysteine is
added. Even when the concentration of cysteine is as low as 0.6 μM, the decreased $A_{650\text{nm}}/A_{520\text{nm}}$ value can still detected on the UV-vis spectrometer, indicating the sensitivity of this assay to cysteine. The corresponding visualized color readouts of the samples from dark blue to wine red can be easily observed (Figure 3.11F). It can be seen in Figure 3.11G that the $A_{650\text{nm}}/A_{520\text{nm}}$ value and the amount of cysteine almost shows a linear relationship, which is important for the quantification of cysteine.

Figure 3.11 Cysteine sensing. (A) UV/Vis absorption spectra of Au NPs in solution after 60 μM different amino acids are added together with 60 μM melamine, (B) the corresponding
A650nm/A520nm values of the samples, (C) the photos of the color readouts of the samples, and (D) the 13 kinds of amino acids used in this study. (E) A650nm/A520nm values of the samples obtained by adding different concentrations of cysteine together with 1.4 μM melamine, (F) the visualized color readouts of the samples, and (G) the linear relationship between the A650nm/A520nm values and the concentration of cysteine.

By using a similar idea, the INH relationship between melamine and Hg2+ can be applied in Hg2+ sensing (Figure 3.12).

Figure 3.12 Hg2+ sensing. (A) Absorption spectra responses of Au NPs solutions after 50 μM different amino acids are added together with 1.5 μM melamine, (B) the corresponding signal readouts in the form of A650nm/A520nm, and (C) the photos of the corresponding color readouts of the samples (after 2 min). (D) A650nm/A520nm values of the samples obtained by adding different concentrations of Hg2+ together with 0.6 μM melamine, (E) the photos of their corresponding visualized color readouts of the samples (E) the linear relationship between the A650nm/A520nm values and the concentration of Hg2+.
3.4 Conclusion

In summary, a logic gate sensing system is devised by employing the competing coordination reactions between the targets (melamine, Hg$^{2+}$, and cysteine) in this system, and it can be used for the sensing of either one of the targets all of which are health related species selectively and sensitively. We have also done careful study of the mechanism of the logic gate which is due to competing coordination and ligand replacement interaction between the targets. The study of the competing reactions between melamine, cysteine and Hg$^{2+}$ in our work was not only qualitative but also quantitative, which was never fully investigated before. It will also benefit the readers in designing sensing systems of melamine, cysteine and Hg$^{2+}$ by using other methods such as fluorescence, surface-enhanced Raman etc.
Chapter 4

Plasmonic heating effect of In NPs and its application for enhanced solar evaporation

4.1 Introduction

4.1.1 Background
Solar energy has been greatly concerned because of its sustainability as a green and clean energy supply, which does not depend on the potential of fossil fuels that can lead to sustainable development and environmental issues. Converting solar energy into heat is one of the most important aspects of solar energy harvesting, which has been widely applied in solar power generation, enhanced hydrogen production, chemical separation/purification, wastewater treatment, and steam sterilization. At present, the water shortage is an urgent problem that is world widely suffering for human beings. Considering the demand for water will be much higher with the social and industrial development in the future, seawater desalination/evaporation using sunlight to evaporate seawater to produce clean water has been studied extensively. In order to effectively perform solar seawater desalination using solar energy, good light-absorbing materials are particularly important for increasing the absorption efficiency of solar energy.

4.1.2 Plasmonic nanoparticles for light to heat conversion
Due to their excellent LSPR characteristics, the sub-wavelength metal particles were widely made into good photothermal conversion materials. When illuminated with an external light radiation, the resonance between the incident light and the particles can lead to strong light absorption and heat generation. Because of their Vis/NIR LSPR features, gold and silver-based nanostructures can have enough spectral overlap with sunlight, making them become the most
widely used plasmonic structures for the conversion of solar energy to heat.97, 98 Although silver and gold have such advantages, they are rare and costly as goods and commodities, whose sophisticated preparations in making them into plasmonic nanostructures are also concerns in the practical applications. It is therefore important to find alternative metal materials with excellent performance that can be used for low-cost technologies for light to heat conversion, which requires in-depth explorations to further study the properties and LSPRS of other metal materials. A recent study has shown a refreshed understanding of other potential metals as light to heat conversion materials by numerical analysis, and quantified their photothermal conversion efficiencies with plasmonic properties.21 In line with this study, Zhu's team in 2016 succeeded in designing a desalination plant for the first time using Al NPs.24 The device was designed by three-dimensional assembly of plasmonic Al NPs on a floating porous substrate which can enhance solar desalination through the plasmonic heating effect. And the significance of their research is that it provides an experimental basis for exploring the use of plasmonic heating of metals other than silver and gold for seawater evaporation.

4.1.3 Fabrication of a floating solar desalination device based on In NPs

In this thesis, we have utilized for the first time a new kind of metallic material, In NPs, to design a portable device for desalination of seawater using solar energy, which is inspired by theoretically the superior plasmonic heating ability of In NPs when compare to Au and Ag NPs. Another advantage of the device we designed is that the simple preparation by only one step of thermal evaporation. For silver, aluminum, gold and other materials which have been employed in solar evaporation, complex steps in device fabrication, chemical synthesis or treatment, and specifically designed substrates were often required.92, 94-102 In addition, the paper-like device we designed can float on the surface of water to avoid the overall heating of the whole water volume.
based on the concept of "solar heating water air interface",7 which on the other hand can reduce the heat loss of from the device, thus improving the efficiency of evaporation. Besides, the MPM’s special porous nature can lead to enhanced internal light scattering and reduced surface reflection,24, 96, 103 benefiting the light absorption in a sunlight harvesting process. In addition, when the deposition thickness of indium on MPM is increasing, the In NPs on MPM tend to merge into larger and irregular particles, resulting in broad and strong plasmonic absorption, which is beneficial to the applications based on solar energy. The characteristics of notable plasmonic heating effect, simple device fabrication and expandable production process show that the portable type paper–like device has vast prospects in the actual solar evaporation related applications.

4.2 Experimental setup

The In NP/MPM devices were fabricated by depositing indium sources on MPM substrates by thermal evaporation with different thicknesses at a base pressure of 3×10^{-7} Torr. The thermal evaporation rate was 0.5 Å/s. The MPM substrate was purchased from Sigma-Aldrich. The water evaporation experiment was carried out in the 100 mL breaker filled with 100 g water. In order to monitor the in-situ weight change of water during evaporation, a piece of In NP/MPM was placed on the water surface and then transferred with the breaker to a Sartorius 4-decimal electronic precision balance under a Sun 2000 solar simulator (ABET technologies) which can provide 280 to 2500 nm range light radiation. The electronic precision balance was equipped with a 2-door glass chamber, which could prevent the vibrations caused by strong airflow from the cooling fan of the solar simulator. We replaced the top glass cover of the chamber with quartz to maximize the transmittance of sunlight. In the cycle experiments, the illumination time for the device was 30 minutes per cycle. The weight of water in the container is recorded every 5
minutes during this process. After each cycle, the In NP/MPM needs to be removed from the breaker, cleaned with deionized water, finally dried under natural conditions. The surrounding humidity and temperature in our lab were 55.4% and 23.2 °C, respectively. An ICP-OES spectrometer (PerkinElmer Optima2000) was used to measure the ion concentrations before and after seawater desalination.

4.3 Results and discussion

4.3.1 Theoretical calculation of plasmonic heating ability of In NPs

There are a lot of free electrons in metal nanoparticles, which can generate LSPR under light illumination, resulting in enhanced near field and plasmonic heating effect. For semiconductor nanoparticles, their performance in photothermal conversion is poorer and the rate of heat generation is much lower because of the heat dissipation through the process of interband absorption, in which producing pairs of hole and electron (excitons). It should also be noted that, unlike other photothermal materials or semiconductors, the plasmonic absorber can confine light into volumes in deep sub-wavelength scale, which will result in extremely localized light excitation at very high near-field intensities. It can thus achieve the local heating for plasmon-enhanced vapor-liquid phase change. Therefore, research efforts were dedicated to the design of various kinds of metal nanostructures for photothermal conversion. Although the researches on the plasmonic heating effects of the noble metals have made some exciting progresses, in the cases of poor metals, attention paid to them is lacking, so the related experimental research results are still very few. Interestingly, based on a recent research of numerical analysis on the efficiency of photothermal conversion, the heat generated by many metal nanoparticles, including silver, gold, and aluminum, have been calculated theoretically. The results show that plasmonic metals other than commonly used ones might be used as
effective photothermal conversion materials. According to this study, a simple proposed equation can be used to calculate joule heat generation ability (J_o) of different plasmonic nanoparticles, which is given by

$$J_o = \frac{9 e \varepsilon_2}{n_m} \left| \frac{\varepsilon_m}{2\varepsilon_m + \varepsilon} \right|^2$$ \hspace{1cm} (4-1)

where e is the energy of the photons radiated by the incident light, n_m and ε_s denote the refractive index and dielectric constant of the surrounding medium, respectively, and ε denotes the dielectric constant of the material and ε_2 refers to its the imaginary part. In line with the calculated result of aluminum using this theory, in the following year, it was reported the use of Al NPs for solar seawater desalination,24 which provided an experimental support for exploring other materials for sunlight harvesting.

In addition to aluminum, indium is one of the most studied poor metals which can be used as plasmonic materials, and experimental results in previous studies have shown that LSPR feature of indium can be activated by using light ranging from deep ultraviolet region to visible region.63, 104, 105 On the basis of previous theoretical calculation, indium can be comparable or even more effective in supporting near-field enhancement than aluminum.62, 63 We have also used the above equation to calculate J_o of In NPs. The result was compared with Al NPs, Au NPs and Ag NPs (Figure 4.1A). From the obtained curves, it can be seen that In NPs have the highest value of J_o when compared to Ag, Al and Au NPs at their plasmon resonance wavelengths. As solar spectrum contains broad radiations which can span from UV to Vis/NIR, further tuning the LSPR of In NPs to achieve broad band light absorption is still required to maximize the plasmonic heating effect. A common and effective way to tune the LSPR of a metal nanoparticle is to adjust the shape of it.106 Through this method, the depolarization factor can be reduced in a certain direction to achieve the red shift of LSPR. Considering this shape induced effect, it is possible to
calculate (Figure. 4.1B) J_o of irregularly shaped NPs with different LSPR wavelengths based on an ellipsoid model:

$$J_o = \frac{ee_2}{n_m} \left[\frac{\varepsilon_m}{\varepsilon + L_j(\varepsilon - \varepsilon_m)} \right]^2$$ \hspace{1cm} (4-2)

where

$$L_j = \frac{R_1 R_2 R_3}{2} \int_0^\infty \frac{du}{(u + R_j^2)\sqrt{(u + R_1^2)(u + R_2^2)(u + R_3^2)}}$$ \hspace{1cm} (4-3)

among which, R_1, R_2 and R_3 represent the radius of the ellipsoid along the major axis $J = 1$, 2, and 3. It is noted that the depolarization factor L_j satisfies the relation $L_1 + L_2 + L_3 = 1$. L_j usually describes the deviation extent of the shape of the metal NP from the sphere in that direction. As depolarization factors decrease, the plasmon bands of In NPs with different shapes undergo red shift and broadening. Notably, it can be seen that when In NPs LSPRs are tuned to the near-infrared and visible regions, the J_o values still remain high, which indicates that plasmonic devices using such In NPs can be used as excellent light to heat converters for the applications of sunlight harvesting.

Figure 4.1 (A) Calculated Joule heat generation ability curves of different metal nanoparticles. (B) Calculated Joule heat generation ability curves of irregular shaped In NPs based on the ellipsoid model.
4.3.2 Morphology and optical properties of In NPs on MPM

Because aluminum, gold and silver tend to form flat films on the substrate during evaporation,5, 26, 107 additional processing is typically required to obtain a well-defined nanostructure, such as using substrate annealing or patterned substrates. On the contrary, indium vapor condenses on the widely used substrates such as quartz and glass will result in the formation of separated particles due to inherently unique poor wettability of indium to the surfaces of them.63, 108 By utilizing such special property of indium, a convenient one-step thermal evaporation approach was used to prepare In NPs on MPM. This method does not require any other treatments or modifications for MPM surface. The SEM images of MPM with 10 to 80 nm indium evaporation thicknesses are correspondingly presented in Figure 4.2A, B, C, and D. From these SEM images one can see that it is clear that the In NPs are densely distributed on the MPM substrate. In addition, when increasing the deposition thickness, it also can be observed that larger particles with irregular morphologies will form. Due to their strong plasmonic effects, and the inhomogeneities of the size and shape of dense In NPs on the MPM, our device could show strong and broad LSPRs, on which only tens of nanometers thick indium are deposited. This light absorption can achieve light absorption in visible (Figure 4.2E) and NIR (Figure 4.2F) spectral region. At the same time, we can see obvious changes that the original white color of the MPM is significantly darken with indium deposited on it, directly indicating the broadband and efficient light absorption of the plasmonic devices (Figure 4.2G).
Figure 4.2 SEM images of In NPs with different deposition thicknesses (A) 10 nm, (B) 20 nm, (C) 40 nm, and (D) 80 nm on MPM. The scale bars here are 500 nm. (E) Visible and (F) NIR light absorption spectra of In NPs on MPM. (G) Optical images of MPM substrates with different deposition thicknesses of indium.

The MPM microporous structure has two functions (Figure 4.3): first, to endow the floating nature of the device; and second, to rapidly replenish water after evaporation of surface water by capillary effect. The floating nature will also enable vapor-liquid phase change to occur near the water-air interface.

Figure 4.3 SEM images of bare MPM substrates at different scales, displaying a porous nature.

In addition, after indium was deposited on it, the hydrophilic nature of the MPM can retain, making the device to have the ability to induce water attachment, and accelerating moisture
transfer to the surface (Figure 4.4).

Figure 4.4 Measurements of contact angle of water drop on In NP/MPM device. Water droplets on the surface of the device can rapidly disperse, demonstrating the hydrophilic surface of the device.

4.3.3 In NPs on MPM for plasmon enhanced solar evaporation

The excellent light absorption features of In NP/MPM provide a great opportunity to develop efficient sunlight to heat conversion systems. To realize this concept, we showed the solar water evaporation by using the devices we designed. Figure 4.5A is a schematic diagram of the device we designed in a solar evaporation system. We systematically evaluated the influence of indium deposition thickness on the performance of water evaporation under a solar light intensity of 3 kW/m² (3 sun), and the results are shown in Figure 4.5B. For reference, we also conducted experiments of water evaporation in the presence and absence of bare MPM. We plotted the water weight variation curves of different indium deposition thicknesses resultant devices under solar illumination for 30 minutes. In accordance with expectation, as indium deposition thickness increases, the weight changes of water appear more dramatically, which also generally agrees with the evolution of the absorption spectra of the device with different indium thicknesses. When the thickness of the indium deposition is increased, the absorption spectra will become broader and stronger, resulting in better performance of solar evaporation. Meanwhile, the effect of bare MPM itself on water evaporation is not obvious, which indicates that the improvement of the performance of water evaporation of the devices we designed should be attributed to the
plasmonic heating effect of In NPs on MPM. In particular, we have found that in the indium deposition thickness range of 20 to 80 nm, the evaporation performance of water only increased slightly with increasing thickness of indium. However, for the device with deposition of 20 nm thickness of indium on two sides of the MPM (40 nm in total), its water evaporation performance is better than the devices which have only one side indium deposition. The possible explanations for this phenomenon can be the increased light absorption in the visible range and the calculated stronger Joule heating abilities at shorter wavelengths. Therefore, we chose the In NP/MPM with 20 nm thickness indium on two sides in the following studies. After exposed to sunlight radiation (3 sun) for 30 minutes, the surface temperatures of the devices were confirmed by the IR images. As can be seen from Figure 4.5C, the device surface temperature can rise from about 24 °C to about 50 °C (III and IV) in 30 minutes. In contrast, the blank water without the plasmonic device used in the control experiment can only achieve about 38 °C (I and II). Owing to the capability of floating at water surface, the heat generation is highly confined at In NP/MPM surface, it shows an obvious temperature evolution from the top to bottom regions (IV) in the IR image. We also investigated the influence of the intensity of solar radiation on water evaporation rate by monitoring the changes of water weight at different optical concentrations over time by using the device we designed (Figure 4.5D). The results demonstrate that under all of the 1, 2 and 3 sun optical concentrations, the efficiencies of using In NP/MPM device to generate steam are higher than that of pure water (Figure 4.5E), in which 2.4, 2.9 and 3.1 times enhancement can be achieved respectively, which is even better than the recently reported results using specially-synthesized black TiO$_x$ NPs (at 1 sun, 1.5-fold enhancement)20 and Al NPs (optimal at 4 sun, 2.4-fold enhancement).24 The solar steam efficiencies can be calculated through the expression$^7, 24$

$$\eta = \frac{m h_{LV}}{I}$$

(4-4)
in which, m refers to the mass flux, I donates solar illumination power density, and h_{LV} represents the total vapor-liquid phase change enthalpy (including phase-change enthalpy and sensible heat). Through this calculation, solar steam efficiencies can be obtained with 71.6% (1 sun), 79.2% (2 sun), and 84.2% (3 sun).

Figure 4.5 (A) A schematic diagram of the device we designed for enhancing steam generation. The In NP/MPM was floating on the upper surface of water. (B) The weight change curves of water with different In NP/MPM devices under 3 sun solar irradiation. The inset illustration shows the device was floating on the surface of water. (C) The IR images of water before solar irradiation (I), without (II) and with (III) In NP/MPM after irradiation under 3 sun for 30 minutes. The irradiation time is 30 minutes. IV is the side view of III at the same irradiation intensity. (D) The weight changes of water without and with the device as a function of irradiation time under
1 and 3 sun irradiations. (E) The weight change of water at different irradiation intensities (1 sun, 2 sun, and 3 sun) in 30 minutes with and without In NP/MPM devices.

4.3.4 In NP/MPM for solar desalination of a real seawater sample

In order to evaluate the performance of the device we designed in practical solar desalination, we used real seawater samples which were collected from the east coast of Singapore. Subsequently, we investigated the performances of this device at fixed intensities (1 sun and 3 sun) of irradiation light. As can be seen from Figure 4.6, the performance of steam generation is steady when the illumination intensity is switched from 1 to 3 sun. The performances are similar to the previous data obtained using pure water (Figure 4.3E).

![Figure 4.6](image)

Figure 4.6 Cycle solar evaporation performances of a seawater sample using In NP/MPM device at fixed irradiation intensities in 30 min (1 and 3 sun).

As can be directly observed, condensate water forms quickly on the quartz cover of the setup when using In NP/MPM plasmonic device. In contrast, only minimal amount of water can be evaporated without this In NP/MPM device (Figure 4.7), showing the improved solar evaporation performance using In NP/MPM device. It is easy to collect the condensed water on the quartz cover produced by In NP/MPM heating by using a pipette.
Figure 4.7 Optical photographs of the water condensation on the quartz cover after 30 minutes in the absence (A) and presence (B) of the In NP/MPM device.

The collected water from the quartz cover was then carefully measured by ICP-OES to confirm the concentration of different elements therein (Figure 4.8). From the results one can see that the concentrations of the main ions (Na\(^+\), K\(^+\), Mg\(^{2+}\), B\(^{3+}\), and Ca\(^{2+}\)) naturally appeared in seawater are significantly decreased, which is much lower than those obtained by commonly used membrane (10 to 500 ppm) and distillation (1 to 50 ppm) based seawater desalination techniques. It is also well below the reference standards regulated by the World Health Organization (WHO) and United States Environmental Protection Agency (EPA).\(^{24, 109}\)

![Graph showing concentrations of ions before and after desalination](image)

Figure 4.8 The concentrations of five main ions (Na\(^+\), K\(^+\), Mg\(^{2+}\), B\(^{3+}\) and Ca\(^{2+}\)) before and after
desalination measured by ICP-OES. It was noted that the concentration of Mg$^{2+}$ was lower than the detection limit (N.D.) of ICP-OES after desalination. For the shaded areas, the light blue portion and light green portions refer to the overall common salinity achieved by conventional membrane and distillation-based desalination techniques, respectively. The dashed lines represent the drinkable water salinity standards regulated by WHO and EPA.

4.3.5 Stability of In NP/MPM in solar evaporation

In order to assess the stability of the device we designed during solar desalination, we recorded its cycle performance at fixed irradiation intensity at 3 sun. As is shown in Figure 4.9, the performance of the device remains relatively stable for 15 cycles with 30 min per cycle.

![Figure 4.9](image)

Figure 4.9 Cycle solar evaporation performances (15 rounds) of In NP/MPM plasmonic device at 3 sun solar illumination intensity.

In order to further verify the robustness of this device, we studied the chemical state of indium on the MPM before and after seawater desalination using XPS. From XPS data (Figure 4.10A), it is observed that there is no significant change in asymmetric peak shapes and loss characteristics that were commonly found in the XPS of indium metal, demonstrating stable indium chemical state during solar desalination. In previous report, it was found that the transformation of indium
metal to indium compounds can lead to the broadening of In 3d peaks.110 In our experiment, after the desalination process, we didn't observe any obvious change of In 3s peaks, which provides further proof for the stability of the device we designed. In addition, Figure 4.10B displays the high-resolution O 1s XPS spectra, in which the generation of these two peaks may be attributed to the inherent thin oxides on In NPs after the fabrication, and the physical adsorption or chemical containment of oxygen on the MPM, respectively. Meanwhile, as there are only insignificant differences between the indium oxide peaks before and after solar desalination, suggesting that no further oxidation of indium occurs. This stable feature of In NPs may be due to the protective effect from the formed indium oxides on the surface of In NP, which is also in accordance with the previous study that indium metal can form natural oxides with little or no more than 4 to 5 nm thickness in the air below 145 °C.111

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.10.png}
\caption{(A) XPS spectra of In 3d of In NP/MPM before and after solar evaporation. (B)}
\end{figure}
XPS spectra of O 1s of In NP/MPM before and after solar evaporation. (C) XPS spectrum of O 1s from bare MPM substrate.

To confirm the steadiness of the crystal structure of In NPs on MPM, we also performed X-ray diffraction (XRD) (Figure 4.11). From the XRD data, we can see that the diffraction peaks are well matched to the body centered tetragonal crystal structure of indium (ICSD code: 064794) and the crystal structure remains unchanged after the 15 cycles solar evaporation processes.

![XRD Characterizations](image)

Figure 4.11 XRD characterizations of In NPs on MPM before and after 15 cycles solar evaporation processes.

The SEM images are also shown in Figure 4.12 to further check that the size and shape of In NPs on the MPM have not changed significantly after desalination. The proposed In NP/MPM device is thus expected to be applied in practical solar evaporation desalination because of its high stability and stable performance.
Figure 4.12 SEM images of In NP/MPM (A) before and (B) after 15 cycles solar evaporation processes. The scale bars here are 500 nm.

4.4 Conclusion

In this chapter, we have demonstrated the preparation of dense In NPs with broad size and morphology distribution on MPM. The In NPs on MPM exhibit broadband and strong light absorption which could span from NIR to visible spectral region due to the dense distribution and irregular morphologies on the substrate. Combining the floating nature of the MPM matrix and the theoretically excellent photothermal conversion performance of In NPs, for the first time we designed an In NP/MPM solar thermal device for solar evaporation. It is demonstrated the probability of making an efficient and portable device for enhancing desalination. And this device can maintain good stability and evaporation performance after many desalination cycles. Considering the increasing efforts to explore the use of clean and renewable solar energy, the device we designed and the results we found using In NPs may be applied to many other potential applications using solar energy, such as photocatalysis and thermal-optics.
Chapter 5

Near-field enhancement and LSPR induced hot carrier injection of In NPs for enhanced photocatalysis of TiO$_2$ NPs

5.1 Introduction

5.1.1 Creation and transfer of charge carriers in photocatalysis

In a photocatalysis process, when a photocatalyst which is often a semiconductor material is excited by the light with higher energy than its absorption threshold ($h\nu \geq E_{CB} - E_{VB}$), there will be electron transitions from valence band to conduction band, in which electrons and holes are created (Figure 5.1). Herein, h is the Planck constant, ν is the frequency of the excitation light, and E_{CB} and E_{VB} are the conduction and valence band energy level of the semiconductor photocatalyst, respectively. As soon as the active charge carriers are generated, they could transfer to the intermediate levels with lower energies E'_{CB} (electron) and E'_{VB} (hole), after which the active electron can react with an acceptor molecule A through a reduction reaction $A + e^- \rightarrow A^-$, while the similar oxidation reaction $D + h^+ \rightarrow D^+$ can also occur between an active hole and an electron donor molecule. For example, the as generated electrons can be captured by the dissolved oxygen on the catalyst surface and superoxide anions will form. The adsorbed hydroxide ion and water on the surface of the catalyst can be oxidized by the holes to produce hydroxyl free radicals. Both the superoxide anions and hydroxyl free radicals are very reactive species which can react with most of the organic compounds to result in their photodegradations, in which the organic compounds were degraded into CO$_2$ and H$_2$O. By exploring appropriate photocatalysts, other novel and useful applications such as self-cleaning and disinfection surfaces, CO$_2$ reduction, water splitting, air purification, and wastewater treatment
were also developed. To achieve the spontaneous electron and hole transfer to initiate the redox reactions, the corresponding layout of energy levels should in the order of $E_{CB} \geq E'_{CB} \geq E_{\text{red}}$ (electron) and $E_{VB} \geq E'_{VB} \geq E_{\text{ox}}$ (hole) to enable efficient electron-hole separation. The creation and transfer of electrons and holes in a photocatalysis process is therefore a crucial first process in initiating photocatalytic reactions.

![Diagram of electron-hole pair generation and transfer](image)

Figure 5.1 Generation of electron-hole pair and their corresponding transfer pathways in a semiconductor in a typical photocatalysis process.²⁵

5.1.2 TiO₂ in photocatalysis

Many different materials such as TiO₂,²⁵ ZnO,¹¹⁸ WO₃,¹¹⁹ and CdS¹²⁰ have been proven can act as photocatalysts, among which TiO₂ is the one which has attracted the most attention all over the world due to its strong oxidation ability, chemical stability and non-toxicity. TiO₂ has different phases and anatase phase TiO₂ with the band gap of 3.26 eV was proven the best one that can be used in photocatalysis, which on the other hand determines that only light with the wavelength in the UV region can be absorbed and contribute to photocatalysis process.²⁵ However, as UV light contribute only 5% to sunlight, hampering the good performance of TiO₂ in sunlight or visible
light source based practical applications. Moreover, the photocatalysis efficiency of TiO\textsubscript{2} can be also constrained by the recombination of the photogenerated carriers before they migrate to the surface to participate in the redox reactions. The migration of the charge carriers in a semiconductor is a random process, resulting plenty of chances for them to recombine and thus the low photocatalysis efficiency.

5.1.3 In NPs for plasmonic photocatalysis

Plasmonics photocatalysis by using metal nanoparticles to enhance the photocatalysis performance has been proven a possible way.23, 25, 26 To maximize photocatalysis performance, a high overlap between plasmonic band of metal nanoparticles and absorption band of TiO\textsubscript{2} is preferred, either because plasmonic band can enhance the absorption of the incoming light or boost the excitation of TiO\textsubscript{2} by creating an intense electromagnetic field in the near field. Since TiO\textsubscript{2} can only absorb light in the UV region, along this line, metal nanoparticles with plasmons in the UV region are highly desirable. Up to now, only silver and aluminum nanoparticles for UV plasmon enhanced photocatalysis were designed based on this strategy.23, 26 Recently, In NPs were reported to show good performance for UV plasmonics because of their UV plasmon.62, 63 Also, we have shown that the LSPR of In NPs can be tuned to visible and NIR range, providing the opportunity of fabrication of In NPs/TiO\textsubscript{2} based plasmonic nanostructures to act as visible light photocatalyst.56 It is anticipated that In NP will be a good candidate for enhancing the photocatalysis performance of TiO\textsubscript{2}.

Herein, dense In NPs on quartz substrates over a large area (>cm2) were prepared by a thermal evaporation method in vacuum and the size of In NPs can be easily tuned by controlling the deposition thickness of indium on the substrate. After coating the as obtained In NPs with another layer of TiO\textsubscript{2}, the substrate shows an enhanced photocatalysis performance for the
degradation of methylene blue (MB) when compared with substrate which only has TiO$_2$ coating. The coating of TiO$_2$ on In NPs will also lead the red shift of the LSPR of In NPs and produce strong LSPR in the visible range. Consequently, the In NP/TiO$_2$ structure also can show dramatically enhanced photocatalysis performance when only visible light excitation is provided. We have also investigated the effect of the In NP sizes and the thickness of a SiO$_2$ dielectric layer between In NPs and TiO$_2$. Our present data shows that In NPs prepared through the deposition of 40 nm thickness indium on quartz substrate can most efficiently enhance the photocatalysis performance of TiO$_2$.

5.2 Experimental section

In NPs were prepared by thermal evaporation of indium source with different thicknesses (5 to 50 nm) on quartz substrates at a base pressure of 3 × 10$^{-7}$ Torr. The evaporation rate was 0.5 Å/s. After completing the thermal deposition process, it is better to wait several minutes for the evaporated indium on the substrate to cool down to room temperature, which can protect In NPs from strong oxidation when exposed to the air at temperature higher than 145 °C. At room temperatures, indium is very stable with the protection effect from the intrinsic oxidation layer (~4 to 5 nm in thickness) at the surface according to previous reports. Then anatase TiO$_2$ nanocrystals with a diameter of 6 nm (Titania Coating, Tayca Corporation, suspended in water) were coated on the substrates by spin-coating at 7000 rpm for 1 minute. A solar simulator (Sun 2000, ABET technologies, 280 to 2500 nm light source) was employed in providing the solar or visible irradiations. A 400 nm long pass filter was used to cut the UV light from the solar simulator to result in the visible light irradiation. Photocatalysis performances of the above samples were evaluated by monitoring the degradation of methylene blue (spin coating, 0.1 M in aqueous solution) on the samples on a Lambda 950 UV/Vis absorption spectrometer, in which
absorbance at ~575 nm is recorded within certain time intervals. All of the measurements were repeated for more than 3 times to collect the average values.

5.3 Results and discussion

5.3.1 Preparation of In NPs with different sizes on quartz substrate

![SEM images of In NPs on quartz prepared by thermal evaporation of indium with different thicknesses.](image)

Figure 5.2 SEM images of In NPs on quartz prepared by thermal evaporation of indium with different thicknesses. (A) 5 nm. (B) 10 nm. (C) 20 nm. (D) 30 nm. (E) 40 nm. (F) 50 nm. The scale bars are 100 nm.

Taking advantage of the unique feature that well-separated grains will form when indium vapor meets a cold solid surface, dense In NP can be prepared on different substrates through thermal evaporation, which we have also discussed in chapter 2 and chapter 4. Moreover, as the size of In NPs formed on a substrate is dependent on the deposition thickness of indium, it is anticipated that the size can be easily tuned by simply controlling the thickness of the evaporated indium on the substrate. It can be seen from Figure 5.2 that multiple nanograins of indium form under all conditions, and the size of the obtained In NPs is increasing with the evaporated indium thicknesses ranging from 5 to 50 nm. It is noted that small grains of indium always appear in all
of the obtained In NPs on the substrate and they will be in the gaps between larger particles when the deposition thickness is more than 10 nm. This phenomenon can be ascribed to the merging of the preformed small In NPs when the deposition thickness is increasing. As there are always unmerged or freshly formed small In NPs when the indium vapor keeps condensing at the substrate, small In NPs will be always there when the deposition thickness of indium has reached a certain value, which also implies that the formation of small In NPs on the substrate can be independent on the evaporation thickness.

5.3.2 Fabrication of In NPs@TiO₂ nanostructures

In our study, we employed the widely used commercial anatase TiO₂ nanocrystals dispersed in water (Titania Coating, Tayca Corporation, suspended in water) to prepare the TiO₂ film by spin coating for the photocatalysis study. As the size of the used TiO₂ is only ~6 nm (information provided by vendor), it can be easily deposited in the nanoscale gap areas between In NPs to result in sufficient contact with In NPs and enable efficient TiO₂-In NPs coupling. On the one hand, it has been well proven that the strong nearfield enhancement which is highly favorable in plasmonic photocatalysis, only occurs at the vicinity and gap areas of plasmonic nanoparticles, which is usually in tens of nanometers distance from the surface of plasmonic nanoparticle. On the other hand, a sufficient contact between TiO₂ NPs and In NPs will also benefit the plasmonic photocatalysis process in achieving effective carrier transfer, providing additional reaction sites on the metal nanoparticles, and resulting in strong hot carrier injections through the LSPR effect. Therefore, preparation of high quality thin film based on small TiO₂ NPs which can have sufficient contact with plasmonic nanoparticles plays an important role in construction of efficient plasmonic photocatalysis system. In order to prepare a continuous and thin film on a substrate, we gradually increase the concentration of the TiO₂ coating solution from 0.9% to 4.5%
(N.V.), and at a concentration of 4.5%, we can first obtain the continuous TiO₂ film with good uniformity. Although further increase the concentration may also result in continuous and uniform film, their thickness might be relatively higher, which is not favorable in plasmonic photocatalysis system which requires efficient coupling between TiO₂ and metal nanoparticles. Figure 5.3 shows the SEM images of TiO₂ film on quartz prepared by spin coating TiO₂ NPs (4.5 N.V.% in water) with different magnifications. It can be observed that TiO₂ NPs can form a continuous and uniform film over a very large scale at this concentration. At high magnification as shown in Figure 5.3D, we can see but not very clearly the TiO₂ NPs, which is due to the very small size of the TiO₂ NPs that can hardly be observed under SEM.

![SEM images](image)

Figure 5.3 SEM images of TiO₂ film on quartz prepared by spin coating TiO₂ NPs (4.5 N.V.% in water) with different magnifications. (A) 1500 x. (B) 3000 x. (C) 5000 x. (D) 10000 x. The scale bars are 10 µm, 1 µm, 1 µm, and 1 µm, respectively.
By using the same parameters, TiO$_2$ can be coated on the dense In NPs loaded quartz substrate to form the In NPs@TiO$_2$ structure. It can be seen from the SEM images that the contrast is getting poorer and the well define shapes of the as formed In NPs is also blurring after TiO$_2$ coating in which the In NPs are still distinguishable, which demonstrates the successful coating of TiO$_2$ with very thin thickness (Figure 5.4). Both the surface and gap areas can be observed with the filling/coating of TiO$_2$ NPs, which is expected to result in sufficient coupling for plasmon enhanced photocatalysis of TiO$_2$.

Figure 5.4 SEM images of In NPs prepared on quartz before (A) and after (B) TiO$_2$ coating.

5.3.3 Optical properties of In NPs@TiO$_2$ nanostructures

To investigate the optical properties of the as fabricated nanostructures, we measured the absorption spectra of In NPs with and without SiO$_2$ coating (Figure 5.5). Before TiO$_2$ coating, all the absorption spectra of In NPs on quartz prepared with indium evaporation thicknesses ranging from 5 to 50 nm show strong LSPR peaks in the UV region. For indium deposited with 5 and 10 nm thickness, only a single peak is observed in the spectra, while for the 20, 30, 40, and 50 nm indium-evaporated quartz substrates much weaker peaks at longer wavelength beyond the UV region are also observed. This can be explained by the increasing size of In NPs and formation of
irregular shapes. Both of these effects have been well proven in plasmonics theory that can induce the red shift of the LSPR of metal nanoparticles due to the appearance of higher order LSPR modes. After TiO$_2$ coating, one can see that the main LSPR peaks of In NPs are still in the UV region. However, for the 20, 30, 40, and 50 nm indium-evaporated quartz substrates, their absorption spectra show dramatic increases in the visible range, which could be ascribed to the change of refractive index after the coating of TiO$_2$ and hence red shift of LSPRs. For smaller In NPs prepared by depositing with 5 and 10 nm thickness of indium, the red shift is not obvious, which may be due to the weak coupling efficiency between TiO$_2$ NPs and In NPs, in which most of the TiO$_2$ NPs are not in direct contact with In NPs because of the small size of In NPs which have relatively small surface and gap areas. For reference, absorption spectra of bare TiO$_2$ NPs on quartz and bare quartz substrate are also presented.
5.3.4 Enhanced photodegradation of MB on In NPs@TiO₂

To get a better understanding of the LSPR effects from In NPs on TiO₂ photocatalysis performance, we monitored the photodegradation evolution of MB on TiO₂ in 36 minutes. In
NPs@TiO\textsubscript{2}, and bare In NPs, in which the absorption peaks of MB at 580 nm serve as the reference. In NPs prepared by deposition of 20 nm indium were used to fabricate the plasmonic system with TiO\textsubscript{2} for the comparison study. Figures 5.6A displays the result obtained with bare TiO\textsubscript{2}, in which a minor decreasing trend of MB peak is observed with increasing irradiation time. In contrast, when the In NPs@TiO\textsubscript{2} is used, a dramatic enhancement of the degradation performance can be achieved (Figures 5.6B). To exclude any possible contributions from the In NPs themselves, bare In NPs on quartz were also investigated (Figures 5.6C), in which a negligible degradation of MB indicates that In NPs themselves do not contribute to the photocatalysis in the plasmonic photocatalyst system.

Figure 5.6 Evolutions of absorption spectra of MB on different structures in 36 minutes. (A) TiO\textsubscript{2}. (B) In NPs@TiO\textsubscript{2}. (C) Bare In NPs.
5.3.5 Effect of In NPs sizes on In NPs@TiO$_2$ on photocatalysis performance

To gain insight of In NPs sizes effect in the plasmonic photocatalyst system, we systematically studied the In NPs prepared by deposition of 5 to 50 nm of indium in combination with TiO$_2$ for the photodegradation of MB. For purpose of assessing the photocatalytic performances of all samples with different In NPs sizes, the absorption spectra were collected at same time intervals and the degradation performance was evaluated by recording the change of peak intensity at the wavelength of 580 nm versus irradiation time (Figure 5.7). From the plotted curves, on can see that after In NPs are combined with TiO$_2$, all the samples show enhanced performance, demonstrating the strong LSPR effect from In NPs. In a plasmonic system, the absorption and scattering efficiency are two important factors for the LSPR effect. For plasmonic nanoparticles, their absorption and scattering efficiency follow the Mie theory. For small nanoparticles, the absorption will be the dominant factor in determine the LSPR effect, while for large particle the scattering contributes more. Therefore, there should be an optimal size of In NPs in the plasmonic In NPs@TiO$_2$ structures for enhancing the photocatalysis performance. In our case, it is found that the In NPs prepared by 40 nm indium deposition can lead to the best performance.

![Figure 5.7 Degradation of MB on In NPs@TiO$_2$ with different indium deposition thickness](image)

Figure 5.7 Degradation of MB on In NPs@TiO$_2$ with different indium deposition thickness
ranging from 5 to 50 nm.

5.3.6 Dependence of photocatalysis performance on excitation wavelength

We have observed in the UV-Vis spectra that the coating of TiO$_2$ on In NPs will induce the red shifts of LSPRs of In NPs to visible range in which we can clearly observe the shifted LSPR peaks, which offers the opportunity of conducting the photocatalysis using visible light. The visible light driven plasmonic photocatalysis process often involves a hot electron injection mechanism from plasmonic nanoparticle to TiO$_2$, in which hot electrons are created through the strong LSPR effect from the metal nanoparticle. To achieve this goal, we then use a 400 nm long pass filter to cut the UV light from the white light source and provide the visible light for photocatalysis using In NPs@TiO$_2$ nanostructures with different In NPs sizes (Figure 5.8). As expected, our results show that In NPs with larger sizes can contribute more to the photodegradation performance of MB, which is consistent with the UV/Vis spectra that In NPs with larger particle sizes can have strong LSPR in the visible range after TiO$_2$ coating. As can be seen in the obtained curves, MB on bare TiO$_2$ can hardly be degraded without the LSPR effect form In NPs using visible light, because of the fact that band gap of TiO$_2$ determines that photo generated charge carriers will only be available by using UV light excitation. As TiO$_2$ cannot be excited by visible light, the enhanced photocatalysis by using In NPs@TiO$_2$ could be ascribed to the LSPR induced hot carrier injection from In NPs to TiO$_2$. Moreover, although the photocatalysis can be achieved using visible light excitation, their contribution to the whole photocatalysis performance using sunlight is only a small part. As shown in the data, photocatalysis using visible light is less than 20% when compared to the sunlight driven photocatalysis, which further confirms that the UV LSPR effects from In NPs play the dominant role in enhancing the photocatalysis performance of TiO$_2$. This is also one of the reasons that
why a lot of efforts have been devoted to develop Al or Ag nanostructures which have strong LSPR in the UV/NUV region to enhance the photocatalysis performance of TiO$_2$.

Figure 5.8 Degradation of MB on In NPs@TiO$_2$ with different indium thicknesses under sunlight and visible light. (A) 5 nm. (B) 10 nm. (C) 20 nm. (D) 30 nm. (E) 40 nm. (F) 50 nm.
5.3.7 Effect of a SiO$_2$ dielectric layer between In NPs and TiO$_2$ on photocatalysis performance

Another important mechanism in a plasmonic photocatalysis system is the strong near field enhancement near the metal nanoparticle surface, which could boost the excitation of TiO$_2$ even when they are not in direct contact. To probe this near field enhancement effect, we coat the In NPs with a layer of SiO$_2$ before the coating of TiO$_2$ by using sputtering. Based on previous study, a layer of SiO$_2$ of 5 nm thickness prepared by sputtering could provide enough protection and separation for the metal nanoparticles, before the additional coating of other species. A layer of 10 nm thickness SiO$_2$ was then coated on the as obtained substrates with In NPs coating. From the SEM images one can see that the In NPs are still uniformly distributed on the quartz without any obvious change in morphology and size on substrate after the coating of SiO$_2$, which also confirms that the sputtering process will not damage the as formed In NPs (Figure 5.9).

![SEM images](image)

Figure 5.9 SEM images of In NPs prepared by thermal evaporation of indium with 10 nm (A)
and 20 nm (C) thickness before (A and C) and after (B and D) the sputtering of 10 nm SiO$_2$.

After 10 nm SiO$_2$ sputtering, the absorption spectra of In NPs prepared with different indium thickness show red shifts (Figure 5.10A), which are different from the phenomenon of TiO$_2$ coating that obvious red shift of the LSPRs can only be observed on In NPs with larger particle sizes (Figure 5.5). This difference may be caused by the fine control of the deposition thickness of sputtering, in which sufficient coating can be achieved even the surface and gap areas are small for small In NPs. Taking the In NPs prepared by deposition of 20 nm indium as an example, further increase the sputtered SiO$_2$ thickness to 50 nm will keep inducing the red shift of the LSPRs of In NPs. As we have discussed in chapter 1, the LSPR of a metal nanoparticle can appear at a wavelength when the condition $\varepsilon_1 = -2\varepsilon_m$ is satisfied according to Mie theory. Therefore, the change of the refractive index of the surrounding medium will affect the position of the LSPR peak.

Figure 5.10 (A) Absorption spectra of In NPs prepared by deposition of 5, 10, 20, and 30 nm indium before and after coating a layer of SiO$_2$ with 10 nm thickness. (B) Absorption spectra evolutions of In NPs prepared by deposition of 20 nm indium with increasing coating thickness of SiO$_2$.

To examine the effect caused by the coating of a SiO$_2$ layer on the plasmonic photocatalysis, TiO$_2$ is spin coated on the In NPs@SiO$_2$ nanostructures on the quartz substrate using the same
parameters as In NPs without SiO$_2$ coating. From the SEM images on can see that TiO$_2$ can also be well coated on the In NPs@SiO$_2$ nanostructure, showing a similar result when compared to In NPs without SiO$_2$ coating (Figure 5.11).

![Figure 5.11 SEM images of In NPs@10 nm SiO$_2$ prepared on quartz before (A) and after (B) TiO$_2$ coating.](image)

We then systematically studied the photocatalysis performances of the as obtained In NPs@SiO$_2$@TiO$_2$ nanostructures with different SiO$_2$ thicknesses ranging from 10 to 50 nm (Figure 5.12). It can be seen from the resultant plots that increasing the thickness of SiO$_2$ between In NPs and TiO$_2$ will lead to a decreased photocatalysis performance. In the cases of 10 and 30 nm thickness of SiO$_2$, although the performances are weaker when compared to In NPs@TiO$_2$ without SiO$_2$, they are still better than the performance of bare TiO$_2$. For 50 nm thickness, the photocatalysis performance is even weaker when compared to bare TiO$_2$, which arises potentially from the rough surface structures of In NPs@SiO$_2$ which will hamper the formation of a flat and continuous TiO$_2$ film by spin coating, which will on the other hand lead to a poorer photocatalysis performance when compared to the flat TiO$_2$ film on the quartz substrate. In addition, as TiO$_2$ and In NPs are isolated by a layer of SiO$_2$, the electron transfer mechanism can be excluded here, which implies that the enhancement photocatalysis performance in the cases 10 and 30 nm SiO$_2$ should be ascribed to the strong near field enhancement of In NPs.
Moreover, the phenomenon of decreased photocatalysis performances induced by increasing the thickness of the SiO₂ agree well with many plasmonic systems that the near field enhancement will decrease dramatically in the range of tens of nanometers from the metal nanoparticle surface.

![Photodegradation of MB on In NPs@SiO₂@TiO₂ with different SiO₂ thickness ranging from 10 to 50 nm.](image)

Figure 5.12 Photodegradation of MB on In NPs@SiO₂@TiO₂ with different SiO₂ thickness ranging from 10 to 50 nm.

5.4 Conclusion

In conclusion, In NPs on quartz substrates were prepared by a thermal evaporation method in vacuum and the size of In NPs can be easily tuned by controlling the deposition thickness of indium on the substrate. After that TiO₂ NPs was spin coated on In NPs, the resultant In NPs@TiO₂ nanostructures can show enhanced photocatalysis performances using both sunlight and visible light excitations for the degradation of methylene blue when compared with substrate which only has TiO₂ coating. We also investigated the effect of the In NP sizes. Our present data shows that In NPs prepared through the deposition of 40 nm thickness indium on quartz substrate can most efficiently enhance the photocatalysis performance of TiO₂. Through systematic studies using visible light excitation and introducing a SiO₂ layer between In NPs and TiO₂, both the electron transfer and near field enhancement mechanisms were proposed in the In NPs@TiO₂.
plasmonic photocatalysis system. Taking into consideration of the simple preparation of In NPs when compared to Al NPs, and the strong UV LSPR feature, In NPs can show great potentials in coupling with other photocatalyst in achieving other novel applications.
Chapter 6

Near-field enhancement of In NPs and its application for UV SERS using 325 and 355 nm Laser

6.1 Background

6.1.1 Introduction

Owing to the capabilities in providing fingerprint information of different species, nondestructive and ultrasensitive sensing which could down to a single molecule, and NIR excitations for sensing and imaging in complicated biological system, SERS has resulted in the publication of more than 11000 papers in different research areas after it was discovered 40 years ago. Traditionally, SERS related applications were mostly relying on visible or NIR light excitations, which are determined by the fact that commonly used plasmonic metals such as Ag, Au, and Cu can only have LSPR in the visible and NIR region. Recently, SERS based applications have been extending to UV region with significant efforts, in which the UV excitation has been proven can provide even higher signal to noise ratios in collecting the signal from the targeted molecules. Moreover, this superiority of UV SERS can be shown better in the detection of some essential aromatic species in biological systems such as DNA/RNA bases and amino acids with aromatic groups. The UV SERS of these molecules are often accompanied with the resonance Raman effects, which make them to have higher scattering efficiency which can reach as high as up to 10^6 when compared to visible/NIR excitations. In addition, the fingerprint feature make UV SERS signals can be discriminated from the intrinsic fluorescence background of an analyte in the spectra. Furthermore, as the Raman scattering efficiency and the excitation wavelength follow an inverse fourth power dependence relationship, UV excitation of a molecule even at off-
resonance can also result in a Raman signal which is 10 to 100 times stronger than visible/NIR excitation.

6.1.2 UV SERS using different metals

To achieve the UV SERS on a metal nanoparticle, it requires the metal nanoparticle to have LSPR in the UV region, which is impossible for the commonly used plasmonic metals such as silver, gold, and copper. Therefore, it is essential to search other plasmonic metals which can support UV LSPR to enable the UV SERS. To date, aluminum has been the mostly investigated plasmonic metal for UV SERS, its LSPR in the UV region was first measured and demonstrated with optical transmission in 2007. In the same year, UV SERS using Al NPs was also demonstrate at an excitation wavelength of 244 nm. From then on, Al NPs were fabricated with different methods and structures for UV SERS for various applications. Inspired by these findings, the UV plasmonics of Al NPs was also employed in other applications such as UV fluorescence enhancement and UV plasmonic photocatalysis in combination with TiO₂. In 2013, other kinds of poor metals such as Bi, Pb, Tl, Sn, In, and Ga were systematically studied through theoretical calculations, in which plasmonic responses in the near or deep UV region were predicted. However, experimental results on other metals besides aluminum for UV SERS or UV plasmonics are still seldom reported until now.

6.1.3 In NPs for UV SERS

In the history of indium plasmonics, it has been first reported can enhance the Raman scattering and photoluminescence of some molecules by using visible light excitation more than 30 years ago. In 1987, theoretical result showed that it can be a potential candidate plasmonic material for UV SERS. However, there were no experimental results regarding this prediction of In NPs for UV SERS in the following more than 20 years. Until recently, In NPs for UV SERS
using 266 nm laser was reported63, demonstrating refreshed understanding of In NPs for UV SERS. According to Mie theory, the plasmonic effect of a metal nanoparticle is highly dependent on its complex dielectric constant ε which has a real part ε_1 and an imaginary part ε_2.8 When compared to the dielectric constant of aluminum, its real part is larger in the UV region, which will result a relatively red shifted LSPR in the UV region when compared to aluminum (Figure 6.1)63. As Al NPs have been well proven as deep UV SERS candidate, In NPs can show better potentials to be employed in near UV SERS. Moreover, as the imaginary part of the dielectric constant of a metal is often associated with absorption losses, the smaller values of indium in the UV region when compared to aluminum imply that indium will be a lower loss plasmonic metal for UV SERS, which is also ensured by an interband transition that will happen in the NIR region at 1.3 eV. Another important factor that has constrained the broad applications of Al NPs is that the preparations of Al NPs is rather challenging, which is due to the high reactivity of aluminum. The fabrications of Al nanostructures were mostly relying on physical processes which were hard to achieve high crystalline nanostructures. On the contrary, the preparation of indium nanostructures can be done more easily, and both physical and chemical methods have been reported63,64. In 2014, a theoretical study based on the dimmers model of In NPs, in which it was demonstrated that a SERS enhancement factor can reach as high as 1.2×10^9 can be achieved at a wavelength of 359 nm, showing great perspectives of exploring experimentally the UV SERS of In NPs using near UV excitations.62 Based on the above discussions, in this thesis, we explore the potentials of In NPs on ITO prepared by a simple one step thermal evaporation method for UV SERS using both 325 and 355 nm lasers.
6.2 Experimental setup

The optical setup of the UV SERS measurement is schematically presented in Figure 6.2. A 325/355 nm laser was guided into the HR 800 Raman Evolution spectrometer by using optical mirrors. The intensity of the incident laser can be tuned by the ND filter from 0.01 to 100% of the incident intensity. The incident laser will be partly reflected by a UV beam splitter and then go to the objective lens which can focus the incident light on the sample. The Raman signal will then go back and pass through the UV beam splitter. A 325/355 nm long pass filter was used to filter out the laser line in the Raman signal from the sample. The purified Raman signal will be sent to a liquid nitrogen cooled detector, after which the Raman spectrum can be obtained. The laser power at the objective was measured ~0.3 mW by a power meter. The Acquisition time was ranging from 10 to 100 s. A 1800 g/mm grating and a UV objective (40 ×) were used in the measurements. A standard molecule p-aminothiophenol (PATP) in ethanol with different concentrations was drop casted on the samples for providing the Raman signals.
Figure 6.2 Schematics of the components and setup for the UV SERS measurements.

6.3 Results and discussions

6.3.1 Comparison of near field enhancement ability of Al and In NPs

Conventionally, the expression of $-\epsilon_1/\epsilon_2$ was widely used in the plasmonics community in briefly understand the plasmonic properties at a certain wavelength. However, it cannot enable the quantitative comparison between different metals, and the influence of the surrounding medium is also not taken into consideration. To achieve more liable upstanding of the plasmonic property of metal nanostructures, numerical simulations based on different models and theories were also
developed. In 2015, Lalisse et al. reported a theoretical work in which a figures of merit parameter Fa was defined to quantitatively compare the near field enhancement abilities of different metals using a simple close form expression without complicated numerical simulations. The expression of Fa is given by\(^{21}\)

\[
Fa = \left| \frac{E_{\text{max}}}{E_0} \right|^2 = 9 \left| \frac{\varepsilon}{\varepsilon + 2\varepsilon_m} \right|^2
\]

(6-1)

where \(E_{\text{max}}\) and \(E_0\) denote the maximum electric field that can be enhanced by a metal nanoparticle and the incident electric field, respectively. \(\varepsilon\) refers to the complex dielectric constant of the metal, while \(\varepsilon_m\) is the dielectric constant of the surrounding medium. The superiorities of this parameter when compared to the conventional numerical studies or expressions can be in the following two aspects: 1) the simple close-form expression can be calculated with just the inputs of the dielectric functions of the metal without numerical simulations; 2) it can quantitatively estimate the performances of different metals within different surrounding mediums. By using the dielectric functions of aluminum and indium displayed in Figure 6.1, the Fa values of aluminum and indium can be calculated and plotted in curves which can be found in Figure 6.3. According to the calculated Fa values of indium and aluminum, In NP can result in near field enhancement in the UV region, which could be even better than Al NP in the near UV region. Therefore, using In NPs for UV SERS is theoretically sound based on the famous fourth-power relationship of SERS intensity \(I_{\text{SERS}}\) with the incoming electric field \(E_0\)

\[
I_{\text{SERS}} = 16E_0^4g^4
\]

(6-2)
6.3.2 Preparation of In NPs with different sizes on ITO glass

The In NPs on ITO for UV SERS studies were also prepared by thermal evaporation of indium source, in which the parameters (base pressure was 3×10^{-7} Torr, and the evaporation rate was 0.5 Å/s) were the same as we have discussed for MPM and quartz substrates. Similar to the observations in previous chapters, taking advantage of the unique feature that well-separated grains will form when indium vapor meets a cold solid surface, dense In NP can also be prepared on ITO glass through thermal evaporation, which implies that the thermal evaporation method for In NPs preparation can be a versatile approach for preparing In NPs on different substrate. Moreover, as the size of In NPs formed on a substrate is dependent on the deposition thickness of indium, it is also anticipated that the size can be easily tuned by simply controlling the thickness of the evaporated indium on ITO glass. Figure 6.4 shows the typical SEM images of In NPs we prepared on ITO glass, it can be seen from that multiple nanograins of indium also form under all conditions, and the size of the obtained In NPs is also increasing with the evaporated indium.
thicknesses ranging from 10 to 50 nm. It is noted that there are also small grains of indium in all of the obtained In NPs on the substrate and they will be in the gaps between larger particles, which is due to the merging of the preformed even smaller In NPs when the deposition thickness is increasing. When compared with In NPs prepared on quartz using the same parameters, it can be observed the morphologies of In NPs on ITO are more uniform, and the densities of In NPs formed on ITO are higher. The uniform morphology of metal nanoparticles is often preferred in SERS as it can result in uniform and reproducible SERS signal. Moreover, the high density of In NPs on ITO will endow the indium nanostructures with plenty of “hot spots” which were proven can result in dramatic enhancement of the Raman signal.62

Figure 6.4 SEM images of In NPs on ITO prepared by thermal evaporation of indium with different thicknesses. (A) 10 nm. (B) 20 nm. (C) 30 nm. (D) 50 nm.
6.3.3 Optical properties of In NPs on ITO glass

To investigate the LSPR of the as prepared In NPs on ITO glass, the absorption spectra were measured by using a Lambda 950 UV/Vis/NIR spectrometer. Figure 6.5 displays the absorption spectra of the as prepared In NPs prepared with deposition of 10 to 50 nm thickness of indium on ITO glass. As shown in the figure, all the spectra can show strong light absorption peaks in the range from 300 to 400 nm, which are the results of the strong UV LSPRs of In NPs. It is noted that the LSPR peaks are sharper and different modes can be distinguished clearly when compared to the results obtained on quartz, which could be ascribed to the more uniform morphologies of In NPs formed on ITO. In addition, for In NPs prepared on quartz, their LSPRs mainly appear in the range of 200 to 300 nm, while for In NPs prepared on ITO glass, the observed LSPRs of In NPs are in the region of 300 to 400 nm, which can be explained by the different dielectric constants of quartz and ITO glass. According to Mie theory, the LSPR of a metal nanoparticle can appear at a wavelength when the condition \(\varepsilon_1 = -2\varepsilon_m \) is satisfied. Therefore, the change of the refractive index of the surrounding medium will affect the position of the LSPR peak of In NPs. With the increasing deposition thickness of indium on ITO, the absorption spectra become broader, which is due to the formation of larger and irregular In NPs. There are always LSPRs in the range of 300 to 400 nm, potentially arises from small grains of indium in the gaps between larger particles when the deposition thickness is more than 10 nm. This phenomenon can be ascribed to the merging of the preformed small In NPs when the deposition thickness is increasing. As there are always unmerged or freshly formed small In NPs when the indium vapor is keep condense at the substrate, small In NPs will be always there when the deposition thickness of indium has reached a certain value, which also implies that the formation of small In NPs on the ITO can be independent on the evaporation thickness, and
therefore the appearance of the LSPRs in the 300 to 400 nm region. The LSPRs in this region show great potentials in resonance with the commonly used 325 or 355 nm lasers, which is promising for UV SERS based applications.

![Absorption spectra of In NPs with deposition of 10 to 50 nm thickness of indium on ITO glass.](image)

Figure 6.5 Absorption spectra of the prepared In NPs with deposition of 10 to 50 nm thickness of indium on ITO glass.

6.3.4 In NPs for UV SERS using 325 nm laser

In the UV SERS measurements, 10 µL of the Raman dye PATP in ethanol was drop casted onto the In NPs (prepared with 20 nm indium deposition) coated ITO substrate (SERS) or bare ITO substrate (reference). As shown in Figure 6.6, when the acquisition time is set as 10 s, PATP at a concentration as high as 10^{-2} M still cannot be detected on the bare ITO glass substrate. However, when 10^{-2} M is drop casted on ITO with In NPs, Raman peak of PATP at 1600 cm$^{-1}$ (C-C stretch) can be observed, which could be ascribed to the a_1 type in-plane mode. If we further decrease the concentration of PATP by 10 times to 10^{-3} M, a weaker Raman signal could also be obtained. For reference, we have also measured the signal from the In NPs on ITO substrate, in which we cannot obtain any Raman peaks. Therefore, it is clear that the Raman signal of PATP can be
enhanced by using In NPs coated ITO substrate.

Figure 6.6 Raman signals of 10^{-2} and 10^{-3} M PATP on (A) ITO and (B) In NPs coated ITO. Acquisition time is set as 10 s.

To gain further insight of the enhancement of Raman signal of PATP, a Raman signal of PATP should be obtained on ITO for quantitative comparison. To achieve this goal, we extend the acquisition time to 100 s, through which a clear Raman peak of PATP is observed at the concentration of 10^{-2} M on bare ITO, which is consistent with the Raman spectrum obtained on PATP powder. Accordingly, an even strong Raman signal of 10^{-2} M PATP can be observed on the In NPs coated ITO substrate (Figure 6.7). To quantitatively evaluate the enhancement of PATP Raman signal by In NPs, the Raman peaks at 1600 cm$^{-1}$ are fitted into Lorentz peaks, whose areas therefore can be calculated for comparison of the Raman signal of PATP on bare ITO and In NPs coated ITO. By using this method, In NPs (prepared with 20 nm indium deposition) can be calculated can result in a 11.8 times enhancement of the Raman signal from 10^{-2} M PATP. For 10^{-3} M PATP, even we have increased the acquisition time to 100 s, we still cannot obtain the Raman signal on bare ITO, therefore, in our following studies, PATP at the concentration of 10^{-2} M is chosen for systematic studies.
6.3.5 Effect of In NPs sizes on UV SERS performances with 325 nm laser

To have a better understanding of the influence of In NPs sizes on UV SERS performance, we systematically investigated 10^{-2} M PATP on different sizes of In NPs prepared by deposition of 10 to 50 nm of indium. For purpose of assessing the UV SERS performances of all samples with different sizes, the acquisition time are all set as 100 s and the enhancement was evaluated by calculating the fitted Lorentz peak areas at the Raman shift of 1600 cm$^{-1}$ (Figure 6.8). From the obtained results, one can see that once In NPs are used, all the samples show enhanced performance, demonstrating the strong SERS effect from In NPs. In our UV SERS measurements, we can observe the strongest enhancement on the In NPs prepared by deposition of 25 nm indium on ITO. According to the results of absorption spectra of In NPs on ITO, higher enhancements are not obtained on the ITO substrates with 30 or 50 nm deposition thickness of indium, on which the LSPRs of In NPs are more resonant with the 325 nm excitation laser. According to previous studies, SERS excitation efficiency often cannot match very well with the measured LSPR features of the investigated plasmonic nanostructures with complex properties such as densely distributed metal nanoparticles on a substrate, on which the In NPs will not
behave like an isolated nanoparticle. The explanation for this phenomenon could be the formation of plenty of “hot spots” on the substrate. As not all the In NPs can be involved in the “hot spots”, the absorption spectra are still displaying the LSPR features of entire contributions of the In NPs. For In NPs on ITO, In NPs with large sizes can act as antenna, while smaller ones can result in strong near field enhancement. As the gaps between large In NPs are too large to form hot spots, the hot spots will be mainly induced by the coupling between large In NPs and the smaller In NPs in their gaps. Therefore, in our case, strong enhancements can be obtained on In NPs prepared with indium thickness more than 10 nm, in which we can observe smaller In NPs are formed in the gap of large In NPs. The enhancement of PATP Raman signal is around 16.7 times on In NPs prepared with 25 nm indium deposition, which is in similar order when compared to previous report using Al nanostructures, and is better than the 11 times enhancement in previous report using 266 nm laser.

Figure 6.8 Raman signals of 10^{-2} M PATP on In NPs prepared with different indium deposition thickness ranging from 10 to 50 nm on ITO. Acquisition time is set as 100 s with 325 nm laser excitation.
6.3.6 Comparison between 325 and 355 nm laser excitation

By using 355 nm laser excitations, the best UV SERS enhancement can be achieved is around 5 times on In NPs prepared with 50 nm indium deposition on ITO (Figure 6.9A). In both studies using 325 and 355 nm laser excitations, it is found that In NPs prepared with 10 nm indium depositions on ITO are always showing weaker enhancements, which implies that smaller In NPs themselves only contribute a small part to the UV SERS enhancement, and the hot spots are created through the coupling between small and larger In NPs. Figure 6.9B summarizes the systematic studies using 325 and 355 nm lasers. For In NPs with different sizes, 325 nm laser excitations can give higher UV SERS enhancements, and the best performance is found on the 25 nm indium deposition ITO substrate on which a 16.7 times enhancement can be obtained.

![Figure 6.9](image)

Figure 6.9 (A) Raman signals of 10^-2 M PATP on In NPs prepared with different indium deposition thickness ranging from 10 to 50 nm on ITO. Acquisition time is set as 100 s with 355 nm laser excitation. (B) Comparison of the UV SERS performances between 325 and 355 nm laser excitations on different sizes of In NPs prepared with different indium deposition thickness ranging from 10 to 50 nm on ITO.

6.3.7 Effect of a SiO2 dielectric layer coating on In NPs on UV SERS performance

SERS is highly dependent on the near field enhancement effect at the metal nanoparticle surface.
To probe this effect, we coated the In NPs with a layer of SiO$_2$ to see the evolution of SERS signal at different distances from the In NPs surfaces. Figure 6.10 shows the SEM images of In NPs (prepared with 25 nm indium deposition) on ITO before and after a layer of 10 nm thickness SiO$_2$ coating. From the SEM images one can see that the In NPs are still uniformly distributed on the quartz without any obvious change in morphology and size substrate after the coating of SiO$_2$, which also confirms that the sputtering process will not damage the as formed In NPs.

![Figure 6.10](image)

Figure 6.10 SEM images of In NPs prepared by thermal evaporation of indium with 25 nm thickness before (A) and after (B) the sputtering of 10 nm SiO$_2$.

After 10 nm SiO$_2$ sputtering, the absorption spectra of In NPs will show a red shift (Figure 6.11), which is similar to the phenomenon we have observed on quartz.
Figure 6.11 Absorption spectra of In NPs prepared by thermal evaporation of indium with 25 nm thickness before and after the sputtering of 10 nm SiO\(_2\).

We then systematically studied the UV SERS performances of the as obtained In NPs@SiO\(_2\) with different SiO\(_2\) thicknesses ranging from 10 to 50 nm (Figure 6.12). It can be seen from the resultant SERS signal that increasing the thickness of SiO\(_2\) between In NPs and PATP will lead to a decreased UV SERS enhancement, which agrees well with many plasmonic systems that the near field enhancement will decrease dramatically in the range of tens of nanometers from the metal nanoparticle surface.

![Absorption spectra](image)

Figure 6.12 UV SERS of PATP on In NPs@SiO\(_2\) with different SiO\(_2\) thickness ranging from 10 to 50 nm. Acquisition time is set as 100 s with 325 nm laser excitation.

6.4 Conclusions

In summary, we have demonstrated the preparation of densely distributed In NPs on ITO glass through a one-step vacuum evaporation method, in which the sizes of In NPs can be easily controlled by tuning the deposition thickness of indium. The as obtained In NPs can show strong LSPR in 300 to 400 nm spectral region, and can form many hot spots on the substrates, which
make them suitable for UV SERS based applications. The Raman signal of a widely used Raman reporter PATP can be enhanced by ~17 times by using the prepared In NPs. Our results show that indium is an efficient and easy-to-use metal for exciting UV-SERS and will accelerate the development of research applications in UV-SERS by extending the choice of metal that can be used. Taking into consideration of the simple preparation of In NPs when compared to Al NPs, and the strong UV LSPR feature, In NPs can show great potentials in UV SERS based applications.
Chapter 7

Summary and Future work

7.1 Original contribution of this thesis

In this dissertation, through careful and reasonable designs, we developed different metallic nanostructures based on Au and In NPs for plasmonics based applications including plasmonic colorimetric sensing, plasmonic solar desalination, plasmon enhanced photocatalysis of TiO$_2$, and UV SERS. We started with the basics and fundamentals of plasmonics, which provided the theoretical supports for our studies. We then discussed in detail the principles, controls, influence factors, relevant surface chemistry/physics in the synthesis/fabrication processes of the metal nanostructures. Various characterization techniques such as TEM, SEM, UV/Vis/NIR absorption spectroscopy, and XRD were employed to help us gain insight of the morphologies and chemical/physical/optical properties of the obtained plasmonic nanostructures. By utilizing the unique features of the as obtained different plasmonic nanostructures, novel designs thus can be achieved for different applications.

Plasmonic colorimetric sensing based on colloid Au NPs has been proven a simple, visual, and cost-effective detection technique in chemo/biosensing. Traditionally, a colorimetric sensing strategy based on Au NPs was often designed to detect one certain kind of analyte. To extend the capability of plasmonic colorimetric sensing based on colloid Au NPs for multiplex analytes sensing, we introduced the concept of logic gate to construct a single platform for sensing and discrimination of different species. In our study, we designed a three-input logic gate sensing system which can be used for the sensing and discrimination of Hg$^{2+}$, cysteine, and melamine based on colloid Au NPs. This is the first demonstrated colorimetric logic gate sensing system.
for these three kinds of analytes.

Plasmonic nanoparticles have proven to be an effective way to enhance the generation of solar steam by plasmonic heating effects. Its efficiency in conventionally designed systems is often constrained by unavoidable bulk heating and energy loss to the entire water volume, and the typically used plasmonic metal nanoparticles such as Au and Ag NPs whose availability and complexity in their preparation are not cost-effective. Inspired by theoretically the superior plasmonic heating effects of In NPs, in this thesis, we developed for the first time a paper-like plasmonic device through combination of In NPs and a microporous film for solar desalination of a real seawater sample with stable and excellent performances, in which bulk heating issue can also avoided due to its floating nature.

Using metal nanoparticles to enhance the photocatalysis performance of TiO$_2$ have been proven possible. In the construction of plasmonic photocatalysis system based on TiO$_2$, metal nanoparticles with LSPR in the UV region which can have spectral overlap with absorption band of TiO$_2$ is preferred, either because plasmonic band can enhance the absorption of the incoming light or boost the excitation of TiO$_2$ by creating an intense electromagnetic field in the near field. Up to now, only silver and aluminum nanoparticles for UV plasmon enhanced photocatalysis were designed based on this strategy. In our study, we prepared In NPs with LSPR feature in the UV region and showed for the first time using In NPs to enhance the photocatalysis performance of TiO$_2$.

UV SERS have shown great potentials in the detection of some essential aromatic species in biological systems such as DNA/RNA bases and amino acids with aromatic groups. Up to now, most of the UV SERS systems were developed using Al NPs. Motivated by our theoretical calculation result that In NPs can show even stronger near field enhancement ability than Al NPs
in the UV region, we investigated for the first time of In NPs on ITO, which can show strong LSPR in spectral region from 300 to 400 nm, for UV SERS using both 325 and 355 nm laser.

7.2 Future work

Although we have demonstrated some novel plasmonics based applications based on different designs of metallic nanostructures, further improvement of the designs or exploring new designs are still important for broadening their application potentials. In the future, I will continue to explore in the following aspects based on some preliminary results:

1. Using solution synthesized In NPs for UV plasmonics based applications

![Image](image_url)

Figure 7.1 (A) SEM image and (B) absorption spectra of solution synthesized In NPs. (C) SEM
and TEM image of In@SiO\textsubscript{2} core-shelled nanoparticles.

By using solution method, we can synthesize In NPs with very uniform sizes and morphologies. The as obtained In NPs can show the LSPR peak at a wavelength of 269 nm, implying the potentials in UV plasmonics (Figure 7.1). Moreover, the as obtained In NPs can also be coated with a layer of SiO\textsubscript{2} to form In@SiO\textsubscript{2} core-shelled nanoparticles. The solution method can enable synthesis of In NPs in large scale, which will be useful in solution based practical photocatalysis in which a large amount of the photocatalyst is required. The uniform size and morphology will benefit a fundamental study in which highly defined shapes and sizes are required. The SiO\textsubscript{2} shell will provide protection to In NPs in complex systems. It can also introduce new surface chemistry to In NPs, which may extend the application range of In NPs. In the future, we will keep on exploring the synthesis condition to try to control the size and shape of In NPs.

2. Combination of the photocatalysis of TiO\textsubscript{2} and plasmonic heating effect from In NPs

According to previous report, core–shelled SiO\textsubscript{2}/Ag@TiO\textsubscript{2} NPs were synthesized to be employed as thermal collector and photocatalyst, and the heat generation in this design was demonstrated can synergistically benefit for both desalination and catalysis processes.97 As we have presented in chapter 2, In NPs were found can also be prepare on TiO\textsubscript{2} nanorods (Figure 7.2). Based on this hybrid and novel nanostructure, we expect to combine the photocatalysis feature and the plasmonic heating effect from In NPs together, to construct plasmonic nanostructures for water treatment and at the same time for water desalination. Further efforts will be devoted on finding suitable substrates for TiO\textsubscript{2}, to achieve a floating device as we have discussed in chapter 4. In an optimized condition, we may need to use a more finely controlled dielectric layer (SiO\textsubscript{2} by e-beam evaporation or Al\textsubscript{2}O\textsubscript{3} by atomic layer deposition) to control the
charge transfer and nearfield enhancement effect, to see which one is dominated in the process, and then try to do further optimization.

Figure 7.2 SEM image of In NPs on TiO$_2$ nanorods.
References

46. Lu, X. et al. "Fabrication of Cubic Nanocages and Nanoframes by Dealloying Au/Ag Alloy Nanoboxes with an Aqueous Etchant Based on Fe(NO3)3 or NH4OH". Nano Letters 7, 1764-1769, (2007).

83. Liu, D. et al. "Resettable, Multi-Readout Logic Gates Based on Controllably Reversible