MOLECULES CONTAINING LEWIS ACIDIC PHOSPHORUS - SITES

GORDANA Ilić

SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES

2017
MOLECULES CONTAINING LEWIS ACIDIC PHOSPHORUS - SITES

GORDANA ILIĆ

School of Physical and Mathematical Sciences

A thesis submitted to the Nanyang Technological University in fulfilment of the requirement for the degree of Doctor of Philosophy

2017
A young girl’s dream becomes her reality.

To my parents and my grandma,
who provided me with the wings
 to reach my dreams.
Acknowledgements

First and foremost, I would like to thank Assistant Professor Dragoslav Vidović for allowing me to pursue PhD studies as part of his group. Thank you for being understanding of my initial lack of knowledge and experience in this area of chemistry, I deeply appreciate your patience for my learning curve. Thank you for allowing me to experience the freedom of research, for being available for a piece of advice or guidance, and for shining clarity through piles of confusing NMR spectra. Most of all, thank you for being an example of positivity against all odds.

I would like to express gratitude to my lab-mates, who have shared space, glassware, happiness and frustrations with me throughout these four years: Dr. Senthil Kumar, Dr Madelyn Tay, Dr Chitra Gurnani, Dr Balasubramanian Murugesapandian, Dr Zhu Di, Dr Zhi Zhou, Dr. Nemanja Djordjević, Monika Bjelčić, Militsa Yaneva, Ben Tombling, Jeremy Lim, and Do Dih Cao Huan. Dr. Alexey Kudlaev, I could never thank you enough – you were my mentor, my friend, my voice of sanity, and my guardian angel in this experience. You taught me how to think like an engineer when working with schlenk lines, but what I have learned stretches far beyond that skill. While I made your days stressful by yelling “Fire, fire!” or “I need help!”, your passion for chemistry transformed my regular days into the most interesting ones. I feel partially “responsible” for your prolonged lab stay – I always hoped that we would work together until my thesis completion, and somehow, that wish came true. I feel grateful to all the undergraduate students who trusted me as their mentor and a friend: Jeffery, Elizabeth, Hui Xing, Lok, Maitri and Nate. While teaching, I learned so much from each one of you. I grew with you professionally and personally, and the experience of being your mentor was invaluable.
I would also like to thank Dr. Rakesh Ganguly for help with X-ray crystallography; Dr. Milena Petković for assistance with DFT calculations; Ee Ling Goh and Derek Ong for NMR spectroscopy. Your expertise was crucial to my research.

Thank you to my Balkan and Russian friends, this journey would not be the same without all the coffee/tea breaks filled with laughter. Ivan Šolić, thank you for being my tech-saviour at the end. Completing this dissertation would be much more inconvenient without your generosity. I am also grateful for my Singaporean and international friends who I met here, whose help and company were of great value.

Thank you, Minja, Vladimir, Višnja, Nataša, Vanessa, Pripa, Gabriel, and Marko for your friendships. Your encouragement, visits, mailbox gifts, long Skype calls, and touching messages on Facebook made distance seem closer.

Pratik Malia, I am grateful for you from the bottom of my heart. You have probably felt the stress of my PhD the most. Regardless of my mood swings, sleepless nights and keeping you alert and awake, you have always remained an embodiment of unconditional love, calmness and support. The page is not long enough for me to express my feelings, but life is.

I would like to thank my parents for instilling values and discipline that shaped me into who I am today; for supporting all my talents, science lessons and endeavours, for sleepless nights, trust, and freedom to pursue my dreams. I could never ask for better and more selfless parents.

Lastly, I would like to thank Assistant Professor Rei Kinjo for agreeing to step in as my supervisor at the end, and help me complete this journey; the Nanyang Technological University and the Singaporean government for providing me with the opportunity, facilities and a financial support to study in this wonderful country.
Abstract

Carbones (CL₂) are a group of ligands with a divalent carbon(0) center. Due to the two available electron-pairs, carbones are considered to be substantially basic, which allowed them to serve as stabilizing ligands for a variety of the highly labile species.

In this work, we report the synthesis of [(Ph₃P)₂CPNiPr₂]²⁺, its two additional analogues [((RPh₂P)₂C)P(NR′₂)]²⁺ (R = Ph, R′ = Cy; R = 1/2 (CH₂)₃, R′ = iPr), and we explore its viability in the presence of various counterions. In addition, the oxophilic nature of [(Ph₃P)₂CPNiPr₂]²⁺ is further studied in reactions with pyridine N-oxide (PyO). Surprisingly the resulting oxophosphonium dication proved to be an intermediate for the subsequent Baeyer-Villiger (BV)-resembling oxidation reaction, which proceeds through a Criegee intermediate to finally yield a rare P-C bond activation under mild conditions. Apart from being the first example of a PyO-driven BV oxidation, it is a safer alternative to the formerly used highly reactive m-chlorobenzoic acid and hydrogen-peroxide. These results inspired us to also develop a route to the elusive parent-metaphosphonate species. This thesis also covers the synthetic pathway and the reactivity of the first carbone-stabilized parent-metaphosphonate [(Ph₃P)₂CP(O)₂H].
Summary

Herein presented work expands on the recently reported synthesis and reactivity of the two-coordinate P(III)-containing dication \[\{(\text{Ph}_3\text{P})_2\text{C}\}\text{P}(\text{N}^3\text{Pr}_2)]^{2+} (3\text{e}^{2+})\), and its two analogues \[\{(\text{RPh}_2\text{P})_2\text{C}\}\text{P}(\text{NR}_2)]^{2+} (3\text{d}^{2+}, \text{R} = \text{Ph}, \text{R'} = \text{Cy}; 3\text{e}^{2+}, \text{R} = 1/2 (\text{CH}_2)_3, \text{R'} = \text{iPr})\). Solution and solid-state ^{31}P NMR isotropic shifts for the dication class were observed at ~ 360 ppm. Except for $[3\text{c}][\text{SbF}_6]_2$, the ^{31}P CP/MAS NMR spectra reveal a high degree of structural disorder around the dicationic site in the solid state. Surprisingly, the synthesis of dication 3c^{2+} was only possible in the presence of AlCl_4^-, GaCl_4^-, and substituted tetraarylborates, while the use of ClO_4^-, OTf^-, BF_4^-, PF_6^-, and BPh_4^- resulted in complex product mixtures. Single-crystal X-ray analysis of a dication $[3\text{c}][\text{SbF}_6]_2$ indicated close internion contacts, which disrupt the previously reported 4π allyl-like system of the central CPN fragment in the solid state.

Reactivity studies of $[3\text{c}][\text{SbF}_6]_2$ towards water and methanol have confirmed its oxidative addition behavior, and the absence of the SbF_6^- counterion interference. High oxophilicity of $[3\text{c}][\text{SbF}_6]_2$ was also confirmed in reactions with Et_3PO and PyO.

With respect to the latter, the resulting oxophosphonium dication $\{(\text{Ph}_3\text{P})_2\text{C}(\text{N}^3\text{Pr}_2)\text{P(O)}(\text{O-py})\}^{2+}, 7^{2+}$, was surprisingly stabilized by a less nucleophilic O-py ligand instead of pyridine (py). This compound was then identified as an analogue of the elusive Criegee intermediate as it underwent oxygen insertion into the P-C bond through a mechanism usually observed for Baeyer–Villiger oxidations, to give $[(\text{N}^3\text{Pr}_2)\text{P(O)}(\text{OC(PPh}_3)_2)(\text{py})]^{2+}, 8^{2+}$. This oxygen insertion appears to be the first example of a Baeyer–Villiger oxidation involving O-py. Conversion of 7^{2+} into 8^{2+} is counterion dependant, as we have shown that extent of counterion stabilization of 7^{2+}
decreases in order SbF$_6^-$ > BArF$_4^-$ > BArCl$_4^-$ > B(C$_6$F$_5$)$_4^-$; where BArF$_4^-$ allows for the fastest conversion, and B(C$_6$F$_5$)$_4^-$ results in the absence of reaction. Initial stoichiometric oxygen transfer reactions between 7$^{2+}$ and substituted phosphines PR$_3$ (R = Me or Cy) were also successfully demonstrated.

Leveraging further on carbdiphosphoranes strong donor abilities and its ability to stabilize highly electron-deficient moieties, we have successfully synthesized and characterised a rare example of a parent-metaphosphonate system ((Ph$_3$P)$_2$CP(O)$_2$H) (17). In order to access a carbone-stabilized metaphosphonate, [(Ph$_3$P)$_2$CP(O)$_2$], 17 was reacted with various proton-abstracting agents (NaNH$_2$, KHMDS, KO'Bu, 6BuLi, 7BuLi) and hydride-abstracting or substituting agents ([Ph$_3$C][B(C$_6$F$_5$)$_4$] and (COCl)$_2$). Difficulties in removing a proton/hydride such as: inactivity towards the tested proton-abstracting agents, ligand protonation, trityl-cation preference for the oxygen, or reactivity of 17 towards chlorine-containing species; along with the a very short P-H bond of 1.357Å, IR values, and the high melting point for 17, were conclusive of the strong P-H interaction as a reason behind the inability to access a metaphosphonate species [(Ph$_3$P)$_2$CP(O)$_2$]. On the other hand, a reaction with trityl-borate or trityl-triflate yielded [(Ph$_3$P)$_2$CP(O)$_2$(OCPh$_3$)(H)]$^+$, implying higher acidity of the terminal oxygen, with respect to the P$_{central}$-H hydrogen, which was confirmed in a methylation reaction, which yielded an analogues moiety [(Ph$_3$P)$_2$CP(O)$_2$(OCH$_3$)(H)][OTf].

Reactivity of 17 has also been explored towards typical dioxophosphorane trapping agents, such as amines and alcohols. While 17 did not show reactivity towards primary and secondary amines (MeNH$_2$, iBuNH$_2$, CyNH$_2$, iPr$_2$NH), it reacted with a range of alcohols to yield compounds with the general formula [(Ph$_3$P)$_2$CH][P(O)$_2$(OR)H]. According to computations performed for the reaction of
17 with methanol, the reaction proceeds through a stepwise mechanism, via an intermediate \(^{\text{[1]}}\)[P(O)(OCH\(_3\))(OH)H]. The final reaction products [(Ph\(_3\)P)\(_2\)CH]\(^+\) and [P(O)\(_2\)(OR)H]\(^-\)] stay in close proximity, accounting for the \(\Delta E_{\text{el+ZPE}}\) energy of 56.6 kcal/mol. Finally, we explored transition-metal catalyzed dehydrogenative coupling reactions of 17 with terminal alkynes (phenylacetylene and 4-bromo-phenylacetylene). While the catalyst coordination was evident from the NMR data, the P-H bond remained preserved, consistent with its exceptional strength.
Table of Contents

CHAPTER I: Introduction ... 1

1.1 Organocatalysis and main group catalysis ... 2

1.2 Lewis acidity – the concept ... 4

1.2.1 Lewis acidic group 13 and group 14 compounds ... 5

1.2.2 Lewis acidic group 15 compounds .. 12

1.2.3 Lewis acidic P(V) species ... 14

1.2.4 Lewis acidic P(III) species ... 16

1.3 Carbones .. 24

1.3.1 Carbone versus carbene .. 26

1.3.2 Carbodiphosphorane coordination modes to Lewis acids 31

1.4 Carbone-stabilized phosphonium dication .. 37

1.4.1 Computational analysis .. 38

1.4.2 Lewis acidic reactivity of [(Ph$_3$P)$_2$CP(NiPr$_2$)]$^{2+}$ 39

CHAPTER II: Preparation, structural analysis and Reactivity Studies of a Phosphenium Dication ... 42

2.1 Results and Discussion ... 43

2.1.1 Ligand exchange ... 43

2.1.2 Synthetic viability – counterions ... 45

2.1.3 X-ray Structure Analysis .. 47

2.1.4 31P Solid State NMR Spectroscopy ... 50

2.1.5 Lewis acidity tests of $^{2+}$... 54

2.1.6 Results .. 56

2.1.7 Counterion stability studies .. 59

2.2 Summary ... 60

CHAPTER III: P-C Bond Activation under Mild Conditions .. 61

3.1 Introduction .. 61

3.1.1 Metal-mediated oxy-insertions ... 62

3.1.2 Oxy-insertion into P-C bonds ... 63

3.2 Results and Discussion ... 66

3.2.1 Counterion dependence ... 75
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2</td>
<td>Oxygen transfer reactions</td>
<td>77</td>
</tr>
<tr>
<td>3.3</td>
<td>Conclusion</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Synthesis and reactivity of a carbone-stabilized parent-metaphosphonate</td>
<td>80</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>Results and Discussion</td>
<td>88</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Synthetic methods</td>
<td>88</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Reactivity studies</td>
<td>97</td>
</tr>
<tr>
<td>4.3</td>
<td>Conclusion</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>CHAPTER V: Experimental and Methods</td>
<td>114</td>
</tr>
<tr>
<td>5.1</td>
<td>General Methods</td>
<td>115</td>
</tr>
<tr>
<td>5.2</td>
<td>Crystallographic Methods</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>Appendix</td>
<td>152</td>
</tr>
</tbody>
</table>
Table of Figures

Figure 1. Lewis acid-base adduct formation..4
Figure 2. Molecular orbital diagram for the interaction between the Lewis base’s highest occupied orbital (HOMO) and the Lewis acid’s lowest unoccupied orbital (LUMO)..5
Figure 3. Borane derivatives: a) general BX₃, and b) tris(pentafluorophenyl)borane B(C₆F₅)₃ ..6
Figure 4. Some Al-based catalysts..7
Figure 5. Chiral gallium complexes...8
Figure 6. First examples of characterised silylium ions...9
Figure 7. The structure of a phenalenyl cation ..10
Figure 8. Predicted, potentially Lewis acidic, pnictogen cations...............................12
Figure 9. Examples of cyclic triphosphanium cations reported by Dillon et al..........16
Figure 10. Selected EPCs synthesized by Stephan et al..13
Figure 11. Isovalency of phosphenium cations (a) and analogues group 14 species (b): singlet carbenes (E=C), silylenes (E=Si), germynes (E=Ge), stannylenes (E=Sn), and plumbylenes (E=Pb). ..17
Figure 12. Phosphino-phosphenium cation, represented via a dative bonding model (a) and a phosphino-phosphonium cation, represented via Lewis model (b)..............19
Figure 13. Different structural depictions of hexaphenylcarbodiphosphorane: in terms of resonance structures (a-c), a ylidic form (d), a dative structure (e)..............25
Figure 14. Left: Schematic representation of orbital interactions between ligands and the central carbon atom in CL₂. Right, top: Expected and calculated energies for C. Right, bottom: Interaction energies (ΔEnt) and dissociation energies (De) for fragments in frozen geometries and electronic reference states[115]..........................27
Figure 15. Mesomeric effects in the NHC substituents..28
Figure 16. Carbone coordination modes to the Lewis acid A: a) via σ lone pair donation to a Lewis acid; b) via both, σ and π, lone pair donations to a single Lewis acid; c) via two lone pair donations, each to a separate Lewis acid. ..32
Figure 17. Selected known compounds in which carbone C is connected to two Lewis acid simultaneously...36
Figure 18. Crystal structure of 32+ (Thermal ellipsoids are shown at 50% probability). For clarity, hydrogen atoms have been omitted. Selected bonds (Å) and angles (°): P1-C1, 1.746(11); P1-N1, 1.608(10); N1-P1-C1, ...48
Figure 19. Close interion contacts for [3c][SbF₆]₂ (left), [3e][AlCl₄]₂ (middle) and [3c][SbF₆]₂ (right)...49
Figure 20. Colour change, as a result of interion contacts in [3c][SbF₆]₂ and [3c][BF₄]₂ ... Error! Bookmark not defined.
Figure 21. (a) 31P CP/MAS NMR spectra of the monocationic precursors, specifically of [2c] (top), [2d] (centre), and [2e] (bottom) with Cl⁻ counterions taken at 9 kHz spinning speed. Isotropic peaks are indicated with asterisks in (a). (b) Enlargements of the spectral region between 0 and 50 ppm showing only isotropic shift resonances ...51
Figure 22. (a) 31P CP/MAS NMR spectra of the dicationic products as indicated by the labels. Isotropic peaks are indicated with asterisks in (a). (b) Highlights of the spectral region of the carbodiphosphorane resonances showing only isotropic shift resonances. The spectra were acquired at 9 kHz MAS spinning rate, except for the top spectra of [3c][SbF$_6$]$_2$, which were taken at 6 kHz..52

Figure 23. Hypothetical adduct formation between Lewis acidic dication 3$^{2+}$ and a) an oxygen donor-molecule (ORef) which serves as a reference in the acidity tests, b) ethyl-acetate used in Lappert’s method (RefO =EtOAc); c) triphenylphosphine oxide used in Gutman-Beckett’s acidity test (RefO = OPEt$_3$), and d) crotonaldehyde in Childs’ method (ORef = C$_6$H$_6$O). ..66

Figure 24. One of the mixture products obtained from the Gutmann-Beckett acidity test..57

Figure 25. Hypothetical products from the reaction between [3c][SbF$_6$]$_2$ and XeF$_2$...58

Figure 26. Molecular structures of 7$^{2+}$ (left) and 8$^{2+}$ (right) (thermal ellipsoids shown at 50% probability, except the phenyl rings on the carbone substituent). Hydrogen atoms, SbF$_6^-$ counterions, solvent molecules, and the second molecule in the asymmetric unit for 7$^{2+}$ have been omitted for clarity. Selected bond lengths (Å) and angles (°): 7$^{2+}$: P1-C1 1.879 (14); P1-O1 1.456 (10); P1-O2 1.711 (11); O1-P1-N1 112.6 (7); 8$^{2+}$: O2-C1 1.457 (3); P1-O1 1.451 (2); P1-O2 1.581 (2); O1-P1-N1 118.6 (1).................68

Figure 27. Full conversion of 7$^{2+}$ into 8$^{2+}$, achieved in approx. 4h by heating 7$^{2+}$ crystals in DCM at 50°C...70

Figure 28. Computationally determined transition state for the transformation of 7$^{2+}$ into 8$^{2+}$. ...71

Figure 29. Suggested reaction products..78

Figure 30. General examples of a metaphosphate (a) and a dioxophosphorane (metaphosphonate) (b). ..82

Figure 31. Examples of cyclic phosphonates resulting from an intramolecular phosphorus insertion into a C-H bond ...84

Figure 32. Metaphosphonate trapping by an amine or ether in form of Lewis salts ...86

Figure 33. Crystal structure of [{(PPPh$_3$)$_2$CP(O)(OH)(H)][BAr$_4$F$_4$]}$_2$ (Thermal ellipsoids are shown at 50% probability). Hydrogen atoms within the phenyl rings and BAr$_4$F$^-$ counterions have been omitted for clarity. Selected bonds (Å) and angles (°): P1-O1, 1.507(2); P1-O2, 1.534(2); O1-P1-O2, 114.70(12). ...89

Figure 34. Molecular structure for 17·2H$_2$O (thermal ellipsoids are shown at 50% probability level). All atoms have been drawn to 50% probability. Hydrogen atoms, except H(1) have been omitted for clarity. Selected bonds (Å) and angles (°): C1-P1, 1.812(5); P1-O1, 1.505(4); P1-O2, 1.500(4); O2-P1-C1, 112.6(6), O1-P1-C1, 106.1(2). ...95

Figure 36. The crystal structure of [HC(PPh$_3$)$_2$][P(μ-KCl)O$_2$(OMe)]..........................103

Figure 37. 31P{[H]} NMR spectra of [7][SbF$_6$]..154

Figure 38. 13C NMR spectra of [7][SbF$_6$]..154

Figure 39. 1H NMR spectra of [8][SbF$_6$]..155

Figure 40. 31P{1H} NMR spectra of [8][SbF$_6$]..155

Figure 41. 13C NMR spectra of [8][SbF$_6$]..156
Figure 42. 1H NMR spectra of [8][SbF$_6$]$_2$... 156
Figure 43. 31P{ 1H} spectra of [15][BAR$_4$]$_2$... 157
Figure 44. 31P NMR spectra of [15][BAR$_4$]$_2$... 157
Figure 45. 13C NMR spectra of [15][BAR$_4$]$_2$... 158
Figure 46. 1H NMR spectra of [15][BAR$_4$]$_2$... 158
Figure 47. 13B NMR spectra of [15][BAR$_4$]$_2$... 159
Figure 48. 19F NMR spectra of [15][BAR$_4$]$_2$... 159
Figure 49. 31P{ 1H} NMR spectra of 17 ... 160
Figure 50. 31P NMR spectra of 17 .. 160
Figure 51. 13C NMR spectra of 17 .. 161
Figure 52. 1H NMR spectra of 17 .. 161
Figure 53. 31P{ 1H} NMR spectra of the reaction between 17 and MeOTf 162
Figure 54. 31P NMR spectra of the reaction between 17 and MeOTf 162
Figure 55. 1H NMR spectra of the reaction between 17 and MeOTf 163
Figure 56. 31P{ 1H} NMR spectra of [HC(PPh$_3$)$_2$][P(O)$_2$(OCH$_2$)$_2$(CCH)(H)] 163
Figure 57. 31P NMR spectra of [HC(PPh$_3$)$_2$][P(O)$_2$(OCH$_2$)$_2$(CCH)(H)] 164
Figure 58. 1H NMR spectra of [HC(PPh$_3$)$_2$][P(O)$_2$(OCH$_2$)$_2$(CCH)(H)] 164
Figure 59. 31P{ 1H} NMR spectra of [DC(PPh$_3$)$_2$][P(O)$_2$(OCD$_3$)(H)] 165
Figure 60. 1H NMR spectra of [DC(PPh$_3$)$_2$][P(O)$_2$(OCD$_3$)(H)] 165
Figure 61. 2H NMR spectra of [DC(PPh$_3$)$_2$][P(O)$_2$(OCD$_3$)(H)] 166
Figure 62. 31P{ 1H} NMR spectra of the reaction between [DC(PPh$_3$)$_2$][P(O)$_2$(OCD$_3$)(H)] and MeOTf: ... 166
Figure 63. 31P NMR spectra of the reaction between [DC(PPh$_3$)$_2$][P(O)$_2$(OCD$_3$)(H)] and MeOTf: ... 167
<table>
<thead>
<tr>
<th>Scheme 1</th>
<th>Schematic examples of catalytic cycles catalysed by: Brønstead Base (a); Brønstead Acid (b); Lewis Base (c); Lewis acid (d). ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 2</td>
<td>An example of an AlCl₃-catalyzed Friedel-Crafts reaction. ...</td>
</tr>
<tr>
<td>Scheme 3</td>
<td>Reactions catalyzed by Ph₃C⁺, as discovered by Mukaiyama et al. ...</td>
</tr>
<tr>
<td>Scheme 4</td>
<td>Synthesis of first structurally characterised boron dicationic complex. ...</td>
</tr>
<tr>
<td>Scheme 5</td>
<td>Synthesis of the NHC Pr₂IM-stabilized Ge(II)-dication, reported by Ragogna et al. ...</td>
</tr>
<tr>
<td>Scheme 6</td>
<td>DMAP-stabilized P(V)-centred dication. ...</td>
</tr>
<tr>
<td>Scheme 7</td>
<td>An interaction between the σ * P⁺-EWG orbital of the phosphonium cation and a Lewis base. ...</td>
</tr>
<tr>
<td>Scheme 8</td>
<td>Diels-Alder reaction catalyzed by a phosphonium salt. ...</td>
</tr>
<tr>
<td>Scheme 9</td>
<td>Groups of phosphonium cations based on their π-charge distribution. ...</td>
</tr>
<tr>
<td>Scheme 10</td>
<td>Synthesis of the cyclic dimethylaminophosphine cation by Fleming et al. ...</td>
</tr>
<tr>
<td>Scheme 11</td>
<td>Synthesis of the first phosphino-phosphenium cation. ...</td>
</tr>
<tr>
<td>Scheme 12</td>
<td>Olefinic frontier molecular orbital diagram of the diaminophosphonium cation (H₂N)₂P⁺. ...</td>
</tr>
</tbody>
</table>
| Scheme 13 | Product formation, depending of the ligand (Lewis base, LB) strength.
 i) base strength is not high, so LB→PR₂⁺ product formation is favoured;
 ii) LB is a strong base ("hard" base), which causes a nucleophilic cleavage of the counterion ("hard" acid) and a LB→AlCl₃ adduct formation. ... |
| Scheme 14 | Ground state spin multiplicity in the triplet carbene (a) and singlet carbene molecules (b). ... |
| Scheme 15 | Examples of a) carbene-germanium and b) carbene-stannanium complexes. ... |
| Scheme 16 | The synthesis of a carbene-stabilized phosphonium dication, where X=AlCl₄⁻ or BarF⁻. ... |
| Scheme 17 | Calculated resonance forms for 3²⁺ and an analogue [(H₂P)₂CP(NH₂)]²⁺. ... |
| Scheme 18 | Proposed equilibria for the interaction of [3²⁺][AlCl₄]⁻ and PMe₃ (1:1).... |
| Scheme 19 | Proposed equilibria between {3²⁺} {BarF⁻} and 3²⁺-PMe₃ complex........... |
| Scheme 20 | Synthetic route for obtaining analogues of 2⁺. ... |
| Scheme 21 | The targeted reaction for the synthesis of 3²⁺. Successful outcome was achieved when MX = NaBAR⁺Cl⁻, AgSbF₆⁻ and when GaCl₃ was used as adduct. In other cases, the targeted product was not acquired. ... |
| Scheme 22 | Methanol/water activation reaction protocols. ... |
| Scheme 23 | An example of the computed reaction coordinate (OMBV) for a zinc-methyl complex, where numbers represent energies in kJ/mol. ... |
| Scheme 24 | An example of the computed reaction coordinate (OMBV) for a iron-methyl complex, where numbers represent energies in kJ/mol. ... |
| Scheme 25 | Simplified depiction of strained P-heterocycles undergoing oxygen insertion. ... |
Scheme 26. Oxidation of phosphabornadienes reported by Mathey et al65
Scheme 27. Reaction mechanism for the general Baeyer-Villiger reaction66
Scheme 28. An example of general reaction which proceeds via the Criegee rearrangement ..66
Scheme 29. Reaction of [3c^2+]_2[SbF_6]_2 with 2eq Py-O. Initially formed product 7^2+
undergoes spontaneous transformation into 8^2+ ..67
Scheme 30. Reported reaction of a monocation 9^+ with pyridin N-oxide68
Scheme 31. Analogy between a) a transition state in the the transformation of 7^2+ into
8^2+ and b) a mettalo-Criegee intermediate calculated for the OMBV reactions.71
Scheme 32. a) A typical Bayer-Villiger oxidation reaction mechanism between an O_18-
labeled benzophenone and a perbenzoic acid; b) calculated mechanism for the 6^2+ to
7^2+ transformation ...72
Scheme 33. Synthesis of 7^2+ and 8^2+ in presence of different counterions75
Scheme 34. Predicted pathways of oxygen transfer via a substrate (a), or a redox agent
(b) ..77
Scheme 35. Examples of different species containing the PO-moiety81
Scheme 36. A schematic representation of the ATP hydrolysis83
Scheme 37. Synthesis of a Ruthenium complex - stabilized dioxophosphorane moiety
[(η^6-p-cymene)(PR_3)Ru(η^2-OPOMes^2)], 12, where R=Ph or Cy86
Scheme 38. Synthesis of a Mo-stabilized metaphosphonate [MoCp(CO)_2{(κ^2-
OP(O)R)'} (R=2,4,6-C_6H_3^+Bu_3), 14 ...87
Scheme 39. The reaction steps for the synthesis of 15^+ ..88
Scheme 40. The reaction pathway for the synthesis of 1790
Scheme 41. Metaphosphonate groups binding to silica on the material surface (a); a
general reaction between metaphosphonates and Si-OH groups (b)93
Scheme 42. General P-H cleavage modes: a) homolytic, and heterolytic, where the P-
H bond is a hydride donor (b) or a proton donor (c) ...97
Scheme 43. The predicted reaction product for the deprotonation of 1798
Scheme 44. The predicated reaction product for the hydride abstraction from 1798
Scheme 45. The reaction between 17 and trityl-borate99
Scheme 46. The product of a reaction between 17 and MeOTf100
Scheme 47. A general reaction of the dioxophosphorane-intermediate trapping with an
alcohol ..101
Scheme 48. A general dioxophosphorane-trapping reaction between 17 and an alcohol
..101
Scheme 49. The reaction of 17 with deuterated methanol, followed by the methylation
with MeOTf Adam Kowalczyk and Maria La Marca104
Scheme 50. Three possible mechanisms for the reaction between the parent-
metaphosphonate 17 and methanol; “I” stands for “intermediate” and “L” stands for
“ligand” ..108
Scheme 51. Calculated reaction steps and activation energies for the pathway 2
mechanism in the reaction between 17 and MeOH ..108
Table of Tables

Table 1. Reported calculated first (PA$_1$) and second (PA$_2$) proton affinities and NBO partial charges at the central carbon atom q(C) of selected N-heterocyclic and carbodiphosphorane compounds in kcal/mol[114e] .. 30

Table 2. Summary of known triphenylcarbodiphosphorane adducts of Group 13 compounds, and their mean P-C bond values; L=C(PPh$_3$)$_2$.. 34

Table 3. 31P NMR shifts (δ$_P$ in ppm) obtained for the isolated monocations of the formula [R”2NP(C(Ph$_2$R”)$_2$Cl)]$^+$. Substituent combinations that were not synthetically attempted are denoted with a dash “-“. .. 44

Table 4. An overview of the Fluoride Ion Affinity (FIA) values (in KJmol$^{-1}$) reported in the literature for selected Lewis Acids. ... 47

Table 5. 31P Solid-State NMR Isotropic Chemical Shift Positions (ppm) of All Dicationic Compounds 52

Table 6. Solid state 31P CP/MAS NMR isotropic chemical shift positions of monocationic precursors ... 53

Table 7. Counterion dependence comparison for the synthesis of 7$^{2+}$ and 8$^{2+}$ 76

Table 8. Literature values of 31P NMR shifts and coupling constants for compounds of formula (R)(H)P(O)(OR’)... 100

Table 9. All reactions were performed at 80°C .. 107

Table 10. Energy values for a scenario when the P-C bond is fixed 109

Table 11. Activation and free Gibbs energies of 17 + MeOH reaction reactants, intermediates, transition states and products. ... 110

Table 12. Crystal data and structure refinement for [(Ph$_3$P)$_2$CP(NiPr$_2$)][SbF$_6$]$_2$, [3c][SbF$_6$]$_2$.. 133

Table 13. Crystal data and structure refinement for [(Ph$_3$P)$_2$CP(NiPr$_2$)(O)(C$_5$H$_5$NO)][SbF$_6$]$_2$, [7][SbF$_6$]$_2$... 134

Table 14. Crystal data and structure refinement for [(Ph$_3$P)$_2$COP(NiPr$_2$)(O)(C$_5$H$_5$N)][SbF$_6$]$_2$, [8][SbF$_6$]$_2$... 135

Table 15. Crystal data and structure refinement for {[(PPPh$_3$)$_2$CP(O)(OH)(H)][BArF$_4$]}$_2$, [15][BArF$_4$] ... 136

Table 16. Crystal data and structure refinement for (Ph$_3$P)$_2$CP(O)$_2$H-2H$_2$O, 17$\cdot2$H$_2$O. .. 137

Table 17. 17 and MeOH reaction conditions .. 153
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>∇^2</td>
<td>Laplacian</td>
</tr>
<tr>
<td>°</td>
<td>Degree</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>μL</td>
<td>Microliter</td>
</tr>
<tr>
<td>2,3-OPBO</td>
<td>2,3-oxaphosphabicyclo[2,2,2]octenes</td>
</tr>
<tr>
<td>2-PBO</td>
<td>2-phosphabicyclo[2,2,2]octenes</td>
</tr>
<tr>
<td>Å</td>
<td>Angstrom</td>
</tr>
<tr>
<td>ACN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>AE</td>
<td>Addition - elimination</td>
</tr>
<tr>
<td>B3LYP</td>
<td>Becke’s -3 parameter functional with Lee-Yang-Parr correlation</td>
</tr>
<tr>
<td>B3PW91</td>
<td>Becke’s -3 parameter functional with Perdew and Wang 91 correlation</td>
</tr>
<tr>
<td>br</td>
<td>Broad</td>
</tr>
<tr>
<td>Bu</td>
<td>Butyl</td>
</tr>
<tr>
<td>BV</td>
<td>Baeyer-Villiger</td>
</tr>
<tr>
<td>CDP</td>
<td>Carbodiphosphorane</td>
</tr>
<tr>
<td>CP-MAS</td>
<td>Cross Polarization - Magic Angle Spinning</td>
</tr>
<tr>
<td>Cy</td>
<td>Cyclohexyl</td>
</tr>
<tr>
<td>d</td>
<td>Doublet</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>dd</td>
<td>Doublet of doublets</td>
</tr>
<tr>
<td>DFB</td>
<td>Difluorobenzene</td>
</tr>
<tr>
<td>DMAP</td>
<td>Dimethylaminopyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl Sulfoxide</td>
</tr>
<tr>
<td>dq</td>
<td>Doublet of quartets</td>
</tr>
<tr>
<td>E</td>
<td>Energy</td>
</tr>
<tr>
<td>EA</td>
<td>Elimination - addition</td>
</tr>
<tr>
<td>EPC</td>
<td>Electrophilic Phosphorus Centre</td>
</tr>
<tr>
<td>EtO</td>
<td>Ethoxy</td>
</tr>
<tr>
<td>EtOAc</td>
<td>Ethyl Acetate</td>
</tr>
<tr>
<td>EWG</td>
<td>Electron - withdrawing</td>
</tr>
<tr>
<td>F.V.P.</td>
<td>Flash vacuum pyrolysis</td>
</tr>
<tr>
<td>FIA</td>
<td>Fluorine ion affinity</td>
</tr>
<tr>
<td>FLP</td>
<td>Frustrated Lewis pairs</td>
</tr>
<tr>
<td>FMO</td>
<td>Frontier Molecular Orbital</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transformation Infra-Red</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest Occupied Molecular Orbital</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>High Resolution Mass Spectrometry</td>
</tr>
</tbody>
</table>
HSAB Hard Soft Acid Base
1 Intermediate
in situ On site
1Pr Isopropyl
J Coupling constant
K Kelvin
kcal Kilocalorie
KHMDS Potassium bis(trimethylsilyl)amide
kJ Kilojoule
KOtBu Potassium tert-butoxide
L Liter
LA Lewis Acid
LB Lewis Base
LUMO Lowest Unoccupied Molecular Orbital
m/z Mass to charge ratio
mCPBA meta-chloroperoxybenzoic acid
Me Methyl
MeO Methoxy
MeOD Deuterated methanol
MeOH Methanol
MeOTf Methyl triflate
mg Milligram
mg Milligram
mL Millilitre
mL Milliliter
mmol Millimole
MO Molecular orbital
NaBARcI4 Sodium tetrakis[3,5-bis(chloro)phenyl]borate
NaBARf4 Sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate
NBO Natural Bonding Orbital
n-BuLi N-butyl lithium
NHC N-heterocyclic carbene
NMR Nuclear Magnetic Resonance
NRT Natural Resonance Theory
o Ortho
OTf Triflate
p Para
PA Proton affinity
Ph Phenyl
PNB Phosphanobornenes
ppm Parts per million
Py Pyridine
PyO Pyridine N-oxide
q Quartet
r Bond distance
s Singlet
t Triplet
tBuLi \textit{Tert}-butyl lithium
TEA Triethylamine
THF Tetrahydrofuran
TM Transition metal
TMS Tetramethysilane
TS Transition state
WBI Wiberg Bond Index
X Halogen
\delta NMR chemical shift in ppm
\eta Eta – ligand coordination through multiple atoms
\pi Pi
\sigma Sigma
CHAPTER I:

Introduction
Catalysis is the basis of many chemical and biological processes, and its importance in the modern world is indisputable. Appropriate catalysts increase reaction rates, time efficiencies, lower costs, and drive industrial processes. Whether it is the production of pharmaceuticals, polymers, materials, agrochemicals, electronics, fragrances and even food – they all rely on catalytic processes.

Most of the contemporary catalyst technologies are based on transition metals, particularly around precious metals. For example, Suzuki-Miyaura Coupling, Kumada and Heck reactions all use highly efficient and readily available catalysts based on platinum, palladium, rhodium, and other transition metals (TM). Arising issues related to their use are cost, toxicity, and questionable environmental practices of metal sourcing and disposal.

As a response to these issues, readily available “greener” and sustainable catalysts are emerging as alternatives. “Green” catalysts most commonly include earth abundant first row transition-metal catalysts\(^2\) and metal-free organocatalysts.\(^3\)

1.1 Organocatalysis and main group catalysis

Recent achievements in organocatalysis showed promising results, as the number of main-group species which mimic the catalytic behaviour of transition metals is increasingly being reported, and the subject has been thoroughly reviewed.\(^3-4\) The field of organocatalysis is particularly interesting because it has developed into a third class of asymmetric catalysis, apart from the biocatalysis and the organometallic catalysis, in less than two decades.\(^5\) The success is attributed mainly to its benefits over homogeneous metal catalysts. Some of the advantages include: lower-toxicity, availability, ease of preparation, lower cost, and increased stability towards oxygen and moisture.\(^4b\)
Based on the mechanism of catalysis, organocatalysts can be classified into four groups: 1) Brønsted bases, 2) Brønsted acids, 3) Lewis bases, and 4) Lewis acids. The classification depends on whether a catalytic cycle is initiated by providing/abstracting protons (Brønsted acids and bases) or electrons (Lewis bases and acids) from a substrate or a transition state (Scheme 1). Out of the four, Lewis base catalysts such as amines and carbenes largely predominate the area. Chiral organic Brønsted acids are emerging as a competent rival to the enzymes and superactive chiral transition metal catalysts. Examples of the use of chiral organic Brønsted acids include Noyori’s hydrogenation reactions and several Suzuki reactions. On the other hand, Lewis acid-organocatalysts are the least developed. Interestingly, metal-based catalysts are predominantly Lewis acidic.

Scheme 1. Schematic examples of catalytic cycles catalysed by: Brønsted Base (a); Brønsted Acid (b); Lewis Base (c); Lewis acid (d).

Another issue is that only noble metals exhibit notable catalytic reactivity, while the majority of other metals are inert, concerning their Lewis acidity. In general, stronger Lewis acidity correlates with enhanced reactivity. For instance, the catalytic activity of some metal halides (i.e., AlCl₃) had been improved by exchanging their anion for a more electron-withdrawing perfluorooctane sulfonic acid or trifluoromethyl sulfonate anion. Some metal Lewis acids, such as Ge(OTf)₃, show remarkable stability towards air and moisture, allowing for their multi-cycle recycling. On the other hand, increased acidity often increases catalyst’s susceptibility to hydrolysis, resulting in the more challenging catalyst-recycling.
Having in mind the scarcity of solutions, the need for efficient Lewis-acidic organocatalysts is ever-emerging.

With respect to recent developments, main group Lewis acids gained a prominent role as reagents in synthetic procedures, and as facilitators of many stoichiometric and catalytic reactions.[11]

1.2 Lewis acidity – the concept

In 1926, G. N. Lewis[12] classified chemical species into acids or bases, depending on their capability to accept or donate an electron pair, respectively. In a mutual interaction, a Lewis base (LB) donates its electron lone pair into the Lewis acid’s (LA) vacant orbital, yielding an adduct in which two species are connected via a coordinate-covalent bond, also known as a formal dative bond (Figure 1). A dative bond is often represented via an arrow, which represents an origin of the lone pair of electrons that are being donated to an electron-deficient, Lewis acidic, species.[13]

![Figure 1. Lewis acid-base adduct formation](image)

The corresponding acid-base adduct formation, as later been explained by Fukui’s Frontier Molecular Orbital theory (FMO),[14] results from an interaction between the acid’s lowest unoccupied molecular orbital (LUMO) and the base’s highest occupied molecular orbital (HOMO) (Figure 2). The significance of this concept lies in its applicability to the compounds which do not contain protons.
Figure 2. Molecular orbital diagram for the interaction between the Lewis base's highest occupied orbital (HOMO) and the Lewis acid's lowest unoccupied orbital (LUMO)

1.2.1 Lewis acidic group 13 and group 14 compounds

1.2.1.1 Boron species

Most of the known main group Lewis acids belong to the group 13. Their Lewis acidity derives from a vacant p orbital in their neutral, three-coordinate state, which accounts for their electron-deficiency and the ability to accept a lone pair of electrons (Figure 3a).

Boron-based Lewis acids are commonly used in the contemporary organic chemistry: borohydride reduction reactions,\(^{[15]}\) C-C formation via Suzuki-Miyaura cross-couplings,\(^{[16]}\) olefin hydroboration.\(^{[17]}\) Lewis acidity of boranes was crucial for the design of sensors for detection of cyanide and fluoride anions,\(^{[18]}\) carbohydrates, or medications;\(^{[18a, 19]}\) structure deduction of supramolecular materials and B-B coordination polymers;\(^{[20]}\) and the determination of the pharmacological action mechanisms of boron-containing pharmaceuticals.\(^{[21]}\)

For instance, \textit{tris}(pentafluorophenyl)borane (Figure 3b) results in over 20000 reaction records in SciFinder. This fact provides maybe the best overview of its widespread application; dominated by its use as Lewis acid catalyst,\(^{[22]}\) and for activation of pre-catalysts for olefin polymerization.\(^{[23]}\) In addition, \textit{B}(C\textsubscript{6}F\textsubscript{5})\textsubscript{3} produced notable results in the activation of small molecules, as part of
“Frustrated Lewis Pair” (FLPs) systems. FLPs comprise of the combinations of electron-acceptor and electron-donor sites, in which the steric hindrance prevents them from forming a classical adduct. Most of the FLP systems in the past decade were based on boranes as Lewis acidic sites, and phosphorus- or nitrogen-based Lewis basic sites, to perform catalysis of a wide range of hydrogenation reactions and small molecule activations.

Other electrophilic boron-compounds, commonly used within FLP systems, include halogenated tri(aryl)boranes[25] and various borenium cations (usually NHC-stabilized).[26] A good overview of Lewis acidity of numerous borane catalysts can be found in a review by Sivaev and Bregadze.[27] A recent review by Eisenberger and Crudden summarizes catalytic applications of borenium species for E-H bond activations, where E = H, Si, B, C.[28]

1.2.1.2 Aluminium species

Among group 13 Lewis acids, aluminium is preferred mainly for its abundance (about 8.3% of Earth’s crust weight) and low cost.[29] For instance, AlCl₃ has been widely used as a catalyst, for degradation of perfluorinated compounds, alkyl-polymerizations, Beckmann transposition of oximes to amines, and, most frequently, Friedel-Crafts reactions (Scheme 2).[4a]
A chiral aluminium complex (Figure 4a) synthesized by Shibasaki et al. proved to efficiently catalyze asymmetric Michael additions of various malonic esters and cyclic enones.[30] Our group has recently contributed to the field of Al-catalyzed Diels-Alder reactions, with several Al-based bis(imino)phenyl NCN pincer-supported complexes,[31] and a β-diketiminate-supported aluminiumbistriflate complex,[32] efficient for Diels-Alder transformations (Figure 4b-f).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{Some Al-based catalysts}
\end{figure}

1.2.1.3 Gallium species

Despite higher cost and lower nucleophilicity and Lewis acidity, gallium species are often good alternatives when other Group 13 species fail to mediate certain organic reactions.[33] GaCl$_3$ is undoubtedly the most used Ga-based Lewis acid, and its use has been reviewed by Amemiya et al.[34] Gallium(III) triflate, Ga(OTf)$_3$ is another
potent Lewis acid, with promising catalytic applications, due to the ease of reaction recovery without the loss of activity. For instance, Ga(OTf)$_3$ has been used to catalyze the synthesis of 2,3-dihydroquinazolin-4(1H)-ones which have broad pharmacological and biological applications.[35]

Chiral gallium complexes (Figure 5), analogous to the aluminium complexes in Figure 4a, have been applied in asymmetric epoxide ring opening reactions.

![Chiral gallium complexes](image)

Figure 5. Chiral gallium complexes

Another example of successful application of Gallium-based Lewis acids includes catalytic reduction of CO$_2$ to a methanol derivative using a β-diketimino-supported gallium hydride complex, recently reported by Aldridge and co-workers.[36]

1.2.1.4 Silicon species

Tetravalent silicon species with Lewis acidic properties are commonly used in synthetic chemistry with the prominence of Me$_3$SiOTf (TMSOTf).[37] Their analogues, *in situ* preparedtrialkylsilyl bistrifluoromethanesulfonamides (R$_3$SiNTf), proved to be more potent catalysts than TMSOTf, in Diels-Alder and Friedel-Crafts reactions.[38]
Figure 6. First examples of characterised silylium ions.

Even more acidic silicon species are silylium ions. Since the first structurally characterised example (Figure 6) in 1993,[39] several examples have been reported and increasingly studied for their catalytic activity. Examples include defluorination reactions of fluoro- and perfluoroalkyl groups,[41] Diels-Alder and Mukaiyama aldol reaction catalysis,[42] and even C-C bond formation catalysis.[43]

1.2.1.5 Carbocations

Contrary to their history of more than 130 years, and evidence of Lewis acidic behaviour, carbocations are considered “neglected Lewis acids” in organocatalysis.[44] Trityl perchlorate was the first reported carbocationic catalyst 30 years ago with applications in numerous Michael and Mukaiyama aldol-type reactions (Scheme 3).[45]
In addition, 1 mol% of $[\text{Ph}_3\text{C}][\text{BF}_4]$ was as efficient catalyst as HBF$_4$ or typical Lewis acids (BF$_3\cdot$Et$_2$O, AlCl$_3$, TiCl$_4$) in Diels-Alder reaction of 1,3-cyclohexadiene and acrolein in less than an hour.$^{[46]}$ Some of the promising areas for their catalytic application include oxo-Metathesis, developing new chiral carbocations for applications in asymmetric catalysis, and expanding the chemistry of the phenalenyl cation (Figure 7).$^{[46a]}

![Figure 7. The structure of a phenalenyl cation](image)

1.2.1.6 Group 13 and 14 polycations

Relying on the electron-rich properties of ligands such as NHCs, polyethers, pyridines, and diimines, many p-element centred polycations have been synthesized and structurally characterised. Usually, these species are coordinatively saturated, or their positive charge is distributed over ligands, which causes them to behave as classic Lewis bases or to be inactive as Lewis acids.

Lewis acidic polycationic boron species are rare, with only a handful of examples available in the literature. The first structurally characterised boron-centred dication was obtained using the stabilizing properties of the β-diketiminate ligand. The moiety was accessed by Cowley et al. in 2007, via the procedure shown in Scheme 4.

As it can be depicted from the scheme, the final step included a bis-triflate displacement by a bidentate 2,2'-bipyridine (bpy) ligand.$^{[47]}$ Other pioneering examples include a dicationic boron joined to a ferrocene moiety by Braunschweig et
al.[48] and a dinuclear BII dication obtained by Himmel et al. from a reaction between B\textsubscript{2}Cl\textsubscript{2}(NM\textsubscript{e}\textsubscript{2})\textsubscript{2} and a guanidine derivative hppH.[49]

Concerning group 14 polycations, a GeII-centred dicationic complex [Ge(1Pr\textsubscript{2}IM)\textsubscript{3}]2+ was synthesized by Ragogna et al. in a stepwise reaction represented in Scheme 5. The coordination complex between GeCl\textsubscript{2}•dioxane and an NHC 1Pr\textsubscript{2}IM ligand was subjected to the chlorine metathesis with TMS-I, followed by the iodine atoms displacement by the subsequent addition of excess 1Pr\textsubscript{2}IM.[50]

The study has shown that the formal charge of +2 was not localized on the germanium atom. In fact, positive charge accumulation on the central Ge amounted only up to +1.02. In another study, a residual positive charge on the “naked” germanium
encapsulated within the cryptand, was found to be astoundingly high (+1.38). However, the GeII coordination sphere in the latter was completed, rendering the species inactive as a Lewis acid.$^{[51]}$ Analogous behaviour was observed for other macrocyclic amine- and crown ether-sandwiched complexes of GeII and SnII.[52]

Studies on polycationic silica species are rare, but an example of a dicationic, octahedral, silica complex [(H)$_2$Si(Py)$_4$]$^{2+}$, with hydride groups in the axial, and pyridine ligands in the equatorial positions, has been structurally characterised in 1998.$^{[53]}

1.2.2 Lewis acidic group 15 compounds

Examples of the polycationic Lewis acidic Group 15 elements are somewhat scarce.$^{[54]}$ In a recent review, Burford et al. summarised potential Lewis acidic pnictogen cations, as represented in Figure 8.

Schmidpeter \textit{et al.}$^{[55]}$ performed a methylation of a triphosphenium cation in the presence of AlCl$_3$ to generate a PIII-centred dicationic complex [(Me)P(PPh$_3$)$_2$][AlCl$_4$]$_2$.

\begin{align*}
2 \text{Ph}_3\text{P} + \text{MePCl}_2 + 2 \text{AlCl}_3 & \rightarrow [(\text{Me})\text{P}(\text{PPh}_3)_2][\text{AlCl}_4]_2
\end{align*}
Dillon et al. later accessed and structurally characterised a series of derivatives via protonation[56] alkylation, and arylation reactions of cyclic triphosphenium ions (Figure 9).[54d, 57]

![Chemical structures](image)

Figure 9. Examples of cyclic triphosphenium cations reported by Dillon et al.

A PV-centred dication can be obtained from a reaction between a trimethylchlorophosphonium triflate and TMS-OTf in the presence of 4-dimethylaminopyridine (DMAP) ligand (Scheme 6). If DMAP is viewed as a stabilizing Lewis base, the resulting [R\textsubscript{3}P(DMAP)]\textsubscript{2}OTf complex can be regarded as a dicationic analogue of allane or a trialkyl borane, with substantial Lewis acidic properties.[58]

![Chemical reaction](image)

Scheme 6. DMAP-stabilized P(V)-centred dication

Lewis acidic and polycationic phosphorus species are reviewed in more details in the following section (Section 1.2). Furthermore, structurally characterised dicationic examples of other pnictogen species include ligand- (OPPh\textsubscript{3} or dmap) stabilized Ph\textsubscript{3}Sb2+ and Ph\textsubscript{3}Bi2+ complexes by Ferguson et al.[59].
1.2.3 Lewis acidic P(V) species

While FLP systems predominantly contain boron-based Lewis acids, recent discoveries in this field shed light on high Lewis acidic potency of phosphorus species,[60] and their usefulness in catalysis.

Wittig reagent (R₃P=CHR') is an example of a P(V) neutral Lewis acid.[61] This phosphonium ylide is widely used in industry to form substituted alkenes from aldehydes or ketones.

Lewis acidity of group XIII species (BH₃, BF₃, AlCl₃, AlMe₃) derives from an empty p-orbital. On the contrary, phosphonium cations (PR₄⁺) owe their Lewis acidity to the low-lying σ* orbital facing the electron withdrawing (EWG) substituent.[62] This antibonding orbital (σ* P*-EWG) is capable of accepting a lone pair of electrons from a Lewis base (LB), which results in the formation of a bond trans to the EWG group. Consequently, the newly formed complex is more stable (Scheme 7).

Scheme 7. An interaction between the σ* P*-EWG orbital of the phosphonium cation and a Lewis base.

The possibility to increase Lewis acidity of pentacoordinate phosphorus species with electron withdrawing substituents was recognised as far as in 1960s.[63] Electrophilic properties of P(V) species were limited to the scopes of coordination chemistry[64] until 1977 when a pentacoordinate amidophosphorane CH₃(CF₃)₃P-N(CH₃)₂ was used to capture CX₂ (X=O, S).[65] The resulting adduct was also a pioneering example of an FLP, as it contained a Lewis acidic (phosphonium) and a Lewis basic (amido) centre.
As far as in 1989, phosphonium salts were successfully used as catalysts in a Michael reaction between unsaturated ketones/acetals with nucleophiles. Similarly, phosphonium salts were found to catalyze aldol-type reactions between aldehydes/acetals and nucleophiles. Moreover, bisphosphonium salt [PBu$_3$OPHBu$_3$][OTf]$_2$ outperformed metal-based, Lewis acid catalysts (TiCl$_4$ and SnCl$_4$) in a reaction between N-benzylidene-aniline and ketene silyl acetal of methyl isobutylrate.$^{[45g]}$ Other catalytic applications of phosphonium salts include TMSCN addition to aldehydes/ketones,$^{[66]}$ cyanosilylation of aldehydes/ketones,$^{[67]}$ N,N-dimethylation of primary aromatic amines,$^{[68]}$ aldehyde cyclotrimerization,$^{[69]}$ protection/deprotection of alcohols in reactions as alkyl vinyl ethers.$^{[70]}$

The importance of the low-lying σ^* orbital was experimentally confirmed in 2006, when Lewis acidic alkoxyphosphonium cations (Scheme 8) proved to be efficient catalysts for Diels-Alder reactions, using α,β-unsaturated amides as dienophiles.$^{[71]}$ As high as 91% yield in high endo-selectivity was achieved using the corresponding phosphonium salt for a reaction between a cyclopentadiene and an unsaturated amine. The authors remarked that the crucial requirement, for the catalytic success of the reaction, was hypervalent bonding between the phosphonium salt and a Lewis base, in the active species.

![Scheme 8. Diels-Alder reaction catalyzed by a phosphonium salt.](image)

Recent catalytic developments, which build upon this concept, are dominated by achievements in Stephan’s group.$^{[60]}$ Relying on electron withdrawing substituents
to lower the energy of the antibonding orbital on the phosphonium cations, they have synthesized a range of electrophilic phosphonium cations (EPCs). General synthetic approach to the EPC species (Figure 10) included oxidation of a phosphine with XeF$_2$ and a subsequent fluoride abstraction with B(C$_6$F$_5$)$_3$.

![Figure 10. Selected EPCs synthesized by Stephan et al.](image)

EPCs’ Lewis acidic properties proved to be even higher than of B(C$_6$F$_5$)$_3$. Their remarkable catalytic properties were demonstrated for: hydrodefluorination reactions of fluoroalkanes,$^{[72]}$ olefin isomerisation to 2-hexane, Friedel-Crafts dimerizations, isobutylene polymerization,$^{[73]}$ hydrosilylations of olefins, alkynes, ketones and imines,$^{[73-74]}$ dehydrocoupling of acids, amines and thiols with silanes.$^{[75]}

1.2.4 Lewis acidic P(III) species

Contrary to the widely-acknowledged P(V) Lewis acids, the presence of a lone pair of electrons in P(III) compounds acclaimed P(III) species as Lewis bases. Interest for the Lewis acidic P(III) compounds was ignited with Dimroth and Hoffmann’s discovery of phosphonium cations (R$_2$P$^+$) in 1964.$^{[76]}

Phosphonium cations are considered among the most stable phosphorus-based Lewis acids.$^{[77]}$ General features of a dicoordinate P(III) centre in phosphonium cations includes: sp2-hybridized central phosphorus atom, a distinctively high accumulation of positive charge, a formally vacant 3p π-type orbital, and a lone pair of electrons in their σ-orbital.$^{[78]}$ These features make them isovalent to Group 14 species:
singlet state carbenes, silylenes, germyleanes, stannylenes and plumbyleanes (Figure 11); and isoelectronic to chloronium and silylenium ions.

While the localization of the positive charge on phosphorus allows for participation in a diversity of reactions, the coordination-chemistry is substantially defined by the existence of the lone pair at phosphorus.

![Fig 11](image)

Figure 11. Isovalency of phosphenium cations (a) and analogues group 14 species (b): singlet carbenes (E=C), silylenes (E=Si), germyleanes (E=Ge), stannylenes (E=Sn), and plumbyleanes (E=Pb).

Their electronic structure qualifies them to act amphiphilic and amphoteric. Depending on the π-charge distribution, three types of R_2P^+ cations exist (Scheme 9).

![Scheme 9](image)

Scheme 9. Groups of phosphenium cations based on their π-charge distribution

In the first group, positive π-charge is localized solely on substituents, while the phosphorus atom bears overall neutral or negative π-charge. In these species, central phosphorus is nucleophilic, and a representative of the group is 2-
phosphaallylic cation. Second group comprises of species with an ambiphilic (both electrophilic and nucleophilic) central phosphorus, with a localization of an overall positive \(\pi \) -charge. Aminophosphenium cations are examples of this charge distribution. Species such as heterocyclic bis-phosphonio-isophosphindolide ions have an ambiphilic phosphorus centre with a reduced electrophilic character. As such, they represent a crossbreed of the former two groups and can be represented with a mesomeric formula as in Scheme 9. \(^{82}\) \(^{31}\)P NMR shift of 242 ppm which was within the range for phosphonium ions indicated that predominating structures are of a phosphenum ion stabilized by methylene phosphorane groups and of a phospholide anion.

Another characteristic feature that arises from the electrophilic nature and a low coordination number is the appearance of their chemical shift between \(\delta_p +100 \) ppm and \(\delta_p +500 \) ppm in the \(^{31}\)P NMR spectrum. Rare exceptions occur in cases when substituents with conjugate effects, steric effects or ability to disperse positive charge are employed. \(^{83}\)

1.2.4.1 Previous studies

Apart from the Dimroth and Hoffmann’s report in 1964, \(^{76}\) phosphonium cations have been observed as reactive intermediates \(^{84}\) and species that result in the appearance of phosphine phosphinous halide peaks in mass spectra. \(^{85}\) Fleming et al. ’s synthesis of a “unique Dialkylaminophosphine cation” from 1972 was the first reported synthesis of a stabilized phosphonium cation. \(^{86}\) The cyclic dimethylaminophosphine was obtained via fluoride abstraction from the cyclic 2-fluoro-1,3-dimethyl-1,3,2-diazaphospholidine precursor (Scheme 10), which caused a significant downfield shift of \(\Delta \delta_p \) 126 ppm.
The first acyclic diaminophosphenium cation was obtained by Schultz and Parry\cite{87} from a reaction between (Me₂N)₂PCl and AlCl₃ (Scheme 11). While the initial 1:1 ratio of reactants produced an adduct of the two species, subsequent addition of another equivalent of (Me₂N)₂PCl yielded a unique phosphino-phosphenium cation [(Me₂N)₂P=P(NMe₂)₃]⁺.

$$\text{Scheme 11. Synthesis of the first phosphino-phosphenium cation}$$

Alternatively, the same compound can be considered a phosphino-phosphonium cation when represented with a Lewis structure (Figure 12).

$$\text{Figure 12. Phosphino-phosphenium cation, represented via a dative bonding model (a) and a phosphino-phosphonium cation, represented via Lewis model (b).}$$

1.2.4.2 Synthesis

Various synthetic approaches to phosphonium cations have been established since their discovery, yielding an array of phosphonium species; many of which were reviewed in 1985.\cite{83} The most commonly followed protocol to generate donor-stabilized dialkylphosphonium and diarylphosphonium salts is halide abstraction of a
halophosphine in the presence of a Lewis base. A range of similar adducts has also been generated via a subsequent Lewis base substitution with a stronger donor. A simple approach to stable phosphonium salts, such as diaminophosphonium salts, includes the addition of a Lewis base to the salt solution.

Their versatility as reagents has been recognised and explored, and the role of an electrophilic, lone pair bearing, phosphorus centre acknowledged. Despite this, almost thirty years after the discovery of phosphonium cations, Burford et al. noted: “The anticipated Lewis acidic behaviour of phosphonium cations has been demonstrated, but the diversity of such interactions is underestimated”. Contrary to the profoundly explored donor chemistry of phosphonium cations, their acceptor chemistry has remained relatively unexploited.

1.2.4.3 Reactivity

Theoretical and experimental studies conducted for different phosphonium cations show that stabilization of these species requires π-donation from the substituents (Lewis base) into the vacant P(3p) orbital. Most commonly, this stabilization is provided by one or two strongly π-donating and σ-withdrawing amido fragments. Delocalization of nitrogen lone pairs into the formally vacant P(3p) orbital results in a heteroallylic 3-centre-4-electron (3C-4e) system, which decreases the acceptor ability of the central phosphorus atom and favours the singlet ground state. Frontier molecular orbital studies of diaminophosphonium cations (H₂N)₂P⁺ and (Me₂N)₂P⁺ resulted in a general “olefinic” orbital sequence (Scheme 12).
Phosphonium cation’s Lewis acidic nature can be assigned to its LUMO, represented by a π^* orbital. Similarly, its weakly Lewis basicity derives from the lone pair of electrons occupying HOMO-1 (0.6eV below the HOMO), which point perpendicularly to the 2p AOs of the nitrogen atom. HOMO in a phosphonium cation corresponds to the π_2 orbital of the heteroallylic π-electron system. Alkyl substituents in the amino group can inductively destabilize the lone pair on the nitrogen, resulting in a more “carbenic” frontier orbital sequence, which allows phosphonium cations to behave as electrophiles. Thus, HOMO becomes less relevant for describing R_2P^+ reactivity. Lowest energy level was found to be a 4B_1 level, which corresponds to the above mentioned 3C-4e hetero-allylic system.

1.2.4.4 R_2P^+ stabilization

According to experimental and theoretical data, thermodynamic stabilization of the phosphonium cations is best achieved through $L\rightarrow P^+\pi$-bonding, with at least one amido substituent.

Scheme 12. Olefinic frontier molecular orbital diagram of the diaminophosphonium cation ($H_2N)_2P^+$
Another mean of stabilization is the delocalization of positive charge via cyclic \(\pi \)-electron destabilization, using substituents such as ferrocenyI,\(^{[92]}\) \(
abla C_5\) (multihapto bonding)\(^{[93]}\) or diazaphospholium cation (conjugated 6 \(\pi \)-electron system).

On the other hand, other substituents seemingly capable of participating in \(\pi \)-electron conjugation such as halogen, alkoxy or phenyl groups, were not successful in achieving so. The negative outcome was assigned to insufficient \(\pi \)-donating abilities of halogen and alkoxy groups to provide required thermodynamic stabilization. Successful stabilization with these groups requires additional support of a transition metal-based substituent.\(^{[94]}\) In case of diphenylphosphenium cation \(
abla P^+\), the reasons for this are: a) a lack of coplanarity between the phenyl \(\pi \)-orbitals and the P(3p) orbital, and b) a resulting loss of aromaticity within the phenyl groups in case of \(\pi \)-delocalization.\(^{[78]}\) While these reasons make isolation of \(
abla P^+\) challenging, they allow for the localized positive charge on P, which results in a lower LUMO and higher Lewis acidity compared to \((R_2N)_2P^+\).

1.2.4.5 Complexes with metals

Due to their ambiphilic nature, phosphenium cations are ideal candidates for coordination chemistry with low-valent transition metals. This property allows them to form very short bonds with metals, which is highly useful in allowing them to act as ancillary ligands to metals of groups 6-10. In principle, the interaction is constituted from a dative P:→TM \(\sigma \)-bond and a TM→P backbonding. In terms of orbital interactions, a dative bond arises from the mixing of metal-LUMO with the phosphenium-(HOMO-1) (P lone pair); and the backbonding is established from a combination of one of the metal’s occupied d-orbitals with phosphenium-LUMO.\(^{[83]}\)
Examples of phosphenium complexes with metals and their reactivity have been comprehensively reviewed in the past.[83, 95] Intramolecular ligand exchanges between L-type ligands ancillary to the phosphenium unit in phosphenium-metal complexes are typical and often accompanied by geometric isomerisation.[95b] Besides ligand exchanges, phosphenium-metal complexes readily undergo nucleophilic reactions with anionic nucleophiles, which frequently result in isomerisation as well.[83, 95b] Promising uses of phosphenium-metal complexes include catalysis and reactions with unsaturated organic molecules. However, examples of such applications are currently scarce.[96]

1.2.4.6 Complexes with Lewis bases

Phosphenium ions’ ability to form donor-acceptor complexes with Lewis bases testifies to their pronounced Lewis acidity. The first such complex [NHC→PR\textsubscript{2}]+ was obtained by Kuhn et al. from a reaction between NHC, Ph\textsubscript{2}PCl and AlCl\textsubscript{3}.[97] In their case, reaction favoured the formation of a [LB→PR\textsubscript{2}][AlCl\textsubscript{4}] complex (Scheme 13) due to the “base strength” of the NHC ligand. However, analogues reactions have been reported to result in the formation of R\textsubscript{2}PCl and LB→AlCl\textsubscript{3} instead (Scheme 13). As a result of the competition between the phosphenium cation and the counterion (AlCl\textsubscript{4}⁻), counterion can endure nucleophilic cleavage, resulting in LB→AlCl\textsubscript{3} adduct formation.[81, 83, 98]

![Scheme 13](image-url)

Scheme 13. Product formation, depending of the ligand (Lewis base, LB) strength. i) base strength is not high, so LB→PR\textsubscript{2}+ product formation is favoured; ii) LB is a strong base (“hard” base), which causes a nucleophilic cleavage of the counterion (“hard” acid) and a LB→AlCl\textsubscript{3} adduct formation.
The explanation for this can be inferred from the Pearson’s extension of the HSAB principle.[99] Using DFT calculations, Pearson has studied the relationship between molecular properties and chemical bonding in Lewis acid-base complexes. Absolute electronegativity (χ) was used as a measure of base strength, and absolute hardness (η) as a measure of acid hardness. According to the HSAB principle, preferred combinations in a complex are hard acid-hard base, and soft acid-soft base. Thus, highly electronegative bases (hard bases) would prefer binding to AlCl$_3$ (hard acid), while bases of low χ prefer binding to the phosphonium cation (soft acid). Also, higher absolute electronegativity of the low coordinate P(III) cations ($(\text{H}_2\text{N})_2\text{P}^+=(\text{H})\text{(H}_2\text{N})\text{P}^+=(\text{NH})\text{P}^+$) was found to be directly proportional to their tendency to form complexes with bases.

Pearson’s extension of the HSAB principle proves to be applicable also to the interion interactions between low coordinate P(III) species and their counterions. Some examples include [($\text{iPr}_2\text{N})_2\text{P}]\text{X}$ (X=AlCl$_4$, GaCl$_4$, BPh$_4$),[100] [($\text{iPr}_2\text{N})\text{(Mes)}\text{P}]\text{AlCl}_4$,[101] and [Mes*≡P][AlCl$_4$].[102]

With respect adduct formation with neutral donors, an array of donor-acceptor complexes have been synthesized with carbenes,[103] phosphines,[104] arenes,[105] amines,[106] nitriles,[107] imines,[106b, 108] urea,[106c] thiourea,[106c] selenourea[106c] and gallanes.[109] However, the first example of a dicoordinate P(III) phosphonium dication with has just recently been reported by our group, [((\text{Ph}_3\text{P})_2\text{C})($\text{iPr}_2\text{N})\text{P}]^{2+}$, and will be discussed in detail further in the text.[110]

1.3 Carbones

Carbones comprise another group of carbon-based ligands, of a general formula CL$_2$ (where L stands for a ligand). Due to their unusual properties, they have
indisputably become an essential class of species in coordination chemistry; from assisting stabilization of the highly labile species and serving as ligands in general, to initiating scientific discussions over bonding principles.\cite{111}

“Carbone” name derives from a divalent “naked” carbon(0) centre, which bears two electron pairs, to differentiate them from previously discussed carbenes - one electron pair donating carbon(II) ligands (:CR\textsubscript{2}).\cite{112}

Carbodiphosphoranes (CDPs) are carbone species in which both ligands are phosphines ((R\textsubscript{3}P)\textsubscript{2}C). Ramirez \textit{et al.} have reported the first example of this kind in 1961.\cite{113} Unfortunately, the new class of compounds did not further attract significant attention, since the formulas used (at that time) to describe carbodiphosphoranes (Figure 13, a-d) were not indicative of its nature as a carbon-complex.

![Figure 13. Different structural depictions of hexaphenylcarbodiphosphorane: in terms of resonance structures (a-c), a ylidic form (d), a dative structure (e).](image)

Section 1.3.1. will cover some of the most important structural features of carbones that derived from the theoretical studies,\cite{112, 114} as well as their comparison to the NHC ligands. These differences account for their different chemical properties and rationalize our reasons for using carbodiphosphorane over NHC as a donating ligand in our study.
1.3.1 Carbone versus carbene

1.3.1.1 Bonding analysis

The two highest lying occupied orbitals (HOMO and HOMO-1) of examined carbodiphosphoranes (L = PH$_3$, PMe$_3$, PPh$_3$) correspond to π and σ lone-pair orbitals, respectively, with contributions from σ^*(P-R) orbitals. In all three cases, the energy of HOMO$^{-1}$ is slightly lower than HOMO. As depicted in Figure 14, a prominent orbital interaction is the one where carbon attains its singlet (1D) state of $2s^2$ $2p^2_\pi$ $2p^0_\sigma$ $2p^0_{\pi\parallel}$ configuration (relative to the molecular plane), and ligand orbitals $\sigma(++,)$ and $\pi_{\parallel}(+,-)$ donate electrons into its vacant $2p^0_\sigma$ $2p^0_{\pi\parallel}$ atomic orbitals (L:\rightarrowC\rightarrowL). As such, carbon atom in carbones formally attains an electron octet, in comparison to a sextet in carbenes.

The lone-pair character of orbitals at the central carbon was also suggested by NBO studies, with σ-MO electron occupation of 1.59 to 1.62 electrons, π-MO electron occupation 1.51 to 1.53 electrons, and partial atomic charge at the central carbon of -1.32 to -1.47 electrons. Since L-C bonds in carbones are not formed via direct participation of carbon valence electrons, carbon remains divalent. Thus, its σ and π available lone pairs account for carbone’s high Lewis basicity, and ability to strongly bond to main-group Lewis acids or transitional-metal complexes.
In contrast, carbenes are neutral divalent carbon compounds of formula :CR₂, in which the central carbon atom possesses a lone pair of electrons, which can be associated with two nonbonding orbitals in various ways. The simplest representative is methylene, :CH₂.

The electronic geometry of carbenes can be nonlinear (bent) and linear (Scheme 15), and it is governed by their spin ground state and multiplicity. In the nonlinear structure, central carbon is sp² hybridized, while sp hybridization dominates the linear structure.

A majority of carbenes are bent. Out of four possible ground states for sp² hybridized carbon, the most commons are: the $\sigma^1 \pi^1 \Sigma^1 \text{B}_1$ triplet ground state (Scheme 15a), where both electrons are of parallel spins; and the singlet state $\sigma^2 \pi^0 \Sigma^1 \text{A}_1$ (Scheme 15b), with both antiparallel oriented electrons in the σ orbital.
An important representative of the singlet carbene class is N-heterocyclic carbene, which possess a heterocycle and a minimum of one nitrogen heteroatom. HOMO in an N-heterocyclic carbene (NHC) is a delocalized π orbital (\(p_\pi \rightarrow p_\pi \) delocalization, Figure 15), which originates from the donation of the lone pair electrons on the nitrogen (in the ylidic form) to the vacant p-orbital on carbon. On the other hand, HOMO displays a \(\sigma \)-type lone pair orbital at the central carbene C(II) atom. Interestingly, overall charge distribution at the central carbon is +0.04e. Despite the slightly positive charge, the negative charge of its energetically high \(\sigma \) lone pair allows carbene carbon to exhibits nucleophilic behaviour.
Prior to the discovery of the first stable carbene,[116,117] amines and imines were considered the first choice for a highly basic neutral compound, due to the strongly attractive interaction of the nitrogen’s lone pair of electrons with protons. In comparison to other second-row electron-pair bearing atoms, such as oxygen or fluorine atoms, lone-pair bearing nitrogen orbital is higher in energy. Proton affinity (PA) value is a gas-phase property of an atom or a molecule and as such, an important measure of basicity.[118] Energy of the higher lying lone-pair orbital is proportional to PA values. Consecutively, nitrogen bases have higher PA values than oxygen or fluorine bases. By this analogy, even higher basicity was expected from carbon-bearing lone pair compounds.[119]

Indeed, experimental and theoretical calculation displayed a PA of about 258 kcal/mol for parent NHC, and values above 220 kcal/mol for acyclic carbenes; which place carbenes among superbases. PA values can also be tuned by substituents, as calculated PAs for substituted NHCs go up to 275 kcal/mol.[114e, 120a, 120b] For instance, electron-withdrawing halogen substituents on NHC ligands decrease first proton affinity values, while σ-donating alkyl and aryl groups increase them. Whereas second PA values don’t follow the same trend and make the second protonation challenging, they still remain relatively high, with the highest value (106.5 kcal/mol) reported for π-donating amino (-NMe$_2$) groups.[114e]

Since carbone compounds possess two lone pairs or electrons, PA values are key measures of their basicity. With respect to first PA strengths, halophosphine ligands in C(PR$_3$)$_2$ amount to 209-280 kcal/mol, slightly higher than PAs of carbenes, but enough to place them both among super bases. An overview of theoretical values
for selected normal N-heterocyclic carbenes and carbodiphosphoranes is displayed in Table 1, below.

Table 1. Reported calculated first (PA$_1$) and second (PA$_2$) proton affinities and NBO partial charges at the central carbon atom q(C) of selected N-heterocyclic and carbodiphosphorane compounds in kcal/mol$^{[114e]}$

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>R</th>
<th>PA$_1$</th>
<th>PA$_2$</th>
<th>q(C) M H$^+$</th>
<th>q(C) M-(H$^+$)$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHC</td>
<td></td>
<td>F</td>
<td>228.9</td>
<td>38.9</td>
<td>0.04</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>244.3</td>
<td>57.6</td>
<td>0.07</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H</td>
<td>254.2</td>
<td>47.7</td>
<td>0.04</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Me</td>
<td>262.3</td>
<td>71.8</td>
<td>0.04</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph</td>
<td>264.7</td>
<td>100.1</td>
<td>0.08</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NH$_2$</td>
<td>253.9</td>
<td>76.7</td>
<td>-0.01</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NMe$_2$</td>
<td>259.8</td>
<td>106.5</td>
<td>0.02</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tBu</td>
<td>270.6</td>
<td>92.3</td>
<td>0.05</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mes</td>
<td>270.4</td>
<td>105.3</td>
<td>0.08</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ad</td>
<td>274.9</td>
<td>105.7</td>
<td>0.05</td>
<td>0.20</td>
</tr>
<tr>
<td>CDP</td>
<td></td>
<td>F</td>
<td>209.3</td>
<td>70.6</td>
<td>-1.69</td>
<td>-1.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cl</td>
<td>227.9</td>
<td>116.4</td>
<td>-1.35</td>
<td>-1.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H</td>
<td>255.7</td>
<td>114.4</td>
<td>-1.32</td>
<td>-1.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Me</td>
<td>278.4</td>
<td>156.2</td>
<td>-1.47</td>
<td>-1.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph</td>
<td>280.0</td>
<td>185.6</td>
<td>-1.43</td>
<td>-1.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NH$_2$</td>
<td>280.0</td>
<td>153.5</td>
<td>-1.51</td>
<td>-1.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NMe$_2$</td>
<td>279.9</td>
<td>174.9</td>
<td>-1.64</td>
<td>-1.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>THP</td>
<td>287.6</td>
<td>188.9</td>
<td>-1.59</td>
<td>-1.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mes</td>
<td>280.7</td>
<td>201.1</td>
<td>-1.47</td>
<td>-1.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cy</td>
<td>280.5</td>
<td>184.0</td>
<td>-1.56</td>
<td>-1.39</td>
</tr>
</tbody>
</table>

Whereas values in carbenes correlate to the electronegativity of the substituents, in carbodiphosphoranes this is not the case. However, a clear discrepancy between the two ligand species is reflected in astoundingly higher second PA values for carbodiphosphoranes of up to 201.1 kcal/mol (R=Mes). In comparison, second PAs for NHC$_{NMe2}$ and C(P(NMe$_2$)$_3$)$_2$ amount to 106.5 kcal/mol and 174.9 kcal/mol, respectively. High second PA values allow carbones to be isolated as deprotonated zerovalent carbon salt species in a condensed phase.
1.3.1.3 Reactivities

When a monoadduct $L \rightarrow BH_3$ ($L = (Ph_3P)_2C$ or NHC) was reacted with B_2H_6, Petz et al. obtained a unique bisadduct, $(Ph_3P)_2C \rightarrow (BH_3)_2$, a presumed precursor to the isolated and characterised $[(Ph_3P)_2C \rightarrow B_2H_4(\mu -H)][B_2H_7]^{[121]}$. On the other hand, NHC$\rightarrow BH_3$ did not react with B_2H_6.

A reaction between $B(C_6F_5)_3$ and $L \rightarrow BH_3$ adducts, in case of $(Ph_3P)_2C$ ligand, yields a $[(Ph_3P)_2C \rightarrow BH_2]^+$ complex.$^{[122]}$ On the other hand, when $L=$NHC, a $[\text{NHC}-BH_2(\mu -H)BH_2-\text{NHC}]^+$ complex is formed, in which each NHC ligand donates a single lone pair of electrons.

These examples clearly portray the ability of a carbone ligand to employ its two available lone pairs and act as a two-fold base to Lewis acids, which is not the case for NHC ligands.

1.3.2 Carbodiphosphorane coordination modes to Lewis acids

Considering their high basicities, carbones can easily form adducts with Lewis acids in a monodentate coordination mode (Figure 16a). However, their main attribute derives from the π-lone pair located in HOMO, which can be used to enhance bonding in the form of an additional bond to a bidentate Lewis acid (Figure 16b), or to establish a bond with an additional monodentate Lewis acid (Figure 16c). Donor-acceptor model of depiction in this figure is chosen to emphasize CDPs donor-abilities, irrespective of the actual bonding nature in compounds, with awareness of the latest criticism over the use of dative bonds.$^{[123]}$
Figure 16. Carbone coordination modes to the Lewis acid A: a) via σ lone pair donation to a Lewis acid; b) via both, σ and π, lone pair donations to a single Lewis acid; c) via two lone pair donations, each to a separate Lewis acid.

In compounds where carbone is coordinated to a single monodentate, Lewis acid, lone pairs located in carbon’s second HOMO can engage in negative hyperconjugation. As a result, some electron density will be back-donated to the ligand. In case of carbodiphosphoranes (L=PR₃), electron density will be back-donated into P-R σ”orbital, which will slightly weaken the P-R bond, but strengthen the P→C bond.¹³ Relatively many adducts of carbones and main-group species in this coordination mode are known, and they usually occupy a planar arrangement of atoms.¹³ Carbones of choice can vary from carbodiphosphoranes, electron-rich allenes, carbodicarbenes, mixed and border-line carbones, to carbodiarsoranes and carbodiarnines.

Electron-rich allenes R(Me₂N)C=C=C(NMe₂)R (R=NMe₂, OEt) have been used in the past to successfully stabilize small molecules such as CO₂, CS₂ and SO₂.¹²⁴ However, the first example of (Me₂N)₂C=C(NMe₂)₂ (TAA)-assisted stabilization of a group 13 Lewis acid was reported just recently.¹²⁵ In particular, the TAA-GaCl₃ adduct was obtained as a mixture of two enantiomers, when GaCl₃ was added to a THF solution of the corresponding allene. Reaction of TAA with [ClAu(PP₃)] and a subsequent exchange of counterion Cl⁻ by SbF₆⁻, resulted in the formation of [(((Me₂N)₂C)₂C)Au(PP₃)][SbF₆].¹²⁶
In general, adducts of carbones and transition metals can be obtained by introducing a free double ylide to a transition metal species, containing a labile-bonded ligand or an available coordination position. Bertrand’s group recently introduced a carbodicarbene carbone. Its strong donor abilities were demonstrated in a reaction with \([\text{Rh(μ-Cl)(CO)}_2]\) in benzene, which yielded an orange crystalline adduct \([\text{RhCl(CO)}_2\{\text{C(PPh}_3)_2\}]\). With respect to main group chemistry, Chen et al. have reported group 13 adducts such as \([\{(\text{PPh}_3)_2\text{C}\}\text{AlCl}_3]\) and a dicationic hydridoborenium ion \([\{(\text{NHC})_2\text{C}\}_2\text{BH}]^{2+}\), stabilized by two carbodicarbenes. Similarly, two carbodicarbenes were used by Vidovic et al. to achieve the unusual “bis(carbone) capture of a P(III)\(^{3+}\) cation” \([\{(\text{NHC})_2\text{C}\}_2\text{P}]^{3+}\). Bond lengths of 1.733(4) Å (P1-C1) and 1.747(4) Å (P1-C4) and the increment in the resulting compound’s average C1/C4-C bond distances were suggestive of the existing (NHC)\(_2\)C→P dative bonds.

Among carbodiphosphoranes, hexaphenylcarbodiphosphoranes predominate as Lewis bases in adducts with many group 13-15 compounds which serve as Lewis bases.

Some exceptions, such as cyclic carbone-stabilized species include its adducts with borane\(^{130}\) and galliumtrichloride\(^{125}\).

While cyclic carbone adduct of borane BH\(_3\) was firstly reported by Schmidbaur et al. in 1981, the first crystal structure of the carbone-borane adduct was published only recently by Petz et al.\(^{121}\) who used a hexaphenylcarbodiphosphorane as a Lewis base. The crystals were obtained by introducing a toluene or a THF solution of C(PPh\(_3\))\(_2\) to the gaseous B\(_2\)H\(_6\). The reaction product was replicable in the solvent-less conditions, in which the yielded crystals appeared colourless. In both cases, central
carbon atom displayed clear pyramidalization with the sum of the angles ~359°.[121] Similar synthetic method was applied to other Lewis acidic moieties of group 13, presented

in Table 2.[13, 131] Average P-C bond values (Table 2) reflected short distances in all compounds, which indicated the involvement of the HOMO-1 lone pair into the back-donation into the antibonding orbital of P-C\textsubscript{Ph}.

Table 2. Summary of known triphenylcarbodiphosphorane adducts of Group 13 compounds, and their mean P-C bond values; L=C(PPh\textsubscript{3})\textsubscript{2}

<table>
<thead>
<tr>
<th>Adduct</th>
<th>Average P-C\textsubscript{Ph} bond length [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-BH\textsubscript{3}</td>
<td>1.685(3)</td>
</tr>
<tr>
<td>L-BPh\textsubscript{3}</td>
<td>-</td>
</tr>
<tr>
<td>L-AlBr\textsubscript{3}</td>
<td>1.718(3)</td>
</tr>
<tr>
<td>L-GaCl\textsubscript{3}</td>
<td>1.714(1)</td>
</tr>
<tr>
<td>L-InMe\textsubscript{3}</td>
<td>1.685(3)</td>
</tr>
<tr>
<td>L-InCl\textsubscript{3}</td>
<td>1.706(7)</td>
</tr>
<tr>
<td>L-InBr\textsubscript{3}</td>
<td>1.687(7)</td>
</tr>
</tbody>
</table>

Carbone-silica adducts (A = SiMe\textsubscript{3}, SiPh\textsubscript{2}H, SiMe\textsubscript{2}Et, SiCl\textsubscript{3})[13, 132] have been known for a long time before Alcarazo \textit{et al.}[125, 133] significant contributions to Group 14 with analogues of chlorinated Ge and Sn compounds, summarised in Scheme 16.
Surprisingly, not many species in which carbone simultaneously stabilizes two Lewis acids (Figure 17c) have been isolated and characterised so far. The simplest, and most abundant, isolated example is a diprotonated carbone \([\text{H}_2\text{Cl}_2]\)^2+, with different counteranion and ligand combinations, many of which have been reviewed recently by Petz.\(^{[13]}\) A variation, concerning overall charge of such complexes, occurs when one of the ligands is replaced by an anionic species. Replacing one of the ligands with PPh\(_2\)OBF\(_3\), PPh\(_2\)OBI\(_3\) or PPh\(_2\)OAlBr\(_3\), results in a monocationic adduct. A few neutral diprotonated carbone species have been accessed via a reaction between 1,1-Bis(diphenylphosphino)methane and a borane.\(^{[134]}\)

Systems in which one or both hydrogen atoms are replaced with a halogen (X = F, Cl) have also been reported and structurally characterised (Figure 14a-c).\(^{[135]}\) Since halogens bear higher electronegativity than carbon, the electron density of the donating lone pair will become more concentrated at the halogen, resulting in X,
suitable to donate the same electrons back to the carbon atom. Consequently, an arrow in the opposite direction has been suggested for these systems (Figure 17a).[13]

\[
\begin{align*}
\text{a)} & \quad \begin{array}{c}
\text{H} \\
\text{R}_3\text{P} \\
\text{C} \\
\text{X} \\
\text{PR}_3
\end{array} \\
\text{2+}
\end{align*}
\]

\[
\begin{align*}
\text{b)} & \quad \begin{array}{c}
\text{H} \\
\text{R}_3\text{P} \\
\text{C} \\
\text{X} \\
\text{PR}_3
\end{array} \\
\text{2+}
\end{align*}
\]

\[
\begin{align*}
\text{c)} & \quad \begin{array}{c}
\text{Cl} \\
\text{Cl} \\
\text{C} \\
\text{((CF}_3)_2\text{HCOEt}_2\text{N})_2\text{P} \\
\text{PR}_{122}(\text{OCH(CF}_3)_2)
\end{array} \\
\text{2+}
\end{align*}
\]

Figure 17. Selected known compounds in which carbone C is connected to two Lewis acid simultaneously

In 2009, Petz *et al.* synthesized \[\{(\mu-\text{H})\text{H}_4\text{B}_2\}\{\text{C(PPh}_3)_2\}\text{][B}_2\text{H}_7\] (Figure 17d) from a reaction between \[\text{H}_3\text{B}\{\text{C(PPh}_3)_2\}\] and dimethoxyethane. \[\text{[121]}\] The final complex is believed to form due to solvent-induced deprotonation of the originally formed bis-borane adduct. Resulting \[\{(\mu-\text{H})\text{H}_4\text{B}_2\}\{\text{C(PPh}_3)_2\}\text{][B}_2\text{H}_7\] is known as the first example of carbone as a twofold base to two main-group Lewis acids. However, back in 1976, Schmidtbaur *et al.* reported a species in which \((\text{MePh}_3\text{P})_2\text{C}\) carbon was using both lone pairs to donate to two trimethylsilyl moieties, \[(\text{Me}_3\text{Si})_2\text{C(PMe}_3)_2\] (Figure 17e).\[\text{[136]}\] The compound was obtained as a white precipitate resulting from a reaction between \((\text{MePh}_3\text{P})_2\text{C}\) and \(\text{Me}_3\text{SiCl}\) in benzene but decomposed within minutes, rendering the full characterisation difficult to complete. While several examples of silylated carbodiphosphoranes are known,\[\text{[132, 137]}\] no other examples of similar bis-silyl carbones have been accessed since. Another complex, which
ressembles a cyclic carbodi phosphorane donating its lone pairs to two Sulphur atoms (Figure 17f), was characterised by Bianchini et al. in 1980’s. Unfortunately, this five-coordinate iron(II) complex hasn’t been acknowledged as a carbone-containing compound.

1.4 Carbone-stabilized phosphonium dication

Various electron-rich ligands have been recently employed to stabilize mononuclear polycations of main-group elements. Due to the coordinative saturation or Lewis base resemblance, novel species failed to exhibit Lewis acidic behaviour. Similar behaviour was also observed for NHC-stabilized polycationic P(III) compounds, which resembled Lewis basic neutral phosphines despite being successful in chloride substitution reactions and coordination chemistry. However, our group has reported the first example of a Lewis acidic, dicoordinate phosphonium dication, using the exceptional donor abilities of the carbone ligand.

The targeted phosphonium ion was obtained via the chloride abstraction from the monocationic precursor \([(\text{Ph}_3\text{P})_2\text{CP}(\text{N}^{i}\text{Pr}_2)\text{(Cl)}])^{+}\) according to the Scheme 17 below. \(^{31}\text{P}\) NMR shift of 355.7 ppm for \(\text{P}_{\text{central}}\) was characteristic of two-coordinate phosphonium cations (200-500 ppm). Electron-depletion at the \(\text{C}_{\text{carbone}}\) was also evident from the ~40 ppm downfield shift in \(^{13}\text{C}\) NMR compared to the monocationic precursor.

\[
\begin{array}{c}
\text{R}_3\text{P} & \text{CiPr}_2\text{NPCl}_2(\text{2eq}) & \text{benzene} & \text{R}_3\text{P} & \text{NiPr}_2\text{Cl}^{+} & \text{Cl}^{-} \\
\text{Ph}_3\text{P} & \text{Cl}^{-} & \text{AlCl}_3 \text{ or NaBARF}_4(\text{2eq}) & \text{DCM} & \text{Ph}_3\text{P} & \text{NiPr}_2^{2+} [\text{X}]_2 \\
\text{1} & \text{[2][Cl]} & & & \text{[3][X]} \\
\text{X} = \text{AlCl}_4^{-} \text{, BARF}_4^{-} \\
\end{array}
\]

Scheme 16. The synthesis of a carbone-stabilized phosphonium dication, where X=AlCl\(_4^{-}\) or BARF\(_4^{-}\).
A crucial factor in providing thermodynamic stability to the dication was an allene-like nature of the C-P-N unit. Planarity of the P₂CPNC₂ fragment allowed for a “flow” of adjacent carbone and amino π-electron lone pairs into the vacant P(3pₓ) orbital. Conjugation of the C-P-N fragment was confirmed with the shortening of the bonds between P_central and carbone and amino substituents, compared to the monocationic precursor.

1.4.1 Computational analysis

4π heteroallylic character of the C-P-N moiety was also confirmed by DFT calculations. Predicted C_carbone-P (1.745 Å) and P-N_amino (1.647 Å) bond lengths were in accordance with the experimental values 1.739(5) Å and 1.623(5) Å, respectively. HOMO was delocalized along the C-P-N fragment, while the molecular orbital corresponding to the lone pair on P_central (HOMO⁻¹²) indicated significant destabilization relative to HOMO⁻¹² of [P(NMe₂)₂]⁺. These results indicated better σ-donating abilities of 3²⁺. Calculations also showed better stabilization of HOMO⁻¹⁴ and a low-lying LUMO (π⁺) for 3²⁺ compared to [P(NMe₂)₂]⁺, indicating better π-interaction within the C-P-N fragment (versus N-P-N), and better electron-accepting properties of 3²⁺.

Furthermore, Natural Bond Orbital (NBO) and Natural Resonance Theory (NRT) analysis for 3²⁺ and an analogue [(H₃P)₂CP(NH₂)]²⁺ further confirmed a 3-centre-4-electron (3C-4e) bond for the C-P-N moiety. Based on the analysis, the best description of the electronic structure is via two resonance forms, represented in Scheme 18. Consistent with the 3C-4e bond description, each resonance structure was characterised with a low lone pair electron occupancy (1.54-1.69 e) and a significant second order interaction energy (200-257 kJ/mol) for lone pair→ π⁺. However, such
description suggested a formal neutral charge on P_{central}, which was not consistent with the reactivity that 3^{2+} exhibited.

![Scheme 17. Calculated resonance forms for 3^{2+} and an analogue [(H$_3P$)$_2CP(NH_2)$_2]$^{2+}$](image)

1.4.2 Lewis acidic reactivity of [(Ph$_3P$)$_2CP(N^iPr)$_2]$^{2+}$

The Lewis acidic behaviour of 3^{2+} was confirmed in reactions with trimethylphosphine (PMe$_3$) and 4-Dimethylaminopyridine (DMAP). In the initially performed reaction of equivalent amounts $[3^{2+}][\text{AlCl}_4]$$_2$ and PMe$_3$, a complex reaction system of two occurring equilibria was observed (Scheme 19).

$$[3^{2+} \cdot \text{PMe}_3][\text{AlCl}_4]_2 \xrightleftharpoons{+\text{PMe}_3} [3^{2+}][\text{AlCl}_4]_2 \xrightleftharpoons{+\text{PMe}_3} [2^+] [\text{Cl}] + \text{Me}_3\text{P} \cdot \text{AlCl}_3$$

Scheme 18. Proposed equilibria for the interaction of $[3^{2+}][\text{AlCl}_4]_2$ and PMe$_3$(1:1)

The observed equilibria could be manipulated by varying the reaction temperature and/or molar ratios. In general, low temperature favoured 3^{2+}-PMe$_3$ adduct formation, while molar increment of PMe$_3$ drove a reaction towards the 2^+ cation precursor and a $\text{Me}_3\text{P} \cdot \text{AlCl}_3$ adduct. Formation of the DMAP-AlCl_3 was also favoured when DMAP was used as a choice of base. These results were consistent with the HSAB concept, as both (hard) bases preferred to react with AlCl_4^- (hard acid) over 3^{2+}.

Counterion interference for this reaction was eliminated when AlCl_4^- was changed to BARF_4^-. However, the equilibrium between the starting material and an adduct
formation was still present (Scheme 20). Van’t Hoff plot by variable temperature showed that this was due to the establishment of a very weak P-P bond between the two species in the adduct.

\[[3^{2+} \cdot \text{PMe}_3][\text{BArF}_4] \rightleftharpoons \text{PMe}_3 \quad \text{[3^{2+}][\text{BArF}_4]}_2 \]

Scheme 19. Proposed equilibria between \([3^{2+}][\text{BArF}_4] \) and \(3^{2+} \cdot \text{PMe}_3 \) complex

The oxophilic nature of the dication was confirmed in reactions with water and methanol. Equimolar addition of \(\text{H}_2\text{O}/\text{MeOH} \) resulted in oxidative addition, without the former breakage of the O-H bond.\(^{[139]} \) NMR studies confirmed the formation of P-H and P-OR (R=H, OH) fragments, as well as the fluxionlity of the proton between P-O-R (R=H) and the N of the amino group, which was later abstracted with NEt\(_3\) • \(3^{2+} \) was the first non-metallic compound to perform such O-H bond activation, characteristic for transition metals\(^{[140]} \), in the absence of any additives and at room temperature. Another proof of \(3^{2+} \) oxophilicity was its ability to polymerise THF.

While Lewis acidity and high oxophilicity of \(3^{2+} \) were undoubtedly confirmed in the previously discussed studies,\(^{[110, 139]} \) counterion interference and purification difficulties with BAr\(^{F}_4 \) as a counterion rendered further reactivity studies challenging. Thus, overcoming those issues and performing subsequent reactivity studies formulated the outline of this thesis.

Chapter II primarily focuses on the synthetic viability and characterisation of \(3^{2+} \) in the presence of different counterions, followed by the reactivity studies which reveal its exceptional fluorophilic and oxophilic nature.

The highly oxophilic behaviour of \(3^{2+} \) is further elaborated in Chapter III, where a seemingly predictable reaction with pyridine \(N \)-oxide (PyO) leads to
unexpected oxygen insertion into a P-C bond via the Baeyer-Villiger reaction mechanism.

Finally, in Chapter IV, we continue to use exceptional electron-donating abilities of a carbone ligand to stabilize highly reactive dioxophosphorane moiety species. This is the first example of a parent-metaphosphonate in which the reactivity of the PO₂ unit is not quenched, and thus allows insight into the chemical nature of these elusive species.
CHAPTER II:

Preparation, structural analysis and Reactivity

Studies of a Phosphenium Dication
2.1 Results and Discussion

The objective of this project was: 1) to synthesize analogues of 3^{2+} by changing its carbone and amino substituents to investigate the dication’s properties dependence on electronic and steric changes; 2) to find an appropriate counterion for 3^{2+}, that would allow for the simple purification and stability towards Lewis bases; 3) to explore the scope of 3^{2+} reactivity.

The first objective was approached by introducing less steric hindrance or more stability via methyl and cyclic groups, respectively. For that purpose, carbone and its analogues ($C(PPh_2Me)_2$ and $C(PPh_2(CH_2)_{3/2})_2$), were used in combination with the following amino groups: 1Pr$_2$N, Cy$_2$N, Me$_2$N. The approach to the second objective consisted of exploring the synthetic viability of 3^{2+} in the presence of eight counterions: $\text{BAr}^\text{Cl}_4^-$, SbF_6^-, GaCl_4^-, PF_6^-, OTf^-, BPh_4^-, BF_4^-, and ClO_4^-.

2.1.1 Ligand exchange

To address how phosphine substituents of the stabilizing carbone ligand affect the Lewis acidic behaviour of the targeted dication, monocationic precursor analogues of 2^+ were prepared according to the procedure shown in Scheme 20.

![Scheme 20: Synthetic route for obtaining analogues of 2^+](image-url)

43
This was achieved by adding a benzene solution of the carbone ligand into the corresponding aminodichlorophosphate (R''_2NPCl_2; R'' = ^1\text{Pr}, Cy, Me) in excess. Vigorous stirring of the reaction mixture resulted in the formation of the white precipitate within 30 min. The targeted carbone-for-chloride exchange was inferred from the 31P NMR analysis of these reaction mixtures (Table 3).

Table 3. 31P NMR shifts (δ_P in ppm) obtained for the isolated monocations of the formula [R''_2NP(C(Ph_2R')_2Cl)]\(^+\). Substituent combinations that were not synthetically attempted are denoted with a dash "-".

<table>
<thead>
<tr>
<th>R' R''</th>
<th>Me</th>
<th>^1Pr</th>
<th>Cy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>-</td>
<td>138 (br), 21 (d)</td>
<td>-</td>
</tr>
<tr>
<td>Ph</td>
<td>162 (t), 23 (d)</td>
<td>133 (t), 25 (d)</td>
<td>139 (t), 25 (d)</td>
</tr>
<tr>
<td>(CH_2_2)(^+)</td>
<td>-</td>
<td>133 (t), 15 (d)</td>
<td>No reaction, starting material present</td>
</tr>
</tbody>
</table>

The successful synthesis was characterised by the appearance of two second-order signals in the 31P NMR spectra of the resulting precipitate: a doublet around 20 ppm (P_carbone), and a triplet around 140 ppm (P_central). While triplet signals for P_central are in a comparable range, δ_P of \(2b^+\) is shifted more downfield (~162 ppm). The difference in the position of the δ_P shift can be assigned to the higher flexibility and the significantly reduced steric hindrance provided by Me groups, compared to ^1Pr and Cy in \(2c^+\) and \(2d^+\), respectively. 13C NMR spectra of the obtained monocations were comparable, displaying a doublet of triplets that stems from the central carbon atom of the donating carbone ligand. The synthesis was successful for all attempted reactions, except for \(2f^+\). A possible reason for such outcome is a high steric demand that the combination of two cyclic substituents would impose on the resulting \(2f^+\), relative to other monocations.
2.1.2 Synthetic viability – counterions

A previously reported procedure for the synthesis of \([3c][X]_2\) (\(X=\text{AlCl}_4^-\) or \(\text{BArF}_4^-\)) involved the addition of 2.1eq of either \(\text{AlCl}_3\) or \(\text{NaBArF}_4\) to the DCM solution containing the corresponding monocationic precursor \([2c][\text{Cl}]\)\(^{141}\). The appearance of the \(^{31}\text{P}\) NMR signal for the central P atom at around \(\delta_{\text{P}}\) 356 ppm was the most indicative piece of evidence for the formation of the two-coordinate phosphorus species. The peak was within the reported range for the two-coordinate phosphonium cations, and more than 200 ppm downfield shifted, as compared to the analogous signal for the \(2c^+\)\(^{141}\). In addition, \(\delta_{\text{P}}\) values for the central P were found to be independent of the nature of the counterion, indicative of the absence of close interion contacts in the solution state. Unfortunately, \(\text{AlCl}_4^-\) and \(\text{BArF}_4^-\) were not suitable counterion choices for \(3^{2+}\); \(\text{AlCl}_4^-\) interfered with dication’s reactivity, while \(\text{BArF}_4^-\) made dication’s purification by recrystallization somewhat challenging. To overcome these issues, the initial step was to explore the suitability of another counterion. Considering the stability of \(3c^{2+}\) with both coordinating (\(\text{AlCl}_4^-\)) and large, weakly-coordinating (\(\text{BArF}_4^-\)) counterions, it was assumed that virtually any other counterion could successfully be employed for the preparation of these species. For that reason, only the synthesis of \(3c^{2+}\) was attempted in the presence of the following counterions: \(\text{BArCl}_4^-\) (\(\text{ArCl} = 3,5\text{-Cl}_2\text{C}_6\text{H}_3\)), \(\text{SbF}_6^-\), \(\text{PF}_6^-\), \(\text{BF}_4^-\), \(\text{GaCl}_4^-\), \(\text{ClO}_4^-\), \(\text{OTf}~(\text{Tf} = \text{O}_2\text{SCF}_3)\), \(\text{BPh}_4^-\) (Scheme 22).

Surprisingly, the successful isolation of \(3^{2+}\) was only viable in the presence of \(\text{BArCl}_4^-\), \(\text{GaCl}_4^-\) and \(\text{SbF}_6^-\). Results of \(^{31}\text{P}\) NMR spectroscopy indicated complete conversion of the starting material and excellent correlation with the previously reported\(^{142}\) NMR data (\(\delta_{\text{P}}\) for \(\text{P}_{\text{central}}\) ~ 356 ppm).
Scheme 21: The targeted reaction for the synthesis of 3^{2+}. Successful outcome was achieved when $MX = NaBArF_4$, AgSbF$_6$; and when GaCl$_3$ was used as adduct. In other cases, the targeted product was not acquired.

Reactions involving remaining anions resulted in complex mixtures of unknown products in almost all cases. It was suspected that such result was due to the highly oxophilic nature of 3^{2+}, which causes it to react destructively towards oxygen-containing anions. To confirm this, [3e][X]$_2$ ($X = BArF_4$, SbF$_6$) was treated with an equivalent of NEt$_4$OCl$_4$ in dichloromethane, which resulted in the immediate formation of several unidentified products. Further proofs for the high oxophilicity of 3e$^{2+}$ arose from the later conducted reactivity studies, presented in detail in Sections 2.1.5-2.1.7 and Chapter 3, below.[139]

Similarly, the behaviour of 3e$^{2+}$ towards fluorine-containing substrates, which includes decomposition in the presence of BF$_4^-$ and PF$_6^-$, versus the isolability of [3][SbF$_6$], may be correlated with Fluorine Ion Affinity (FIA) of the dication. Introduced by Bartlett et al.,[143] FIA represents enthalpy that is being released when a Lewis acid (LA) binds a fluoride ion (F) (Eq. 1).

$$LA_{(g)} + F^-_{(g)} \xrightarrow{\Delta H = -FIA} [LA - F]^-_{(g)} \quad \text{(Eq. 1)}$$

FIA value is proportional to the strength of the Lewis acid, and as such used as a reliable measure of Lewis acidity.[144] Higher FIA value implies stronger Lewis acidity. FIA literature values for the Lewis bases relevant to this work (Table 4), increase in the following order: BF$_3$$<PF_5$$<$GaCl$_3$$<$AlCl$_3$$<$B(C$_6H_3(CF_3)_2)_3$$<SbF_5$.[145]
Following the trend, our results reveal that 3^{2+} exhibits higher fluorophilicity than BF$_3$ or PF$_5$, but lower than of BAr$_4^F$ and SbF$_5^-$; which is why dications with anions of the latter two can be isolated. Analogous observations have been previously reported for the synthesis of gallium cations.$^{[125, 146]}

Table 4. An overview of the Fluoride Ion Affinity (FIA) values (in KJmol$^{-1}$) reported in the literature for selected Lewis Acids.

<table>
<thead>
<tr>
<th>Lewis Acid</th>
<th>BF$_3$</th>
<th>AlCl$_3$</th>
<th>GaCl$_3$</th>
<th>PF$_5$</th>
<th>SbF$_5$</th>
<th>B(C$_6$H$_5$(CF$_3$)$_2$)$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIA [KJ/mol]</td>
<td>342</td>
<td>498</td>
<td>434</td>
<td>398</td>
<td>493</td>
<td>482</td>
</tr>
</tbody>
</table>

In addition, it is worth mentioning that the choice of cation (Na$^+$, K$^+$, Ag$^+$) in the salt reactant had a considerate effect on the reaction outcome in some cases. For example, the starting material 2^+ exhibited absence of the reactivity towards NaBF$_4$ or KPF$_6$, while analogues Ag$^+$ salts yielded complete conversions into a mixture of products. Similarly, AgSbF$_6$ was preferred over NaSbF$_6$ based on the significantly increased reaction rate and a neat 3^{2+} formation. Such results can be explained by the formation constants and lattice energies of the resulting salts (NaCl, KCl and AgCl), which can act as driving forces for the 3^{2+} formation.$^{[147]}$

2.1.3 X-ray Structure Analysis

The presence of [3c][SbF$_6$]$_2$ and high compatibility with the hitherto reported [3c][AlCl$_4$]$_2$$^{[110]}$ were elucidated by single crystal X-ray diffraction (Figure 18). The P$_{central}$-C$_{carbone}$ bond length of 1.746(11) Å remained virtually the same as 1.745(7) Å, for [3c][AlCl$_4$]$_2$, consistent with a strong electron donation from the carbone ligand. Compared to the earlier value of 1.623(6) Å in [3c][AlCl$_4$]$_2$, P$_{central}$-N bond underwent additional shortening (1.608(10) Å in [3c][SbF$_6$]$_2$), which can be assigned to a higher degree of N←P←C π-interaction compared to the one reported for [3c][AlCl$_4$]$_2$. It has been previously suggested that the presence of π-symmetry lone pairs on both C1 and
N1 atoms, along with the practical planarity of the C\textsubscript{2}NPCP\textsubscript{2} fragment, allow a “flow” of electron density from the adjacent –NiPr\textsubscript{2} and C(PPh\textsubscript{3})\textsubscript{2} substituents into the empty 3p\textsubscript{z} orbital on the P\textsubscript{central} in 3c2+, establishing a 4\pi allyl-like C-P-N fragment. Results obtained for [3c][SbF\textsubscript{6}]\textsubscript{2} support this postulate, especially considering the average P1-C1 (\~1.74 Å) and P1-N1 (\~1.62 Å) bond distances, which are between the ones reported for single and double bonds.[148]

![Figure 18. Crystal structure of 32+ (Thermal ellipsoids are shown at 50% probability).](image) For clarity, hydrogen atoms have been omitted. Selected bonds (Å) and angles (°): P1-C1, 1.746(11); P1-N1, 1.608(10); N1-P1-C1.

X-ray analysis of [3c][SbF\textsubscript{6}]\textsubscript{2} also revealed the existing interion contacts (Figure 19). Fluorine atoms of two different SbF\textsubscript{6}− counterion units, are positioned atop and beneath the N-P-C plane, allowing them to easily interact with a vacant p\textsubscript{z} orbital of the central phosphorus atom. Established P\textsubscript{central}···F contact lengths in [3c][SbF\textsubscript{6}]\textsubscript{2} amount to 3.00 and 3.10 Å, which is substantially lower than the sum of P···F van der Waals radii of 3.36 Å[149] implying a strong P-F interaction. While occurrence of interionic contacts in phosphonium salts is not surprising for cations such as AlCl\textsubscript{4}−, GaCl\textsubscript{4}−, and BPh\textsubscript{4}−[150],[151] only a minimal interaction (3.54 Å) takes place in the previously reported [3c][AlCl\textsubscript{4}]\textsubscript{2}, with only one P···Cl(anion) interaction falling below
the sum of van der Waals radii of 3.72 Å for these two atoms. Furthermore, no interion contacts were observed in the crystal structure of [3c][BAr$_4^f$]$_2$.

Figure 19. Close interion contacts for [3c][BAr$_4^f$]$_2$ (left), [3c][AlCl$_4$]$_2$ (middle) and [3c][SbF$_6$]$_2$ (right).

The occurrence of interion contacts also explains the physical differences in [3c][SbF$_6$]$_2$, as compared to [3c][AlCl$_4$]$_2$ and [3c][BAr$_4^f$]$_2$. While the latter two are yellow in their solid state, [3c][SbF$_6$]$_2$ is colourless (Figure 20). We believe that the notable P–F proximity, and resulting interaction, quench the 4π allyl-like system of the C-P-N fragment, resulting in the quenched yellow colour of [3c][SbF$_6$]$_2$ in its solid state.

Further evidence for this claim is derived from the appearance of the typical yellow colour once [3c][SbF$_6$]$_2$ is dissolved in DCM, clearly indicating a lesser prominence of contacts in the solution.

Figure 20. Color change as a result of interion contacts in [3c][SbF$_6$]$_2$ and [3c][BAr$_4^f$]$_2$.
The interion contacts seem to be minimal or absent in solutions, provided that the \(^{31}\text{P}_{\text{central}} \) shifts of the dication (\(\delta_{\text{P}} \approx 356 \text{ ppm} \)) were consistent among all viable counterions: \(\text{AlCl}_4^- \), \(\text{BAR}_f^+ \), \(\text{BAR}_{4Cl}^- \), \(\text{SbF}_6^- \), \(\text{GaCl}_4^- \).

2.1.4 \(^{31}\text{P} \) Solid State NMR Spectroscopy

\(^{31}\text{P} \) cross-polarization (CP)/magic angle spinning (MAS) NMR spectra obtained for \([3c][\text{SbF}_6]_2 \) were compared to the analogous dications (Figure 21). Spectra in Figure 21a is displayed over the full observed chemical shift range, and enlargements of the relevant peaks are presented in Figure 21b. The spectra of \([3c][\text{SbF}_6]_2 \) was acquired at 6 kHz MAS spinning frequency, while the remaining ones were taken at 9 kHz. Comparisons between the spectra measured at different spinning frequencies for each sample (not shown) allow the distinction between spinning sidebands and centre bands (see Tables 5 and 6). All spectra show intense features between −5 and 35 ppm and resonances farther downfield (see Figures 21 and 22) with varying line widths. In solid-state NMR, the line widths reveal the extent of structural disorder around the observed phosphorus nucleus, such as bond angle and bond length distributions. Therefore, it is interesting to note that the \(^{31}\text{P} \) CP/MAS NMR spectra of the monocations (Figure 21) are sharper than those of the dication series (Figure 22) and within the dication series the spectra of \([3c][\text{SbF}_6]_2 \) are strikingly sharper than the others. Signals from the compounds with cyclic carbones, i.e. \(\text{C}(\text{PPh}_2)_2\text{C}_3\text{H}_6 \) (\(2e^+ \) and \(3e^{2+} \)), are broader than those containing acyclic carbones (\(2c^+, 2d^+, 3c^{2+}, \) and \(3d^{2+} \)), i.e. materials with \(\text{C}(\text{PPh}_3)_2 \) ligands.
Figure 20. (a) 31P CP/MAS NMR spectra of the monocationic precursors, specifically of [2c] (top), [2d] (centre), and [2e] (bottom) with Cl– counterions taken at 9 kHz spinning speed. Isotropic peaks are indicated with asterisks in (a). (b) Enlargements of the spectral region between 0 and 50 ppm showing only isotropic shift resonances.
Figure 21. (a) 31P CP/MAS NMR spectra of the dicationic products as indicated by the labels. Isotropic peaks are indicated with asterisks in (a). (b) Highlights of the spectral region of the carbodiphosphorane resonances showing only isotropic shift resonances. The spectra were acquired at 9 kHz MAS spinning rate, except for the top spectra of $[3c][\text{SbF}_6]_2$ which were taken at 6 kHz.

Table 5. 31P Solid-State NMR Isotropic Chemical Shift Positions (ppm) of All Dicationic Compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>$[3a][\text{SbF}_6]_2$</th>
<th>$[3a][\text{AlCl}_4]_2$</th>
<th>$[3a][\text{BARF}_4]_2$</th>
<th>$[3b][\text{AlCl}_4]_2$</th>
<th>$[3c][\text{AlCl}_4]_2$</th>
<th>$[3c][\text{BARF}_4]_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid-State δP (ppm)</td>
<td>19.3</td>
<td>-2.3</td>
<td>21.7</td>
<td>22.7</td>
<td>22.7</td>
<td>19.8</td>
</tr>
</tbody>
</table>
Table 6. Solid state 31P CP/MAS NMR isotropic chemical shift positions of monocationic precursors

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20.7</td>
<td>18.8</td>
<td>20.7</td>
<td></td>
</tr>
<tr>
<td>23.2</td>
<td></td>
<td>23.2</td>
<td></td>
</tr>
<tr>
<td>25.1</td>
<td></td>
<td>25.1</td>
<td></td>
</tr>
<tr>
<td>26.1</td>
<td></td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td>28.5</td>
<td></td>
<td>31.0</td>
<td></td>
</tr>
<tr>
<td>126.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168.8</td>
<td>139</td>
<td>174.2</td>
<td></td>
</tr>
</tbody>
</table>

On assignment of the resonances, the peak clusters between −5 and 35 ppm (Figures 21b and 22b) stem from the phosphorus nuclei in the carbodiphosphorane groups, given their similarity with the solid-state 31P CP/MAS NMR spectra of [HC(PPh$_3$)$_2$]$^+$Br$^-$ (23.2 and 21.2 ppm; spectra not shown, possibly present as an impurity in [2c]Cl and [2d]Cl. For compounds [2c]Cl and [2d]Cl, some peak intensities come in pairs, likely from two magnetically nonequivalent PPh$_3$ groups within each carbodiphosphorane in the solid state. In contrast to the acyclic compounds, the peaks of the series containing cyclic carbones, [2e] and [3e], are disorder broadened and shifted further upfield. Interestingly, within the dications, the signals in the spectra of [3c][SbF$_6$]$_2$ are strikingly sharper than the others. Its phosphorane isotropic shifts at 19.3 and 21.7 ppm resonate at frequencies where the spectra of the other compounds, [3c][X]$_2$ and [3d][X]$_2$ (X = AlCl$_4$, BArF$_4$), only show shoulders. It seems that the phosphorane groups in [3c][SbF$_6$]$_2$ crystallize predominantly in configurations only occupied to a minor extent by the other materials.

The 31P CP/MAS NMR signals from the central phosphorus nuclei resonate further downfield: for the monocation series [2]Cl, the chlorine-bound phosphorus nuclei show sharp isotropic chemical shift peaks between 126 and 174 ppm (Table 6). The differences between the shifts in the solid state and those observed in the solution (∼134 ppm) stem from crystal
packing. The intensity differences of the two isotropic shift peaks in the spectra of compound [2c]Cl are likely due to a mixture of crystal structures, possibly caused by the chiral properties of the central phosphorus; two independent molecules in the asymmetric unit cell, as found by X-ray, should give equally intense lines.

Unlike the spectra of the monocation precursors, the central phosphorus nuclei of the dicationic products 3c–e^2+ show broad isotropic peaks shifted even farther downfield around 350 ppm. The widths of these peaks in the solid state reveal a significant amount of structural disorder, such as variations in bond angles and bond distances. Interestingly, the phosphorane substitutions, amino group ligands, and counterions do not affect the peak positions and widths of the centre phosphorus, except for the compound [3a][SbF_6]_2. For the latter, the comparatively sharp peak of the centre phosphorus at 344 ppm resonates at the lower shift range sampled by the other dicationic compounds. It seems that the SbF_6^- counterion in the dication series causes the material to crystallize with less disorder in a structure only present to a minor amount in the other compounds. Overall, the isotropic chemical shifts of these phosphorus centres agree with the values observed in solution (356 ppm), and the sizable downfield shift is consistent with electron depletion at the central phosphorus nucleus. The spread of the total intensities over a wide range of spinning sidebands reveal large chemical shift anisotropies, consistent with the highly asymmetric electron distribution around the doubly bonded phosphorus nuclei and its empty p_z orbital.

2.1.5 Lewis acidity tests of 3^2+

Quantification of Lewis acidity has been a useful tool to design and tune new Lewis acids, to foresee the catalytic reaction rates, and select apt reactants. In general, higher strength of a Lewis acid is associated with stronger interaction with hard bases and higher reaction rates. Whereas acidity of Brønsted acids can
successfully be estimated via pKa scale; a single universal approach is not developed for Lewis acids. Different approaches include calorimetric approach,154 benzyla\-tion reactions with methyl-benzyl chlorides as a reference of Lewis acidity,155 and most successfully employed-spectroscopic methods: Lappert’s method,156 Gutman-Beckett’s method,157,152b and Childs’ method:158

- **Lappert’s** approach is based on a reaction between a Lewis acid and ethyl-acetate (EtOAc), where the acyl-oxygen serves as the donor site, and Lewis acidity is measured by the scope of C-O bond polarization apparent from the difference in carbonyl stretching frequency shifts ν(CO) due to the adduct formation.

- **Gutman-Beckett** developed another experimental method which evaluates Lewis acidity of a compound compared to triethylphosphine oxide (Et$_3$PO) as a reference molecule ($\delta_P = 50.4$ in CD$_2$Cl$_2$) and 31P NMR spectroscopy as a mean of evaluation. The method is based on mutual competition between Et$_3$PO and the heteroatoms attached to the Lewis acidic centre, for an empty orbital of that centre, to preferably form an Et$_3$PO-LA adduct. A greater 31P downfield shift correlates to a higher Lewis acidity.

- **Childs’** method determines Lewis acidity based upon the induced 1H NMR shift ($\Delta\delta$) deriving from the H3 resonance upon the formation of the final LA adduct with crotonaldehyde as a reference.

Hypothetical adducts between an oxygen donor molecule and dication $3c^{2+}$ (Lewis acid in our case) for three of the three conventional methods are depicted in Figure 23 below.
Figure 22. Hypothetical adduct formation between Lewis acidic dication 3^{2+} and a) an oxygen donor molecule (ORef) which serves as a reference in the acidity tests, b) ethyl-acetate used in Lappert's method (RefO =EtOAc); c) triphenylphosphine oxide used in Gutman-Beckett's acidity test (RefO = OPEt$_3$), and d) crotonaldehyde in Childs' method (ORef = C$_4$H$_6$O).

Lewis acidity of 3^{2+} has been confirmed theoretically via DFT calculations, which implied the existence of a low lying LUMO,\cite{110} and experimentally, in reactions towards PMe$_3$,\cite{110} DMAP,\cite{110} water,\cite{139} methanol,\cite{139} THF. However, quantification of its Lewis acidity would be valuable for its efficient utilization in reactions.

2.1.6 Results

Considering the air sensitive nature of dication 3^{2+}, its decomposition during earlier attempts of FTIR characterisation, and the requirement for adduct (Figure 23b) isolation and successive IR measurements, we immediately abandoned Lappert’s methodology. On the other hand, Gutmann-Beckett’s method proved successful in resolving Lewis acidity of similarly sensitive Lewis acidic compounds.\cite{24b, 152a, 153, 159} In addition, the convenience of performing 31P NMR for our system in Gutmann-Beckett’s method played a role in it being preferred over Childs’ method.

Addition of equivalent amounts of Et$_3$PO to a DCM solution of [3c][X]$_2$ (X=SbF$_6$, BAr$_4^{14}$) resulted in the incomplete conversion of the starting material and a formation of a complex mixture of products. Some of the products were identified based on the analogy of their 31P NMR shifts with the previously obtained products;
they included protonated ligands \([\text{[(Ph}_3\text{P)}_2\text{CH}_2]^{2+}\), \([\text{[(Ph}_3\text{P)}_2\text{CH]}^{2+}\) and a cation \([\text{[(Ph}_3\text{P)}_2\text{C}]\text{P(N}^3\text{Pr}_2)(\text{O})(\text{H})]^{+}\]. Layering the reaction mixture \([3\text{c}][\text{SbF}_6]_2 + \text{OPEt}_3\) with hexane resulted in the formation of crystals suitable for single crystal X-Ray crystallography. Despite the bad quality, preliminary data indicated the presence of the compound shown in Figure 24.

![Figure 23. One of the mixture products obtained from the Gutmann-Beckett acidity test.](image)

Based on these results, it can be concluded that the dominant oxophilic nature of \(3\text{c}^{2+}\) prevents Et\(_3\)PO from coordinating to the central P. Instead, \(3\text{c}^{2+}\) abstracts the oxygen from the donor and oxidizes phosphorus. Similar behaviour was also observed for a dicationic fluoro-phosphonium salt by Stephan \textit{et al.}[160] where both Gutmann-Beckett’s and Child’s’ acidity tests resulted in an oxygen-fluoride exchange, resulting in a formation of \([\text{[(SIMes)POPh}_2][\text{B(C}_6\text{F}_5)_4]\), among other products. Despite the inability to quantify acidity of \(3\text{c}^{2+}\) by the Gutmann-Beckett’s method, it was evident that the compound was highly electrophilic.

An alternative way to estimate Lewis acidity via \textit{ab initio} and DFT calculation based on the Christe’s theoretical fluoride ion affinity (FIA) methodology.[144a, 161] This approach provides a direct correlation between a Lewis acidity and an enthalpy from the reaction between a fluoride ion and a Lewis acid, and it has been successfully developed for Lewis acidic phosphonium salts.[161] Due to time-constraints, FIA calculations were not performed for our system. However, separately performed reaction between \([3\text{c}][X]_2\) (\(X = \text{SbF}_6\) or \(\text{BArF}_4\)) and XeF\(_2\) could
provide an insight into the reactivity of $3c^{2+}$ towards fluorine-containing species. 31P-1H NMR spectra of the reaction mixture showed a major product formation characterized by a doublet ($\sim \delta_P 22$ ppm) and a doublet of triplets ($\delta_P \sim 53$ ppm), indicative of the preserved $P_{(central)}-C_{(carbone)}$ unit integrity. Relatively low δ_P values fall within the range of four-coordinate phosphorus species. In addition, a direct P-H bond was revealed from the 31P NMR spectroscopy results (52.1 ppm, $^1J_{P,H} = 692$ Hz). A set of doublet signals at about $\delta_F -75$ ppm and matching splitting constants of 1032 Hz, confirmed the existence of a direct P-F bond. In fact, similar $^1J_{P,F}$ value of 1040Hz was previously reported for the four-coordinate [$(\text{SIMes})\text{PFPh}_2][\text{B}(\text{C}_6\text{F}_5)_4]_2$. In comparison, a similar, five-coordinate [$(\text{SIMes})\text{PF}_2\text{Ph}_2][\text{B}(\text{C}_6\text{F}_5)_4]$ displayed a triplet for the P central peak at $\delta_P -62.9$ ppm ($^1J_{P,F} = 733$ Hz). Based on the obtained data, it is evident that our product possessed a proton, a fluorine atom, and a carbone ligand directly bonded to a four-coordinate phosphorus-centre. A hypothesized product is one of the two species shown in Figure 22.

![Figure 24. Hypothetical products from the reaction between $[3c][\text{SbF}_6]$ and XeF_2](image)

Unfortunately, all attempts to isolate the product in a solid form failed, as the second dominant species in the mixture was a product of hydrolysis, which would rise with any purification attempt. Every effort to grow a crystal from the reaction mixture yielded a protonated carbone salt. While this data does not quantify Lewis acidity, it allows us to draw a comparison with other phosphonium cations and provides more insight into the compounds reactive oxophilic and fluorophilic nature.
2.1.7 Counterion stability studies

As previously discussed, initial reactivity studies of $3c^{2+}$, which included: 1) a unique O-H bond activation of water and methanol at a single site; 2) preliminary THF polymerization results; 3) reactivity towards oxygen-containing anions and/or substrates; drew attention to its highly oxophilic nature. However, the interference of the AlCl$_4^-$ cation, and the difficulties in purifying $3c^{2+}$ with a bulky borate as its counterion (BAR$_4^+$, BAR$_4^{Cl}$) via crystallization, posed a challenge for further investigations. This issue was overcome by our ability to crystallize $[3c][SbF_6]_2$. To test its stability towards Lewis bases and possible counterion interference with oxidative additions, $[3c][SbF_6]_2$ was reacted with MeOH and water according to the protocol in Scheme 23.

![Scheme 22: Methanol/water activation reaction protocols](image)

Immediate conversion of the solution colour from yellow to colourless was consistent with the previously described reaction observations. 31P{1H} NMR of the solution revealed a complete conversion of the starting material and the positions of the P_{central} peak compatible with the values formerly reported for $6a^{2+}$ (triplet at δ_P 42.3 ppm) and $6b^{2+}$ (a broad signal at δ_P 31.0 ppm). To our delight, SbF$_6^-$ displayed no interference in any of the two oxidative additions, which made it a suitable counterion for 3^{2+} in forthcoming reactivity studies towards oxygen-containing substrates.
2.2 Summary

In summary, we have isolated several analogues to 2^+ which is a precursor to the Lewis acidic P(III)-centred dication 3^{2+}, these are: $[\text{Cy}_2\text{NP}(\text{C(PPh}_3)_2\text{Cl})]^+$, $[\text{Me}_2\text{NP}(\text{C(PPh}_3)_2\text{Cl})]^+$, $[^1\text{Pr}_2\text{NP}(\text{C(PPh}_2\text{Me})_2\text{Cl})]^+$, $[^1\text{Pr}_2\text{NP}(\text{C(PPh}_2(\text{CH}_2)_3/2)_2\text{Cl})]^+$. All monocations showed similar ^{31}P NMR shift, except $[\text{Me}_2\text{NP}(\text{C(PPh}_3)_2\text{Cl})]^+$, whose $\text{P}_{\text{central}}$ was shifted more downfield in comparison to the other species. Such result could be due to the higher degree of flexibility of methyl groups and their decreased steric ability to shield $\text{P}_{\text{central}}$.

Furthermore, out of eight counterions ($\text{BAR}^{\text{Cl}_4^-}$, SbF_6^-, GaCl_4^-, PF_6^-, OTf^-, BPh_4^-, BF_4^-, and ClO_4^-) tested for the synthetic viability of 3^{2+}, only $\text{BAR}^{\text{Cl}_4^-}$, SbF_6^- and GaCl_4^- proved successful. The best stability of 3^{2+} was achieved in the presence of SbF_6^- as a counterion. Due to the strong interaction between the central phosphorus and fluorine atoms in SbF_6^-, $[3^{2+}]\text{[SbF}_6^2]$ exhibited interesting properties in terms of its colour in the solution and the solid state.

Finally, SbF_6^- as a cation for 3^{2+} displayed stability, as confirmed by the reactions with water and methanol. Oxophilic nature of the compound was also indicated by the high reactivity towards Et_3PO, while its fluorophilicity was suggested according to the results of the reaction with XeF_2.
CHAPTER III:

P-C Bond Activation under Mild Conditions
3.1 Introduction

Overall, organic oxidation reactions are substantially less developed than the analogous reduction reactions.[23i, 163] Most of the oxygen insertion reactions, acknowledged as oxidation reactions are known for C-C and C-H bonds.[163e-g] However, examples of oxygen insertions into C-B (Brown oxidations)[164] and C-Si (Fleming-Tameo-Kumada oxidations)[165] also exist. On the other hand, examples of oxygen insertion into C-P bonds are limited to phosphorus heterocycles, which contain ring-strained P-C bonds.[166]

3.1.1 Metal-mediated oxy-insertions

Most of the examples of metal-mediated oxy-insertions include mechanistic studies based on transitional metal chemistry.[167] Two possible mechanisms arise from the calculations: 1) an organometallic Bayer-Villiger (OMBV) route (Scheme 24); 2) a two-step, Oxygen Atom Transfer/Methyl Migration (OAT/MM) redox route (Scheme 25).

\begin{center}
\textbf{Scheme 23. An example of the computed reaction coordinate (OMBV) for a zinc-methyl complex, where numbers represent energies in kJ/mol.}
\end{center}

OMBV route is a single-step, non-redox oxygen insertion into M-C bond, where the precursor to oxy-insertions is formed via coordination of the oxidant to the
TM-methyl reactant complex. The intermediate formed in the OMBV insertion is also known as a metallo-Criege intermediate (MCI), analogous to the Criege intermediate in the organic Baeyer-Villiger reactions (see Section 2.1.2). Oxygen atom transfer in OAT/MM insertions is followed by the oxo-intermediate, and then the final alkyl to the oxo-ligand migration. The OAT/MM route is dominant among the d^2, d^4, d^6, d^8 metals. Due to the occurring redox process, the metals also need to have stable formal oxidations states separated by two units, not often found among transition metals. In general, OMBV route is easier to control, thus preferred over the OAT/MM route.

Scheme 24. An example of the computed reaction coordinate (OMBV) for a iron-methyl complex, where numbers represent energies in kJ/mol.

To the best of our knowledge, very few examples including experimental results are known, mostly resembling the BV route. However, no examples including oxy-insertion with main-group elements as centres are found in the literature. With respect to the main group elements, theoretical studies performed for Ca and Ge preferred an organometallic Bayer-Villiger route.

3.1.2 Oxy-insertion into P-C bonds

The first example of an oxygen insertion into the C-P bond was reported in 1975 by Kashman and Awerbouch, as a result of the reaction between 8-phosphabicyclo[3.2.1]oct-6-ene 8-oxide and meta-chloroperbenzoic acid.
The reaction mechanism was related to the Bayer-Villiger reaction of ketones and lactones. Initially, it was believed that the presence of the allylic carbon as a “migrating group” was crucial for the reaction proceedings, apart from the ring strain. The C-P-C bond angle in the precursor was between 79° and 84°. Later studies have shown that the reaction can proceed even in saturated compounds with strained C-P-C bonds.

![Scheme 25. Simplified depiction of strained P-heterocycles undergoing oxygen insertion](image)

More than 40 years later, progress in the C-P bond oxidations did not evolve much further. Groups of Quin and Jankowski have subsequently used different 2,3-oxaphosphabicyclo[2.2.2]octenes (2,3-OPBO) and 2-phosphabicyclo[2.2.2]octenes (2-OPBO) systems as phosphorylation, phosphinylation and phosphonylation agents, since their fragmentation leads to the transient dioxophosphorane (metaphosphonate) species. In all cases, highly reactive mCPBA was used as an oxygen-donor to the precursor, 7-phosphanorbornenes (7-PNB) (Scheme 26). Upon the oxygen insertion, a remaining mixture containing the excess of mCPBA and meta-chlorobenzoic acid would be treated with KF and removed via the resulting complex.

Similar oxidative cleavage of the P-C bond was observed by Mathey et al. Oxidation with excess H₂O₂ in xylene, resulted in an oxygen insertion into the P-CH₂ bond of the bridge in the starting phosphaborndienes, as a result of the bridge strain (Scheme 27).
As previously mentioned, the dicationic phosphenium species developed in our lab \([(\text{Ph}_3\text{P})_2\text{CPN}^{\text{iPr}_2}]^{2+}\) exhibited highly oxophilic behaviour by being able to insert into O-H bonds.\(^{142, 171}\) Thus, we were interested in examining its reactivity to other oxidants.

With respect to oxidizing and oxygen-transfer abilities of \(N\)-oxides,\(^{172}\) our first substrate of choice was pyridine \(N\)-oxide (O-Py). In contrast to simple pyridines, which display higher basic properties in a solution state, pyridine \(N\)-oxide is peculiar to the rule due to its slightly higher basicity relative to pyridine,\(^{173}\) making it more prone to react with our Lewis acidic system.

In all mentioned C-P oxidation reactions, harsh oxidants and reaction conditions are required: a highly reactive mCPBA at 0°C, or hydrogen peroxide under elevated reaction temperatures. In contrast, we reported a P-C bond oxidation under mild conditions, using a “greener”, O-Py oxidant. Similarly to the previously reported systems, ours also resembled a Baeyer-Villiger (BV) oxidation mechanism.\(^{174}\) In addition, calculations have shown that a key intermediate in this transformation closely resembles an elusive Criegee intermediate.\(^{175}\)

Baeyer-Villiger oxidation is a reaction between a ketone (cyclic ketone) and a peroxide derivative, which yields an ester (lactone). An example of a general Baeyer-Villiger reaction mechanism is represented in Scheme 27.\(^{176}\)
Dioxirane and 1,2,4,5-tetraoxocyclohexane were initially speculated as the reaction intermediates for BV reactions; however, the true mechanism which involved a nucleohlic attack of the oxidant on the carbon of the carbonyl group was suggested by Rudolf Criegee.

Criegee intermediate in the Baeyer-Villiger oxidation reactions is not to be confused with the Criegee rearrangement (Scheme 28). Although Baeyer-Villiger oxidations and Criegee rearrangements share resemblance, the intermediates for the two are not the same. Apart from the intermediates, Criegee rearrangement differs from BV oxidations by the ability for consecutive rearrangements and the requirement for acidic reaction conditions.[176]

3.2. Results and Discussion

Identical to previous reactions with oxygen donors (e.g. H\textsubscript{2}O, MeOH),[171b] addition of pyridine N-oxide to a DCM solution containing [3c][SbF\textsubscript{6}]\textsubscript{2} (Scheme 28) instantly discoloured the initially yellow solution.
Regardless of the numbers of oxidant equivalents added, ^{31}P NMR spectroscopy of the crude reaction mixture indicated the presence of at least three different species, with ~50% of the dominance of the major product at about δ_p 42 and 24 ppm. The use of two equivalents of PyO proved to be optimal for the reaction completion. Upon layering the reaction mixture with hexane, the major product was successfully isolated in a crystal form. As expected, single-crystal X-ray analysis of 7$^{2+}$ disclosed an oxophosphonium dication (Scheme 28). The assymetric unit for 7$^{2+}$ contained two independent molecules. However, instead of being stabilized by pyridine (Py) which was generated upon the oxidation of the central phosphorus atom, the oxophosphonium dication was stabilized by an O-Py molecule. Regardless of the stoichiometry used (1:1; 1:2; 2:1) the presence of 7$^{2+}$ was always identified.

This outcome was unexpected considering that: 1) Masuda et al. reported a pyridine-stabilized oxophosphonium cation obtained via a similar reaction of pyridine N-oxide with a cyclic phosphonium cation [[(CH$_2$)$_2$(N-Dip)$_2$P]$^+$ (Dip = 2,6-t-Pr$_2$-C$_6$H$_4$) (Scheme 29);$^{[177]}$ and 2) O-Py is substantially less basic (pKa= 0.79) than Py (pKa = 5.2). Oxophilic nature of the supposedly “naked” dication [[PPh$_3$]$\text{C(N}^0\text{Pr}_2\text{P=O}]^{2+}$ 7c and steric factors are possible causes for the favoured coordination of a less sterically-imposing, and oxygen-containing, O-Py ligand over Py. Nevertheless, the formation of 7$^{2+}$ is an additional example of distinctive reactivity that dication 3$^{2+}$
demonstrates towards oxygen-donors, with respect to comparable monocationic, phosphenium species.

\[
\begin{align*}
\begin{array}{c}
\text{Dip} \\
\text{N} \\
\text{P} \\
\text{Dip}
\end{array}
\end{align*}
\]
\begin{align*}
\text{9}^+ \\
\text{C}_2\text{H}_5\text{NO} \\
\text{Dip} \\
\text{N} \\
\text{O}
\end{align*}

\[
\begin{align*}
\begin{array}{c}
\text{Dip} \\
\text{N} \\
\text{O}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{10}^+
\end{align*}

Scheme 30. Reported reaction of a monocation 9\(^+\) with pyridinr N-oxide

Whereas crystallographically elucidated examples of the simple coordination of O-Py to transitional metals are conventional, this is not the case with non-metals. Apart from the carbon or hydrogen species, examples of O-Py coordination to non-metals in the Cambridge Structural Database\(^{178}\) are limited to boron\(^{179}\) and silica\(^{180}\) compounds. With that in mind, 7\(^{2+}\) (Figure 26) appears to be the first example of O-Py coordination to a phosphorus centre.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure25.png}
\caption{Molecular structures of 7\(^{2+}\) (left) and 8\(^{2+}\) (right) (thermal ellipsoids shown at 50\% probability, except the phenyl rings on the carbone substituent). Hydrogen atoms, SbF\(_6\) counterions, solvent molecules, and the second molecule in the asymmetric unit for 7\(^{2+}\) have been omitted for clarity. Selected bond lengths (Å) and angles (°): 7\(^{2+}\): P1-C1 1.879 (14); P1-O1 1.456 (10); P1-O2 1.711 (11); O1-P1-N1 112.6 (7); 8\(^{2+}\): O2-C1 1.457 (3); P1-O1 1.451 (2); P1-O2 1.581 (2); O1-P1-N1 118.6 (1).}
\end{figure}

Compared to the starting dication 3c\(^{2+}\), P\(_{\text{central}}\)-C\(_{\text{carbone}}\) bond in 7\(^{2+}\) (1.746 Å) is significantly longer than Å in 3c\(^{2+}\), with no significant changes to the P1-N1 bond.

68
With respect to O-Py coordination, P1-O2 bond length of 1.711(11) Å along with the calculated Wiberg bond index (WBI) of 0.46[176] is indicative of the donor-acceptor character of the P1-O2 interaction.

DFT calculations were also carried out for the hypothetical [(PPh\textsubscript{3})\textsubscript{2}C(NPr\textsubscript{2})P=O]2+ 7c2+. As expected, excluding the O-py ligand caused the shortening of all the bond distances between the central P and its neighbouring atoms. The same observation was also reported for 102+ and its base-free analogue.[177, 181]

Greater formal charge of 72+ than of 103+ seemed to cause no difference in NBO partial charges for the central P=O fragment of the two species. In fact, 72+ carried a slightly less positive partial charge (+ 1.257) than 103+ (+ 1.332) for the same P=O fragment. This could be due to electronegativity difference among the atoms surrounding the central phosphorus in both species, and/or the carbone ligand in 72+ over-compensating the electron density.

Initially unapparent, 72+ was a crucial intermediate for the formation of 82+, which could be identified in the original reaction mixture by the appearance of new upfield 31P NMR signals at δ_p 22.3 ppm and 5.8 ppm. The convenience of isolating 62+ in a crystal form allowed us to follow the kinetics of this conversion by 31P NMR spectroscopy. Intermediate 62+ was stable in the dichloromethane solution for about 10 hours before undertaking spontaneous conversion into 72+. The full conversion takes about eight days to complete, but it can be accomplished in only 4 hours when the reaction mixture is heated to 50\degree C (Figure 27). The reaction is irreversible, and the final product 82+ is stable in the solution for more than 30 days. In addition, the increment of the starting reactant Py-O did not alternate the reaction pathway.
In contrast to the previously reported species with a P-C(carbone) bonding interaction, the new compound did not show the usual P-P coupling. Such result suggested the absence of the formerly present P-C(carbone) bond, possibly triggered by an insertion of some moiety into the bond. Indeed, results of the solid-state analysis (Figure 26) for 8^{2+} revealed that an oxygen insertion into the P1-C1 bond of 7^{2+} to form 8^{2+} indeed occurred (Scheme 28). However, 8^{2+} included a Py ligand coordinated to the phosphorus centre, as opposed to a O-Py ligand in 7^{2+}.

Figure 26. Full conversion of 7^{2+} into 8^{2+}, achieved in approx. 4h by heating 7^{2+} crystals in DCM at 50°C.
In order to establish the most plausible mechanism for this transformation, computational studies were carried out (see Supporting Information). Identification of the transition state (Ea = 24 kcal mol\(^{-1}\)) presented in Figure 28 revealed an apparent resemblance to the Metallo-Criegee intermediate calculated for the OMBV oxy-insertion reactions (Scheme 30). Additional computational studies further suggested: 1) a concerted mechanism; 2) an analogy between the overall process and the Baeyer–Villiger (BV) oxidations.

![Diagram](image)

Figure 27. Computationally determined transition state for the transformation of \(7^{2+}\) into \(8^{2+}\).

As mentioned earlier, the accurate mechanism for the BV oxidations was proposed by Criegee, but later confirmed by von E. Doering in the reaction of O\(_{18}\)-labeled benzophenone and perbenzoic acid (Scheme 22a).\(^1\, \text{182}\) The initial step of the
mechanism includes a peroxy acid attack on the carbonyl group, followed by an intramolecular proton shift and a subsequent formation of the carbonyl oxide, also called Criegee intermediate. In a following quasiconcerted step, the initial carbonyl group undergoes a reorganization, “one substituent migrates from the carbonyl carbon atom to the partially positively charged oxygen atom” which results in a heterolytic cleavage of the peroxy acid’s O-O bond.[174a, 174b, 174d, 182] Primary and secondary stereoelectronic requirements for a Baeyer-Villiger oxidation to occur are: 1) O-O bond in the peroxide group need to be in an antiperiplanar position to the migratory group; 2) lone pairs at the oxygen of the hydroxyl- group have to be antiperiplanary positioned to the migratory group.

In accordance with computational studies, the formation of 8^{2+} occurs via an analogous mechanism (Scheme 32b). Main differences between the 7^{2+} intermediate and the Criegee intermediate are: 1) the presence of a phosphine oxide instead of a carbonyl group, 2) the protonation of the carbonyl group, and 3) the nature of the migratory group. Considering the nonprotic nature of the O-Py oxidant, the absence of phosphine oxideprotonation was expected. Moreover, P-C bond oxidation seems to be governed by the migratory group’s electronic (ylide) and steric nature. Electron
population of 1.74e at C1 would imply a high likelihood of its lone pair to be delocalized over the neighbouring atoms/bonds. However, NBO analysis results suggest the presence of a lone pair, restricted to a p orbital, on the C1 atom. The same lone pair is later absent in the transition state, which denoted its participation in the formation of the initial C1-O2 bond. This is concurred by NBO analysis, which suggests a p–p atomic orbital overlap for the formation of the initial interaction. Specifically, the C1-O2 bond formation is initiated by the C1 lone pair attack on O2 and a subsequent heterolytic cleavage of the O2-N1 bond (Scheme 32b). The initial attack (C1→O2) appears viable due to the higher electrophilicity of O2 when coordinated to the electron poor P atom in \(\mathbf{7^{2+}} \), compared to the free O-Py molecule. Thus, the lone pair on C1 in \(\mathbf{7^{2+}} \), which becomes “re-established” in the final product, appears to be one of the vital reasons behind the observed facile oxygen insertion into the P1-C1 bond. The antiperiplanar position of the carbone/ylide substituent (migratory group) with respect to the O-N bond in the transition state\(^{[174b]} \) fulfils another prerequisite for the BV mechanism. Furthermore, the mechanism of the formerly mentioned P-C bond oxidation of strained P heterocyclic compounds (Scheme 26) is of extreme resemblance with the Bayer-Villiger oxidations of lactones and ketones.\(^{[166c, 166e, 183]} \) Considering all the experimental and theoretical evidence, an undisputable correlation exists between our P-C bond activation and the typical BV oxidations, despite the fact that a P=O group in our system is replacing a typical C=O group and an ylide serving as the migratory group.

Mechanistically speaking, the less apparent is the analogy between the Criegee intermediate and \(\mathbf{7^{2+}} \). However, in both systems, a migratory group “attack” and a heterolytic cleavage of the O-X (X = N in our system; X = O for BV) bond occur simultaneously. Besides the absence of the protonation at the carbonyl group, the only
difference arises from the initiation of the attack by the lone pair on C1, which is non-occurring in the Criegee intermediate. However, as previously discussed, the presence of the lone pair most likely helps lower the E_a of the oxygen insertion step. Hence, compound 7^{2+} could be regarded as a Criegee intermediate analogue,[175a, 184] and the process overall as the first example of a BV oxidation reaction in which pyridine N-oxide served as the oxidant.[166c, 166e, 183]

As hitherto mentioned, stabilization of the oxophosphonium dication by a less basic O-Py ligand in 7^{2+} was surprising considering the presence of the more basic Py in the solution. The observation was attributed to oxophilic nature of $7c^{2+}$ and/or steric factors since O-Py contained oxygen as a donor atom and seemed to be less sterically demanding than Py. This result intrigued us to explore the role of the steric strain of 7^{2+} in the overall transformation of 7^{2+} to form 8^{2+}. In fact, according to the single crystal X-Ray analysis of both dications, the O1-P1-N1 angle widened from 112.6(7) for 7^{2+} to 118.6(1) for 8^{2+}, suggesting an increase in the steric strain upon the oxygen insertion.

Absence of significant difference in the P1-O1 and P1-N1 bond values and their orbital makeup (NBO analysis), along with the consistency in electronic population of the C1 lone pair (1.70 and 1.71 e for 7^{2+} and 8^{2+}, respectively) upon the oxidation, further subsided the possibility of electronic effects of the ligands surrounding the P1 atom to be responsible for the widening of the O1-P1-N1 angle. Thus, it can be interpreted that partial alleviation of the steric strain resulted from the oxygen insertion into the P1-C1 bond of 7^{2+}, which “pushed” the bulky carbone ligand away from the central phosphorus. To quantify the energy which is being released by reducing the steric crowding, carbone coordinates have been extracted from the optimized structures for 7^{2+} and 8^{2+} and their corresponding energy computed with no
further optimizations, yielding an energy difference of. With the assumption that the carbone ligand in 7^{2+} has been sterically strained by the obtained 7.0 kcal mol$^{-1}$, three conclusions arise. 1) The steric strain does not affect the overall oxidation reaction outcome, as it is exergonic by 31.8 kcal mol$^{-1}$. 2) Steric strain seems to substantially increase the reaction rate, since increasing the Ea by 7.0 kcalmol$^{-1}$ would cause the activation temperature to increase by ~ 25%. Specifically, reaction conditions would require temperature of about 90°C (or 366 K) and the reaction would not have occurred at room temperature (20°C or 293 K). Despite the general limitations in means of steric strain quantification on reaction rates, an abundance of examples exists of the numerous steric factors being the cause behind the improvement of the respective reaction rates.$^{[188]}$ 3) Lastly, occurring steric strain in our system may be partially responsible for averting the coordination of a more sterically demanding, although more nucleophilic, Py ligand to $7c^{2+}$, with the preference of O-py to form 7^{2+}. Nonetheless, the well-known oxophilicity of these cationic compounds may have played a role the coordinative preference for the oxygen-containing ligand.

3.2.1 Counterion dependence

As shown in Scheme 33, the synthesis of 7^{2+} was repeated for weakly coordinating borate counterions, namely: BAR^{Cl}_4, BAR^F_4, and $\text{B(C}_6\text{F}_5)_4$.

![Scheme 33. Synthesis of 7^{2+} and 8^{2+} in presence of different counterions.](image)
While dication 7^{2+} can be successfully synthesized in all cases, important differences arose with the use of different substituents. Firstly, reaction between $3c^{2+}$ and PyO proceeded significantly neater in cases of $[7][X]_2$ (X = BarCl_4, BarF_4). Secondly, in contrast to $[7][SbF_6]_2$, products $[7][X]_2$ (X = BarCl_4, BarF_4, B(C$_6$F$_5$)$_4$) could not be isolated in the form of a crystal. While precipitation with pentane was the means of obtaining the 7^{2+} borates, application of the same method to $[7][SbF_6]_2$ resulted in hydrolysis of the product. Thirdly, $[7][X]_2$ where X = BarF_4 underwent a spontaneous conversion into 8^{2+} in its solid form, at room temperature (~50% conversion in 24h).

In comparison, crystals of $[7][SbF_6]_2$ are indefinitely stable under the same storage conditions, and no conversion was observed within 3 days for solid $[7][BAr^{Cl_4}]$. Lastly, the conversion of 7^{2+} into 8^{2+} by heating its dichloromethane solution at 50°C proceeded significantly faster for X = BarF_4, BArCl_4. Reaction times increase in the following order: $[7][BAr^{F_4}] < [7][BAr^{Cl_4}] < [7][SbF_6]_2$ with reaction times of 1.5h, 2.5h, and 4h, respectively. The reaction time order was independent of the amount of 7^{2+} used, solution concentration, or temperature. Results imply that: 1) SbF$_6^-$ stabilizes dication 7^{2+} the most; 2) BArCl_4 stabilizes dication to an extent; and 3) BArF_4 acts as a non-coordinating counterion to 7^{2+}, allowing for the fastest conversion into 8^{2+}.

Unfortunately, no indications of 8^{2+} formation were observed when $[7][B(C_6F_5)_4]$ was subjected to heating. 31P NMR spectrometry indicated the existence of multiple species in the solution, resulting either from the starting material’s decomposition or participation in side-reactions.

<table>
<thead>
<tr>
<th>Table 7. Counterion dependence comparison for the synthesis of 7^{2+} and 8^{2+}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SbF$_6^-$</td>
</tr>
<tr>
<td>3^{2+} to 7^{2+} reaction neatness</td>
</tr>
<tr>
<td>Insertion (7^{2+} into 8^{2+}) reaction time when the reaction is performed at 50°C</td>
</tr>
</tbody>
</table>
3.2.2 Oxygen transfer reactions

According to the previously discussed reaction mechanism for the 7^{2+} to 8^{2+} transformation, the oxygen for the insertion clearly originated from added O-Py. Based on this, we believed that it was possible to use 7^{2+} as a starting material for oxygen-transfer reactions, if the insertion and the formation of 8^{2+} were to be disfavoured. To the best of our knowledge, two possible approaches included trapping the oxygen via a substrate, or a redox agent, represented in Scheme 34. In case of the former one (a), catalytic activation also seemed viable, as Py could potentially coordinate back to the phosphorus centre upon the oxygen transfer.

Addition of PR$_3$ (R = Me or Cy) to $[7][\text{BAR}^{\text{Cl}}_4]_2$ instantly resulted in the formation of δ_p signals at approximately 22 (doublet) and 26 ppm (triplet), indicative of the preserved carbone\rightarrowP$_{\text{central}}$ bond. Other present reaction peaks were identified as the various BAR$^\text{Cl}_4^-$ salts: protonated ligand, PPh$_4^+$, PPhMe$_3^+$, $[\text{LP(NiPr}_2)(O)(H)]^+$. In addition, a peak corresponding to the OPR$_3$ moiety could also be observed in $^{31}\text{P}\{1\text{H}\}$ NMR at δ_p 41.5 ppm (for OPMe$_3$), or at δ_p 52.2 ppm (for OPCy$_3$). Two possible scenarios could be envisioned from this data: 1) oxygen abstraction by the phosphine
followed by the pyridine coordination; or 2) a OPR$_3$ coordination to the P$_{\text{central}}$ (Figure 29).

\[
\left[\left(\text{Ph}_3\text{P} \right)_2\text{C} \right]^{2+} \\
\text{Py} \\
\text{N}^i\text{Pr}_2 \\
\overset{\text{O}}{\circ} \\
\text{R}_3\text{PO}
\]

\[\text{or} \]

\[
\left[\left(\text{Ph}_3\text{P} \right)_2\text{C} \right]^{2+} \\
\text{N}^i\text{Pr}_2 \\
\overset{\text{O}}{\circ} \\
\text{OPy}
\]

Figure 28. Suggested reaction products

Kinetic studies with different substrate amounts were subsequently conducted (0.5 eq, 1 eq, 1.1 eq and 10 eq). In all cases, the reaction was stoichiometric. Irrespective of the amount of the added substrate, product decomposition would occur upon about 30h from the start of the reaction, resulting in the phosphine oxide peak shift to δ_p 39.2 ppm (OPMe$_3$) or δ_p 49.8 ppm (OPCy$_3$). A similar observation was reported by Burford *et al.*,\[186\] where free OPMe$_3$ was detected at δ_p 36.3 ppm, as a result of reversible association from the OPMe$_3$-stabilized antimony cation [\text{Ph}_4\text{Sb}(\text{OPMe}_3)][\text{OTf}]$, which displayed a OPMe$_3$ peak at δ_p 42.6 ppm. The correlation with the behaviour of our system made us believe that our reaction product was indeed OPMe$_3$-stabilized, followed by the release of OPMe$_3$ resulting from the subsequent decomposition. In reactions with 10 eq of phosphine, the amount of free OPR$_3$ was about three times higher than in reactions with 1.1eq. A possible explanation is that excess PR$_3$ reacts with [LP(NiPr$_2$)(O)(H)]$^+$, which is present as a side-product, and abstracts one of the oxygens from it. In addition, oxygen transfer reaction was attempted catalytically, with the addition of 10eq of PR$_3$ and OPy. Unfortunately, the reaction outcome did not differ from the one when only 10eq of phosphine are added. In addition to the NMR characterisation, small quantities of OPCy$_3$ were detected via mass spectroscopy m/z 297.2349, confirming the successful oxygen transfer.
3.3 Conclusion

In conclusion, we have demonstrated an oxygen insertion into a P-C bond under mild conditions, rendering 7^{2+} to be the first main group element to achieve so. Based on the computational analysis results, the reaction mechanism bears resemblance with the Baeyer–Villiger (BV) oxidations. Unorthodoxly for BV reactions, Criegee-like intermediate has been identified as the key intermediate for the insertion. Finally, the activation energy was greatly subsided by the steric strain in the Criegee-like intermediate without influencing the ultimate process outcome.

Lastly, we have demonstrated a successful stoichiometric oxygen transfer between 7^{2+} and PMe$_3$/PCy$_3$. Investigations of this mechanism and further reactivity of 7^{2+} and 8^{2+} are ongoing and will be reported in due course.
Chapter IV:

Synthesis and reactivity of a carbone-stabilized parent-metaphosphonate
4.1 Introduction

Despite the similar properties that members of the same periodic group can share, this is not always the case. An example includes chemical properties of nitrogen and phosphorus, neighbouring elements within the same periodic group. Contrarily to the stability and abundance of N\textsubscript{2} gas, P\textsubscript{2} is elusive and mostly shortly witnessed at high temperatures[187] While nitrogen-oxides are stable, isolable, easily accessible and often with significant environmental impacts[188], phosphorus-oxide analogues are highly reactive and observed in either gas phase or at extremely high temperatures[189]. The first PO-trapping was achieved in a reaction between \{[\textit{Cp}4Ni\textsubscript{2}((CO)\textsubscript{4}W)P\textsubscript{2}]\} and bis(trimethylsilyl)-peroxide in 1991 (Scheme 35a)[190], whereas the first P\textsubscript{2}O-containing metal cluster was reported several years later (Scheme 35b)[191] However, the field of phosphorus-oxides has remained explored vaguely to this day, twenty years later.

![Diagram](image)

\textit{Scheme 35. Examples of different species containing the PO-moiety.}

Very recently, Robinson \textit{et al.} have successfully trapped a diphosphorus tetroxide using remarkable stabilizing abilities of an NHC ligand (Scheme 35c)[192]. A
unique, Lewis acidic NHC→(O)₂P-P(O)₂←NHC compound was obtained via the molecular splitting of the triplet O₂ from the similar carbene-stabilized P₂ precursor NHC→P-P←NHC. While the synthesis of the diphosphorus tetroxide compound required extremely air- and moisture-free conditions, recrystallization of the final product NHC→(O)₂P-P(O)₂←NHC could also be achieved in the air, in which case the compound interestingly co-crystalizes with two molecules of water.

![metaphosphate and dioxophosphorane](image)

Figure 29. General examples of a metaphosphate (a) and a dioxophosphorane (metaphophonate) (b).

Dioxophosphoranes (metaphophonates) (Figure 30b) are precursors and potential sources of the yet another elusive oxide, PO₂. Dioxophosphoranes have been long known as transient species, reaction intermediates (Ph-PO₂) and leaving groups that provide crucial explanations for various reaction mechanisms, especially for phosphorylation reactions. However, the actual search for these organic derivatives of metaphosphoric acid set off in 1955, when the anion of metaphosphoric acid was proposed to be involved in ATP hydrolysis (Scheme 36). Since then, scientists have been attempting to generate and characterise metaphosphoric acid and its derivatives. Despite efforts, 60 years later, when many low-coordinate P-complexes were successfully stabilized, these species remain elusive. Difficulties regarding experimental work and isolation of dioxophosphoranes arise from the strongly electrophilic character located at their positively(+) polarized P(V) atom. However, the same electrophilic property also accounts for their strongly phosphorylating abilities in reactions with many organic substrates. Extensive research that was conducted on
these species suggests that they are highly reactive with low selectivity with respect to attacking various substrate sites or nucleophiles present in the solution.\[194\]

Scheme 36. A schematic representation of the ATP hydrolysis.

To this day, merely one example of a dioxophosphorane (Cl-PO\(_2\)) has been directly detected in a solid argon matrix as a result of a photochemical reaction between O\(_3\) and POCl\(_3\).[195] The short-lived compound was studied via IR spectroscopy, which displayed a P-O stretching bond at 1443 cm\(^{-1}\) and indicted an OPO bond angle of \(\sim 135^\circ\), and a particularly strong P-Cl single bond. Ab intio SCF calculations performed by the group confirmed these results and suggested a 4e-3C \(\pi\)-system for the OPO moiety.

Among the numerous approaches to generate metaphosphonates, the most historical ones include flash vacuum pyrolysis (F.V.P.) and high temperatures of about 400-800°C. Some examples include thermal fragmentation of 1,3,2-dioxaphospholanes or phosphonites, which allowed methyl metaphosphate to be observed in the gas phase for the first time. Similarly, the existence of other metaphosphonates was deducted via the same method, either by also being observed in gas phase, or deducted from resulting self-condensation products of respective metaphosphonates. For instance, F.V.P. of phenyl-1,3,2-dioxaphospholane leads to the loss of ethylene and a formation of trimeric metaphosphonate, which is presumed to
result from a monomeric Ph-PO$_2$ intermediate. The same result was obtained via a similar F.V.P. of a phosphonite, with a loss of butadiene.$^{[196]}$ The paper also reports the formation of a 5-hydroxydibenzophosphole-5-oxide, resulting from the intramolecular trapping of a monomeric metaphosphonate by an adjacent phenyl ring in the F.V.P. of a cyclic phosphonite. Similarly, F.V.P. of 2-(2,4,6-tri-t-butylphenyl)-1,3,2-dioxaphospholane leads to a dioxaphosphorane insertion into a neighbouring C-H bond of the methyl group to yield 5,7-di-t-butyl-3,3-dimethyl-2,3-dihydro-1-hydroxy-1λ^5-benzophosphol-1-one.$^{[197]}$ Other examples of cyclic phosphonates obtained via intramolecular phosphorus insertion into a C-H bond from an F.V.P. reaction are shown in Figure 31 below.

Figure 30. Examples of cyclic phosphonates resulting from an intramolecular phosphorus insertion into a C-H bond

While flash vacuum pyrolysis provided valuable insights into the chemistry of metaphosphonates and paved access to the first metaphosphonate species, this method is not practically feasible due to requirements of high temperatures and low yields of resulting compounds.

More practical techniques to generate metaphosphonates include (thermal) fragmentations in solvents, in the presence of trapping agents, such as amines or alcohols. The first of its kind was fragmentation of monoalkyl β-haloalkylphosphonate dianions, now known as the Conant-Swan reaction. Fragmentation was achieved through the first-order reaction at 70°C in acetonitrile as
an inert solvent. Generated metaphosphonate (MeO-PO$_2$) was subsequently trapped by a tertiary amine in an electrophilic substitution reaction. While Conant-Swan reaction was historically significant, fragmentation of alkyl-oximinobenzylphosphonates was more feasible, which yielded various metaphosphonates; MeO-PO$_2$, EtO-PO$_2$, 1BuO-PO$_2$ to name a few. Initially, anhydrous HCl in an alcohol solvent was used to instigate the phosphonate fragmentation. Resulting metaphosphonate would then react with the present alcohol, yielding a dialkyl phosphate. The method was later modified to use an inert solvent (toluene) instead, with a minor presence of a trapping alcohol, which allows the generated metaphosphonate to act as a phosphorylating agent towards the alcohol. Latter method allowed even for a successful phosphorylation of 1BuOH, conventionally challenging to phosphorylate.

Another example includes photolytic or thermal fragmentation of derivatives of 2,3-oxaphosphabicyclo [2.2.2] octene ring system, studied by Quin and coworkers since 1980’s. As in many other instances, highly electrophilic character at phosphorus causes metaphophonates to undergo self-reaction instantly upon being generated in the solution, resulting in linear or cyclic polymers.

As formerly mentioned in the F.V.P. pyrolysis, metaphophonates tend to insert into the neighbouring groups. Similar behavior was observed in various attempts to kinetically stabilize metaphophonates via steric protection. On the other hand, aprotic amines and ethers have successfully been employed in trapping the generated metaphophonate in solutions, yielding Lewis salts. Although this strategy allowed the salts to be characterised only by 31P spectroscopy, they can be used as sources of PO$_2$. Some examples are shown in Figure 32.
Figure 31. Metaphosphonate trapping by an amine or ether in form of Lewis salts

Complexation with metals represents a conventional route to stabilization of low-coordinate phosphorus compounds; however, this method only recently proved fruitful for the metaphosphonate-stabilization. In 2003, Menye-Biyogo et al. reported the first isolation and full characterisation of Ru-stabilized metaphosphonate (12) including the crystal structure of the compound. The strategy included reducing the electrophilicity of the PO$_2$ unit by binding it to an electron-rich moiety, which is a terminal Ru-phosphinidine complex in this case. Interestingly, the resulting [(η^6-p-cymene)(PR$_3$)Ru(η^2-OPOMes*)] (R=Ph or Cy) complex (Scheme 37, 12) showed only moderate air-sensitivity. Such mild air-sensitivity was surprising, considering the extremely reactive and air-sensitive nature of the free PO$_2$ unit. In addition, the absence of the reactivity towards most commonly employed dioxophosphorane-trapping agents (MeOH or aniline) implied that the electrophilicity of the PO$_2$ unit was entirely quenched.

Another group recently reported the synthesis and reactivity of the Mo-stabilized metaphosphonate [MoCp(CO)$_2$κ$_2$-OP(O)R]$^+$ (R=2,4,6-C$_6$H$_2$Bu$_3$) (14$^+$) as an orange DHU-H$^+$ (DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene) salt. This anionic
complex was obtained: 1) as a hydrolysis product of the complex of the phosphinous acid cis-[MoBrCp(CO)₂{P(OH)(CH₂CMe₂C₆H₄Bu₂)}] under basic conditions; and also 2) directly from its phosphinidene oxide complex precursor [MoCp(CO)₂{P(O)R}]⁺ (R=2,4,6-C₆H₄Bu₃) (13') via Me₂CO₂ oxidation (Scheme 38).

In contrast to the electrophilic nature of the PO₂ moiety, its acid-base chemistry was expected to be reversed due to the overall negative charge of the Mo-complex. Electron density at the bond critical points was calculated to amount to 0.488 eÅ⁻³ (Mo-P bond), 1.40-1.43 eÅ⁻³ (terminal P=O bond) and 1.240 eÅ⁻³ (P-O bond of the Mo-bound oxygen). In addition, high and similar (-0.671 vs -0.615) negative atomic charges for both oxygens pointed out the possible electrophile attachment indifference.

While a highly air-sensitive Mo-dioxophosphorane complex [MoCp(CO)₂{κ²-OP(O)R}]⁺ (R=2,4,6-C₆H₄Bu₃) couldn’t be obtained as pure material, it was possible for it to be used in reactions immediately upon its generation in the solution. With respect to the methylation reaction, the complex showed no reactivity towards MeI, while Me⁺ cation of a stronger methylating agent (Me₃O)BF₄ selectively added to the terminal oxygen to yield [MoCp{O,P-OP(OMe)R}(CO)₂] due to the electrostatic circumstances and site accessibility for the electrophile attack.

Scheme 38. Synthesis of a Mo-stabilized metaphosphonate [MoCp(CO)₂{κ²-OP(O)R}]⁺ (R=2,4,6-C₆H₄Bu₃), 14'

Recently, our group has stabilized several highly-reactive species using carbodiphosphorane as a stabilizing ligand, due to its exceptional electron-donor abilities. This project aimed to use the same approach to stabilize dioxophosphorane.
The initial strategy was 1) to reproduce the previously reported synthesis of the \([\{(\text{Ph}_3\text{P})_2\text{C}\text{P}Cl_2\}]^+\) cation as a chlorine salt; followed by 2) the counter-ion replacement by a non-coordinating \(\text{BAr}_4^{\text{F}^-}\) or \(\text{BAr}_4^{\text{Cl}^-}\) in order to increase stability of the resulting phosphenuim ion; and 3) an oxidation by a base to achieve substituent replacement from chlorine to oxygen atoms, yielding a carbone-stabilized metaphosphonate [L-PO₂] system.

4.2 Results and Discussion

4.2.1 Synthetic methods

Carbone-stabilized metaphosphonate was generated via multi-step, \textit{in-situ} reaction procedure presented in Scheme 39. The starting material for the reaction, \([\{(\text{Ph}_3\text{P})_2\text{C}\text{P}Cl_2\}][\text{Cl}],\) was synthesized according to the earlier mentioned procedure.[141] Similarly, anion exchange was achieved with \(\text{NaBAr}_4^X\) \((X=\text{F, Cl})\). Counterion choice of \(\text{BAr}_4^X^-\) was made due to its non-coordinating nature and bulkiness, improved cation’s stability and the ease of handling it in the following steps. Subsequently, oxidation efforts to access 17 were leveraged on potassium hydroxide’s basic properties.

\[
\begin{align*}
\text{Ph}_3\text{P} & \quad \overset{\text{PCl}_3}{\rightarrow} \quad \begin{bmatrix}
\begin{array}{c}
\text{Ph}_3\text{P} \\
\text{Ph}_3\text{P} \\
\text{Cl} \\
\text{Cl} \\
\end{array}
\end{bmatrix}^+ \quad \text{Cl}^- \\
\text{Ph}_3\text{P} & \quad \text{Ph}_3\text{P} \\
\text{Cl} & \quad \text{Cl} \\
\text{Ph}_3\text{P} & \quad \text{Ph}_3\text{P}
\end{align*}
\]

\[
\begin{align*}
\text{Cl}^- & \quad \text{NaX} \\
\begin{bmatrix}
\begin{array}{c}
\text{Ph}_3\text{P} \\
\text{Ph}_3\text{P} \\
\text{Cl} \\
\text{Cl} \\
\end{array}
\end{bmatrix}^+ & \quad \text{X}^- \\
\text{KOH} & \quad (1:1\text{eq}) \\
\begin{bmatrix}
\begin{array}{c}
\text{Ph}_3\text{P} \\
\text{Ph}_3\text{P} \\
\text{O} \\
\text{O} \\
\text{P} \\
\text{PPh}_3
\end{array}
\end{bmatrix} & \quad 2\text{X}^-
\end{align*}
\]

\[\text{Scheme 39. The reaction steps for the synthesis of 15}^+\].
Treatment of a yellow-orange dichloromethane solution of \([(\text{Ph}_3\text{P})_2\text{CP}][\text{BAr}^{F/Cl}_4]\) with 1.1 equivalent of KOH instantly resulted in the colour change to colourless. \[^{31}\text{P}\] NMR indicated a significant upfield shift for the central phosphorus atom, from \(\sim 173\) ppm to \(\sim 36\) ppm. Preservation of the L-P bond was indicated by the subsisting P\(_\text{central}\) triplet. In addition, a significant P-H coupling was observed (\(^1J_{P-H}=636\) Hz), implying the presence of a direct P-H bond. Layering the solution with an equivalent amount of hexane resulted in the crystal formation.

![Figure 32. Crystal structure of \([(\text{PPh}_3)\text{CP(O)(OH)(H)}][\text{BAr}^{F}_4]\) \(_2\) (Thermal ellipsoids are shown at 50% probability). Hydrogen atoms within the phenyl rings and BAr\(^F\)\(_4\) counterions have been omitted for clarity. Selected bonds (Å) and angles (°): P1-O1, 1.507(2); P1-O2, 1.534(2); O1-P1-O2, 114.70(12).](image_url)

Characterisation via single crystal X-ray diffraction revealed a dimeric structure \(15^+\) presented in Figure 34, where two units are interconnected via hydrogen bonds. The details of this crystal structure are elaborated in more detail in Section 1.2.1.2.

Subsequent removal of intermolecular hydrogens was attempted by increasing the base amounts. Whereas addition of KOH in 2-3 equivalents allowed us to achieve this goal, the resulting monomeric compound now contained a potassium cation \(\mu\)-bonded to both oxygens \(16^+\). This issue was overcome via base increment up to 3 equivalents, which finally yielded the targeted parent-metaphosphonate compound \(17\).
Upon solvent removal, an impure and oily residue remained, due to the presence of the various potassium- and borate salts. Attempts to purify the mixture via different crystallization and purification techniques failed, resulting in the hydrolysis and the formation of the above-mentioned dimer 15^+. Finally, replacement of the KOH base to tetramethylammonium hydroxide proved to be the key to our access to the carbone-stabilized parent-metaphosphonate.

Scheme 40. The reaction pathway for the synthesis of 17

The gradual addition of a DCM solution of [\{(Ph$_3$P)$_2$C\}PCl$_2$][BAR$_4^{FCl}$] into three equivalents of anhydrous Me$_4$NOH resulted in the appearance of peaks at δ_P 21.3 (doublet, P_{carbone}) and δ_P 13.7 (triplet, P_{central}, 1J_P-$H = 586$ Hz), consistent with our previous results. In comparison to the previously reported PO$_2$-containing species, 31P NMR resonances in 12 and 14^+ for the P_{central} fall in the range between 38.5 ppm and 40.8 ppm, and 31P NMR shift of a gaseous metaphosphoric acid is calculated at δ_P 53 ppm.$^{199, 201}$ The significant upfield shift for our product (compared to these compounds), indicates higher nucleophilicity of the P_{central} in 17, most likely due to the carbone ligand’s donor properties and the absence of back-donation to the metal, which is the case in previously reported metal-complexes. It is notable that the position of the phosphorus shift in 31P NMR was highly dependent on the solvent choice. A P_{central}-H bond was evidenced also from the 1H NMR spectroscopic data: a doublet peak at δ_H 6.79 ppm, with a coupling value of 533Hz, coherent with the 1J_P-H of 527 Hz for the P_{central} triplet in 31P NMR. The decrease of about 100 Hz in the 1J_P-H coupling constant value for 17 as compared to the dimer 15^+ (1J_P-$H = 636$ Hz) suggests
the higher electron-density around \(P_{\text{central}} \) in 17. This is also suggested from the \(^{31}\text{P}\) NMR, since the signal for the \(P_{\text{central}} \) in 17 is shifted about 20 ppm upfield from the same signal in the dimeric species \(15^+ \). The slightly higher electron-density around the \(P_{\text{central}} \) in 17 can be assigned to the oxygen electrons, which are likely to be shifted closer to the central phosphorus upon the breakage of the O-H bond in \(15^+ \) caused by the removal of the oxygen-bounded hydrogen atom. Stronger P-H bond in 17 is also supported by the IR stretching band at 2304.54 cm\(^{-1}\), versus 2445 cm\(^{-1}\) in \(15^+ \). In general, the IR stretching frequencies of all the bonds around the \(P_{\text{central}} \) in the compound 17 (see Section 2.2.1.1.) are lower than of the compound \(15^+ \), suggesting a stronger interaction in case of 17. The stronger bond interaction is further supported by the melting points of the two compounds, since 17 requires about 25ºC higher temperature to melt (194.9 ºC for 17; 169.7 ºC for \(15^+ \)).

Similarly to \(15^+ \) and \(16^+ \), the purification of the parent-metaphosphonate moiety remained a challenge. Initial crystallization attempts directly from the solution mixture resulted in a separation of yellow oil, which contained various ammonium-borate salts, several hydrolysis products, and salts of the protonated ligand.

Due to its 5-coordinated phosphorus center, 17 was suspected to be air- and moisture-stable. Indeed, the oily mixture containing 17 endured an overnight bench test towards air- and moisture-stability without any signs of decomposition, allowing for the column chromatography as a mean of purification.

4.2.1.1 Challenges in column chromatography purification of compound 17

In order to elute reaction side-products obtained in the synthesis of 17, eluents of different polarities were used. In general, we observed that using EtOAc resulted in large fraction amounts of protonated carbone and meagre yields (<10%) of the final 17.
This led us to a suspicion that 17 binds to the silica gel mostly via oxygen atoms, leaving carbone ligands on the external face of the material, which easily gets cleaved and protonated by the passing EtOAc. Indeed, elution time drastically improved when DCM or chloroform was used as an eluent instead. Between the two, chloroform allowed better separation for this system, although its use should generally be avoided due to its toxicity and possible health risks.[202]

Interestingly, even solvents of higher polarity (ACN or pyridine) than EtOAc, CHCl\textsubscript{3} and CH\textsubscript{2}Cl\textsubscript{2} could not elute 17. Possible reasons might be: the high polarity of 17, tendency to form hydrogen bonds, and/or strong Si-O bonds formed with the silica inside the column. Nonetheless, Quin et al. previously explored trapping properties of silica gel for metaphosphate species generated via thermal fragmentation.[198b] In an “in situ” reaction between ethyl-metaphosphate and an anhydrous silica gel, they managed to phosphorylate hydroxyl groups on the silica surface and to form monophosphates, which further undergo reactions to form pyrophosphate groups (Scheme 40a). Analogous behaviour was observed for phenyl-dioxophosphonate, with Si-OH groups of various zeolites and even alumina.[201c] A general reaction Scheme (41b) between a dioxophosphorane species and a Si-OH material surface groups is shown below.

In a review, Quin noted: “It is an essential feature of the use of dioxophosphoranes of all types for surface phosphorylation that the OH group is created on phosphorus”.[201c] Having this in mind, it is not surprising that 17 remains as the last column fraction, which can be eluted out of the column only via an alcohol. Two possible reasons for it may be: 1) “like dissolves like”; 2) alcohol provides stabilization to 17 via H-bonding, allowing the alcohol to be favoured over the silica.
Furthermore, the reaction yields can be improved to equal up to 79% when the column is packed with alumina instead of silica, and when Et₃N (TEA) is added as a stabilizer. On another hand, the addition of TEA to last eluent (MeOH) might interfere with subsequent reactions, as it can be challenging to separate it from the compound due to the formation of the TEA-H⁺. Considering water as one of the side products in the synthesis of 17, along with the air/moisture stability of 17, the use of anhydrous Me₄NOH is not required. In fact, wet Me₄NOH or even Me₃NO•2H₂O can be used as a base source as well.

Another synthetic pathway consists of using 1.5 equivalents of base to generate a monocationic precursor [L(H)P(O)(OH)]⁺, followed by the previously described column purification. Elution of the last fraction with MeOH results in the immediate formation of 17. Alternatively, crystals of [L(H)P(O)(OH)]⁺ can be reacted with methanol to give 17, but with overall lower reaction yields.

A solid-state synthesis via mechanical milling over 30 min was also attempted. The reaction resulted in the product formation of about 50% yield. The other dominant reaction product displayed a doublet in ³¹P NMR and a coupling constant of 639 Hz. While mechanical milling can be a convenient synthetic method, it was not preffered.
due to the lower yield and a higher impurity content. Finally, recrystallization of the obtained colourless oil with MeOH/Et₂O yields in the colourless crystals of 17.

Drying 17 proved to be quite challenging as well. Water removal in the presence of 3Å or 4Å drying sieves proved to be unsuccessful. Similar behaviour was observed with MgSO₄ as a drying agent. Heating ground crystals to 110°C under reduced pressure would result in decomposition, while lower temperature hating was ineffective. Water removal was best achieved by drying 17 over B₂O₃ at 50°C overnight. Anhydrous 17 displayed ³¹P NMR shifts at 6.5 ppm (br, Pᵣ,central), very similar to the δP 5.8 ppm for (NHC)₂P₂O₄.¹⁹² Coupling constant value of the anhydrous 17 was notably (~60 Hz) lower than for the previously obtained 17•2H₂O (¹JP-H = 554 Hz). The difference in the coupling constant can be assigned to the existing intermolecular hydrogen bonds between terminal oxygens and lattice water in 17•2H₂O. This interaction weakens the P=O bonds and thus, strengthens the P-H bond, resulting in the higher value of the coupling constant for 17•2H₂O.

Furthermore, the IR stretching frequencies at 2305 (w) cm⁻¹, and 1265 (s) cm⁻¹ were assigned to P-H and P=O bonds, respectively. The P=O band is highly compatible with the value obtained for the (NHC)₂P₂O₄ of 1279 cm⁻¹ for the antisymmetric mode, and it falls in between frequencies for the previously observed RPO₂ moieties (at 1448 cm⁻¹), and the metal-ligated P=O bands in Ruthenium-dioxophosphonate complex 12 (1168 cm⁻¹ and 1153 cm⁻¹).¹⁹²,¹⁹⁵

4.2.1.2 X-ray structure analysis of 17

Single crystal X-ray diffraction analysis revealed a monomeric {(Ph₃P)₂C}PH(O)₂ unit, which co-crystallized with two molecules of water (Figure 34). As mentioned at the beginning of this chapter, thus far no other parent-
metaphosphonate has been structurally characterized, and only one structural example of a Ruthenium-complex containing a PO$_2$ unit (12) exists to this date. Coordination of water molecules to the terminally bounded oxygens is an evidence of the compound’s stabilization by the hydrogen bonds. The geometry around the central four-coordinate phosphorus is pyramidal, with a sum of angles of 336.9°, which is slightly lesser that the sum of angles of ~342° in the dimer 15$, but close to the 334.6° angle in (NHC)$_2$P$_2$O$_4$. While the PO$_2$ unit does not retain its planarity, the planarity remains about the C(1) atom, as indicated by the C(1) sum of angles of 359.6°. The same preservation of planarity was observed in its dimeric analogue 15$ (C(1) sum of angles of 359.9°). \(P(1)-C(1) \) bond value of 1.812(5) Å is significantly longer than \(P(1)-C(1) \) bonds in the formerly mentioned compounds 3$^{2+}$ and 7$^{2+}$ (~1.74-1.75 Å), indicating a weaker electron-donation from the ligand to the central phosphorus atom. Predictably, the \(P1-C1 \) bond in the (NHC)$_2$P$_2$O$_4$ ligand is even longer (1.895(3) Å), consistent with the weaker donor-abilities of the NHC ligand, relative to the CDP ligand.

![Figure 33. Molecular structure for 17·2H$_2$O (thermal ellipsoids are shown at 50% probability level). All atoms have been drawn to 50% probability. Hydrogen atoms, except H(1) have been omitted for clarity. Selected bonds (Å) and angles (°): C1-P1, 1.812(5); P1-O1, 1.505(4); P1-O2, 1.500(4); O2-P1-C1, 112.6(6), O1-P1-C1, 106.1(2).]
Having in mind that the analogous P1-C1 bond in the dimeric 15$^+$ equals to 1.757(3) Å, it is valid to assign the bond elongation to the stronger interaction between the P1 and directly bounded oxygen atoms O1 and O2, resulting from the absence of the direct O-H bond (observed in 15$^+$). Stronger P-O interaction in 17 can also be inferred from the P1-O2 bond length comparison of the two complexes. While the length of P(1)-O(1) bonds is about the same (1.505(4) Å in 17, and 1.507(3) Å in 15$^+$), the difference is obvious in the lengths of the P1-O2 bonds of 1.500(4) Å in 17, and 1.534(2) Å in 15$^+$. P1-O2 clearly undergoes shortening in 17 due to the lack of interaction with the directly bounded hydrogen atom. In both complexes (17 and 15$^+$), the P-O bond lengths are similar to those found in phosphinidene complexes, and slightly longer than the ones reported by us for a 5-coordinate phosphorus system containing a carbone→P bond. Comparable P=O value of 1.509 Å was calculated for by Alonso et al. for 14$^+$,[200a] and reported by Menye-Biyogo et al. found in the compound 12 (1.491(5) Å).[199] On the other hand, slightly shorter P=O values of 1.466(3) Å and 1.470(3) Å were reported for (NHC)$_2$P$_2$O$_4$, consistent with the weaker ligand to central-phosphorus interaction as compared to our compounds.

The O(1)-P(1)-O(2) angle of 114.7(1)$^\circ$ in 15$^+$ undergoes widening to amount to 118.2(2)$^\circ$ in 17 probably due to the oxygen lone pair repulsion upon the proton removal at the O(2). These values are comparable to the ones found in compounds 12 and 14$^+$ (120.1(2)$^\circ$ and 120.1(1)$^\circ$, respectively), and slightly more acute than 125.4(2)$^\circ$ found in (NHC)$_2$P$_2$O$_4$. In addition, the electron repulsion between the C(1) and O(2) lone pairs might be responsible for the O(2)-P(1)-C(1) angle of 112.6(2)$^\circ$ being slightly wider than the O(1)-P(1)-C(1) angle of 106.1(2)$^\circ$ in 17. The same trend and similar angle values are observed in the dimer 15$^+$ (O(2)-P(1)-C(1) angle of 111.7(2)$^\circ$; O(1)-P(1)-C(1) angle of 108.1(2)$^\circ$) In comparison, both O-P-C$_{\text{NHC}}$ angles in
(NHC)$_2$P$_2$O$_4$ are about the same (105.7°), owing to the absence of the second lone pair on carbone in the NHC ligand.\[192\]

In addition, the P-H bond of 1.357Å (17) is shorter than the average of 1.470 Å. The strength of this bond is quite apparent even from the earlier discussed IR spectroscopy results (see page 89), as this bond was characterised by a low stretching intensity of the P-H bond.

4.2.2 Reactivity studies

4.2.2.1 Proton/hydride abstraction

Reactivity of P-H bonds in phosphines, primary organophosphines and secondary organophosphines allowed them to be widely used as synthetic intermediates and reagents. Conversion of P-H bonds into P-E bonds (where E = metal, non-metal) is at the core of the chemistry of these species. Conversion often takes place via the P-H bond addition to a C-E multiple bond, or via the metathetic hydrogen substitution. Some of these processes yield ligands that are indispensable in academic and industrial chemistry (ex. tertiary phosphines).\[203\]

\[
\begin{align*}
\text{a)} & \quad \text{P-H} \rightarrow \text{P}^+ + \text{H}^- \\
\text{b)} & \quad \text{P-H} \rightarrow \text{P}^{\ominus} + \text{H}^{\ominus} \\
\text{c)} & \quad \text{P-H} \rightarrow \text{P}^{\ominus} + \text{H}^\ominus
\end{align*}
\]

Scheme 42. General P-H cleavage modes: a) homolytic, and heterolytic, where the P-H bond is a hydride donor (b) or a proton donor (c).

General ways of a P-H bond breakage are shown in Scheme 28. Besides the homolytic cleavage (Scheme 42a), phosphorus compounds containing a P-H bond can
serve as both, acids and hydride, donors due to the negligible difference in electronegativities ($\Delta \chi = 0.14$) of the two atoms, which impedes pronounced polarity.

Scheme 43. The predicted reaction product for the deprotonation of 17

Proton abstraction studies were unsuccessfully attempted by heating using various bases: NaNH$_2$, KHMDS, KO'Bu, nBuLi, and tBuLi (Scheme 43). Among them, NaNH$_2$ caused no reactivity. When added to 17 in an equivalent amount, KHMDS reacts to give $[(\text{Ph}_3\text{P})\text{CH}(\text{PPh}_2(\text{O}))]^{\dagger}$ and carbone, while higher base equivalents favour the formation of solely carbone. Carbone is also a major reaction product when KO'Bu and nBuLi are used.

Scheme 44. The predicted reaction product for the hydride abstraction from 17

Alternatively, we explored the accessibility to a [L-PO$_2$]† cationic species via acidic hydride-removal reaction (Scheme 44), which was supported by the P(1)-C(1) bond value of 1.812(5) Å, indicative of a weak Lewis acidic character on the central phosphorus. Contrarily to our expectations, employment of a trityl tetrakis(pentafluorophenyl)borate resulted in the appearance of a doublet at δ_P 20.5 ppm and a triplet at δ_P 18.2 ppm ($^1J_{P-H} = 488$ Hz), which were assigned to a (trityloxy)oxophosphonium salt (Scheme 45). Numerous attempts to crystallize the compound failed, probably due to high air- and moisture- sensitivity. However, we managed to observe it via HRMS at 867.2641 m/z. Analogous results were obtained
with trityl-triflate, resulting in the appearance of a doublet and a triplet at δ_p 22 ppm and δ_p 19 ppm, respectively.

\[
\begin{align*}
\text{Ph}_3\text{P} & \quad \text{H} \quad \text{P} \quad \text{O} \\
\text{Ph}_3\text{P} & \quad \text{DCM} \quad \text{[Ph}_3\text{C}[\text{X}] \quad \text{[Ph}_3\text{P}] \quad \text{H} \quad \text{P} \quad \text{O} \\
\text{X} \quad \text{+} \quad \text{Ph}_3\text{P} & \quad \text{H} \quad \text{P} \quad \text{O} \\
\text{Ph}_3\text{P} & \quad \text{OH} \\
\end{align*}
\]

\[X = \text{B(C}_6\text{F}_3\text{)}_4^+, \text{OTf}^-\]

Scheme 45. The reaction between 17 and trityl-borate

Another approach for the hydride abstraction included hydrogen substitution, in which we used oxalyl chloride as a halogen source. Unfortunately, the reaction yielded formerly mentioned $[(\text{Ph}_3\text{P})_2\text{PCl}_2][\text{Cl}]$ (precursor for the synthesis of 17) instead of the desired product. It can be suggested that the high affinity of 17 for chloride ions prevented the activation of the P-H bond, and instead, caused reactivity at the P$_{\text{central}}$.

Inability to remove the hydrogen atom could be assigned to a particularly strong P-H bond of 1.357Å. Literature reports of an intermolecular hydride exchange in a reaction of 2-H-diazaphospholane with P-chloro-diazaphospholene and trichlorogermanate (or trichlorostannate) offer comparable results.\cite{204} For the performed reaction, a computed P-H bond value for 2-H-diazaphospholane equaled to 1.480 Å, and 1.771 Å for a resulting dimer PHC-H-PHC. However, the same reaction did not proceed when a dimer without a P-H-P bond was computed, where a single P-H bond of 1.462 Å was preserved. Having in mind that our bond length of 1.357Å is significantly shorter, difficulties in activating it are not surprising.

4.2.2.2 Methylation

Preference of CPh$_3$+ for oxygen corresponds to higher acidity of the terminal oxygen with respect to hydrogen in P-H. This was confirmed in a reaction with
methyl-triflate, which produced a clear doublet of quartets (\(J_{P,H} = 586\text{Hz}, \ J_{POCH} = 13\text{Hz}\)) at \(\delta_P = 30.5\ \text{ppm}\) immediately upon the addition, indicative of the \((\text{Ph}_3\text{P})_2\text{CP}(\text{O})(\text{OMe})\text{H}\) product (Scheme 46).

\[
\text{Ph}_3\text{P} \begin{array}{c} \text{H} \\ \text{C} \end{array} \begin{array}{c} \text{P} \\ \text{O} \end{array} \xrightarrow{\text{MeOTf}} \text{Ph}_3\text{P} \begin{array}{c} \text{C} \end{array} \begin{array}{c} \text{P} \\ \text{O} \end{array} \begin{array}{c} \text{Me} \\ \text{O} \end{array}
\]

\textit{Scheme 46. The product of a reaction between 17 and MeOTf.}

Coupling constants of the obtained product are in the range of previously reported values in \((\text{Me})(\text{H})\text{P}(\text{O})(\text{OR})\), presented in Table 8.[205] \(P_{\text{central}}\, ^{31}\text{P}\) NMR shifts obtained for 17 fall within the range reported for \((\text{Me})(\text{H})\text{P}(\text{O})(\text{OR}')\). A slight downfield shift can be observed in cases where \(R=\text{H}\) \((\text{H}_2\text{P}(\text{O})(\text{OR}'))\), possibly due to the stronger donor-ability of methyl and carbone substituents in comparison to the hydrogen atom.

\textit{Table 8. Literature values of \(^{31}\text{P}\) NMR shifts and coupling constants for compounds of formula \((R)(\text{H})\text{P}(\text{O})(\text{OR}')\)\)}

<table>
<thead>
<tr>
<th>(R)</th>
<th>(R')</th>
<th>(\delta_P) [ppm]</th>
<th>(J_{P,H}) [Hz]</th>
<th>(J_{POCH}) [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>Me</td>
<td>32.8</td>
<td>545</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Et</td>
<td>31.3</td>
<td>555</td>
<td>-</td>
</tr>
<tr>
<td>Me</td>
<td>Me</td>
<td>19.2</td>
<td>569</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Et</td>
<td>15.8</td>
<td>570</td>
<td>10</td>
</tr>
<tr>
<td>(i\text{Pr})</td>
<td></td>
<td>11.8</td>
<td>570</td>
<td>10</td>
</tr>
<tr>
<td>(i\text{Bu})</td>
<td></td>
<td>8</td>
<td>560</td>
<td>-</td>
</tr>
<tr>
<td>(i\text{C}6\text{H}{11})</td>
<td></td>
<td>6.3</td>
<td>552</td>
<td>-</td>
</tr>
<tr>
<td>Ph-\text{CH}_2</td>
<td></td>
<td>15.1</td>
<td>575</td>
<td>11</td>
</tr>
</tbody>
</table>

Considering that the reported Mo-complex of \(\text{PO}_2\) proved to be inactive in the methylation reaction, the successful methylation of 17 by MeOTf emphasized the preserved reactivity of the \(\text{PO}_2\) unit within the specie (17).
4.2.2.3 Dioxophosphorane-trapping

As previously mentioned, most commonly employed agents for PO_2 trapping are aniline and alcohols (Scheme 47), mainly methanol.

$$\begin{array}{c}
\text{X-P}^+ \\
\text{O}
\end{array} \xrightarrow{\text{ROH}} \begin{array}{c}
\text{X-P-OR} \\
\text{OH}
\end{array}$$

Scheme 47. A general reaction of the dioxophosphorane-intermediate trapping with an alcohol

4.2.2.3.1 Amines

Contrarily to the quenched electrophilicity and absence of reactivity of PO_2 towards methanol and aniline in Ru-complex, 17 reacts with both trapping agents. The reaction between 17 and aniline in large excess causes an immediate solution colour change to brown, and a new peak formation at about δ_P -6 ppm, which decomposes into multiple products about 2 hrs later, prior to the reaction completion. Reactions with other primary amines, namely MeNH_2, $^{1}\text{BuNH}_2$, CyNH_2, started producing a minor protonated carbone peak after heating the reaction to 80°C for three days. Similarly, 17 did not show any reactivity towards the secondary amine ($^3\text{Pr}_2\text{NH}$) even upon heating.

4.2.2.3.2 Alcohols

Dioxophosphorane trapping was achieved with various alcohols (Table 9) to form compounds of formula $[(\text{Ph}_3\text{P})_2\text{CH}][\text{HP(O)}_2(\text{OR})]$ (Scheme 48).

$$\begin{array}{c}
\text{Ph}_3\text{P} \\
\text{C-H}
\end{array} \xrightarrow{\text{ROH}(\text{excess})} \begin{array}{c}
\text{HC(PPPh}_3)_2 \end{array} \begin{array}{c}
\text{H-P-OR} \\
\text{O}
\end{array}$$

Scheme 48. A general dioxophosphorane-trapping reaction between 17 and an alcohol
When the last column fraction of pure 17 in methanol is left on the bench for 48h, a spontaneous and clean conversion into \([(\text{Ph}_3\text{P})_2\text{CH}][\text{HP(O)}_2(\text{OCH}_3)]\) occurs. ^{31}P NMR spectra displayed a monoprotonated carbone singlet at δ_P 20.4 ppm, and a doublet of quartets at δ_P 6.3 ppm ($^1\text{J}_{P-H} = 557$ Hz, $^3\text{J}_{POCH} = 11$ Hz). When the reaction is repeated in wet acetonitrile and heated to 70°C, complete conversion occurs in only 4.5h, producing peaks at δ_P 21.1 (s) δ_P 5.7 ppm (d, $^1\text{J}_{P-H} = 615$ Hz). The same time is required for this reaction with dry 17, with peaks occurring at δ_P 21.0 (s) δ_P 6.1 ppm (d, $^1\text{J}_{P-H} = 609$ Hz). Slight variations in the P_{central} peak positions are assigned to solvent effects and stabilization via H-bonding by methanol molecules. This is clearly observed in ^1H spectra as well. In general, MeOH solvent trace peaks occur at δ_H 3.28 ppm (singlet) and δ_H 2.16 ppm (singlet). However, due to the coordination of methanol to the starting material, MeOH peaks now appear at δ_H 3.24 ppm (s) and δ_H 2.59 ppm, which exhibits significant broadening. Upon heating, the peak at δ_H 2.59 ppm disappears, and new peaks form at 5.83 (s) ppm, 2.35 (s) ppm as a P-O-Me bond is being formed. Crystals suitable for single crystal X-Ray diffraction were also successfully grown from DCM/Hexane. Although the quality and the data of the crystals was poor, the existence of the P(O)$_2$(OCH$_3$) fragment was confirmed (Figure 36), although instead of the directly bounded proton, a KCl salt was bounded to the central phosphorus atom, probably due to the impure starting material and the presence of the BAr$^{4-}$ salts in it.
Figure 34. The crystal structure of \([\text{HC(PPh}_3\text{)}_2][\text{P(µ-KCl)O}_2(\text{OME})]\)

Analogous results were obtained with CD$_3$OD in acetonitrile (Scheme 49). P$_\text{carbone}$ peak at δ_P 20.07 and P$_\text{central}$ at δ_P 5.43 ppm were consistent with the values in \([(\text{Ph}_3\text{P})_2\text{CH}][\text{HP(O)}_2(\text{OCH}_3)]\). Furthermore, P$_\text{central}$ of P-O-CD$_3$ coupled with the directly bounded proton, which was displayed by a doublet; compared to doublet of quartets for the P-O-CH$_3$ unit. 1P-H value of 603 Hz was also consistent with the earlier results. 2D{^1H} NMR was also performed. Upon the completion of the reaction, a doublet at 3.34 ppm (-OD, $J = 11$ Hz) and a broad signal at 2.42 ppm (-CD$_3$) were observed, again, indicating coordination of the -CD$_3$ group. 31P NMR spectra confirmed formation of \([(\text{Ph}_3\text{P})_2\text{CH}][\text{HP(O)}_2(\text{OCD}_3)]\). The yielded compound was subsequently reacted with MeOTf to yield HP(O)(OCH$_3$)(OCD$_3$) (Scheme 49), which displays a doublet in 31P NMR at 11.1 ppm, with a coupling constant of 691Hz, consistent with the values reported in the literature for HP(O)(OCH$_3$)$_2$. The product was also identified in HRMS at m/z 114.04.
Interestingly, the reaction with MeOH completes in 5 h when either methanol or acetonitrile of HPLC grade are used as solvents. In comparison, the same reaction lasts for 3 days when performed in the neat MeOH, and for 6-7 days when ACN or CD$_3$CN are used. Although 17 reacts with water (discussed below), the presence of water in 1-2% slows down the reaction, which is probably due to the competition for the formation of O-H bonds with MeOH and/or water molecules. It is evident from 1H NMR that both water (δ_H 2.25 ppm) and methanol (δ_H 2.59 ppm) coordinate to the starting material. Both peaks disappear as the reaction proceeds. However, only the [(Ph$_3$P)$_2$CH][HP(O)$_2$(OCH$_3$)] product formation can be observed in 31P NMR. In addition, the presence of water molecules in the starting material (17•2H$_2$O) was not the crucial factor for the faster reaction rates, since the same time was required even with the dry starting material (under above-mentioned conditions); leading us to believe that the water content in the solvents was not increasing reaction rates. This was confirmed in numerous repeated experiments that we conducted using MeOH/ACN of different grades and purification levels, available in the Appendix. The experiments implied that the reaction time was also indifferent to the presence of oxygen and/or salt stabilizers, found on the bottle labels of various suppliers. While BAr$_4$Cl/F$_4$ salts have been reported to act as catalysts,$^{[206]}$ their presence in our sample would not shorten the reaction time either. To eliminate the possibility of TEA impurities that might have remained from the column to act as a catalyst, we prepared a batch of 17 without using TEA in any stage of the synthesis or preparation (“clean”) and performed reactions displayed in entries 9, 12 and 13 of Table 11 in Appendix.
Parallel reactions were repeated for the presence of TEA in the system (Appendix, Table 1; entries 14-16). Reaction was completed in 5h in cases when methanol or acetonitrile was of HPLC grade, regardless of the presence of TEA (Appendix, Table 1; entries 9, and 13-15), eliminating the possibility that TEA acts as a sole reaction catalyst. However, the presence of ETA affected the outcome of the reaction when both methanol and acetonitrile were dry, distilled, and degassed “D” (Appendix, Table 1; entries 12 and 16). We believed that it was the result of the TEAH\(^+\) ion formation, which coordinates to the terminal oxygens of 17 via H-bonds, and facilitates the reaction. However, when the reaction was repeated by spiking TEAH\(^+\) into a system that contained “clean” 17, only about 16% of the starting material was converted into the product within 5h, excluding this scenario as a possibility. Unfortunately, we were not able to identify with certainty the exact factor that significantly increases reaction rates. While TEA can aid the process, it does not necessarily change the outcome of all reactions, but we can say with certainty that HPLC grade of alcohol or solvent is required for the faster reaction rates.

17 also reacts with water upon heating to temperatures about 80°C or higher, to give a relatively clean product [(Ph\(_3\)P)\(_2\)CH][HP(O)\(_2\)(OH)], identified by a singlet at 20.8 ppm and a broad peak at 3.6 ppm in \(^{31}\)P\{\(^1\)H\} NMR, which shows coupling with a proton of the P-H bond \((\text{J}_{\text{P-H}} = 608 \text{ Hz})\). Broadening of the peak is due to hydrogen bonds, which can also be observed in \(^1\)H NMR. When water is added to the starting material, its coordination can be observed in the appearance of a broad peak at \(\delta_{\text{H}} 2.25\) ppm. As the reaction progresses, this peak converts into an even broader peak at \(\delta_{\text{H}} 4.8\) ppm, which further converts into a new singlet peak at \(\delta_{\text{H}} 5.98\) ppm, similar to the \(\delta_{\text{H}} 5.84\) ppm in [(Ph\(_3\)P)\(_2\)CH][HP(O)\(_2\)(OCH\(_3\))]. This is also followed by a more upfield shift in \(^{31}\)P NMR to \(\delta_{\text{P}} 0.52\) ppm (doublet), with a relatively preserved coupling
constant ($^1J_{P-H}$) of 601 Hz, suggesting an intramolecular rearrangement or a formation of a new product. Contrarily to the reaction with MeOH, where the transformation is slowed down in the presence of water, traces of methanol seem to speed up the reactivity of 17 towards the water. While the second conversion is only about 50% completed in 7 days, complete conversion occurs in only 6 days when 1% vv MeOH (with respect to H$_2$O) is added to the initial reaction mixture, clearly speeding up the process, without any signs of the $[(\text{Ph}_3\text{P})_2\text{CH}][\text{HP(O)}_2(\text{OCH}_3)]$ side-product formation.

Furthermore, 17 exhibited analogous behaviour towards different saturated and unsaturated alcohols (Table 9), confirming that 17 can be used as a source of compounds of formula $[(\text{Ph}_3\text{P})_2\text{CH}][\text{HP(O)}_2(\text{OR})]$, precursors for dialkyl-phosphonate esters.

As it can be observed from Table 9, reactions with MeOH and EtOH were the fastest. With respect to saturated alcohols, reaction times of the primary and less hindered alcohols were between 3.5-7 hours, whereas bulkier alcohols, such as $^3\text{PrOH}$, $^3\text{BuOH}$, (CF$_3$)$_3$COH took significantly more time. This is in accordance with previously reported kinetic studies for dioxophosphorane trapping with alcohols by Jankowski et al.,$^{183d, 207}$ which revealed faster reaction between metaphosphonates/metathiophosphonates and methanol, over isopropanol and tert-butanol. According to the authors, primary alcohols have more negative enthalpies and entropies of activation, which allows them to be more engaged in reactions and or more assistance. In addition, that reaction with MeOH proceeds via the first-rate reaction at 30°C which is independent of the MeOH/BuOH concentration above 0.25M, whereas it is inversely proportional to the concentrations of $^3\text{PrOH}$ or $^3\text{BuOH}$. Suggested reasons for it include different reaction mechanism-pathways, via
Elimination-Addition mechanism (primary ROH) or via Addition-Elimination mechanism (tertiary alcohols).

Table 9. All reactions were performed at 80°C

<table>
<thead>
<tr>
<th>R</th>
<th>t [h]</th>
<th>d_P [ppm]</th>
<th>Multiplicity</th>
<th>Coupling constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>5</td>
<td>5.69</td>
<td>dq</td>
<td>(^1J_{P,H} = 557\text{ Hz};)^(^3J_{P,O.C,H} = 11\text{ Hz})</td>
</tr>
<tr>
<td>CD(_3)</td>
<td>5</td>
<td>5.43</td>
<td>d</td>
<td>(^1J_{P,H} = 603\text{ Hz})</td>
</tr>
<tr>
<td>Et</td>
<td>3.5</td>
<td>3.12</td>
<td>dt</td>
<td>(^1J_{P,H} = 601\text{ Hz})</td>
</tr>
<tr>
<td>(^1\text{Pr})</td>
<td>25</td>
<td>-0.18</td>
<td>dd</td>
<td>(^1J_{P,H} = 585\text{ Hz};)^(^3J_{P,O.C,H} = 9\text{ Hz})</td>
</tr>
<tr>
<td>(^1\text{Bu})</td>
<td>>48</td>
<td>-4.56</td>
<td>d</td>
<td>(^1J_{P,H} = 586\text{ Hz})</td>
</tr>
<tr>
<td>Ph</td>
<td>15</td>
<td>-0.71</td>
<td>d</td>
<td>(^1J_{P,H} = 625\text{ Hz})</td>
</tr>
<tr>
<td>PhCH(_2)CH(_2)</td>
<td>7</td>
<td>3.24</td>
<td>dt</td>
<td>(^1J_{P,H} = 600\text{ Hz};)^(^3J_{P,O.C,H} = 9\text{ Hz})</td>
</tr>
<tr>
<td>CH(_3)CHPhCH(_2)</td>
<td>6</td>
<td>3.13</td>
<td>dt</td>
<td>(^1J_{P,H} = 596\text{ Hz};)^(^3J_{P,O.C,H} = 7\text{ Hz})</td>
</tr>
<tr>
<td>(CF(_3))(_2)C</td>
<td>22</td>
<td>-0.26</td>
<td>d</td>
<td>(^1J_{P,H} = 625\text{ Hz})</td>
</tr>
<tr>
<td>CH(_2)=CHCH(_2)CH(_2)^*</td>
<td>90</td>
<td>3.23</td>
<td>dt</td>
<td>(^1J_{P,H} = 602\text{ Hz};)^(^3J_{P,O.C,H} = 10\text{ Hz})</td>
</tr>
<tr>
<td>CH(_2)=CH(CH(_2))(_2)CH(_2)^*</td>
<td>>90</td>
<td>3.04</td>
<td>dt</td>
<td>(^1J_{P,H} = 597\text{ Hz};)^(^3J_{P,O.C,H} = 7\text{ Hz})</td>
</tr>
<tr>
<td>HC≡CCH(_2)CH(_2)^*</td>
<td>>90</td>
<td>3.39</td>
<td>dt</td>
<td>(^1J_{P,H} = 605\text{ Hz};)^(^3J_{P,O.C,H} = 8\text{ Hz})</td>
</tr>
<tr>
<td>HC≡C(CH(_2))(_2)CH(_2)^*</td>
<td>>90</td>
<td>3.31</td>
<td>dt</td>
<td>(^1J_{P,H} = 601\text{ Hz};)^(^3J_{P,O.C,H} = 6\text{ Hz})</td>
</tr>
</tbody>
</table>

With respect to unsaturated alcohols, the values presented in Table 8 refer to reactions in acetonitrile. When the solvent is changed to 1,2-dichlorotoluene and the working temperature raised to 130°C, starting material is completely depleted within 5 hours. However, the new products show different \(^{31}\text{P NMR} \) peaks and possible ring-formation products.

4.2.2.3.2.1 DFT calculations

Three possible pathways calculated for the reaction between 17 and methanol are depicted in Scheme 50.
Scheme 50. Three possible mechanisms for the reaction between the parent-metaphosphonate 17 and methanol; "I" stands for "intermediate" and "L" stands for "ligand".

Regarding pathway 1, calculated bond dissociation enthalpies for the C-P bond, at reaction temperatures of 25°C and 130°C, were 56.0 and 55.9 kcal/mol, respectively. The results showed the significant stability of the reactant 17 (1), compared to the intermediate state $I_1 + (\text{PPh}_3)_2\text{C}$. Stretching of the P-C bond resulted in the energy increase until the bond breakage. This situation corresponds to the absence of the transition state, meaning that this scenario mechanism is not applicable to the examined reaction.

Concerning the pathway 2 mechanism, it proceeds via three steps, as shown below, in Scheme 51.

Step 1: $1 + \text{MeOH} \rightarrow [\text{TS}_1] \rightarrow I_2 \quad \text{Ea}_1 = 12.4 \text{kcal/mol}$

Step 2: $I_2 \rightarrow [\text{TS}_2] \rightarrow 2 + L \quad \text{Ea}_2 = 1.7 \text{kcal/mol}$

Step 3: $2 + L \rightarrow 3' + H^+L \quad \text{Barrier-less reaction}$

Scheme 51. Calculated reaction steps and activation energies for the pathway 2 mechanism in the reaction between 17 and MeOH
Calculated activation energy, for the conversion of the reactant 1 into the intermediate I₂, amounts to 12.4 kcal/mol (step 1). This intermediate (I₂) subsequently undergoes a P-C bond breakage to give an optimized state 2, which is only 1.7 kcal/mol higher in energy than the intermediate I₂ (step 2). Unfortunately, calculations displayed a flat potential energy surface for this stage, making it difficult to confirm the transition state via IRC. Based on the normal mode visualisation, P-C bond breakage is obvious. Energy values for a fixed P-C bond scenario are displayed below, in Table 10.

<table>
<thead>
<tr>
<th>r(P-C) / Å</th>
<th>Eₘₐₜ / Hartree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.96</td>
<td>-2718.91148656</td>
</tr>
<tr>
<td>2.10</td>
<td>-2718.91034267</td>
</tr>
<tr>
<td>2.20</td>
<td>-2718.90900595</td>
</tr>
<tr>
<td>2.30</td>
<td>-2718.90790390</td>
</tr>
<tr>
<td>2.40</td>
<td>-2718.90733790</td>
</tr>
<tr>
<td>2.44</td>
<td>-2718.90728533</td>
</tr>
<tr>
<td>2.50</td>
<td>-2718.90737322</td>
</tr>
<tr>
<td>2.60</td>
<td>-2718.90780924</td>
</tr>
<tr>
<td>2.70</td>
<td>-2718.90840409</td>
</tr>
<tr>
<td>2.80</td>
<td>-2718.91092221</td>
</tr>
<tr>
<td>2.90</td>
<td>-2718.91059689</td>
</tr>
</tbody>
</table>

Energy slowly rises until the transition state, after which it decreases to 2.80 Å, and then rises again. Such data implies that the P-C bond is relatively loose, allowing 2 to position itself relative to the L. Due to the partial positive charge of the proton in the hydroxyl group (-OH), the most stable structure is likely to be the one in which the proton in 2 points towards carbon (in L). However, such orientation immediately leads to the proton transfer (from 2 to L), resulting in the formation of the final product 3'---H'L (step 3), in which 3' and H'L moieties are connected via hydrogen bond. The original bond lengths for the O-H and C-H bonds are 1.0 Å and 1.7 Å, respectively. However, when the C(L)-O(2) bond length is fixed to 2.7 Å, the proton gets transferred from 2 to L, during partial optimization, which implies a barrier-less
transformation into the final products (3'---H*L). Also, calculated energies (Table 11) show higher stability for the transition state (TS2), than the reaction products (2 + L).

Generally, this cannot be true, as transition states must energetically lie the highest.

Table 11. Activation and free Gibbs energies of 17 + MeOH reaction reactants, intermediates, transition states and products.

<table>
<thead>
<tr>
<th></th>
<th>El+ZPE - El+ZPE(1+MeOH) [kcal/mol]</th>
<th>Ea [kcal/mol]</th>
<th>G - G(1+MeOH) [kcal/mol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+MeOH</td>
<td>0.0</td>
<td>Ea1 = 12.4</td>
<td>0.0</td>
</tr>
<tr>
<td>TS1</td>
<td>12.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2</td>
<td>7.3</td>
<td>Ea2 = 1.7</td>
<td>19.4</td>
</tr>
<tr>
<td>TS2</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 + L</td>
<td>12.1</td>
<td>Barrierless</td>
<td></td>
</tr>
<tr>
<td>3''---LH''</td>
<td>-31.7</td>
<td></td>
<td>-21.5</td>
</tr>
</tbody>
</table>

However, the calculated energy for 2 + L refers to molecules at a distance, which does not occur in our case, which explains the discrepancies in the results for calculated energies. Similarly, the in final reaction product 3''---H'*L, moieties stay in proximity, reflected by the ΔE_{el+ZPE}, which is calculated at -31.7 kcal/mol. On the contrary, the calculated energy for the distant products 3' + H'*L amounts to 56.6 kcal/mol.

Lastly, pathway 3 corresponds to a σ-bond metathesis reaction mechanism, through the intermediate state I3. However, all the attempts to optimize this reaction mechanism failed, probably due to the very high energy barrier. Thus, this reaction is very unlikely to proceed via the pathway 3.

The computed structural parameters obtained for compound 17 (e.g. \(d_{C-P} = 1.869 \text{ Å}, d_{P-H} = 1.423 \text{ Å}, d_{P-O1} = 1.515 \text{ Å}, d_{P-O2} = 1.516 \text{ Å} \)) are also comparable to the experimental values. Calculated atomic charges reveal a highly positive charge accumulation of +3.300 at the central phosphorus, which confirms its highly electrophilic nature, as expected for a dioxophosphorane compound. In addition,
0.548 negative charge at the hydrogen atom (P-H), provides the reasoning behind previous difficulties to deprotonate the compound. Oxygen atoms bear negative charges of -1.507 and -1.494, respectively; while the central carbon atom in the ligand bears a negative charge of -2.302, clearly indicative of the localization of its remaining lone pair.

4.2.2.3.3 Dehydrogenative coupling

In recent years, Li-Biao Han and co-workers have developed new approaches towards organophosphorus compounds via transition-metal catalyzed dehydrogenative coupling of H-phosphonates with terminal alkynes, alcohols and thiols.\[208\] In general, reaction rates and yields of the products were highly dependent on the choice of the catalyst and solvents. With respect to aerobic oxidative coupling of terminal alkynes, Cu-halides and Cu-acetates proved to be the best. While this reaction could not be catalyzed by Pd(OAc)$_2$, Pd-based catalysts were crucial for dehydrogenative coupling of secondary phosphines with terminal alkynes. Previously reported studies agreed that yields highly depended on solvent choices, with DMSO and THF being highly suitable due to their ability to stabilize the reaction intermediate via ligation.

Since our system also contained a P(O)-H unit, we wondered whether it could serve for dehydrogenative coupling, similarly to dialkyl- and diaryl-phosphine oxides. Phenylacetylene and its halogenated derivative 4-bromo-phenylacetylene served as a source of terminal alkynes in the reactions.

Contrarily to the findings by Li-Biao Han et al., our system did not respond to a copper-halides as catalysts, regardless of the presence of base and heating. In addition, DMSO, and THF were not suitable solvents. While no reaction was observed in DMSO, reactions let to very complex mixtures in THF. When Pd(OAc)$_2$ (10 %mol)
was added to 17 in the presence of AgBF₄ in acetonitrile, we have immediately observed a P_{central} downfield shift in ³¹P NMR by ~10 ppm, which possibly indicates coordination of the catalyst. P-H coupling of 558 Hz was preserved. Addition of an alkyne did not result in significant changes, apart from the broadening of the triplet for P_{central}. We believed that coordination of the catalysts or the alkyne would weaken the P-H bond so that it could be activated in the presence of a potent base. However, the addition of 'BuLi in the presence of 18-crown-6 at this stage only reversed the reaction to the starting material before the catalyst coordination, which was yet another confirmation of the exceptionally strong P-H bond.

4.3 Conclusion

In conclusion, we report the synthesis and the full characterisation of the first example of a carbone-stabilized parent-metaphosphonate system [(Ph₃P)₂CP(O)₂H] (17), which co-crystalizes with two water molecules 17·2H₂O. Unlike the two previously reported examples of stabilized dioxophosphoranes which lose their reactive nature upon complexation with transition-metals, the P centre in 17 still preserves its electrophilic character. This was confirmed in reactions with various alcohols, typically used as dioxophosphorane-trapping agents. Computational results revealed a stepwise reaction mechanism as the most viable, through an intermediate [{(Ph₃P)₂C}P(O)(OCH₃)(OH)H], where the final reaction products [(Ph₃P)₂CH]⁺ and [P(O)₂(OR)H]⁻ preserve proximity, which accounts for the ΔE_{el+ZPE} energy of 56.6 kcal/mol. The interesting chemistry of 17 explored in this chapter also includes deprotonation and hydrogen-abstraction reactions, methylations, tritylations, and transition-metal catalyzed dehydrogenative coupling reactions.
Having in mind limited examples of accessible metaphosphonate species, 17 provides a valuable insight into their chemistry, and possible an easier access to the highly elusive PO$_2$ species.
CHAPTER V:

Experimental and Methods
5.1 General Methods

All reaction manipulations were performed using standard Schlenk line or glovebox techniques under an inert atmosphere of dry argon. All glassware and J. Young NMR tubes were oven-dried at 120°C overnight, then flame-dried and cooled under vacuum prior to use. All solvents were distilled under the atmosphere of dry N₂. Toluene, benzene, n-hexane, and n-pentane, were distilled over sodium; acetonitrile and 1,2-difluorobenzene were distilled over CaH₂; while tetrahydrofuran and diethyl ether were distilled over sodium/benzophenone. Dichloromethane (DCM) was purchased anhydrous and stored over molecular sieves. Deuterated solvents (C₆D₆, CD₂Cl₂, CDCl₃, CD₃CN, CD₃OD, D₂O) were dried according to standard procedures. All solvents were subsequently degassed and stored over 4Å molecular sieves prior to use. CD₂Cl₂ was additionally dried by placing it three times over molecular sieves. Benzene and n-hexane were additionally stored in a storage flask over a sodium or a potassium mirror prior to use.

Commercially available chemicals (triphenylphosphine, trimethylphosphine, tricyclohexylphosphine, potassium tert-butoxide, sodium amide, potassium bis(trimethylsilyl)amide, n-butyllithium, t-butyllithium, sodium trifluoromethanesulfonate, silver trifluoromethanesulfonate, methyl trifluoromethanesulfonate sodium perchlorate, silver perchlorate, sodium tetrafluoroborate, silver tetrafluoroborate, potassium tetrafluoroborate, sodium hexafluorophosphate, silver hexafluorophosphate, potassium hexafluorophosphate, sodium hexafluoroantimonate, silver hexafluoroantimonate, potassium hexafluoroantimonate, gallium trichloride, xenon difluoride, oxaly chloride, 18-crown-6, 12-crown-4, copper(I) iodide, palladium(II) acetate, 2-phenyl ethanol, 2-phenyl-1-propanol, nonafluoro-tert-butyl alcohol, 1-buten-4-ol, 1-butyn-4-ol, 4-
penten-1-ol, 4-pentyn-1-ol, phenylacetylene and bromophenylacetylene) were used without further purification. Phosphorus trichloride, diisopropylamine, dibromomethane, and aniline were distilled prior to use. Pyridine N-oxide, trimethylamine N-oxide, tetramethylammonium hydroxide and triethylphosphine oxide were sublimed and dried under vacuum before use. 1a, 1b, [2a][Cl142]

\[3a][X]_2 (X = \text{AlCl}_4, \text{Bar}^F_4) (\text{Ar}^F = 3,5-(\text{CF}_3)_2\text{C}_6\text{H}_3), \text{Na}[\text{Bar}^\text{Cl}^4], \text{Na}[\text{Bar}^\text{F}^4], \text{K}[\text{Bar}^\text{Cl}^4], \text{and K}[\text{Bar}^\text{F}^4] \] have been prepared according to the reported procedures. Finally, all manipulations with silver salts were performed in the absence of light.

The NMR spectra were obtained on a Bruker Advance III 400 (BBFO 400) spectrometer (\(^1\)H NMR at 400 MHz; \(^13\)C at 100 MHz; \(^31\)P NMR at 161 MHz; \(^19\)F NMR at 376 MHz; \(^11\)B at 128 MHz). \(^31\)P, \(^19\)F, \(^11\)B, and \(^27\)Al chemical shifts were referenced to 85% \(\text{H}_3\text{PO}_4\), \(\text{CFCl}_3\), \(\text{Et}_2\text{O} \cdot \text{BF}_3\), and \(\text{AlCl}_3/\text{D}_2\text{O}\), respectively; \(^1\)H and \(^13\)C shifts were referenced to tetramethylsilane(TMS). Mass spectra were collected on the Waters Q-TOF Premier MS and Agilent Technologies 6230TOF LC/MS mass spectrometers using the electrospray ionization (ESI) mode.

Preparation of the Monocationic Precursors [2]Cl

The compound was prepared with slight modifications of the previously reported procedure. One equivalent of a warm (50°C) carbone (1) solution in benzene was added to 3 equiv of R”PCl2 (R = Me, \(^3\)Pr, Cy), with vigorous stirring. The formation of a colourless precipitate was immediately observed. The best yields were achieved with 17h of stirring. The solution was filtered, and the resulting solid was dried overnight under reduced pressure.

\[[\text{Cy}_2\text{NPCl}(\text{C(PPh})_3)_2]+[\text{Cl}] ([2d][\text{Cl}]):\]
1.00 g (1.86 mmol) of 1a and 1.58 g (5.58 mmol) of Cy2NPCl2. Yield: 1.23 g (81%). 1H NMR (400 MHz, CD2Cl2, 20 °C): δH 0.7–1.4 (20H, CH2-Cy), 2.84 (br, 2H, CH-Cy), 7.2–7.5 (br, 30H, Ph). 13C{1H} NMR (400 MHz, CD2Cl2, 20 °C): δC 19.9 (dt, 1JPC(carbone)C = 78 Hz, 1JPC(carbone)C = 104 Hz, C(PPh3)2); 25.1 (s, δ-CH2-Cy), 25.8 (s, γ-CH2-Cy), 33.0 (br, β-CH2-Cy), 59.1 (br, CH-Cy), 125.7 (apparent triplet AA’X, 1JPC + 3JPC = 92 Hz, ipso-C, Ph of C(PPh3)2), 129.3 (virtual triplet, o-C, Ph of C(PPh3)2), 134.6 (br, m-C, Ph of C(PPh3)2) ppm. 31P{1H} NMR (161 MHz, CD2Cl2, 20 °C): δP 26.1 (second-order doublet, P(carbone)), 140.5 (second-order triplet, P(central)) ppm. MS (ES+): m/z 720 (M+). HRMS (ES+): calcd for C49H52NPCl, m/z 720.3526; found, 720.3536.

1.0 g (2.36 mmol) of 1b and 1.43 g (7.08 mmol) of iPr2NPCl2. Yield: 0.81 g (55%). 1H NMR (400 MHz, CD2Cl2, 20 °C): 0.56 (br, 12H, C3H3), 2.07 (m, 2H, CH2), 3.30 (br, 4H, CH2), 3.73 (br, 2H, CH), 7.2–7.8 (20H, Ph) ppm. 13C{1H} NMR (400 MHz, CD2Cl2, 20 °C): δC 14.8 (m, PCP, cyclic carbone), 15.3 (s, CH2(CH2)2, cyclic carbone), 22.3 (br, CH(CH3)2), 26.2 (second-order triplet, CH2(CH2)2, cyclic carbone), 48.2 (br, CH(CH3)2), 128.3–134.3 (m, C1–C4, Ph of cyclic carbone) ppm. 31P{1H} NMR (161 MHz, CD2Cl2, 20 °C): δP 16.3 (second-order doublet, P(carbone)), 138.0 (second-order triplet, P(central)) ppm. MS (ES+): m/z 590 (M+). HRMS (ES+): calcd for C34H40NP3Cl, m/z 590.2062; found, 590.2054.

Synthesis of the Dications [3b][X]2 and [3c][X]2 (X = AlCl4, BArf4)

To a DCM (30 mL) solution containing a monocationic precursor ([2b]Cl or [2c]Cl) was added 2.1 equiv of either AlCl3 or Na[BARf4]. The reaction mixture was stirred for 6 h followed by filtration (when Na[BARf4] was used), and solvent removal under
reduced pressure yielded a yellow solid. It is worth noting that, regardless of the nature of the counterion, the multinuclear NMR data for the dicationic moieties (3b²⁺ and 3c²⁺) were essentially identical; thus, the data for ion pairs are reported separately.

\[[\text{Cy}_2\text{NP}(\text{PPh}_3)_2]^{2+}, [3d][X]_2\]

1.0 g (1.22 mmol) of [2e][Cl] and 2.1 equiv of AlCl₃ or Na[BAr₄]. Yield: 0.81 g (61%) as the AlCl₄⁻ salt and 1.78 g (59%) as the [BAr₄]⁻ salt. ¹H NMR (400 MHz, CD₂Cl₂, 20 °C): δ_H 0.47–1.72 (br m, 2H, CH₂-Cy), 3.36 (br, 1H, CH-Cy), 3.53 (br, 1H, CH-Cy), 7.3–7.9 (30H, Ph) ppm. ¹³C{¹H} NMR (400 MHz, CD₂Cl₂, 20 °C): δ_C 23.7 (s, δ_CH₂-Cy), 24.4 (s, δ_CH₂-Cy), 25.0 (s, γ-CH₂-Cy), 26.2 (s, γ-CH₂-Cy), 30.9 (br, β-CH₂-Cy), 39.6 (d, ³J_PC = 18 Hz, br, β-CH₂-Cy), 64.1 (d, ²J_PC = 22 Hz, CH-Cy), 66.0 (m, C_carbone), 119.4 (apparent triplet AA'X, ¹J_PC + ³J_PC = 94 MHz, ipso-C, Ph of C(PPh₃)₂), 130.9 (p-C, Ph of C(PPh₃)₂), 133.8 (t, ³J_PC = 5.8 Hz, o-C, Ph of C(PPh₃)₂), 137.7 (m-C, Ph of C(PPh₃)₂) ppm. ³¹P{¹H} NMR (161 MHz, CD₂Cl₂, 20 °C): δ_P 26.0 (second-order doublet, P_carbone), 360.4 (second-order triplet, P_central) ppm.

\[[¹\text{Pr}_2\text{NPC(Ph}_2\text{P(CH}_3\text{)_3PPh}_2)_2]^{2+}, [3e][X]_2\]

1.0 g (1.60 mmol) of [2e][Cl] and 2.1 equiv of AlCl₃ or Na[BAr₄]. Yield: 0.84 g (59%) as the AlCl₄⁻ salt and 2.19 g (60%) as the [BAr₄]⁻ salt. ¹H NMR (400 MHz, CD₂Cl₂, 20 °C): δ_H 0.49 (d, 3H, ³J_HH = 6.4 Hz, CH₃), 1.18 (d, 3H ³J_HH = 6.8 Hz, CH₃), 2.35 (m, 2H, CH₂), 2.85 (m, 4H, CH₂), 3.73 (m, 1H, CH), 3.92 (m, 1H, CH) 7.3–7.9 (20H, Ph) ppm. ¹³C{¹H} NMR (100 MHz, CD₂Cl₂, 20 °C): δ_C 14.9 (s, CH₂(CH₂)₂, cyclic carbone), 20.8 (br, CH(CH₃)₂), 23.9 (second-order triplet, CH₂(CH₂)₂, cyclic carbone), 27.9 (d, ³J_PC = 15 Hz, CH(CH₃)₂), 54.6 (d, ²J_PC = 24 Hz, CH(CH₃)₂), 62.8 (d, ²J_PC = 15 Hz, CH(CH₃)₂), 66.7 (m, C_carbone), 131.5–132.6 (m, C₁–C₄, Ph of cyclic
carbone) ppm. 31P{1H} NMR (161 MHz, CD$_2$Cl$_2$, 20 °C): δ$_P$ 19.1 (second-order doublet, P$_{\text{carbone}}$), 351.5 (second-order triplet, P$_{\text{central}}$) ppm.

Counterions

AlCl$_4^-$: 27Al NMR (104 MHz, CD$_2$Cl$_2$, 20 °C) δ$_{Al}$ 106 ppm. [BAr$_4^-$1H NMR (400 MHz, CD$_2$Cl$_2$, 20 °C) δ$_H$ 7.3–7.9 (24H, Ph) ppm; 13C{1H} NMR (100 MHz, CD$_2$Cl$_2$, 20 °C) δ$_C$ 117.5 (p-C), 124.6 (q, 1J$_{CF}$ = 272 Hz, CF$_3$), 128.9 (q, 2J$_{CF}$ = 35 Hz, m-C), 137.1 (o-C), 161.8 (q, 1J$_{CB}$ = 50 Hz, ipso-C) ppm; 11B{1H} NMR (161 MHz, CD$_2$Cl$_2$, 20 °C) δ$_B$ -7.6; 19F{1H} NMR (376 MHz, CD$_2$Cl$_2$, 20 °C) δ$_F$ -62.8 ppm.

Reactivity of [2c]Cl toward Different Sources of Anions (MOTf (Tf = O$_2$SCF$_3$), MOCl$_4$, MBF$_4$, MPF$_6$, MSbF$_6$, GaCl$_3$, Na[BAr$_4^-]$; M = Na, K, Ag; Ar = Ph, 3,5-Cl$_2$C$_6$H$_3$ (Ar$^\text{Cl}$))

In a typical reaction 0.01 g (0.0135 mmol) of [2c]Cl was dissolved in a J. Young NMR tube using about 1 mL of DCM followed by the addition of 2.1 equiv of an anion source. The reaction mixture was left to react for about 6 h by continuous rotation of the NMR tube, and the reaction progress was followed by 31P NMR spectroscopy. Apart from Na[BAr$_4^-Cl$], the use of all other Na anion sources did not result in the P–Cl bond cleavage, as the presence of the starting 2c$^+$ monocation was always evident (the use of NaSbF$_6$ resulted in less than 10% conversion to the target dication). On the other hand, the use of Ag salts resulted in cleavage of the P–Cl bond and formation of multiple unidentified products, except for Ag[SbF$_6$]. Then, this reaction was repeated on a preparatory scale using only Ag[SbF$_6$] , Na[BAr$_4^-Cl$] and GaCl$_3$ according to the synthetic procedure for the target dications outlined in this work (see above). As the multinuclear NMR spectra for 3c$^{2+}$ were virtually identical regardless of the nature of the counterion, we only report the NMR data regarding the anions.
[\text{[iPr}_2\text{NP(C(Ph)}_3\text{)}_2\text{]}^{2+}, [3c][X]]_2

2.1 eq of Ag[SbF$_6$], Na[BAr$^{\text{Cl}}_4$] or GaCl$_3$ was added to a 25 ml DCM solution containing 1.0 g (1.35 mmol) of [2c$^+$][Cl], resulting in a solution colour change to yellow, followed by a white precipitate (AgCl) formation. The yellow solution containing the product was filtrated. [3c][BAr$^{\text{Cl}}_4$]$_2$ or [3c][GaCl$_4$]$_2$ were isolated via solvent removal under reduced pressure. In case of [3c][SbF$_6$]$_2$, the product was isolated via dropwise precipitation using dry hexane, and a subsequent filtration. The resulting compound was dried for 5 hours under argon gas. Crystals were also grown from a DCM/hexane mixture. Yield 0.79 g (51%) as the [SbF$_6$]$^-$ salt (white solid) and 1.42 g (58%) as the [BAr$^{\text{Cl}}_4$]$^-$ salt (yellow solid).

[BAr$^{\text{Cl}}_4$]$^-$:

1H NMR (400 MHz, CD$_2$Cl$_2$, 20 °C) δ_H 7.0–7.5 (Ph, 24H) ppm; 13C{1H} NMR (100 MHz, CD$_2$Cl$_2$, 20 °C) 123.1 (p-C), 133.5 (o-C), 133.7 (m-C) 164.7 (q, 1J$_{CB}$ = 50 Hz, ipso-C) ppm; 11B{1H} NMR (161 MHz, CD$_2$Cl$_2$, 20 °C) δ_B −6.9 ppm.

Synthesis of [\text{iPr}_2\text{NPH(OR)(C(Ph)}_3\text{)}_2][\text{SbF}_6]_2, R = H, Me:

1 eq of ROH (R=H, Me) solution in DCM was added to 1 ml of DCM solution containing 0.010 g (0.00878 mmol) of [3c$^{2+}$][SbF$_6$]$_2$, resulting in an immediate yellow solution discolouring. Removal of volatiles in vacuo yielded a colourless product.

[\text{iPr}_2\text{NPH(OH)(C(Ph)}_3\text{)}_2][\text{SbF}_6]_2, [6a][SbF$_6$]$_2$

31P NMR (CD$_2$Cl$_2$, 161 MHz, 25°C): δ 22.7 (br, P$_{\text{carbone}}$), δ 31.0 (doublet of br, 1J$_{P(\text{central})H} = 493$ Hz)

[\text{iPr}_2\text{NPH(OCH)}_3\text{(C(Ph)}_3\text{)}_2][\text{SbF}_6]_2, [6b][SbF$_6$]$_2$
\(^1\)H NMR (400 MHz, CD\(_2\)Cl\(_2\), 25°C): \(\delta\) 0.68 (d, \(^3J_{HH} = 6.8\) Hz 6H, CH(CH\(_3\))\(_2\)), 0.92 (d, \(^3J_{HH} = 6.8\) Hz 6H, CH(CH\(_3\))\(_2\)), 3.39 (br, 3H, OCH\(_3\)), 3.7 (sept, \(^3J_{HH} = 7.4\) Hz, 2H, CH(CH\(_3\))\(_2\)), 7.5-7.7 (Ph, 54H), 7.5 (br, P\(_{\text{central}}\)-H)

\(^3\)P NMR (CD\(_2\)Cl\(_2\), 161 MHz, 25°C): \(\delta\) 23.3 (br, P\(_{\text{carbon}}\)), \(\delta\) 42.3 (doublet of multiplets, \(^1J_{P(C\text{central})H} = 1583\) Hz)

Synthesis of [(\(^i\)Pr\(_2\)NP(O)(C(PPh\(_3\))\(_2\)(OPy)]\([\text{SbF}\(_6\)]_2\). [7][SbF\(_6\)]\(_2\):

To a 15 ml DCM solution of 120 mg (0.1053 mmol) of [(C(PPh\(_3\))\(_2\))P(N\(^i\)Pr\(_2\))][SbF\(_6\)]\(_2\), two equivalents (18 mg, 0.1893 mmol) of Py-O were added. An immediate solution colour change from yellow to colourless was observed. The reaction kinetics was tracked via \(^3\)P and \(^1\)H NMR by taking aliquots of the reaction mixture over time. Crystals suitable for single crystal X-ray diffraction were grown by layering the reaction content with dry hexane in a 1:1 ratio to yield 56mg (43%) of the [(\(^i\)Pr\(_2\)NP(O)(C(PPh\(_3\))\(_2\)(OPy)]\([\text{SbF}\(_6\)]_2\) crystals.

\(^1\)H NMR (400 MHz, CD\(_2\)Cl\(_2\), 25°C) \(\delta\) 0.52 (d, \(^3J_{HH} = 6.52\) Hz, 3H, CH(C\(_3\)H\(_2\))), 0.78 (d, \(^3J_{HH} = 6.52\) Hz, 3H, CH(C\(_3\)H\(_2\))), 3.59 (m, 1H, C\(_3\)H\(_2\))\(_2\)), 7.5-7.8 (Ph, 30H), 8.03 (t, \(J = 7.38\) Hz, 2H, meta C-H pyridine), 8.28 (d, \(J = 6.52\) Hz, 2H, ortho C-H pyridine), 8.44 (t, \(J = 7.78\) Hz, 1H, para C-H pyridine). \(^{13}\)C\(_{\{1H\}}\) NMR (100.5 MHz, CD\(_2\)Cl\(_2\), 25°C): \(\delta\) 22.1 (br, CH(CH\(_3\))\(_2\)), C\(_{\text{carbon}}\) not observed, 48.2 (d, \(^2J_{PC} = 4.62\) Hz, CH(CH\(_3\))\(_2\)), 123.5 (ipso-C, Ph of C(PPh\(_3\))), 124.4 (br, ipso-C, Ph), 129.6 (virtual triplet, o-C, Ph of C(PPh\(_3\))), 134.2 (br, p-C, Ph of C(PPh\(_3\))), 134.7 (virtual triplet, m-C, Ph of C(PPh\(_3\))), 141.2 (br, Py), 148.2 (br, Py); \(^{31}\)P\(_{\{1H\}}\) NMR (CD\(_2\)Cl\(_2\), 161 MHz, 25°C): \(\delta\) 23.7 (second order doublet, P\(_{\text{carbon}}\)), \(\delta\) 42.0 (second order triplet, P\(_{\text{central}}\))

FTIR (KBr pellets): 2965 (m), 2372 (m), 1474 (m), 1437 (s), 1232 (m), 1097 (s), 748 (s) cm\(^{-1}\) (s = strong; m = medium; w = weak)
m.p. 132°C (onset of decomposition)

Preparation of [(iPr₂NP(O)(OC(PPh₃)₂)₂(Py)][SbF₆]₂. [8][SbF₆]₂:

8²⁺ was prepared from 7²⁺, by letting the reaction stir at the room temperature for a week, or by heating it for 5 hours at 50°C. Crystals suitable for single crystal X-ray diffraction were grown by layering the reaction content with dry hexane in a 1:1 ratio, yielding 50 mg (38%) of crystals.

¹H NMR (400 MHz, CD₂Cl₂, 25°C) δ 0.54 (d, ³JHH = 6.63 Hz, 3H, CH(CH₃)₂), 0.71 (d, ³JHH = 6.63 Hz, 3H, CH(CH₃)₂), 3.51 (m, 1H, CH(CH₃)₂), 7.5-7.8 (Ph, 30H), 8.00 (t, J = 6.40 Hz, 2H, meta C-H pyridine), 8.44 (t, J = 7.68 Hz, 1H, ortho C-H pyridine), 8.67 (t, J = 6.40 Hz, 2H, para C-H pyridine). ¹³C{¹H} NMR (100.5 MHz, CD₂Cl₂, 25°C): δ 22.5 (br, CH(CH₃)₂), C(carbone) not observed, 48.2 (d, ²JPC = 2.98 Hz, CH(CH₃)₂), 122.7 (apparent triplet AA’X, ¹JPC + ²JPC = 92.2 Hz, ipso-C, Ph of C(PPh₃)), 129.4 (virtual triplet, o-C, Ph of C(PPh₃)), 134.3 (br, p-C, Ph of C(PPh₃)), 134.5 (virtual triplet, m-C, Ph of C(PPh₃)), 143.1 (d, J = 2.2hz, Py), 148.0 (d, J = 1.2 Hz, Py); ³¹P{¹H} NMR (CD₂Cl₂, 161 MHz, 25°C): δ 22.3 (br, P(carbone)), δ 5.76 (br, P(central)).

FTIR (KBr pellets): 2963 (m), 1460 (m), 1460 (m), 1265 (s), 955 (s), 741 (s), 714 (s) cm⁻¹ (s = strong; m = medium; w = weak)

m.p. 117°C (onset of decomposition)

Synthesis of {[(Ph₃P)₂CP(O)(OH)(H)][BAr₄]₂. [15][BAr₄]₂:

[(Ph₃P)₂CPCl₂][BAr₄] was prepared according to the previously reported procedure[141] and used in situ for the preparation of 17. A dichlomethane (50 mL) solution of [(Ph₃P)₂CPCl₂][BAr₄] (1.93 mmol) was filtered into the reaction schlenk containing
1.5 eq. of anhydrous Me₄NOH (0.26 g, 2.90 mmol). Wet Me₄NOH or Me₃NO•2H₂O can also be used as a base. Reaction mixture was stirred for 5 h. Resulting solution was then filtered from the white precipitate and layered with hexane to yield crystals of the product. Yield: 68%.

¹H NMR (400 MHz, CD₃CN, 25°C): δ 6.31 ppm (dt, 1H, ¹Jₚ₋ₖ = 616.12 Hz, ⁴Jₖ₋ₖ₋ₖ = 5.52 Hz); 7.24 – 7.72 ppm (m, Ph). ¹³C NMR (100 MHz, CD₃CN, 25°C): δ 67.74 ppm (t, ¹Jₖ₋ₖ₋ₖ = 350.99 Hz), 117.45 ppm (s, p-C, BArF₄), 124.57 ppm (q, -CF₃, ¹Jₖ₋ₖ₋ₖ = 270.65 Hz), 128.87 ppm (q, m-C, BArF₄, ²Jₖ₋ₖ₋ₖ = 34.07 Hz), 130.24 ppm (s, o-C, Ph); 133.58 ppm (t, m-C, Ph), 134.78 (s, o-C, BArF₄) 135.28 ppm (t, m-C, Ph), 161.74 ppm (q, ¹Jₖ₋ₖ₋ₖ = 49.31 Hz ipso-C, BArF₄); ³¹P {¹H} NMR (161 MHz, CD₂Cl₂, 25°C): δ 30.3 ppm (t, ²Jₖ₋ₖ₋ₖ = 26.13 Hz); 21.53 ppm (d, P(carbone) ²Jₖ₋ₖ₋ₖ = 26.13 Hz). ³¹P NMR (161 MHz, CD₂Cl₂, 25°C): δ 30.3 ppm (t, ²Jₖ₋ₖ₋ₖ = 26.13 Hz); 21.26 ppm (br, P(carbone)). ¹¹B{¹H} NMR (161 MHz, CD₂Cl₂, 25 °C) δB = -7.58 ppm. ¹⁹F{¹H} NMR (376 MHz, CD₂Cl₂, 25 °C) δF = -62.8 ppm. IR Spectroscopy: 3383.14 cm⁻¹ (br, O-H stretch), 3070.68 cm⁻¹ (m, C-H stretch in phenyl) 2445.04 cm⁻¹ (w, P-H stretch) 1438.90 cm⁻¹ (m, P-Ph stretch) 1278.81 cm⁻¹ (s, P=O stretch). Anal. Calcd for C₁₀₆H₇₀BO₄F₂₄P₆: C, 49.87; H, 3.38; N, 0.00%. Found C₁₀₆H₇₀BO₄F₂₄P₆•8CH₂Cl₂: C, 49.01; H, 3.11; N, 0.63. Melting Point: 169.7°C.

Synthesis of (Ph₃P)₂CP(O)₂H, 17:

[(Ph₃P)₂CPCl₂][BArF₄] was prepared according to the previously reported procedure and used in situ for the preparation of 17. A dichlomethane (50 mL) solution of [(Ph₃P)₂CPCl₂][BArF₄] (1.93 mmol) was filtered into the reaction schlenk containing 3 eq. of anhydrous Me₄NOH (0.52 g, 5.79 mmol). Wet Me₄NOH or Me₃NO•2H₂O can
also be used as a base. The resulting mixture was stirred overnight, gradually changing colour from pale-brown to colourless. Colourless solution was then filtered from the white precipitate and concentrated via rotovap to about 2-3 mL of volume, resulting in yellow oil. The mixture was purified via Column Chromatography using a Hexane/CHCl₃ mixture and 1% Et₃N as a stabilizer. Minor polar impurities were removed with a 100% ACN flush. The product remained as a final fraction, which was eluted with 100% MeOH, then recrystallized from MeOH/Et₂O. (Ph₃P)₂CP(O)₂H·2H₂O was obtained as air- and moisture-stable, colourless powder. Yield: 90%.

¹H NMR (400 MHz, CD₃CN, 25°C): δ 6.79 ppm (d, 1H, ¹J_P-H = 532.6 Hz); 7.19 ppm (m, 30H, Ph). ¹³C NMR (100 MHz, CD₃CN, 25°C): δ 15.07 ppm (dt, ¹J_P(carbone)C = 88.2 Hz and ¹J_P(carbone)C = 76.7 Hz); 128.94 ppm (apparent triplet, ipso-C); 129.26 ppm (t, p-C), 132.86 ppm (s, o-C); 135.34 ppm (t, m-C); ³¹P {¹H} NMR (161 MHz, CD₃OD, 25°C): δ 6.3 ppm (t, ²J_P(carbone)P(carbone) = 12.62 Hz); 21.25 ppm (d, P(carbone)) ²J_P(carbone)P(carbone) = 12.26 Hz). ³¹P NMR (161 MHz, CD₃OD, 25°C): δ 6.3 ppm (dt, H(metaphosphonate), ¹J_P-H = 526.6 Hz, ²J_P(carbone)P(carbone) = 12.47 Hz); 21.26 ppm (br, P(carbone)). IR Spectroscopy: 3053.32 cm⁻¹ 2985.81 cm⁻¹ (m, C-H stretch in phenyl) 2304.94 cm⁻¹ (w, P-H stretch) 1421.54 cm⁻¹ (m, P-Ph stretch) 1265.30 cm⁻¹ (s, P=O stretch). Anal. Calcd for C₃₇H₃₅O₄P₃: C, 69.81; H, 5.54; N, 0.00%. Found: C, 69.81; H, 5.99; N, 1.07. ES-MS Calcd. for C₃₇H₃₅O₄P₃: m/z 867.2687. Found: 867.2641.

Melting Point: 194.9°C.

Reactivity Studies of 17

Proton/Hydride Abstraction Reaction Attempts

KHMD, KOtBu, NaNH₂, n-BuLi, t-BuLi
Proton abstraction reaction attempts have been performed in situ, in the J. Young NMR tubes. To a DCM solution containing 5 mg (0.00833 mmol) of 17, 2.5 eq. of a crown ether (18-crown-6 for K⁺ ions, or 12-crown-4 for Li⁺ ions) was added, followed by an addition of 2.5 eq. of corresponding base (KHMDS, KO\(^\text{tBu}\), \(^\text{nBuLi}\), or \(^\text{tBuLi}\)). In case of \(^\text{nBuLi}\) and \(^\text{tBuLi}\), the solution was cooled to -78°C prior to the addition of the base. The reaction content inside the NMR tube was manually stirred. In case of KHMDS and KO\(^\text{tBu}\), the tube was subject to 50°C overnight heating due to the lack of initial reaction activity. The reactions were followed via \(^{31}\text{P}\) NMR.

\[[\text{Ph}_3\text{C}][\text{B(C}_6\text{F}_5)_4]\]:

\[[\text{Ph}_3\text{C}][\text{B(C}_6\text{F}_5)_4]\] was prepared and used “in situ”. Ph\(_3\text{CCl}\) (11 mg, 0.0333 mmol) and LiB(C\(_6\text{F}_5\))\(_4\) (28 mg, 0.0333 mmol) were mixed in equivalent amounts, using DCM as a solvent (1 mL). Upon stirring for 4h at room temperature, the yellow solution containing \[[\text{Ph}_3\text{C}][\text{B(C}_6\text{F}_5)_4]\] filtered into 1mL DCM solution of (PPh\(_3\))\(_2\)CP(O)\(_2\)H (20 mg, 0.0333 mmol). An instant disappearance of yellow solution colour was immediately observed. All attempts to grow crystals suitable for a single-crystal X-ray Diffraction analysis were unsuccessful.

\(^{31}\text{P}\{^1\text{H}\}\) NMR (161 MHz, CH\(_2\)Cl\(_2\), 25°C): \(\delta_{^1\text{H}}\) 18.19 ppm (t, \(P_{\text{central}}\), \(^2J_{^1\text{H}P_{(\text{central})P_{(\text{carbone})}}} = 16.57\) Hz), 20.57 ppm (d, \(P_{\text{carbon}}\), \(^2J_{^1\text{H}P_{(\text{central})P_{(\text{carbone})}}} = 16.43\) Hz); \(^{31}\text{P}\) NMR (161 MHz, CH\(_2\)Cl\(_2\), 25°C): \(\delta\) 18.19 ppm (dt, \(P_{\text{central}}\), \(^1J_{^1\text{H}P_{(\text{central})-H}} = 487.5\) Hz, \(^2J_{P_{(\text{central})P_{(\text{carbone})}}} = 16.57\) Hz); 20.57 ppm (d, \(P_{\text{carbon}}\), \(^2J_{P_{(\text{central})P_{(\text{carbone})}}} = 16.43\) Hz). ES-MS Calcd. for C\(_{37}\)H\(_{35}\)O\(_4\)P\(_3\): m/z 867.2687. Found: 867.2641. We were not able to perform any other compound characterisations, as the compound was extremely air- and moisture-sensitive, and would also decompose very rapidly, within minutes.

\textit{Oxalyl chloride}
To a 1 mL DCM solution of 17 (15 mg, 0.025 mmol), 1.2 eq. of oxalyl chloride (2.6 μL, 0.03 mmol) was added, resulting in an immediate cloudy white precipitate formation. After stirring the mixture overnight at room temperature overnight, solution was separated via filtration, and layered with hexane in 1:1 ratio. Crystals of previously reported [(Ph₃P)₂CPCl₂][Cl]³¹ were obtained.

Reaction of 17 with trityl-triflate [Ph₃C][OTf]:

[Ph₃C][OTf] was prepared and used “in situ”. Ph₃CCI (128 mg, 0.03663 mmol) was dissolved in DCM, and subsequently added to AgOTf (12 mg, 0.03663 mmol), which resulted in a bright yellow suspension. The mixture was stirred about 2 hours at room temperature. Subsequently, the yellow solution containing approximately 2.2 eq (0.03663 mmol) of [Ph₃C][OTf] was filtered into a flask containing (PPh₃)₂CP(O)₂H (10 mg, 0.01665 mmol). Immediate reaction was apparent from the discoloration of the yellow solution colour. ³¹P{¹H} NMR (161 MHz, CH₂Cl₂, 25°C): δ P 19.11 ppm (t, J_P.central P.carbone = 21.14 Hz), 21.32 ppm (d, J_P.carbone P.carbone = 21.24 Hz); ³¹P NMR (161 MHz, CH₂Cl₂, 25°C): δ 19.11 ppm (dt, J_P.central H = 610.1 Hz, J_P.carbone P.carbone = 16.57 Hz); 21.32 ppm (d, J_P.carbone, J_P.carbone P.carbone = 21.24 Hz).

Reaction of 17 with MeOTf

3.65 μL of MeOTf (0.0333 mmol) was spiked into a 1 mL CD₂Cl₂ solution of (Ph₃P)₂CP(O)₂H (20 mg, 0.0333 mmol) in a vial. The colourless mixture was immediately transferred to a J. Young NMR tube, and the reaction progress was tracked via ³¹P NMR. The reaction mixture was subsequently layered with hexane, yielding crystals of protonated ligand or the starting material. All attempts to yield the targeted crystals were unsuccessful.
1H NMR (400 MHz, CD$_3$CN, 25°C): δ 3.12 ppm (d, 3H, CH$_3$, 3J$_{P-O-C-H}$ = 13.2 Hz), 7.44-7.66 (30H, Ph); 31P{1H} NMR (161 MHz, CH$_2$Cl$_2$, 25°C): δ_P 21.91 ppm (d, P$_{carbone}$, 2J$_{(Pcentral)P(carbone)}$ = 21.33 Hz), 30.74 ppm (t, P$_{central}$, 2J$_{(Pcentral)P(carbone)}$ = 20.85 Hz); 31P NMR (161 MHz, CH$_2$Cl$_2$, 25°C): δ_P 21.91 ppm (d, P$_{carbone}$, 2J$_{(Pcentral)P(carbone)}$ = 21.3 Hz), 30.74 ppm (dq, P$_{central}$, 1J$_{P(central)-H}$ = 585.7 Hz, 3J$_{P(central)-H}$ = 13.5 Hz).

Reactivity towards MeOH, [HL][P(O)$_2$(OCH$_3$)(H)]

20 mg (0.0333 mmol) of (Ph$_3$P)$_2$CP(O)$_2$H was dissolved in 0.75 mL CD$_3$CN. To that, excess MeOH (0.25 mL, 5.96 mmol) was added, and the reaction was heated at 70°C for 5 h. The reaction can also proceed and be completed spontaneously, in the large excess of alcohol at room temperature, in the absence of CD$_3$CN, overnight.

1H NMR (400 MHz, CD$_3$CN, 25°C): δ 2.35 ppm (t, 1H, H-C$_{carbone}$), 3.32 ppm (d, 3H, CH$_3$, 3J$_{P-O-C-H}$ = 11.4 Hz), 6.58 ppm (d, 1H, 1J$_{H-P(central)}$ = 561 Hz), 7.42-7.64 ppm (m, 30H, Ph); 13C{1H} NMR (100 MHz, CD$_3$CN, 25°C): δ 50.1 ppm (d, CH$_3$, 2J$_{C-P(central)}$ = 4.58 Hz), 127.7 ppm (apparent triplet, AA’X, 1J$_{P-C}$ + 4J$_{P-C}$ = 103.4 Hz, ipso-C, Ph of HC(PPh$_3$)$_2$); 133.02 ppm (t, p-C, Ph of HC(PPh$_3$)$_2$), 133.9 – 133.96 ppm (m, o-C and m-C, Ph of HC(PPh$_3$)$_2$); 31P {1H} NMR (161 MHz, CD$_3$CN, 25°C): δ 20.87 ppm (s, P$_{(protonated-carbone)}$), 3.61 ppm (s, P$_{central}$), 31P NMR (161 MHz, CD$_3$CN, 25°C): δ 20.86 ppm (s, P$_{(protonated-carbone)}$), 3.61 ppm (dq, P$_{central}$, 1J$_{P-H}$ = 557.9 Hz, 3J$_{P(central)-H}$ = 11.58 Hz).

Reactivity towards CD$_3$OD Synthesis of [DL][P(O)$_2$(OCD$_3$)(H)]:

The procedure was analogous to the above described for MeOH.

2H{1H} NMR (61.4 MHz, CH$_3$CN, 25°C): δ 2.41 (br, 1D, D-C$_{carbone}$), 3.33 (d, 3D, 3J$_{D-C-O-P}$ = 1.75 Hz); 31P {1H} NMR (161 MHz, CH$_3$CN, 25°C): δ 21.08 ppm (s, P$_{(D-}$
128
carbone), 6.60 ppm (s, P_{central}); ^{31}P NMR (161 MHz, CH_{3}CN, 25°C): \delta 20.08 ppm (s, P_{(D-carbone)}), \delta 6.60 ppm (d, P_{central}; ^{1}J_{P-H} = 602.3 Hz).

Reaction between [DL][P(O)_{2}(OCD_{3})(H)] and MeOTf:

1 eq (4 \mu L, 0.0333 mmol) of MeOTf was added “in situ” into the acetonitrile solution of [DL][P(O)_{2}(OCD_{3})(H)], derived from the above described procedure.

2H{1H} NMR (61.4 MHz, CH_{3}CN, 25°C): \delta 2.29 (br, 1D, D-C(carbone)), 3.66 (d, 3D, 3J_{D-C-O-P} = 1.82 Hz); 31P {^1$H} NMR (161 MHz, CH_{3}CN, 25°C): \delta 11.1 ppm (s, P_{central}); 31P NMR (161 MHz, CH_{3}CN, 25°C): \delta 11.1 ppm (dq, P_{central}, 1J_{P-H} = 691 Hz, 3J_{P-O-C-H} = 8.9 Hz). ES-MS Calcd. for C_{37}H_{35}O_{4}P_{3}: m/z 114.0399. Found: 114.0398.

Reaction of (Ph_{3}P)_{2}CP(O)_{2}H with H_{2}O

The procedure was analogous to the above described for MeOH.

1H NMR (400 MHz, CD_{3}CN, 25°C): \delta 2.25 ppm (br, 1H, OH,), 7.00 ppm (d, 1H, 1J_{H-P_{(central)}} = 502 Hz), 7.34-7.60 ppm (m, 30H, Ph); 31P {^1$H} NMR (161 MHz, CD_{3}CN, 25°C): \delta 20.83 ppm (s, P_{(protonated-carbone)}), 3.62 ppm (br, P_{central}); 31P NMR (161 MHz, CD_{3}CN, 25°C): \delta 20.83 ppm (s, P_{(protonated-carbone)}), \delta 3.62 ppm (d, P_{central}, 1J_{P-H} = 608 Hz).

With prolonged heating at 70°C, peaks change to following:

1H NMR (400 MHz, CD_{3}CN, 25°C): \delta 5.98 ppm (s, 1H, OH,), 7.00 ppm (d, 1H, 1J_{H-P_{(central)}} = 502 Hz), 7.34-7.60 ppm (m, 30H, Ph); 31P {^1$H} NMR (161 MHz, CD_{3}CN, 25°C): \delta 20.83 ppm (s, P_{(protonated-carbone)}), 0.19 ppm (s, P_{central}); 31P NMR (161 MHz, CD_{3}CN, 25°C): \delta 20.83 ppm (s, P_{(protonated-carbone)}), \delta 0.19 ppm (d, P_{central}, 1J_{P-H} = 601 Hz).

Reactivity of 17 towards other alcohols
All reactions have been carried out “in situ” in the J. Young NMR tubes. A general procedure consisted of dissolving 10 mg (0.0167 mmol) of 17 in 1 ml of ACN, to which 200 eq (3.34 mmol) of the respective alcohol was added. The reaction mixture was subsequently subjected to heating at 80°C. Reaction progress was monitored over time via 31P{1H} and 31P NMR. All reactions have been successfully performed 100% alcohol as well. Upon reaction completion, the solutions were layered with Et$_2$O (1:1), subjected to slow evaporation, or evaporation under conditions of low temperature and pressure, in attempts to grow crystals. Unfortunately, targeted crystals were not obtained.

EtOH, [HC(PPh$_3$)$_2$][P(O)$_2$(OCH$_2$CH$_3$)(H)]:

31P {1H} NMR (161 MHz, CH$_3$CN, 25°C): δ 3.12 ppm (s, P$_{central}$), 20.87 (s, PPh$_3$);

31P NMR (161 MHz, CH$_3$CN, 25°C): δ 3.12 ppm (dt, P$_{central}$, 1J$_{P-H}$ = 601 Hz), 20.87 (s, PPh$_3$).

iPrOH, [HC(PPh$_3$)$_2$][P(O)$_2$(OCH(CH$_3$)$_2$)(H)]:

31P {1H} NMR (161 MHz, CH$_3$CN, 25°C): δ -0.18 ppm (s, P$_{central}$), 20.83 (s, PPh$_3$);

31P NMR (161 MHz, CH$_3$CN, 25°C): δ -0.18 ppm (dd, P$_{central}$, 1J$_{P-H}$ = 585 Hz, 3J$_{P-O-C-H}$ = 9.3 Hz), 20.83 (s, PPh$_3$).

tBuOH, [HC(PPh$_3$)$_2$][P(O)$_2$(OC(CH$_3$)$_3$)(H)]:

31P {1H} NMR (161 MHz, CH$_3$CN, 25°C): δ -4.56 ppm (s, P$_{central}$), 20.83 (s, PPh$_3$);

31P NMR (161 MHz, CH$_3$CN, 25°C): δ -0.18 ppm (d, P$_{central}$, 1J$_{P-H}$ = 586 Hz), 20.83 (s, PPh$_3$).

PhOH, [HC(PPh$_3$)$_2$][P(O)$_2$(OC$_6$H$_5$)(H)]:
1H NMR (400 MHz, CD$_3$CN, 25°C): δ 6.86–7.43 ppm (35H, Ph); 13C 1H NMR (100 MHz, CD$_3$CN, 25°C): δ 115.3 ppm (o-C, Ph), 119.8 (p-C, Ph), 129.9 (m-C, Ph), 156.9 (ipso-C, Ph); 31P 1H NMR (161 MHz, CD$_3$CN, 25°C): δ -0.71 ppm (s, P$_{central}$), 20.84 (s, PPh$_3$); 31P NMR (161 MHz, CD$_3$CN, 25°C): δ -0.18 ppm (d, 1J$_{p-h}$ = 625 Hz), 20.84 (s, PPh$_3$).

PhCH$_2$CH$_2$OH, [HC(PPh$_3$)$_2$][P(O)$_2$(OCH$_2$CH$_2$C$_6$H$_5$)](H):

31P 1H NMR (161 MHz, CH$_3$CN, 25°C): δ 3.24 ppm (s, P$_{central}$), 20.65 (s, PPh$_3$); 31P NMR (161 MHz, CH$_3$CN, 25°C): δ 3.24 ppm (dt, 1J$_{p-h}$ = 600 Hz, 3J$_{p-o-c-h}$ = 8.5 Hz), 20.65 (s, PPh$_3$).

PhCH(CH$_3$)CH$_2$OH, [HC(PPh$_3$)$_2$][P(O)$_2$(OCH$_2$CH$_2$C$_6$H$_5$)](H):

31P 1H NMR (161 MHz, CH$_3$CN, 25°C): δ 3.13 ppm (s, P$_{central}$), 20.63 (s, PPh$_3$); 31P NMR (161 MHz, CH$_3$CN, 25°C): δ 3.13 ppm (dt, 1J$_{p-h}$ = 596 Hz, 3J$_{p-o-c-h}$ = 7.1 Hz), 20.63 (s, PPh$_3$).

C(CF$_3$)$_3$OH, [HC(PPh$_3$)$_2$][P(O)$_2$(OC(CF$_3$)$_3$)](H):

31P 1H NMR (161 MHz, CH$_3$CN, 25°C): δ -0.26 ppm (s, P$_{central}$), 20.80 (s, PPh$_3$); 31P NMR (161 MHz, CH$_3$CN, 25°C): δ -0.26 ppm (d, 1J$_{p-h}$ = 525.0 Hz), 20.80 (s, PPh$_3$).

CH$_2$=CHCH$_2$CH$_2$OH, [HC(PPh$_3$)$_2$][P(O)$_2$(OCH$_2$CH$_2$CHCH$_2$)](H):

31P 1H NMR (161 MHz, CH$_3$CN, 25°C): δ 3.23 ppm (s, P$_{central}$), 20.61 (s, PPh$_3$); 31P NMR (161 MHz, CH$_3$CN, 25°C): δ 3.23 ppm (dt, 1J$_{p-h}$ = 602 Hz, 3J$_{p-o-c-h}$ = 10.4 Hz), 20.61 (s, PPh$_3$).

CH$_2$=CH(CH$_2$)$_2$CH$_2$OH, [HC(PPh$_3$)$_2$][P(O)$_2$(OCH$_2$(CH)$_2$)$_2$CHCH$_2$)](H):
31P 1H NMR (161 MHz, CH$_3$CN, 25°C): δ 3.04 ppm (s, P$_{central}$), 20.57 ppm (s, PPh$_3$);

31P NMR (161 MHz, CH$_3$CN, 25°C): δ 3.04 ppm (dt, P$_{central}$, 1J$_{P-H}$ = 597 Hz, 3J$_{P\text{-}O\text{-}C\text{-}H}$ = 6.5 Hz), 20.57 ppm (s, PPh$_3$).

1H NMR (400 MHz, CD$_3$CN, 25°C): δ 1.28 ppm (s, 1H, CH), 2.36 ppm (s, 2H, CH$_2$), 3.24 ppm (s, 2H, CH$_2$), 3.59 ppm (1H, CH), 7.45-7.59 ppm (30H, Ph);

13C 1H NMR (100 MHz, CD$_3$CN, 25°C): δ 22.3 ppm (s, CH$_2$), 55.1 ppm (d, C$_{carbone}$, 1J$_{C-P}$ = 3.85 Hz), 60.1 ppm (s, CH), 69.7 (s, CH$_2$), 82.3 (s, CH$_2$), 126.5 (apparent triplet, AA’X, 1J$_{P\text{-}C}$ + 4J$_{P\text{-}C}$ = 95.1 Hz, ipso-C, Ph),

129.3 ppm (m, α-C, Ph), 133.0 ppm (m, m-C, Ph), 133.1 ppm (s, p-C, Ph);

31P 1H NMR (161 MHz, CH$_3$CN, 25°C): δ 3.39 ppm (s, P$_{central}$), 20.8 ppm (s, PPh$_3$);

31P NMR (161 MHz, CH$_3$CN, 25°C): δ 3.39 ppm (dt, P$_{central}$, 1J$_{P-H}$ = 605 Hz, 3J$_{P\text{-}O\text{-}C\text{-}H}$ = 7.7 Hz), 20.81 ppm (s, PPh$_3$).

$HC\equiv C\text{(CH}_3\text{)}_2\text{C}_2\text{H}_2\text{OH}, [HC(PPh}_3\text{)_2][P(OC}_2\text{CH}_2\text{C}_2\text{CHC}(H)]$

31P 1H NMR (161 MHz, CH$_3$CN, 25°C): δ 3.31 ppm (s, P$_{central}$), 20.58 ppm (s, PPh$_3$);

31P NMR (161 MHz, CH$_3$CN, 25°C): δ 3.31 ppm (dt, P$_{central}$, 1J$_{P-H}$ = 601 Hz, 3J$_{P\text{-}O\text{-}C\text{-}H}$ = 6.1 Hz), 20.58 ppm (s, PPh$_3$).

Dehydrogenative coupling reactions with of (Ph$_3$P)$_2$CP(O)$_2$H

Following reactions have been carried out in situ in the J. Young NMR tubes.

Catalysis with CuI:

In a vial containing 1 mL of solvent (DMSO or ACN), 20 mg (0.0333 mmol) of 17, 10% mol CuI, and 10% mol TEA, 2.5 eq. of phenylacetylene (5.4 μL, 0.0833 mmol)
was added. Reaction content was then heated to 50°C, which resulted in a colour change. The same reaction was repeated without the presence of the base.

Catalysis with Palladium:

In a vial containing 1 mL of THF solution, 15 mg (0.025 mmol) of 17, and 2 eq. AgBF$_4$ (10 mg, 0.05 mmol), 10% mol Pd(OAc)$_2$ (10 uL, 0.0025 mmol) was added, followed by the addition of 1 eq. of phenylacetylene (3 uL, 0.025 mmol) or bromophenylacetylene (5 mg, 0.025 mmol). The reaction was heated overnight at 70°C.

5.2 Crystallographic Methods

Single crystals were mounted on quartz fibres, and the X-ray intensity data were collected at 103(2) K (150.0(1) K for [3c][BAr$_4$$_2$]) on a Bruker X8 APEX (Bruker Kappa APEX II for [3c][BAr$_4$$_2$]) system, using Mo Kα radiation, with the SMART suite of programs.$^{[212]}$ Data were processed and corrected for Lorentz and polarization effects with SAINT$^{[213]}$ (DENZO and COLLECT for [3c][BAr$_4$$_2$]) and for absorption effects with SADABS$^{[214]}$ (DENZO/SCALEPACK$^{[215]}$ for [3c][BAr$_4$$_2$]). Structural solution and refinement were carried out with the SHELXTL suite of programs.$^{[216]}$ The structure was solved by direct methods and refined for all data by full-matrix least-squares methods on F^2. All non-hydrogen atoms were subjected to anisotropic refinement. The hydrogen atoms were generated geometrically and allowed to ride on their respective parent atoms; they were assigned appropriate isotopic thermal parameters.
Crystallographic data for [3c][SbF$_6$]$_2$:

<table>
<thead>
<tr>
<th>Identification code</th>
<th>dv191</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C${44}$H${46}$Cl2F${12}$NP$_3$Sb$_2$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1224.13</td>
</tr>
<tr>
<td>Temperature</td>
<td>103(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.240 x 0.300 x 0.360 mm</td>
</tr>
<tr>
<td>Crystal habit</td>
<td>colourless block</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a = 11.180(8) Å</td>
<td>α = 90.00°</td>
</tr>
<tr>
<td>b = 19.337(12) Å</td>
<td>β = 92.114(3)°</td>
</tr>
<tr>
<td>c = 24.324(16) Å</td>
<td>γ = 90.00°</td>
</tr>
<tr>
<td>Volume</td>
<td>5254.7(6) Å3</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.547 g/cm3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>1.294 mm$^{-1}$</td>
</tr>
<tr>
<td>F(000)</td>
<td>2424</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.68 to 28.34°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-14<=h<=14, -25<=k<=25, -32<=l<=32</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>62748</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>13065 [R(int) = 0.1270]</td>
</tr>
<tr>
<td>Coverage of independent reflections</td>
<td>99.6%</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.7460 and 0.6530</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F2</td>
</tr>
<tr>
<td>Refinement program</td>
<td>SHELXL-2013 (Sheldrick, 2013)</td>
</tr>
<tr>
<td>Function minimized</td>
<td>Σ w(F$_o^2$ - F$_c^2$)2</td>
</tr>
<tr>
<td>19036 / 4 / 707</td>
<td>13065 / 316 / 673</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
<td>1.052</td>
</tr>
<tr>
<td>Final R indices</td>
<td>6446 data; I>2σ(I)</td>
</tr>
<tr>
<td></td>
<td>R1 = 0.0964, wR2 = 0.2769</td>
</tr>
<tr>
<td></td>
<td>all data</td>
</tr>
<tr>
<td></td>
<td>R1 = 0.1945, wR2 = 0.3420</td>
</tr>
<tr>
<td>Weighting scheme</td>
<td>w=1/[(σ2(Fo2)+(0.1665P)2+39.3582P)]</td>
</tr>
<tr>
<td></td>
<td>where P=(F$_o^2$+2F$_c^2$)/3</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>3.589 and -2.343 eÅ$^-3$</td>
</tr>
<tr>
<td>R.M.S. deviation from mean</td>
<td>0.240 eÅ$^-3$</td>
</tr>
</tbody>
</table>
Crystallographic data for [7][SbF$_6$]$_2$:

Table 13. Crystal data and structure refinement for [(Ph$_3$P)$_2$CP(N$^+$Pr$_2$)(O)(C$_5$H$_5$NO)][SbF$_6$]$_2$ [7][SbF$_6$]$_2$

<table>
<thead>
<tr>
<th>Identification code</th>
<th>dv210</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C${100}$H${107}$Cl$_8$N$_4$O$_4$P$_6$Sb$_4$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>2841.31</td>
</tr>
<tr>
<td>Temperature</td>
<td>103(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.160 x 0.260 x 0.300 mm</td>
</tr>
<tr>
<td>Crystal habit</td>
<td>colourless block</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 11.7233(4) Å, b = 27.6193(11) Å, c = 17.4494(7) Å, α = 90°, β = 90.9776(14)°, γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>5649.1(4) Å3</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.670 g/cm3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>1.311 mm$^{-1}$</td>
</tr>
<tr>
<td>F(000)</td>
<td>2826</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.48 to 26.00°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-15<=h<=13, -35<=k<=36, -23<=l<=21</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>68295</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>22190 [R(int) = 0.0458]</td>
</tr>
<tr>
<td>Coverage of independent reflections</td>
<td>100.0%</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.8180 and 0.6940</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F2</td>
</tr>
<tr>
<td>Refinement program</td>
<td>SHELXL-2013 (Sheldrick, 2013)</td>
</tr>
<tr>
<td>Function minimized</td>
<td>Σ w(F$_o^2$ - F$_c^2$)2</td>
</tr>
<tr>
<td>19036 / 4 / 707</td>
<td>22190 / 717 / 1428</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
<td>1.063</td>
</tr>
<tr>
<td>Final R indices</td>
<td>R1 = 0.0773, wR2 = 0.1970 all data</td>
</tr>
<tr>
<td></td>
<td>R1 = 0.0957, wR2 = 0.2204</td>
</tr>
<tr>
<td>Weighting scheme</td>
<td>w=1/[$\sigma^2(F_o^2)+(0.1189P)^2+36.9311P]$</td>
</tr>
<tr>
<td></td>
<td>where P=(F$_o^2+2F_c^2$)/3</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>3.135 and -2.037 eÅ$^{-3}$</td>
</tr>
<tr>
<td>R.M.S. deviation from mean</td>
<td>0.201 eÅ$^{-3}$</td>
</tr>
</tbody>
</table>
Crystallographic data for [8][SbF₆]₂:

Table 14. Crystal data and structure refinement for [(Ph₃P)₂COP(NPr₂)(O)(C₆H₅N)]{SbF₆}⁺ [8][SbF₆]⁻

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>dv228</td>
</tr>
<tr>
<td>Chemical formula</td>
<td>C₅₀H₅₃Cl₂F₁₂N₂O₂P₃Sb₂</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1420.15</td>
</tr>
<tr>
<td>Temperature</td>
<td>103(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.200 x 0.220 x 0.340 mm</td>
</tr>
<tr>
<td>Crystal habit</td>
<td>colourless block</td>
</tr>
<tr>
<td>Crystal system</td>
<td>triclinic</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>11.1214(4) Å</td>
</tr>
<tr>
<td>α</td>
<td>92.4868(13)°</td>
</tr>
<tr>
<td>b</td>
<td>12.5295(4) Å</td>
</tr>
<tr>
<td>β</td>
<td>101.5914(13)°</td>
</tr>
<tr>
<td>c</td>
<td>20.9643(6) Å</td>
</tr>
<tr>
<td>γ</td>
<td>97.2151(14)°</td>
</tr>
<tr>
<td>Volume</td>
<td>2831.96(16) Å</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.665 g/cm³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>1.307 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1412</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.64 to 31.65°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-16<≤h<≤16, -18<≤k<≤18, -30<≤l<≤30</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>60187</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>19036 [R(int) = 0.0455]</td>
</tr>
<tr>
<td>Coverage of independent reflections</td>
<td>99.60%</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.7800 and 0.6650</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Refinement program</td>
<td>SHELXL-2013 (Sheldrick, 2013)</td>
</tr>
<tr>
<td>Function minimized</td>
<td>Σ w(F₀² - Fₖ²)²</td>
</tr>
<tr>
<td>19036 / 4 / 707</td>
<td>19036 / 4 / 707</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.061</td>
</tr>
<tr>
<td>Final R indices</td>
<td></td>
</tr>
<tr>
<td>[I>2σ(I)]</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>0.0467, wR2 = 0.1113</td>
</tr>
<tr>
<td>all data</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>0.0671, wR2 = 0.1300</td>
</tr>
<tr>
<td>w=1/[σ²(F₀²) + (0.0589P)² + 3.7706]</td>
<td></td>
</tr>
<tr>
<td>Weighting scheme</td>
<td></td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>2.085 and -1.390 eÅ⁻³</td>
</tr>
<tr>
<td>R.M.S. deviation from mean</td>
<td>0.175 eÅ⁻³</td>
</tr>
</tbody>
</table>
Crystallographic data for \([(\text{PPh}_3)_2\text{CP(O)(OH)(H)[BArF}_4])_2, [15][\text{BArF}_4]\):

Table 15. Crystal data and structure refinement for \([(\text{PPh}_3)_2\text{CP(O)(OH)(H)[BArF}_4])_2, [15][\text{BArF}_4]\):

<table>
<thead>
<tr>
<th>Crystal data and structure refinement for ([(\text{PPh}_3)_2\text{CP(O)(OH)(H)[BArF}_4])_2, [15][\text{BArF}_4])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
</tr>
<tr>
<td>Chemical formula</td>
</tr>
<tr>
<td>Formula weight</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Wavelength</td>
</tr>
<tr>
<td>Crystal size</td>
</tr>
<tr>
<td>Crystal system</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Volume</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>Density (calculated)</td>
</tr>
<tr>
<td>Absorption coefficient</td>
</tr>
<tr>
<td>F(000)</td>
</tr>
<tr>
<td>Theta range for data collection</td>
</tr>
<tr>
<td>Index ranges</td>
</tr>
<tr>
<td>Reflections collected</td>
</tr>
<tr>
<td>Independent reflections</td>
</tr>
<tr>
<td>Coverage of independent reflections</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
</tr>
<tr>
<td>Refinement method</td>
</tr>
<tr>
<td>Refinement program</td>
</tr>
<tr>
<td>Function minimized</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
</tr>
<tr>
<td>Final R indices</td>
</tr>
</tbody>
</table>
Crystallographic data for 17:

Table 16. Crystal data and structure refinement for \((\text{Ph}_3\text{P})_2\text{CP(O)}_2\text{H}_2\text{O}, 17\cdot\text{H}_2\text{O}\).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>dv365s</td>
</tr>
<tr>
<td>Chemical formula</td>
<td>(\text{C}{37}\text{H}{35}\text{O}_4\text{P}_3)</td>
</tr>
<tr>
<td>Formula weight</td>
<td>636.56 g/mol</td>
</tr>
<tr>
<td>Temperature</td>
<td>103(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.060 x 0.400 x 0.420 mm</td>
</tr>
<tr>
<td>Crystal habit</td>
<td>colourless plate</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>(P\ 1\ 2\ 1/c\ 1)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>(a = 9.860(7) \text{ Å},\ \alpha = 90°) (b = 18.996(13) \text{ Å},\ \beta = 94.139(15)°) (c = 17.206(12) \text{ Å},\ \gamma = 90°)</td>
</tr>
<tr>
<td>Volume</td>
<td>3214.(4) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.315 g/cm³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.225 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1336</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.60 to 25.93°</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>6174</td>
</tr>
<tr>
<td>Coverage of independent reflections</td>
<td>98.40%</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Multi-Scan</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9870 and 0.9110</td>
</tr>
<tr>
<td>Structure solution technique</td>
<td>direct methods</td>
</tr>
<tr>
<td>Structure solution program</td>
<td>XS, VERSION 2013/1</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on (F^2)</td>
</tr>
<tr>
<td>Refinement program</td>
<td>SHELXL-2014/7 (Sheldrick, 2014)</td>
</tr>
<tr>
<td>Function minimized</td>
<td>(\Sigma w(Fo^2 - Fc^2)^2)</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>6174 / 7 / 412</td>
</tr>
<tr>
<td>Goodness-of-fit on (F^2)</td>
<td>1.019</td>
</tr>
<tr>
<td>Final R indices</td>
<td>3206 data; I>2σ(I) (R1 = 0.0922,\ wR2 = 0.1877) all data (R1 = 0.1829,\ wR2 = 0.2271)</td>
</tr>
</tbody>
</table>
| Weighting scheme | \(w = 1/[(\sigma^2(Fo^2) + (0.0973P)^2)]\)

where \(P = (Fo^2 + 2Fc^2)/3\) |
| Largest diff. peak and hole | 0.627 and -0.386 eÅ⁻³ |
| R.M.S. deviation from mean | 0.089 eÅ⁻³ |
References

[212] SMART Version 5.628 **2001**.

[213] SAINT+ Version 6.22a **2001**.

[217] M. J. Frisch, Gaussian 09, Revision C.01 **2009**.

Appendix
Table 17. 17 and MeOH reaction conditions

<table>
<thead>
<tr>
<th>Nr.</th>
<th>MeOH</th>
<th>ACN</th>
<th>$t_R = 5h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>W(_{\text{HPLC}}), sieves, not distilled, not degassed</td>
<td>></td>
</tr>
<tr>
<td>2</td>
<td>D + H(2)O({\text{additional}})</td>
<td>W(_{\text{HPLC}}), sieves, not distilled, not degassed</td>
<td>></td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>CD(_3)CN, degassed, dried</td>
<td>></td>
</tr>
<tr>
<td>4</td>
<td>D + H(2)O({\text{additional}})</td>
<td>CD(_3)CN, degassed, dried</td>
<td>></td>
</tr>
<tr>
<td>5</td>
<td>W(_{\text{HPLC}}), degassed</td>
<td>CD(_3)CN, degassed, dried</td>
<td>></td>
</tr>
<tr>
<td>6</td>
<td>W(_{\text{HPLC}}), degassed</td>
<td>-</td>
<td>></td>
</tr>
<tr>
<td>7</td>
<td>W(_{\text{HPLC}})</td>
<td>W(_{\text{HPLC}})</td>
<td>=</td>
</tr>
<tr>
<td>8</td>
<td>W(_{\text{HPLC}})</td>
<td>W(_{\text{HPLC}})</td>
<td>=</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>W(_{\text{HPLC}})</td>
<td>=</td>
</tr>
<tr>
<td>10</td>
<td>D</td>
<td>W(_{(30 \text{ ppm H}_2\text{O})})</td>
<td>=</td>
</tr>
<tr>
<td>11</td>
<td>D</td>
<td>W(_{(99.999% \text{ ACN})})</td>
<td>=</td>
</tr>
<tr>
<td>12</td>
<td>D</td>
<td>D</td>
<td>></td>
</tr>
<tr>
<td>13</td>
<td>W(_{\text{HPLC}})</td>
<td>D</td>
<td>=</td>
</tr>
<tr>
<td>14</td>
<td>W + TEA</td>
<td>D</td>
<td>=</td>
</tr>
<tr>
<td>15</td>
<td>W(_{\text{HPLC}})</td>
<td>D</td>
<td>=</td>
</tr>
<tr>
<td>16</td>
<td>D</td>
<td>D</td>
<td>=</td>
</tr>
<tr>
<td>17</td>
<td>W + TEAH(^+)</td>
<td>D</td>
<td>></td>
</tr>
<tr>
<td>18</td>
<td>W + Me(_4)NBAr(^{\text{Cl}})</td>
<td>W(_{\text{HPLC}})</td>
<td>Did not start</td>
</tr>
<tr>
<td>19</td>
<td>W</td>
<td>D</td>
<td>Did not start</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>D</td>
<td>></td>
</tr>
</tbody>
</table>
NMR spectra

\([\{i\text{Pr}_2\text{NP(O)(C(PPh}_3)_2(\text{OPy})\}[\text{SbF}_6]_2, [7][\text{SbF}_6]_2\]

Figure 35. 31P{H} NMR spectra of [7][SbF$_6$]$_2$

Figure 36. 13C NMR spectra of [7][SbF$_6$]$_2$
Figure 37. 1H NMR spectra of $[7][\text{SbF}_6]_2$

$[(^1\text{Pr}_2\text{NP(O)}(\text{OC(PPPh}_3)_2(\text{Py}))][\text{SbF}_6]_2$. $[8][\text{SbF}_6]_2$:

$[^{31}\text{P}](^1\text{H})$ NMR for

\[
\begin{array}{c}
(\text{Ph}_3\text{P})_2\text{C}=\text{O} & \text{py} \\
^1\text{Pr}_2\text{N} & \text{O}
\end{array}
\]

Figure 38. $^{31}\text{P}(^1\text{H})$ NMR spectra of $[8][\text{SbF}_6]_2$:
Figure 39. 13C NMR spectra of [8][SbF$_6$]$_2$.

Figure 40. 1H NMR spectra of [8][SbF$_6$]$_2$.

\[{(\text{Ph}_3\text{P})_2\text{CP(O)(OH)(H})][\text{BAr}^F_4]\}_2, [15][\text{BAr}^F_4]:

Figure 41. $^31\text{P}\{^1\text{H}\}$ spectra of $[15][\text{BAr}^F_4]_2$

Figure 42. ^31P NMR spectra of $[15][\text{BAr}^F_4]_2$
Figure 43. 13C NMR spectra of $[15][\text{BAr}_4F_2]$

Figure 44. 1H NMR spectra of $[15][\text{BAr}_4F_2]$
Figure 45. 13B NMR spectra of $[15][\text{BAr}_4]^-$

Figure 46. 19F NMR spectra of $[15][\text{BAr}_4]^-$
(Ph₃P)₂CP(O)₂H, 17:

Figure 47. ³¹P{¹H} NMR spectra of 17

Figure 48. ³¹P NMR spectra of 17
Figure 49. 13C NMR spectra of 17

Figure 50. 1H NMR spectra of 17
Reaction of 17 with MeOTf:

Figure 51. 31P{$_1$H} NMR spectra of the reaction between 17 and MeOTf

Figure 52. 31P NMR spectra of the reaction between 17 and MeOTf
Reactivity towards MeOH, \([\text{HC(PPh}_3\text{)}_2][\text{P(O)}_2\text{(OCH}_3\text{)}](\text{H})]\)

Figure 53. ^1H NMR spectra of the reaction between 17 and MeOTf

Figure 54. $^{31}\text{P}[1\text{H}]$ NMR spectra of $[\text{HC(PPh}_3\text{)}_2][\text{P(O)}_2\text{(OCH}_3\text{)}](\text{H})]$
Figure 55. 31P NMR spectra of $\text{[HC(PPh}_3\text{)\text{][P(O)}_2\text{(OCH}_3\text{)(H)}]}$

Figure 56. 1H NMR spectra of $\text{[HC(PPh}_3\text{)\text{][P(O)}_2\text{(OCH}_3\text{)(H)}]}$
Reactivity towards CD$_3$OD; synthesis of [DC(PPh$_3$)$_2$][P(O)$_2$(OCD$_3$)(H)]:

![Figure 57. 31P{1H} NMR spectra of [DC(PPh$_3$)$_2$][P(O)$_2$(OCD$_3$)(H)]](image)

![Figure 58. 1H NMR spectra of [DC(PPh$_3$)$_2$][P(O)$_2$(OCD$_3$)(H)]](image)
Figure 59. 2H NMR spectra of [DC(PPh$_3$)$_2$][P(O)$_2$(OCD)$_3$(H)]

Reaction between [DC(PPh$_3$)$_2$][P(O)$_2$(OCD)$_3$(H)] and MeOTf:

Figure 60. 31P{1H} NMR spectra of the reaction between [DC(PPh$_3$)$_2$][P(O)$_2$(OCD)$_3$(H)] and MeOTf:
Figure 61. ^{31}P NMR spectra of the reaction between $[\text{DC}(\text{PPh}_3)_2][\text{P(O)}_2(\text{OCD}_3)(\text{H})]$ and MeOTf.

Figure 62. 2D{1H} NMR spectra of the reaction between $[\text{DC}(\text{PPh}_3)_2][\text{P(O)}_2(\text{OCD}_3)(\text{H})]$ and MeOTf.
PhOH, \([HC(PPh_3)_2][P(O)_2(OC_6H_5)(H)]\):

Figure 63. 31P{1H} NMR spectra of \([HC(PPh_3)_2][P(O)_2(OC_6H_5)(H)]\)

Figure 64. 31P{1H} NMR spectra of \([HC(PPh_3)_2][P(O)_2(OC_6H_5)(H)]\)
Figure 65. 13C NMR spectra of $[\text{HC(PPh}_3)_2][\text{P(O)}_2(\text{OC}_6\text{H}_5)(\text{H})]$.

Figure 66. 31P{1H} NMR spectra of $[\text{HC(PPh}_3)_2][\text{P(O)}_2(\text{OC}_6\text{H}_5)(\text{H})]$.

169
$HC\equiv C(CH_2)_2CH_2OH$, $[HC(PPh_3)_2][P(O)_2(OCH_2(CH_2)_2CCH)(H)]$

Figure 67. $^{31}P\{^1H\}$ NMR spectra of $[HC(PPh_3)_2][P(O)_2(OCH_2(CH_2)_2CCH)(H)]$

Figure 68. ^{31}P NMR spectra of $[HC(PPh_3)_2][P(O)_2(OCH_2(CH_2)_2CCH)(H)]$
Computational Methods

All calculations for the chapter II were carried out with the Gaussian09 package, and all structures were optimized at the DFT level by means of the B3PW91 functional in conjunction with the 6-31G(d) basis set. Geometry optimizations were performed without constraints, except for $3g_p^{2+}$, $3g_C^{2+}$, and $3g_N^{2+}$, for which the P–C–P–N and C–P–N–H dihedral angles were fixed at 0 and 0° ($3g_p^{2+}$), ±90 and 0° ($3g_C^{2+}$), and 0 and ±90° ($3g_N^{2+}$). Final energy calculations at the B3PW91 level associated with the 6-311+G(d,p) basis set have been achieved on the B3PW91/6-31G(d) geometries. To get accurate geometries, the SCF convergence criterion was systematically tightened to 10^{-8} au, and the force minimizations were carried out until the rms force became smaller than (at least) 1×10^{-5} au. Electronic structures obtained at the B3PW91/6-311+G(d,p)//B3PW91/6-31G(d) level were explored by means of natural bond order (NBO) analysis using the NBO6 program. NBO analysis gives the atomic charges through natural population analysis (NPA). The π-electron population is obtained from the occupancy of the π natural atomic orbitals. It was also used to interpret the wave function of the systems in terms of natural localized bond orbitals, to study bond polarization and to evaluate the relative contribution of the C≡P–N and C–P≡N resonance structures by means of natural resonance theory (NRT). Second-order perturbation theory was used to estimate the second-order interaction energy ($E(2)$) associated with two-electron donor–acceptor orbital interactions.

Cartesian coordinates and energies of the optimized geometries at the DFT level

$3e^{2+}$
<table>
<thead>
<tr>
<th>P</th>
<th>0.000000</th>
<th>0.000000</th>
<th>0.000000</th>
<th>H</th>
<th>5.997336</th>
<th>0.167250</th>
<th>0.342072</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.647285</td>
<td>C</td>
<td>4.332580</td>
<td>-0.870037</td>
<td>-1.663855</td>
</tr>
<tr>
<td>C</td>
<td>1.526148</td>
<td>0.000000</td>
<td>-0.846027</td>
<td>C</td>
<td>5.009533</td>
<td>0.110581</td>
<td>-2.408268</td>
</tr>
<tr>
<td>C</td>
<td>-1.411452</td>
<td>-0.097089</td>
<td>2.211070</td>
<td>C</td>
<td>5.928062</td>
<td>-0.268512</td>
<td>-3.382512</td>
</tr>
<tr>
<td>C</td>
<td>1.070186</td>
<td>0.142242</td>
<td>2.670353</td>
<td>C</td>
<td>6.186334</td>
<td>-1.619539</td>
<td>-3.615031</td>
</tr>
<tr>
<td>P</td>
<td>3.212610</td>
<td>-0.383641</td>
<td>-0.314005</td>
<td>C</td>
<td>5.520800</td>
<td>-2.593595</td>
<td>-2.874246</td>
</tr>
<tr>
<td>P</td>
<td>1.174862</td>
<td>0.194420</td>
<td>-2.628110</td>
<td>C</td>
<td>4.597023</td>
<td>-2.227788</td>
<td>-1.900233</td>
</tr>
<tr>
<td>H</td>
<td>-1.265522</td>
<td>-0.254911</td>
<td>3.290443</td>
<td>H</td>
<td>4.841319</td>
<td>1.165292</td>
<td>-2.220200</td>
</tr>
<tr>
<td>C</td>
<td>-2.290948</td>
<td>1.077524</td>
<td>1.785335</td>
<td>H</td>
<td>6.456259</td>
<td>0.494465</td>
<td>-3.946956</td>
</tr>
<tr>
<td>H</td>
<td>-1.806387</td>
<td>2.035953</td>
<td>1.995707</td>
<td>H</td>
<td>6.917620</td>
<td>-1.910735</td>
<td>-4.363819</td>
</tr>
<tr>
<td>H</td>
<td>-2.544564</td>
<td>1.037412</td>
<td>0.720862</td>
<td>H</td>
<td>5.730542</td>
<td>-3.647420</td>
<td>-3.042790</td>
</tr>
<tr>
<td>H</td>
<td>-3.229284</td>
<td>1.044883</td>
<td>2.348469</td>
<td>H</td>
<td>4.102531</td>
<td>-2.998004</td>
<td>-1.318454</td>
</tr>
<tr>
<td>C</td>
<td>-2.046077</td>
<td>-1.452837</td>
<td>1.911577</td>
<td>C</td>
<td>1.955797</td>
<td>1.655692</td>
<td>-3.646888</td>
</tr>
<tr>
<td>H</td>
<td>-1.396387</td>
<td>-2.276379</td>
<td>2.223058</td>
<td>C</td>
<td>2.643461</td>
<td>2.601649</td>
<td>-2.597856</td>
</tr>
<tr>
<td>H</td>
<td>-2.991036</td>
<td>-1.542759</td>
<td>2.457032</td>
<td>C</td>
<td>3.132032</td>
<td>3.763336</td>
<td>-3.194346</td>
</tr>
<tr>
<td>H</td>
<td>-2.269270</td>
<td>-1.563656</td>
<td>0.844254</td>
<td>C</td>
<td>2.930346</td>
<td>3.989169</td>
<td>-4.554169</td>
</tr>
<tr>
<td>H</td>
<td>2.010547</td>
<td>0.178403</td>
<td>2.118675</td>
<td>C</td>
<td>2.222142</td>
<td>3.060417</td>
<td>-5.318931</td>
</tr>
<tr>
<td>C</td>
<td>0.920383</td>
<td>1.459412</td>
<td>3.437609</td>
<td>C</td>
<td>1.723923</td>
<td>1.903073</td>
<td>-4.729737</td>
</tr>
<tr>
<td>H</td>
<td>0.843791</td>
<td>2.318387</td>
<td>2.764581</td>
<td>H</td>
<td>2.789639</td>
<td>2.446701</td>
<td>-1.534707</td>
</tr>
<tr>
<td>H</td>
<td>1.800093</td>
<td>1.601143</td>
<td>4.073425</td>
<td>H</td>
<td>3.662521</td>
<td>4.494823</td>
<td>-2.591659</td>
</tr>
<tr>
<td>H</td>
<td>0.044771</td>
<td>1.460430</td>
<td>4.094086</td>
<td>H</td>
<td>3.309689</td>
<td>4.895594</td>
<td>-5.017038</td>
</tr>
<tr>
<td>C</td>
<td>1.124886</td>
<td>-1.059021</td>
<td>3.613754</td>
<td>H</td>
<td>2.044536</td>
<td>3.243918</td>
<td>-6.374476</td>
</tr>
<tr>
<td>H</td>
<td>1.227959</td>
<td>-1.997459</td>
<td>3.064345</td>
<td>H</td>
<td>1.114153</td>
<td>1.208918</td>
<td>-5.329302</td>
</tr>
<tr>
<td>H</td>
<td>0.240583</td>
<td>-1.123437</td>
<td>4.255051</td>
<td>C</td>
<td>1.632983</td>
<td>-1.314889</td>
<td>-3.524288</td>
</tr>
<tr>
<td>H</td>
<td>1.991402</td>
<td>-0.950665</td>
<td>4.273237</td>
<td>C</td>
<td>2.465691</td>
<td>-1.288282</td>
<td>-4.649404</td>
</tr>
<tr>
<td>C</td>
<td>3.156679</td>
<td>-1.801510</td>
<td>0.823568</td>
<td>C</td>
<td>2.727326</td>
<td>-2.466048</td>
<td>-5.348140</td>
</tr>
<tr>
<td>C</td>
<td>2.274735</td>
<td>-2.863214</td>
<td>0.572658</td>
<td>C</td>
<td>2.159960</td>
<td>-3.670380</td>
<td>-4.932129</td>
</tr>
<tr>
<td>C</td>
<td>2.340276</td>
<td>-4.021973</td>
<td>1.343901</td>
<td>C</td>
<td>1.342265</td>
<td>-3.705215</td>
<td>-3.801578</td>
</tr>
<tr>
<td>C</td>
<td>3.278960</td>
<td>-4.127411</td>
<td>2.370400</td>
<td>C</td>
<td>1.081436</td>
<td>-2.534545</td>
<td>-3.096360</td>
</tr>
<tr>
<td>C</td>
<td>4.148887</td>
<td>-3.069007</td>
<td>2.630553</td>
<td>H</td>
<td>2.924594</td>
<td>-0.361336</td>
<td>-4.975064</td>
</tr>
<tr>
<td>C</td>
<td>4.093673</td>
<td>-1.908797</td>
<td>1.861462</td>
<td>H</td>
<td>3.367007</td>
<td>-2.438702</td>
<td>-6.222660</td>
</tr>
<tr>
<td>H</td>
<td>1.550860</td>
<td>-2.796043</td>
<td>-0.233081</td>
<td>H</td>
<td>2.356923</td>
<td>-4.538284</td>
<td>-5.486828</td>
</tr>
<tr>
<td>H</td>
<td>1.659182</td>
<td>-4.843533</td>
<td>1.141078</td>
<td>H</td>
<td>0.901677</td>
<td>-4.642749</td>
<td>-3.474776</td>
</tr>
<tr>
<td>H</td>
<td>3.330614</td>
<td>-5.032768</td>
<td>2.968237</td>
<td>H</td>
<td>0.433106</td>
<td>-2.570404</td>
<td>-2.224056</td>
</tr>
<tr>
<td>H</td>
<td>4.875685</td>
<td>-3.144912</td>
<td>3.433995</td>
<td>C</td>
<td>-0.601779</td>
<td>0.503099</td>
<td>-2.895034</td>
</tr>
<tr>
<td>H</td>
<td>4.775124</td>
<td>-1.092709</td>
<td>2.079921</td>
<td>C</td>
<td>-1.463524</td>
<td>-0.474009</td>
<td>-3.408886</td>
</tr>
<tr>
<td>C</td>
<td>4.013075</td>
<td>1.035190</td>
<td>0.493356</td>
<td>C</td>
<td>-2.803793</td>
<td>-0.164678</td>
<td>-3.635522</td>
</tr>
<tr>
<td>C</td>
<td>3.276334</td>
<td>2.148036</td>
<td>0.920628</td>
<td>C</td>
<td>-3.288830</td>
<td>1.110430</td>
<td>-3.354305</td>
</tr>
<tr>
<td>C</td>
<td>3.916898</td>
<td>3.210818</td>
<td>1.553601</td>
<td>C</td>
<td>-2.429092</td>
<td>2.091544</td>
<td>-2.855906</td>
</tr>
<tr>
<td>C</td>
<td>5.294067</td>
<td>3.168571</td>
<td>1.768492</td>
<td>C</td>
<td>-1.089462</td>
<td>1.796231</td>
<td>-2.633137</td>
</tr>
<tr>
<td>C</td>
<td>6.035052</td>
<td>2.067327</td>
<td>1.338956</td>
<td>H</td>
<td>-1.099702</td>
<td>-1.464970</td>
<td>-3.656441</td>
</tr>
<tr>
<td>Element</td>
<td>Atomic Coordinates</td>
<td>3g2+</td>
<td>3gr2+</td>
<td>3gN2+</td>
<td>3gc2+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5.403851 1.005325 0.696698</td>
<td>H -3.465249 -0.922517 -4.044916</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2.205281 2.193671 0.744430</td>
<td>H -4.332927 1.346883 -3.538191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3.340749 4.073550 1.875153</td>
<td>H -2.799632 3.092798 -2.656466</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>5.792029 3.997814 2.262596</td>
<td>H -0.423647 2.575356 -2.271623</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>7.109457 2.037532 1.494575</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E(B3PW91/6-311+G(d,p)//B3PW91/6-31G(d)) = -1120.952071 u.a.

C 1.596045 0.031412 -0.494315 H 4.188412 0.182337 0.023433
P 2.974025 -0.221863 0.599597 H 2.816931 0.547821 1.761203
P -0.059323 0.391401 -0.086378 H 3.160266 -1.550316 1.021417
N -0.239356 0.347346 1.532026 H 2.838186 0.820514 -2.724689
P 1.845566 -0.057369 -2.258883 H 2.191999 -1.333084 -2.733733
H -1.165840 0.593542 1.886670 H 0.643103 0.298935 -2.886424
H 0.397268 0.079325 2.278608

E(B3PW91/6-311+G(d,p)//B3PW91/6-31G(d)) = -1120.949064 u.a.

C 1.567586 0.000000 -0.513228 H 4.181577 0.000000 -0.111718
P 2.964249 0.000000 0.583841 H 2.994000 1.122669 1.428584
P -0.120273 0.000000 -0.083001 H 3.193481 0.000000 -2.570380
P 1.821660 0.000000 -2.285646 H 1.285080 -1.125856 -2.930596
H -1.210902 0.000000 1.910780 H 1.285080 1.125856 -2.930596
H 0.439804 0.000000 2.281067

E(B3PW91/6-311+G(d,p)//B3PW91/6-31G(d)) = -1120.923631 u.a.

C 0.297532 0.005423 0.000000 H 0.792158 2.604679 0.000000
P -0.287089 1.708956 0.000000 H -1.053139 2.007891 -1.134457
P -0.830245 -1.301408 0.000000 H -1.053140 2.007896 1.134455
N -2.326352 -0.543241 0.000000 H 2.733686 0.025215 1.130100
P 2.042240 -0.439080 0.000000 H 2.109508 -1.840129 -0.000003
H -2.818536 -0.293825 0.855822 H 2.733684 0.025220 -1.130099
H -2.818548 -0.293819 -0.855814

E(B3PW91/6-311+G(d,p)//B3PW91/6-31G(d)) = -1120.923758 u.a.

C -0.274381 -0.000000 -0.157548 H -2.436071 -1.466630 -0.380508
P -1.110630 -1.524716 0.080897 H -0.472594 -2.535383 -0.654802
P 1.454054 -0.000000 -0.650410 H -1.198024 -2.028960 1.392729
\[(PH_3)_2C=PH^{2+}\]
\[E(B3PW91/6-311+G(d,p)//B3PW91/6-31G(d)) = -1065.542903 \text{ u.a.}\]

\[
\begin{array}{llll}
\text{C} & -0.009245 & 0.116669 & -0.000004 \\
\text{P} & -1.650829 & -0.648551 & 0.000000 \\
\text{P} & 0.300401 & 1.800052 & 0.000000 \\
\text{P} & 1.469778 & -0.934897 & 0.000000 \\
\text{H} & -1.863375 & -1.456735 & 1.129787 \\
\text{H} & -2.620332 & 0.361923 & 0.000003 \\
\end{array}
\]

\[H_2N=PH^+\]
\[E(B3PW91/6-311+G(d,p)//B3PW91/6-31G(d)) = -397.577723 \text{ u.a.}\]

\[
\begin{array}{llll}
\text{P} & -0.616040 & -0.099303 & 0.000000 \\
\text{N} & 0.996406 & 0.017963 & -0.000002 \\
\text{H} & 1.573852 & -0.825815 & 0.000005 \\
\text{H} & 1.537808 & 0.884762 & 0.000004 \\
\text{H} & -0.845907 & 1.304859 & 0.000001 \\
\end{array}
\]

\[H_2C=P-NH_2\]
\[E(B3PW91/6-311+G(d,p)//B3PW91/6-31G(d)) = -436.565476 \text{ u.a.}\]

\[
\begin{array}{llll}
\text{H} & 1.718690 & -0.130478 & -0.591182 \\
\text{C} & 2.570368 & -0.018237 & 0.077496 \\
\text{H} & 2.348470 & -0.010113 & 1.141119 \\
\text{P} & 4.159833 & 0.169988 & -0.366222 \\
\end{array}
\]

\[H_2C-PH_2\]
\[E(B3PW91/6-311+G(d,p)//B3PW91/6-31G(d)) = -382.435027 \text{ u.a.}\]

\[
\begin{array}{llll}
\text{C} & -1.192619 & -0.000001 & 0.025045 \\
\text{H} & -1.588742 & -0.882333 & -0.487332 \\
\text{H} & -1.588730 & 0.882343 & -0.487321 \\
\text{H} & -1.551941 & -0.000003 & 1.057329 \\
\text{P} & 0.668424 & -0.000001 & -0.124711 \\
\text{H} & 0.929374 & 1.034654 & 0.818852 \\
\text{H} & 0.929386 & -1.034642 & 0.818864 \\
\end{array}
\]

\[H_2C=PH\]
\[E(B3PW91/6-311+G(d,p)//B3PW91/6-31G(d)) = -381.191777 \text{ u.a.}\]

\[
\begin{array}{llll}
\text{C} & 1.074635 & 0.025138 & 0.000001 \\
\end{array}
\]
All computational studies for Section III were performed with the Gaussian program packageS6 by employing the B3LYP functional in conjunction with the 6-31G(d) basis set. Absence of imaginary frequencies confirmed that the oxophosphonium dication with the O-py ligand removed (72+), oxophosphonium dication (72+) and inserted product 82+ represent minima on the potential energy surface, while TS with a single imaginary frequency is a first order saddle point. Intrinsic reaction coordinate calculations confirmed that this transition state connects minima that correspond to 72+ and 82+ structures.

Coordinates (Å) for the optimized structure for 72+:

\[
\begin{array}{cccccccc}
6 & -1.262263 & -4.047963 & -0.4835656 & -1.597164 & 2.060118 & 1.390031 \\
6 & -1.243738 & -2.733460 & -0.9741116 & -1.318418 & 1.528277 & 2.661330 \\
6 & -1.162145 & -2.525519 & -2.3611506 & -2.102499 & 1.877275 & 3.760232 \\
6 & -1.189654 & -4.911769 & -2.7449786 & -3.461024 & 3.285248 & 2.342859 \\
6 & -1.232394 & -5.127288 & -1.3672746 & -2.682328 & 2.936762 & 1.238528 \\
15 & -1.444941 & -1.312360 & 0.1667596 & 2.092163 & 0.340849 & -2.647171 \\
6 & -3.144881 & -0.667554 & -0.1233866 & 3.393010 & 1.142290 & -2.795718 \\
6 & -3.895530 & -0.155755 & 0.9506626 & 1.552328 & -0.096615 & -4.017005 \\
6 & -5.215506 & 0.249619 & 0.7598976 & 4.351661 & -2.171348 & -1.215280
\end{array}
\]
<table>
<thead>
<tr>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>y1</th>
<th>y2</th>
<th>y3</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.808087</td>
<td>0.152656</td>
<td>-0.4995531</td>
<td>2.889772</td>
<td>-1.936460</td>
<td>2.137526</td>
</tr>
<tr>
<td>-5.075174</td>
<td>-0.360713</td>
<td>-1.5702481</td>
<td>5.158842</td>
<td>-2.468271</td>
<td>3.155793</td>
</tr>
<tr>
<td>-3.757252</td>
<td>-0.774654</td>
<td>-1.3850151</td>
<td>7.035488</td>
<td>-0.837807</td>
<td>2.785469</td>
</tr>
<tr>
<td>-0.139555</td>
<td>-0.080550</td>
<td>-0.1137911</td>
<td>6.584979</td>
<td>1.262136</td>
<td>1.482009</td>
</tr>
<tr>
<td>-0.469372</td>
<td>1.678291</td>
<td>-0.0020011</td>
<td>4.243995</td>
<td>1.649960</td>
<td>0.596323</td>
</tr>
<tr>
<td>-1.181706</td>
<td>2.395820</td>
<td>-1.5282591</td>
<td>-0.510356</td>
<td>0.829518</td>
<td>2.701528</td>
</tr>
<tr>
<td>-1.533390</td>
<td>1.582564</td>
<td>-2.6114361</td>
<td>-1.877819</td>
<td>1.457137</td>
<td>4.735984</td>
</tr>
<tr>
<td>-2.071919</td>
<td>2.140353</td>
<td>-3.7723181</td>
<td>-3.780424</td>
<td>3.037358</td>
<td>4.460567</td>
</tr>
<tr>
<td>-2.265423</td>
<td>3.518612</td>
<td>-3.8597771</td>
<td>-4.297801</td>
<td>3.964782</td>
<td>2.212572</td>
</tr>
<tr>
<td>-1.909433</td>
<td>4.342164</td>
<td>-2.787462</td>
<td>-2.939807</td>
<td>3.336446</td>
<td>0.265338</td>
</tr>
<tr>
<td>-1.365526</td>
<td>3.789711</td>
<td>-1.630014</td>
<td>-1.372716</td>
<td>0.514198</td>
<td>-2.548950</td>
</tr>
<tr>
<td>1.444845</td>
<td>-0.887930</td>
<td>-0.2509171</td>
<td>-2.338052</td>
<td>1.498292</td>
<td>-4.606610</td>
</tr>
<tr>
<td>2.242993</td>
<td>-0.803945</td>
<td>-1.702912</td>
<td>-2.685232</td>
<td>3.953543</td>
<td>-4.761780</td>
</tr>
<tr>
<td>3.173032</td>
<td>-1.913143</td>
<td>-2.157876</td>
<td>-2.048962</td>
<td>5.416776</td>
<td>-2.854881</td>
</tr>
<tr>
<td>2.436709</td>
<td>-3.208495</td>
<td>-2.507879</td>
<td>-1.075654</td>
<td>4.446630</td>
<td>-0.815719</td>
</tr>
<tr>
<td>2.303274</td>
<td>0.192502</td>
<td>0.922508</td>
<td>0.904525</td>
<td>2.610581</td>
<td>2.470635</td>
</tr>
<tr>
<td>3.560195</td>
<td>-0.143988</td>
<td>1.356337</td>
<td>2.782136</td>
<td>4.132927</td>
<td>2.868434</td>
</tr>
<tr>
<td>3.750377</td>
<td>-1.284955</td>
<td>2.059941</td>
<td>3.985318</td>
<td>5.176708</td>
<td>0.954050</td>
</tr>
<tr>
<td>5.008814</td>
<td>-1.550786</td>
<td>2.577661</td>
<td>3.265059</td>
<td>4.669637</td>
<td>-1.373678</td>
</tr>
<tr>
<td>6.049153</td>
<td>-0.641523</td>
<td>2.377709</td>
<td>1.368842</td>
<td>3.168038</td>
<td>-1.784150</td>
</tr>
<tr>
<td>5.805291</td>
<td>0.528292</td>
<td>1.652821</td>
<td>-3.462713</td>
<td>-0.083400</td>
<td>1.940678</td>
</tr>
<tr>
<td>4.539355</td>
<td>0.764353</td>
<td>1.143397</td>
<td>-5.781435</td>
<td>0.634315</td>
<td>1.602702</td>
</tr>
<tr>
<td>1.510949</td>
<td>-2.249791</td>
<td>0.356356</td>
<td>-6.839476</td>
<td>0.460811</td>
<td>-0.642834</td>
</tr>
<tr>
<td>-1.502802</td>
<td>-1.993559</td>
<td>1.867667</td>
<td>-5.538184</td>
<td>-0.460520</td>
<td>-2.549245</td>
</tr>
<tr>
<td>-0.451318</td>
<td>-1.813876</td>
<td>2.777521</td>
<td>-3.230991</td>
<td>-1.214076</td>
<td>-2.222189</td>
</tr>
<tr>
<td>-0.518332</td>
<td>-2.372608</td>
<td>4.052078</td>
<td>-1.101016</td>
<td>-1.520763</td>
<td>-2.763765</td>
</tr>
<tr>
<td>-1.629241</td>
<td>-3.127784</td>
<td>4.431109</td>
<td>-1.102173</td>
<td>-3.430436</td>
<td>-4.311079</td>
</tr>
<tr>
<td>-2.678532</td>
<td>-3.320208</td>
<td>3.530121</td>
<td>-1.180478</td>
<td>-5.754701</td>
<td>-3.429295</td>
</tr>
<tr>
<td>-2.620755</td>
<td>-2.755272</td>
<td>2.256667</td>
<td>-1.245464</td>
<td>-6.139002</td>
<td>-0.973548</td>
</tr>
<tr>
<td>1.015024</td>
<td>2.734425</td>
<td>0.309142</td>
<td>-1.290074</td>
<td>-4.238037</td>
<td>0.582019</td>
</tr>
<tr>
<td>1.425666</td>
<td>3.031050</td>
<td>1.619996</td>
<td>0.419275</td>
<td>-1.240672</td>
<td>2.483601</td>
</tr>
<tr>
<td>2.493327</td>
<td>3.897675</td>
<td>1.848214</td>
<td>0.299025</td>
<td>-2.221564</td>
<td>4.751374</td>
</tr>
<tr>
<td>3.167916</td>
<td>4.484476</td>
<td>0.773709</td>
<td>-1.678270</td>
<td>-3.564913</td>
<td>5.423908</td>
</tr>
<tr>
<td>2.764202</td>
<td>4.201000</td>
<td>-0.531774</td>
<td>-3.545668</td>
<td>-3.906976</td>
<td>3.817325</td>
</tr>
<tr>
<td>1.690768</td>
<td>3.337324</td>
<td>-0.763663</td>
<td>-3.448890</td>
<td>-2.901679</td>
<td>1.572281</td>
</tr>
<tr>
<td>3.747641</td>
<td>1.512957</td>
<td>-1.829810</td>
<td>3.149994</td>
<td>-3.922926</td>
<td>-2.936979</td>
</tr>
<tr>
<td>4.189703</td>
<td>0.543429</td>
<td>-3.248377</td>
<td>1.982055</td>
<td>-3.658224</td>
<td>-1.622933</td>
</tr>
<tr>
<td>3.229081</td>
<td>2.004931</td>
<td>-3.450483</td>
<td>5.060981</td>
<td>-2.843666</td>
<td>-1.709016</td>
</tr>
<tr>
<td>1.328318</td>
<td>0.789827</td>
<td>-4.619435</td>
<td>4.887621</td>
<td>-1.246586</td>
<td>-0.975812</td>
</tr>
<tr>
<td>2.277169</td>
<td>-0.694942</td>
<td>-4.577490</td>
<td>4.023529</td>
<td>-2.660379</td>
<td>-0.294962</td>
</tr>
<tr>
<td>0.635581</td>
<td>-0.682409</td>
<td>-3.914740</td>
<td>3.597164</td>
<td>-1.514725</td>
<td>-3.081822</td>
</tr>
<tr>
<td>1.655862</td>
<td>-3.031002</td>
<td>-3.250429</td>
<td>1.337277</td>
<td>0.995063</td>
<td>-2.205096</td>
</tr>
</tbody>
</table>
Coordinates (Å) for the optimized structure for Ca^{2+}.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.321497</td>
<td>0.024444</td>
<td>0.042744</td>
<td>6</td>
<td>-1.723998</td>
</tr>
<tr>
<td>8</td>
<td>-1.066966</td>
<td>-0.110931</td>
<td>0.510012</td>
<td>6</td>
<td>-0.808768</td>
</tr>
<tr>
<td>15</td>
<td>1.293519</td>
<td>-1.439948</td>
<td>0.228638</td>
<td>6</td>
<td>2.059032</td>
</tr>
<tr>
<td>6</td>
<td>0.741850</td>
<td>-2.760378</td>
<td>-0.912875</td>
<td>6</td>
<td>3.345549</td>
</tr>
<tr>
<td>6</td>
<td>0.815489</td>
<td>-4.119178</td>
<td>-0.560657</td>
<td>6</td>
<td>4.129389</td>
</tr>
<tr>
<td>6</td>
<td>0.553650</td>
<td>-5.104400</td>
<td>-1.513189</td>
<td>6</td>
<td>3.639557</td>
</tr>
<tr>
<td>6</td>
<td>0.226733</td>
<td>-4.747307</td>
<td>-2.823325</td>
<td>6</td>
<td>2.363982</td>
</tr>
<tr>
<td>6</td>
<td>0.138099</td>
<td>-3.399073</td>
<td>-3.175756</td>
<td>6</td>
<td>1.578266</td>
</tr>
<tr>
<td>6</td>
<td>0.384725</td>
<td>-2.408218</td>
<td>-2.225216</td>
<td>6</td>
<td>-4.425585</td>
</tr>
<tr>
<td>6</td>
<td>1.294041</td>
<td>-2.134986</td>
<td>1.927329</td>
<td>1</td>
<td>-2.329740</td>
</tr>
<tr>
<td>6</td>
<td>2.253466</td>
<td>-3.099895</td>
<td>2.285973</td>
<td>1</td>
<td>-4.518795</td>
</tr>
<tr>
<td>6</td>
<td>2.262450</td>
<td>-3.638831</td>
<td>3.572308</td>
<td>1</td>
<td>-2.893904</td>
</tr>
<tr>
<td>6</td>
<td>1.324579</td>
<td>-3.217122</td>
<td>4.517485</td>
<td>1</td>
<td>-4.596239</td>
</tr>
<tr>
<td>6</td>
<td>0.380452</td>
<td>-2.247794</td>
<td>4.175384</td>
<td>1</td>
<td>-6.031415</td>
</tr>
<tr>
<td>6</td>
<td>0.363143</td>
<td>-1.708558</td>
<td>2.887745</td>
<td>1</td>
<td>-5.645242</td>
</tr>
<tr>
<td>6</td>
<td>3.051018</td>
<td>-1.116779</td>
<td>-0.153026</td>
<td>1</td>
<td>-3.884184</td>
</tr>
<tr>
<td>6</td>
<td>3.582669</td>
<td>-1.453053</td>
<td>-1.408677</td>
<td>1</td>
<td>-0.362369</td>
</tr>
<tr>
<td>6</td>
<td>4.940190</td>
<td>-1.265221</td>
<td>-1.664403</td>
<td>1</td>
<td>-0.396907</td>
</tr>
<tr>
<td>6</td>
<td>5.777822</td>
<td>-0.748638</td>
<td>-0.674283</td>
<td>1</td>
<td>1.337457</td>
</tr>
<tr>
<td>6</td>
<td>5.256661</td>
<td>-0.419273</td>
<td>0.578890</td>
<td>1</td>
<td>3.009286</td>
</tr>
<tr>
<td>6</td>
<td>3.901499</td>
<td>-0.606774</td>
<td>0.844599</td>
<td>1</td>
<td>3.006818</td>
</tr>
<tr>
<td>15</td>
<td>0.944111</td>
<td>1.666097</td>
<td>-0.158085</td>
<td>1</td>
<td>1.076839</td>
</tr>
<tr>
<td>6</td>
<td>1.799420</td>
<td>2.411973</td>
<td>1.285231</td>
<td>1</td>
<td>0.613886</td>
</tr>
<tr>
<td>6</td>
<td>1.869571</td>
<td>1.722863</td>
<td>2.502678</td>
<td>1</td>
<td>0.037878</td>
</tr>
<tr>
<td>6</td>
<td>2.465741</td>
<td>2.317293</td>
<td>3.617676</td>
<td>1</td>
<td>-0.128845</td>
</tr>
<tr>
<td>6</td>
<td>2.994441</td>
<td>3.604581</td>
<td>3.524597</td>
<td>1</td>
<td>0.298121</td>
</tr>
<tr>
<td>6</td>
<td>2.911943</td>
<td>4.307242</td>
<td>2.318453</td>
<td>1</td>
<td>2.948934</td>
</tr>
<tr>
<td>6</td>
<td>2.309678</td>
<td>3.722270</td>
<td>1.206520</td>
<td>1</td>
<td>5.344130</td>
</tr>
<tr>
<td>15</td>
<td>-2.292520</td>
<td>-0.306731</td>
<td>-0.528413</td>
<td>1</td>
<td>6.836999</td>
</tr>
<tr>
<td>7</td>
<td>-3.373938</td>
<td>1.070268</td>
<td>0.175445</td>
<td>1</td>
<td>5.907082</td>
</tr>
<tr>
<td>6</td>
<td>-3.537606</td>
<td>1.247005</td>
<td>1.509854</td>
<td>1</td>
<td>3.518379</td>
</tr>
<tr>
<td>6</td>
<td>-4.481817</td>
<td>2.130164</td>
<td>2.003163</td>
<td>1</td>
<td>1.451002</td>
</tr>
<tr>
<td>6</td>
<td>-5.273168</td>
<td>2.852912</td>
<td>1.104749</td>
<td>1</td>
<td>2.513779</td>
</tr>
<tr>
<td>6</td>
<td>-5.067305</td>
<td>2.689671</td>
<td>-0.264522</td>
<td>1</td>
<td>3.461005</td>
</tr>
<tr>
<td>6</td>
<td>-4.104528</td>
<td>1.792471</td>
<td>-0.704694</td>
<td>1</td>
<td>3.309827</td>
</tr>
<tr>
<td>7</td>
<td>-3.086554</td>
<td>-1.686186</td>
<td>-0.143633</td>
<td>1</td>
<td>2.229405</td>
</tr>
<tr>
<td>6</td>
<td>-3.067928</td>
<td>-2.281161</td>
<td>1.239958</td>
<td>1</td>
<td>0.591455</td>
</tr>
<tr>
<td>6</td>
<td>-2.581951</td>
<td>-3.734693</td>
<td>1.214191</td>
<td>1</td>
<td>1.980968</td>
</tr>
<tr>
<td>8</td>
<td>-2.121901</td>
<td>0.043297</td>
<td>-1.953266</td>
<td>1</td>
<td>4.249966</td>
</tr>
<tr>
<td>6</td>
<td>-4.044905</td>
<td>-2.321214</td>
<td>-1.136633</td>
<td>1</td>
<td>5.124798</td>
</tr>
<tr>
<td>6</td>
<td>-5.157369</td>
<td>-1.377815</td>
<td>-1.605129</td>
<td>1</td>
<td>3.749060</td>
</tr>
</tbody>
</table>
Coordinates (Å) for the transition state for the 7^{2+} → 8^{2+} reaction.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-3.314591</td>
<td>-2.980544</td>
<td>-2.306453</td>
<td>1</td>
<td>-0.661673</td>
<td>3.294486</td>
</tr>
<tr>
<td>6</td>
<td>-0.418039</td>
<td>2.868635</td>
<td>-0.454848</td>
<td>1</td>
<td>-2.291023</td>
<td>5.106455</td>
</tr>
<tr>
<td>6</td>
<td>-0.973311</td>
<td>3.542620</td>
<td>0.646748</td>
<td>1</td>
<td>-2.946164</td>
<td>5.777232</td>
</tr>
<tr>
<td>6</td>
<td>-1.890536</td>
<td>4.574629</td>
<td>0.451074</td>
<td>1</td>
<td>-1.994888</td>
<td>4.568190</td>
</tr>
<tr>
<td>6</td>
<td>-2.259334</td>
<td>4.949484</td>
<td>-0.843349</td>
<td>1</td>
<td>-0.382384</td>
<td>2.750038</td>
</tr>
<tr>
<td>1</td>
<td>-5.898630</td>
<td>-1.952274</td>
<td>-2.169626</td>
<td>1</td>
<td>-2.469938</td>
<td>-4.095687</td>
</tr>
<tr>
<td>1</td>
<td>-4.772194</td>
<td>-0.604181</td>
<td>-2.276644</td>
<td>1</td>
<td>-1.617034</td>
<td>-3.821734</td>
</tr>
<tr>
<td>1</td>
<td>-5.675587</td>
<td>-0.907279</td>
<td>-0.762945</td>
<td>1</td>
<td>-3.294752</td>
<td>-4.397417</td>
</tr>
<tr>
<td>1</td>
<td>-4.038389</td>
<td>-3.529547</td>
<td>-2.918654</td>
<td>1</td>
<td>-4.330290</td>
<td>-2.507802</td>
</tr>
<tr>
<td>1</td>
<td>-2.561325</td>
<td>-3.688622</td>
<td>-1.952783</td>
<td>1</td>
<td>-5.195694</td>
<td>-2.768793</td>
</tr>
<tr>
<td>1</td>
<td>-2.826106</td>
<td>-2.235857</td>
<td>-2.939631</td>
<td>1</td>
<td>-4.787821</td>
<td>-1.123058</td>
</tr>
</tbody>
</table>

6 1.043337 3.568886 -1.704240 6 -4.649306 -1.041824 -1.699240
6 1.649978 2.304648 -1.580325 6 -2.709172 -2.214247 -2.827272
6 2.431352 1.818440 -2.644085 6 -3.548120 2.111955 -2.927569
6 2.604148 2.579451 -3.799176 1 -3.158843 2.725446 0.786534
6 2.010428 3.837376 1.917080 1 -5.255602 3.646707 1.848479
6 1.233390 4.327948 -2.856791 1 -6.815500 2.047806 2.994513
15 1.453701 1.365951 -0.010946 1 -6.236363 -0.394269 3.031908
6 3.100239 0.659163 0.413559 1 -4.102470 -1.136415 1.914898
6 3.715274 1.052704 1.616045 1 0.203446 -0.398477 2.815971
6 5.012543 0.637765 1.917080 1 1.379069 -0.595587 4.964317
6 5.717449 -0.176513 1.031632 1 3.395668 -2.039019 5.161711
6 5.106557 -0.597500 -0.150671 1 4.242035 -3.254048 3.165333
6 3.809982 -0.189982 -0.456894 1 3.088332 -3.061023 1.010515
6 0.144930 0.032286 -0.184974 1 0.918147 -0.837422 -2.525518
15 0.516182 -1.708819 0.237558 1 1.937211 -1.914764 -4.497947
6 1.342161 -2.487787 -1.189426 1 2.932897 -4.184833 -4.308183
6 1.358664 -1.824447 -2.427842 1 2.861064 -5.389973 -2.135187
6 1.932136 -2.434980 -3.544866 1 1.816379 -4.349684 -0.170955
6 2.486858 -3.711361 -3.438859 1 -1.325027 -1.934712 2.566956
6 2.450388 -4.388295 -2.216680 1 -3.064701 -3.558726 3.149994
6 1.873372 -3.789057 -1.098042 1 -3.683896 -5.368018 1.557986
15 -1.445817 0.750168 -0.715542 1 -2.517817 -5.532904 -0.632748
7 -2.413672 0.087467 -1.871349 1 -0.769883 -3.920862 -1.230325
6 -2.687548 0.861982 -3.145909 1 3.194056 1.685671 2.320004
6 -1.412380 1.156130 -3.941230 1 5.471716 0.962281 2.845857
8 -1.756733 0.209774 0.775064 1 6.733143 -0.484171 1.261420
7 -3.614064 0.783113 1.326698 1 5.640378 -1.241167 -0.843408
6 -3.878533 2.091988 1.296513 1 3.362444 -0.562890 -1.367459
6 -5.041642 2.583737 1.888697 1 2.930727 0.862408 -2.586064
6 -5.905705 1.689436 2.522700 1 3.217043 2.191587 -4.607038
Coordinates (Å) for the optimized structure for 7a\(^{2+}\).

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-1.855299</td>
<td>-3.352650</td>
<td>-0.219373</td>
<td>6</td>
<td>-3.290570</td>
</tr>
<tr>
<td>6</td>
<td>-1.134616</td>
<td>-2.370542</td>
<td>-0.921840</td>
<td>6</td>
<td>-2.922987</td>
</tr>
<tr>
<td>6</td>
<td>-1.513009</td>
<td>-2.051356</td>
<td>-2.238647</td>
<td>1</td>
<td>0.334093</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-2.587348</td>
<td>-2.703904</td>
<td>-2.838424</td>
<td>6</td>
<td>1.758952</td>
</tr>
<tr>
<td>6</td>
<td>1.804101</td>
<td>-1.294509</td>
<td>-2.544726</td>
<td>1</td>
<td>-4.119851</td>
</tr>
<tr>
<td>6</td>
<td>2.822647</td>
<td>-1.604497</td>
<td>-3.445110</td>
<td>1</td>
<td>-3.465286</td>
</tr>
<tr>
<td>6</td>
<td>3.805613</td>
<td>-2.534697</td>
<td>-3.100175</td>
<td>1</td>
<td>-1.598789</td>
</tr>
<tr>
<td>6</td>
<td>3.772762</td>
<td>-3.145004</td>
<td>-1.845425</td>
<td>1</td>
<td>0.295620</td>
</tr>
<tr>
<td>6</td>
<td>2.758047</td>
<td>-2.838353</td>
<td>-0.936702</td>
<td>1</td>
<td>0.620455</td>
</tr>
<tr>
<td>6</td>
<td>0.175049</td>
<td>0.210303</td>
<td>-0.075608</td>
<td>1</td>
<td>1.085202</td>
</tr>
<tr>
<td>15</td>
<td>1.468634</td>
<td>1.242650</td>
<td>-0.586733</td>
<td>1</td>
<td>1.195599</td>
</tr>
<tr>
<td>8</td>
<td>1.256103</td>
<td>2.216320</td>
<td>-1.684272</td>
<td>1</td>
<td>0.858487</td>
</tr>
<tr>
<td>15</td>
<td>-1.387292</td>
<td>1.126625</td>
<td>0.145082</td>
<td>1</td>
<td>1.050189</td>
</tr>
<tr>
<td>6</td>
<td>-2.378610</td>
<td>1.327834</td>
<td>-1.367618</td>
<td>1</td>
<td>2.841898</td>
</tr>
</tbody>
</table>

179
<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>P1</th>
<th>O1</th>
<th>N1</th>
<th>O2</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7a^2+</td>
<td>-1.521</td>
<td>+2.161</td>
<td>-0.952</td>
<td>-0.791</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>7^2+</td>
<td>-1.539</td>
<td>+2.343</td>
<td>-1.086</td>
<td>-0.869</td>
<td>-0.624</td>
<td>+0.024</td>
</tr>
<tr>
<td>TS</td>
<td>-1.171</td>
<td>+2.400</td>
<td>-1.081</td>
<td>-0.874</td>
<td>-0.700</td>
<td>-0.285</td>
</tr>
<tr>
<td>8^2+</td>
<td>-0.798</td>
<td>+2.507</td>
<td>-1.051</td>
<td>-0.883</td>
<td>-0.849</td>
<td>-0.586</td>
</tr>
</tbody>
</table>

Table S1. NBO charges of selected atoms in 7a^{2+}, 7^{2+}, TS and 8^{2+} obtained at the B3LYP/6-31G(d) level.
Table S2. Lengths (Å) and Wiberg indices (in parentheses) of selected bonds in 7a^{2+}, 7^{2+}, TS and 8^{2+} obtained at the B3LYP/6-31G(d) level.

<table>
<thead>
<tr>
<th></th>
<th>7a^{2+}</th>
<th>7^{2+}</th>
<th>TS</th>
<th>8^{2+}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_1\text{-}C_1$</td>
<td>1.732 (1.070)</td>
<td>1.784 (0.915)</td>
<td>1.824 (0.712)</td>
<td>2.696 (0.018)</td>
</tr>
<tr>
<td>$P_1\text{-}N_1$</td>
<td>1.623 (1.054)</td>
<td>1.659 (0.874)</td>
<td>1.647 (0.879)</td>
<td>1.638 (0.890)</td>
</tr>
<tr>
<td>$P_1\text{=}O_1$</td>
<td>1.482 (1.359)</td>
<td>1.493 (1.204)</td>
<td>1.490 (1.191)</td>
<td>1.477 (1.304)</td>
</tr>
<tr>
<td>$P_1\text{-}O_2$</td>
<td>n/a</td>
<td>1.811</td>
<td>1.616</td>
<td>1.618</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$O_2\text{-}N_2$</td>
<td>n/a</td>
<td>1.372 (1.018)</td>
<td>2.021 (0.344)</td>
<td>2.613 (0.026)</td>
</tr>
<tr>
<td>$C_1\text{-}O_2$</td>
<td>n/a</td>
<td>2.668 (0.031)</td>
<td>2.138 (0.479)</td>
<td>1.471 (0.837)</td>
</tr>
<tr>
<td>$P_1\text{-}N_2$</td>
<td>n/a</td>
<td>2.759 (0.007)</td>
<td>2.979 (0.011)</td>
<td>1.887 (0.466)</td>
</tr>
</tbody>
</table>

Selected bond orbital makeup according to the NBO analysis: For 7^{2+}

- (1.97568) BD (1) P_{22} - N_{23} (i.e. $P_1\text{-}N_1$)
 (26.07%) 0.5106* P_{22} s (30.95%) p 2.17 (67.25%) d 0.06 (1.79%)
 (73.93%) 0.8598* N_{23} s (31.97%) p 2.13 (68.02%) d 0.00 (0.01%)

- (1.98475) BD (1) P_{22} - O_{33} (i.e. $P_1\text{-}O_1$)
 (24.36%) 0.4935* P_{22} s (32.02%) p 2.08 (66.68%) d 0.04 (1.29%)
 (75.64%) 0.8697* O_{33} s (36.13%) p 1.76 (63.43%) d 0.01 (0.44%)

- (1.69715) LP (1) C_{14} (i.e. C_1)
 s (0.08%) p 99.99 (99.92%) d 0.02 (0.00%)

For TS

- (1.85820) BD (1) C_{14} - O_{26} (i.e. $C_1\text{-}O_2$)
 (50.02%) 0.7073* C_{14} s (38.38%) p 99.99 (99.60%) d 0.04 (0.02%)
 (49.98%) 0.7070* O_{26} s (0.08%) p 99.99 (99.82%) d 1.16 (0.10%)

For 8^{2+}
- (1.97171) BD (1) P 23 - N 31 (i.e. P1-N1)
 (26.19%) 0.5117s P 23 s(33.19%)p 1.95(64.88%)d 0.06(1.93%)
 (73.81%) 0.8591s N 31 s(30.70%)p 2.26(69.28%)d 0.00(0.02%)

- (1.98315) BD (1) P 23 - O 24 (i.e. P1-O1)
 (24.56%) 0.4956s P 23 s(35.13%)p 1.81(63.60%)d 0.04(1.26%)
 (75.44%) 0.8686s O 24 s(34.98%)p 1.84(64.53%)d 0.01(0.48%)

- (1.70665) LP (1) C 14 (i.e. C1) s(2.54%)p38.39(97.44%)d 0.01(0.02%)

All calculations for the Section IV were performed with the Gaussian program package [S6] by employing the B3LYP functional in conjunction with the 6-31G(d) basis set. All structures were optimized with default convergence criteria and an ultrafine integration grid. Each reported transition state has a single imaginary frequency, and intrinsic reaction coordinate calculations confirmed that those first order saddle points connect the minima of interest. Reported atomic charges are obtained through QTAIM analysis (Quantum Theory of Atoms in Molecules) [S7] performed with the AIMAll program package [S8].
S3. Sheldrick, G. M. SADABS; 1996.
S4. SHELXTL version 5.1; Bruker AXS Inc.: Madison, WI, 1997.