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ABSTRACT

In this thesis, we first study the problem of solving zero-dimensional multivariate polynomial

systems over finite fields and then study the elliptic curve discrete logarithm problem over binary

fields.

First, we discuss a mostly theoretical framework for solving zero-dimensional polynomial

systems. Complexity bounds are obtained for solving such systems using a new parameter,

called the last fall degree, which does not depend on the choice of a monomial order. More

generally, let k be a finite field with qn elements and let k′ be the subfield with q elements. Let

F ⊂ k[X0, . . . , Xm−1] be a finite subset generating a zero-dimensional ideal. We give an upper

bound of the last fall degree of the Weil descent system of F from k to k′, which depends on q,

m, the last fall degree of F , the degree of F and the number of solutions of F , but not on n.

Second, we introduce special vector spaces and use them in the index calculus method to

solve ECDLP over binary fields. We provide heuristic complexity bounds for our approach and

give conditions such that an efficient index calculus method will result. Finally, we provide

some concrete examples of vector spaces with the nice properties.



1. INTRODUCTION

This thesis focuses on two major problems in algebraic geometry and cryptography. First, we

study the problem of solving zero-dimensional polynomial systems. In particular, we propose

a theoretical framework to help us study this problem in a more systematic manner. Second,

we study some applications of solving zero-dimensional polynomials systems in cryptography,

namely, cryptanalysis on the multi-HFE system as well as solving the elliptic curve discrete

logarithm problem over finite fields.

1.1 Solving zero-dimensional multivariate polynomial system

Solving multivariate polynomial systems over finite fields is an important theoretical problem

in Mathematics [45] and Computer Algebra [8]. It has found practical applications in various

areas including error-correcting codes, robotics, cryptanalysis of ciphers, analysis of computer

hardware and signal theory. The problem also forms the basis of multivariate cryptography such

as in [37] that is considered as a strong candidate for post-quantum public key cryptography.

Let k be a field and let F ⊂ R = k[X0, . . . , Xm−1] be a finite subset which generates a

zero-dimensional ideal I. By this we mean that dimk(R/I) = e < ∞. Suppose that we want

to find the finitely many solutions of F in km (or in k
m

). We denote an algebraic closure of k

by k. In this thesis we will discuss a mostly theoretical framework for solving zero-dimensional

polynomial systems.

One of the most common methods is the following. First fix a monomial order on R,

such as the degree reverse lexicographic order, and then compute a Gröbner basis of the ideal
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generated by F using for example F4 or F5 [15,16]. Then one computes a Gröbner basis for the

lexicographic order using FGLM [18], and one uses this to find all the solutions. It is often very

hard to estimate the complexity of such algorithms. The largest degree which one sees in such

a computation of a Gröbner basis for the degree reverse lexicographic order is called the degree

of regularity, and this degree essentially determines the complexity of such algorithms.

One approach to obtain heuristic complexity bounds on the degree of regularity is the use

of the so-called first fall degree assumption. For i ∈ Z≥0, we let VF ,i be the smallest k-vector

subspace of R≤i such that

(i) F ∩R≤i = {f ∈ F : deg(f) ≤ i} ⊆ VF ,i;

(ii) hg ∈ VF ,i, for all g ∈ VF ,i and h ∈ R with deg(hg) ≤ i.

The first fall degree is defined to be the first d such that VF ,d ∩R≤d−1 6= VF ,d−1 (and if it does

not exist, it is defined to be 0; note that this definition of the first fall degree differs slightly

from most definitions as in [39], but behaves a lot better). The heuristic claim is that the first

fall degree is close to the degree of regularity for many systems (see for example [39]). A quote

from [14] is “Our conclusions rely on no heuristic assumptions beyond the standard assumption

that the Gröbner basis algorithms terminate at or shortly after the degree of regularity” (note

that in [14] the definition of degree of regularity coincides with the first fall degree definition

of [39]). It is quite often easy to give an upper bound on the first fall degree, just by counting

arguments (see [14] for example). However, in [29], the authors raise doubt to the first fall

degree heuristic.

In the first part of our method, section 5.1, we will try to rectify the situation. We will

define the notion of last fall degree, which is the largest d such that VF ,d ∩ R≤d−1 6= VF ,d−1.

We denote the last fall degree of F by dF . We show how one can solve the system by com-

puting VF ,max{dF ,e} and monovariate factoring algorithms (Proposition 5.1.12). We will also

prove different properties of the last fall degree, for example, that the degree of regularity is

bounded below by the last fall degree and above by the maximum of e and the last fall degree.
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Furthermore, the last fall degree behaves well with respect to certain operations (such as linear

change of variables and linear change of equations). It must be said that we do not know how

to compute the last fall degree without having an upper bound, say coming from the degree

of regularity. We will compare our approach with other approaches for solving systems, most

notably with MutantXL and standard Gröbner basis algorithms (Subsection 5.1.4).

In the second part of our method, Section 5.2 and Section 5.3, we will give an application

of our new framework around the last fall degree. Assume that k is a finite field of cardinality

qn with subfield k′ of cardinality q. Let F ′ be the Weil descent system of F to k′. This is the

system one obtains when one expresses all equations with the help of a basis of k/k′. This is a

system in nm variables and hence seems to be much harder to solve than the original system.

We give upper bounds on dF ′ in terms of q, m, dF , the degree of F and the number of solutions

of F , but not on n. This generalizes practical and mathematical results, if m = 1 [5,14,20,38].

This shows that some versions of multi-HFE (HFE stands for hidden field equations) are much

easier to tackle than one would expect. Let us now give a precise formulation of the main

theorem.

We denote by Z(F) the set of zeros of F over k. For r ∈ R≥0 and c, t ∈ R≥1 we set

τ(r, c, t) = b2t(c− 1)
(

logc

( r
2t

+ 1
)

+ 1
)
c.

Note that this function increases when r increases.

Theorem 1.1.1. Let k be a finite field of cardinality qn. Let F ⊂ R = k[X0, . . . , Xm−1] be a

finite subset. Let I be the ideal generated by F . Assume that the following hold:

• I is zero-dimensional, say one has |Z(F)| ≤ s;

• I is radical;

• there is a coordinate t such that the projection map Z(F)→ k to coordinate t is injective;
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Let F ′f be the Weil descent system of F to the subfield k′ of cardinality q using some basis of

k/k′, together with the field equations (Subsection 5.2.1). Then one has

dF ′f ≤ max (τ(max(dF , deg(F), (m+ 1)s, 1), q,m),m · τ(2s, q, 1), q) .

When m = 1, we can obtain a slightly stronger version (Theorem 5.3.5).

In Section 5.4 we explain a version of the cryptographic protocol multi-HFE and we show

how our results can be applied to show that this protocol is insecure.

In Section 5.5 we will explain why Theorem 1.1.1 is not useful to determine the complexity

of solving systems coming from summation polynomials for the elliptic curve discrete logarithm

problem, since such systems are not zero-dimensional.

1.2 Background of elliptic curve discrete logarithm problem

In around 1985, Miller and Koblitz suggested independently to use elliptic curves to replace

finite fields to construct discrete logarithm problem. They had an intuition that the discrete

logarithm problem on elliptic curves might be harder than that on finite fields. This gave rise to

the birth of elliptic curve cryptography. Since then, the elliptic curve discrete logarithm problem

has attracted wide concern of many experts and scholars. We abbreviate this problem to the

initials ECDLP in this thesis. The hardness of ECDLP is the building block of the security of

elliptic curve cryptography. Unlike the discrete logarithm problem on finite fields which can be

solved by subexponential time methods, there is no known subexponential time algorithm to

solve ECDLP for generic elliptic curves. There exists only exponential time algorithm to solve

ECDLP for a random elliptic curve. It remains an open problem to propose a subexponential

time algorithm to solve ECDLP for random elliptic curves. This problem has been a major

research topic in computational number theory, cryptography and even in industry for the past

few decades.
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We briefly survey some results pertaining to the discrete logarithm problem on elliptic

curves. A comprehensive exposition of this subject as well as other topics in elliptic curve

cryptography can be found in [52]. As in any other generic group, general methods such as the

Rho algorithm, baby-step, giant-step algorithm can be applied to solve the discrete logarithm

problem on elliptic curves as well. Both the rho and baby-step, giant-step algorithms run on

any curve with an exponential time. Special instances of elliptic curves exist in which solving

the discrete logarithm problem on them become much simpler. The following elliptic curves are

these special cases:

(a) Supersingular elliptic curves(for definition,see [44], Chapter V .) ECDLP on these elliptic

curves can be solved through MOV algorithm [34]. This algorithm reduces ECDLP to

discrete logarithm problem of finite fields and there exist subexponential time(for defini-

tion,see [27] Definition 3.2 of Chapter 2. ) algorithm to solve discrete logarithm problem

of finite fields.

(b) Anomalous elliptic curves(for definition,see [44],Proposition6.5 of Chapter XI.) ECDLP on

these elliptic curves can be reduced to discrete logarithm problem of a group which is very

simple. See [42], [48], [46].

(c) Elliptic curves such that the cardinality of the rational points only has small prime divisors.

To be more precise, let E/Fq be an elliptic curve defined over a finite field Fq, then #E(Fq)

only has small prime divisors. ECDLP on these elliptic curves can be solved by Pohlig-

Hellman method [52].

The index calculus method is an approach which was introduced by Kraitchik [30] that can

be optimized to a sub-exponential algorithm to solve the discrete logarithm problem for the

multiplicative groups of finite fields [1]. For more details about this method, see section(2.3).

It seems natural to attempt to adapt the index calculus approach to elliptic curves. The main

issue here is to define a suitable factor base and with this factor base, we will require a sieving
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algorithm to construct the linear relations from different multiples of the given elements as in

the case of finite fields. A first step in this direction was taken by Semaev [43] who proposed the

use of summation polynomials. He argued that upon a suitable choice of the factor base and a

good algorithm to solve these polynomials, linear relations can be obtained which in turn leads

to an efficient index calculus method for solving ECDLP. Unfortunately, the challenge to select

a good factor base and to design such an efficient sieving method for elliptic curves over general

finite fields remains wide open. Nonetheless, positive results were achieved independently by

Gaudry [22] and Diem [11, 12] for elliptic curves over finite fields Fqn for some classes of q and

n. They essentially showed that the sieving process can be reformulated to that of solving a

system of polynomial equations over Fq. In particular, Diem showed in [12] that this led to

sub-exponential time index calculus methods for some values of q and n.

Recently, in [21, 39], the authors concentrated on the case where q = 2 and n a prime. The

resulting sieving process is then reduced to solving a set of multi-homogeneous boolean poly-

nomials. It was suggested that these polynomials admit a certain structure (and are therefore

not random). By employing the well-known Gröbner basis method to solve systems of polyno-

mials, and making some assumptions (which remain to be proven), the authors showed that a

sub-exponential index calculus algorithm for solving the discrete logarithm problem on elliptic

curves over F2n is obtained.

Despite all these improvements in the ECDLP, the elliptic curves used in practice are still

safe, all these methods or algorithms proposed in recent papers about ECDLP are not practical.

There is still much work needed to suggest a practical method to beat Pollard’s rho method.

In this thesis, we focus on the index calculus approach to solve ECDLP. First, using our

framework on zero-dimensional polynomial systems, we argue that the first fall degree assump-

tion used to estimate the complexity of the method via Weil descent may not be valid. We

then provide a different method to solve the polynomial system arising from the relation search

step of the index calculus approach. In particular, we investigate a sub-class of vector spaces
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with nice characteristic polynomials. Using these vector spaces, we transform the polynomial

system into one with smaller degrees. We provide complexity bounds for our approach and give

conditions such that an efficient index calculus method will result. Finally, we provide some

concrete examples of vector spaces with the nice properties.

1.3 Contributions of the thesis

The main contributions of this thesis are as follows:

Contribution 1. We discuss a mostly theoretical framework for solving zero-dimensional

polynomial systems. Complexity bounds are obtained for solving such systems using a new

parameter, called the last fall degree, which does not depend on the choice of a monomial order.

We prove the main theorem(1.1.1). With this result, we prove that the multi-HFE cryptosystem

is not secure.

Contribution 2. We identify some characteristics of a vector space that can serve as good

factor bases for the index calculus approach to solve ECDLP. Using these vector spaces, we

propose an approach to perform the relation search step in the index calculus algorithm. We

provide complexity bounds for using our approach and give conditions for an efficient index

calculus method. Finally, we present some concrete examples of the vector spaces that we seek.

1.4 Organization of the thesis

The rest of this thesis is organized as follows. In chapter 2, we review the basic definitions and the

framework of index calculus method. In chapter 3, we summarized some known methods to solve

zero-dimensional polynomial systems. In chapter 4, we summarized the recent developments of

index calculus for solving ECDLP. Chapter 5 contains our method for solving zero-dimensional

Weil descent system. In Section 5.1 we discuss the last fall degree. We will also discuss how one

can solve zero-dimensional systems using the last fall degree and we will compare this method

with other methods. In Section 5.2 we introduce Weil descent and an alternative version of
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Weil descent. Section 5.3 is devoted to the proof of Theorem 1.1.1. In this section we first

discuss the relation between the two Weil descent systems. Then we study the monovariate

case and deduce the result for the multivariate case from the monovariate case using projection

polynomials. Finally, we discuss how one can generalize the main theorem. In Section 5.4 we

discuss the relation with multi-HFE. In Section 5.5 we discuss why the results in this article

are not directly useful for studying systems coming from summation polynomials for the elliptic

curve discrete logarithm problem. In chapter 6, we propose a sub-class of vector spaces with

nice properties that can serve as good factor bases for the index calculus approach. We use these

vector spaces and describe how the polynomial systems can be solved. We provide complexity

bounds for our approach as well as the conditions for which the approach will be sub-exponential.

Chapter 7 gives a summary of our results and some remaining problems for future research.



2. PRELIMINARIES

In this chapter, we will briefly review the basic properties of elliptic curves and formally define

the elliptic curve discrete logarithm problem. We will then discuss some approaches to solve

the elliptic curve discrete logarithm problem, notably the index calculus method. Finally, we

will present a detailed exposition of an important class of polynomials called the summation

polynomials associated with an elliptic curve.

2.1 Elliptic curves

In this section,we introduce the definition of an elliptic curve, its associated group law and some

of its properties. For more about elliptic curves, see [44].

Definition 2.1.1. An elliptic curve E defined over a field F, denoted by E/F, is an algebraic

curve given by the following Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a2, a3, a4, a6 ∈ F.

For the definition of an algebraic curve, see [44],Chapter II.

In this thesis, we will always consider elliptic curves defined over finite fields.

Remark 2.1.2. Let F be an algebraic closure of F and let O denote the point of E at infinity.
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We can regard an elliptic curve as the following set:

E = {(x, y) ∈ F× F | y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ {O}

Remark 2.1.3. For char(F) 6= 2, 3, every elliptic curve defined over F can be given by a short

Weierstrass equation:

E : y2 = x3 + a4x+ a6.

for some a4, a6 ∈ F.

Every elliptic curve can be equipped with an abelian group structure with O as the identity

element. We give the explicit formula of the group law algebraically as follows:

Definition 2.1.4 (The Group Law). Let E/F be an elliptic curve given by Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

(a) (Identity): P +O = O + P = P , for all P = (x, y) ∈ E.

(b) (Inverse): Let P0 = (x0, y0). Then −P0 = (x0,−y0 − a1x0 − a3).

(c) (Addition): Let P1 + P2 = P3 with Pi = (xi, yi) ∈ E for i = 1, 2, 3.

If x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then

P1 + P2 = O.

Otherwise, define

λ =


y2−y1
x2−x1 , x1 6= x2

3x21+2a2x1+a4−a1y1
2y1+a1x1+a3

, x1 = x2.

and
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ν =


y1x2−y2x1
x2−x1 , x1 6= x2

−x31+a4x1+2a6−a3y1
2y1+a1x1+a3

, x1 = x2.

then P3 = P1 + P2 has coordinates

x3 = λ2 + a1λ− a2 − x1 − x2, y3 = −(λ+ a1)x3 − ν − a3

Theorem 2.1.5. (a) The above group law makes E = E(F ) = {(x, y) ∈ F × F | y2 + a1xy +

a3y = x3 + a2x
2 + a4x+ a6} ∪ {O} into an abelian group with the identity O.

(b) The rational points E(F) = {(x, y) ∈ F×F | y2 + a1xy+ a3y = x3 + a2x
2 + a4x+ a6}∪ {O}

form a subgroup of E.

For a geometrical view of the group law and the proof of the above theorem, see [44],Chapter

III.

For an elliptic curve defined over a finite field, we have the following theorem to estimate

the number of the rational points of this elliptic curve.

Theorem 2.1.6 (Hasse). Let E/Fq be an elliptic curve defined over a finite field Fq. Then the

number of the rational points E(Fq) of E satisfies the following inequality:

q + 1− 2
√
q ≤ #E(F) ≤ q + 1 + 2

√
q,

where #E(Fq) denotes the cardinality of E(Fq).

Proof. See [44],Theorem1.1 of Chapter V .

Remark 2.1.7. (a) The above theorem implies that the number of rational points on an elliptic

curve over a finite field is bounded. In particular, #E(Fq) = O(q).
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(b) In Cryptography, we are mainly interested in those elliptic curves defined over finite fields

whose rational points form a cyclic group or contain a large cyclic subgroup of the order

O(q).

2.2 The elliptic curve discrete logarithm problem

Many elliptic curve cryptosystems base their security on the difficulty for solving the elliptic

curve discrete logarithm problem(we use ECDLP for short) efficiently for random elliptic curves.

The formal definition of ECDLP is the following:

Definition 2.2.1 (The elliptic curve discrete logarithm problem ). For an elliptic curve E/Fq

defined over a finite field Fq, let P,Q ∈ E(Fq) be two points of E with Q ∈ 〈P 〉. The elliptic

curve discrete logarithm problem is to find an integer k such that Q = kP .

In practice, the order of P in the above definition is known and it is often a large prime

number.

In general, for a randomly chosen elliptic curve, the fastest currently known algorithm to

solve ECDLP over this elliptic curve is Pollard’s ρ algorithm [40]. For ECDLP on random elliptic

curves, there exist only generic algorithms such as baby-step giant-step algorithm, Pollard’s ρ

method and its variants [52]. These algorithms don’t consider the structure of the group, so

they apply to any discrete logarithm problem on any group. These algorithms have exponential

time complexity and therefore attacking ECDLP is infeasible in practice at present.

2.3 Index calculus

In this section, we present an approach commonly known as the index calculus method. This

method first appeared in the work of Kraitchik [30,31] and later developed by Adleman [1] and

many other mathematicians. It is a method originally dedicated to compute discrete logarithm

problems on finite prime fields. Subsequently, it was adapted to compute discrete logarithm
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problems on arbitary finite fields and hyperelliptic curves. The index calculus method is a

probabilistic method which can be described as follows.

Let us first generalize the discrete logarithm problem to an arbitrary cyclic group G with

order N . Let + denote the operation in G. Given a generator P of G and an element Q ∈ G,

the discrete logarithm problem seeks to find an integer x such that Q = xP , where xP denotes

P +P + . . .+P (x times). The discrete logarithm of Q to the base P is denoted by logP (Q). We

give a brief outline of the index calculus method for solving this problem. The index calculus

method involves the following three steps:

1. Factor Base definition.

Choose a subset F = {P1, P2, . . . , Pt} ⊂ G. This subset F is called a factor base. In

general, we try to choose a factor base F with the following properties:

• Randomly choose an element h ∈ G. Then h can be expressed as a linear combination

of the elements of the factor base with a high probability;

• There exists an efficient algorithm to express h as a linear combination of the Pi’s,if

such an expression exists. If such an expression does not exist, then this algorithm

also can detect this nonexistence efficiently.

2. Relation search(also known as sieving step).

Randomly choose two integers ai and bi in [1, N ] and try to write aiP + biQ as a linear

combination of the elements in the factor base, i.e. we want to get equations of the form:

aiP + biQ = ci1P1 + ...+ citPt

where cij ∈ Z, j = 1, ..., t.

If the pair (ai, bi) does not produce such a linear combination, discard the pair and choose

another pair. Choose sufficient pairs to obtain more than #F such relations. Suppose we
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collect #F + 1 relations as follows:

aiP + biQ = ci1P1 + ...+ citPt, i = 1, 2, ..., t+ 1.

3. Linear algebra.

The final step is to employ elementary linear algebra to deduce the discrete logarith-

m x through the relations collected in step 2 . Specifically, construct the matrix C =

(cij)1≤i≤t+1,1≤j≤t and find a nontrivial solution of the following linear equations:

vC ≡ 0 (mod N), v = (v1, ..., vt+1).

By nontrivial, we mean that

(
t+1∑
i=1

viai,
t+1∑
i=1

vibi) 6= (0, 0) (mod N).

This nontrivial solution exists and it can be solved by linear algebra if the t+ 1 relations

collected are linearly independent.

With v denoting the nontrivial solution computed, we have the following:

t+1∑
i=1

viaiP +

t+1∑
i=1

vibiQ = 0

If
∑t+1

i=1 vibi is invertible in Z/NZ, then we get the discrete logarithm

x = −
∑t+1

i=1 viai∑t+1
i=1 vibi

(mod N).

On the other hand, if
∑t+1

i=1 vibi is not invertible in Z/NZ, then we need to try other

nontrivial solutions. Specifically, we can collect additional relations to get a different
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linear equation.

Remark 2.3.1. (i) Observe that steps 1 and 2 are the critical steps for the index calculus

method as step 3 can be performed once the relations are formed. More precisely, the

challenge to construct a good index calculus method is often to construct a good factor

base F and an efficient sieving step (Step 2).

(ii) Time complexity of Step 3 is T3 = O(tω
′
), where ω′ is the sparse linear algebra constant

Since the matrix C is usually sparse.

(iii) Let p0 denote the probability that an element Q ∈ G can be expressed as a linear combina-

tion of the elements in F . Let T0 be the time required to express Q as a linear combination

of the Pi’s. Then the time complexity for step 2 is T2 = O(tT0/p0).

We will demonstrate the power of the index calculus method with an explicit example in

prime finite fields. We observe that it works well in these fields since there exists a good factor

base, i.e., the set of prime numbers smaller than some given bound, as well as an efficient

algorithm to factor integers with all prime factors less than a given bound.

Example 2.3.2. Let p = 16547. We consider the group F∗p. P = 11 is a generator of the group.

let Q = 2392. We want to find the discrete logarithm of Q to the base P , i.e. find k such that

11k ≡ 2392 (mod p).

First, we choose the factor base F = {2, 3, 5, 7, 13}, so t = #F = 5. Next, we try to collect
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enough relations. After some trials, we finally get the relations as follows:

11137 ≡ 8320 ≡ 27 · 5 · 13 (mod p)

11314 ≡ 2700 ≡ 22 · 33 · 52 (mod p)

11499 ≡ 504 ≡ 23 · 32 · 7 (mod p)

11518 ≡ 13230 ≡ 2 · 33 · 5 · 72 (mod p)

11949 ≡ 12168 ≡ 23 · 32 · 132 (mod p)

2392 · 11337 ≡ 735 ≡ 3 · 5 · 72 (mod p)

Let L2 = log11 2, L3 = log11 3, L5 = log11 5, L7 = log11 7, L13 = log11 13 and take logarithm to

the base 11 for the above equations. We have the following linear equations:

7L2 + L5 + L13 ≡ 137 (mod 16546)

2L2 + 3L3 + 2L5 ≡ 314 (mod 16546)

3L2 + 2L3 + L7 ≡ 499 (mod 16546)

L2 + 3L3 + L5 + 2L7 ≡ 518 (mod 16546)

3L2 + 2L3 + 2L13 ≡ 949 (mod 16546)

L3 + L5 + 2L7 ≡ log11 2392 + 337 (mod 16546)

Finally, in Step 3, we solve the linear system to yield the following solution:

L2 ≡ 4741 (mod 16546)

L3 ≡ 15350 (mod 16546)

L5 ≡ 5483 (mod 16546)

L7 ≡ 5214 (mod 16546)

L13 ≡ 11105 (mod 16546)

and from the last relation, we obtain k = log11 2392 = L3 + L5 + 2L7 − 337 ≡ 15350 + 5483 +

2(5214)− 337 ≡ 14378 (mod 16546). Thus the desired discrete logarithm is k = 14378.
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Remark 2.3.3. The above example is a little different from the framework of the index calculus

we presented. In fact, the original index calculus method for discrete logarithm problem for

prime finite fields uses the same idea of the 3 steps of the above example. Then mathematicians

adapted this idea and formed a variant of this method, i.e. the outline we stated above.

2.4 Summation polynomials

Adapting the index calculus method to solve the ECDLP will require us to define a factor base.

Unfortunately, unlike the case of a finite field, there is no obvious factor base for the group of

rational points of an elliptic curve defined over a finite field, and thus it is difficult to apply

the index calculus method to elliptic curves. Indeed, the challenge is to construct a good factor

base such that a point can be efficiently expressed as a linear combination of the elements in

the factor base. A first step in this direction was taken by Igor Semaev. In 2004, Igor Semaev

introduced the concept of summation polynomials in a preprint [43]. These polynomials build

relationships between the x-coordinates of finite points on an elliptic curve which sum to the

identity element.

Let F be a finite field and E be an elliptic curve defined over F by the following Weierstrass

equation:

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 (2.1)

And let F denote an algebraic closure of F. We have the following proposition.

Proposition 2.4.1. Let E be an elliptic curve defined over F,and m ∈ N with m ≥ 2. Then

there exists an unique (up to multiplication by a nonzero constant) irreducible polynomial Sm ∈

F[X1, ..., Xm] such that Sm(x(P1), ..., x(Pm)) = 0 if and only if there exist ε1, ..., εm ∈ {1,−1}

with ε1P1 + ...+ εmPm = 0, for any P1, ..., Pm ∈ E(F) \ {0}, where x(Pi) is the x-coordinate of

Pi,i = 1, ...,m.
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Proof. See [11], Proposition 2.1.

Definition 2.4.2. The polynomial Sm in the above proposition is called an m-th summation

polynomial of E.

We can explicitly construct Sm recursively. First, S2 = X1 − X2. For other summation

polynomials we have the following two lemmas.

Lemma 2.4.3. Let E be an elliptic curve given by the equation(2.1). Then the 3rd summation

polynomial of E is:

S3 =(X2
1X

2
2 +X2

1X
2
3 +X2

2X
2
3 )− 2 · (X2

1X2X3 +X1X
2
2X3 +X1X2X

2
3 )

− b2 · (X1X2X3)− b4 · (X1X2 +X1X3 +X2X3)− b6 · (X1 +X2 +X3)− b8,

where the bi’s are defined as:

b2 =a21 + 4a2,

b4 =a1a3 + 2a4,

b6 =a23 + 4a6,

b8 =a21a6 − a1a3a4 + a2a
2
3 + 4a2a6 − a24.

Proof. Using the definition of group law for elliptic curves, one can do a lengthy calculation to

verify the above. See [11], Lemma 3.4.

Lemma 2.4.4. Let E be an elliptic curve given by the equation(2.1). Let p, q ∈ N with p, q ≥ 2.

Then

Sp+q(X1, ..., Xp+q) = ResX(Sp+1(X1, ..., Xp, X), Sq+1(Xp+1, ..., Xp+q, X))
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where ResX denotes the Sylvester resultant(See [10],Definition7 of Chapter3,§5) with respect to

X.

Proof. Consider any p+ q points (x1, y1), ..., (xp+q, yp+q) ∈ E(F) such that

(x1, y1) + ...+ (xp+q, yp+q) = 0. (2.2)

If (x1, y1) + ... + (xp, yp) = (x, y) for some finite point (x, y) ∈ E(F), then (xp+1, yp+1) +

... + (xp+q, yp+q) = −(x, y) = (x,−y − a1x − a3). It follows from proposition(2.4.1) that

Sp+1(x1, ..., xp, x) = 0 and Sq+1(xp+1, ..., xp+q, x) = 0.

Thus by the property of resultants, we have

ResX(Sp+1(x1, ..., xp, X), Sq+1(xp+1, ..., xp+q, X)) =A(X) ∗ Sp+1(x1, ..., xp, X)

+B(X) ∗ Sq+1(xp+1, ..., xp+q, X) (2.3)

for some polynomialsA(X), B(X) which are integer polynomials in the coefficients of Sp+1(x1, ..., xp, X)

and Sq+1(xp+1, ..., xp+q, X).

Now by letting X = x in equation(2.3), we have

ResX(Sp+1(x1, ..., xp, X), Sq+1(xp+1, ..., xp+q, X)) = 0

On the other hand, if (x1, y1) + ... + (xp, yp) = 0, then (xp+1, yp+1) + ... + (xp+q, yp+q) = 0. It

follows from proposition(2.4.1) that Sp(x1, ..., xp) = 0 and Sq(xp+1, ..., xp+q) = 0.

Since the leading coefficients of Sp+1(x1, ..., xp, X) and Sq+1(xp+1, ..., xp+q, X) are Sp(x1, ..., xp)
2

and Sq(xp+1, ..., xp+q)
2 respectively by proposition(2.4.5) which we will prove later, we have

ResX(Sp+1(x1, ..., xp, X), Sq+1(xp+1, ..., xp+q, X)) = 0
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Thus we have proven (x1, y1) + ...+ (xp+q, yp+q) = 0 implies

ResX(Sp+1(x1, ..., xp, X), Sq+1(xp+1, ..., xp+q, X)) = 0.

Next we prove the converse is true.

Suppose ResX(Sp+1(x1, ..., xp, X), Sq+1(xp+1, ..., xp+q, X)) = 0.

If the leading coefficients of Sp+1(x1, ..., xp, X) and Sq+1(xp+1, ..., xp+q, X) are zeros, i.e.

Sp(x1, ..., xp) = 0 and Sq(xp+1, ..., xp+q) = 0. Then by proposition(2.4.1), there exist y1, ..., yp+q ∈

F such that (x1, y1), ..., (xp+q, yp+q) ∈ E(F),

(x1, y1) + ...+ (xp, yp) = 0

and

(xp+1, yp+1) + ...+ (xp+q, yp+q) = 0

Thus we have

(x1, y1) + ...+ (xp+q, yp+q) = 0

as required.

If one of the leading coefficients of Sp+1(x1, ..., xp, X) and Sq+1(xp+1, ..., xp+q, X) is nonzero,

then Sp+1(x1, ..., xp, X) and Sq+1(xp+1, ..., xp+q, X) have a common root x ∈ F. Again by

proposition(2.4.1), we have

±(x1, y1)± ...± (xp, yp) = ±(x, y)

and

±(xp+1, yp+1)± ...± (xp+q, yp+q) = ±(x, y′)
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for some y1, ..., yp+q, y, y
′ ∈ F. Note that (x, y) and (x, y′) have the same x-coordinate, thus

(x, y′) = ±(x, y).

Since −(x, y) = (x, y − a1x − a3), change the value of yi to yi − a1xi − a3 if necessary, we

can always get the following:

(x1, y1) + ...+ (xp+q, yp+q) = 0

for suitable choices of the y1, ..., yp+q ∈ F.

Thus we have proven

ResX(Sp+1(x1, ..., xp, X), Sq+1(xp+1, ..., xp+q, X)) = 0

if and only if there exist p+ q points (x1, y1), ..., (xp+q, yp+q) ∈ E(F) such that

(x1, y1) + ...+ (xp+q, yp+q) = 0

Since summation polynomial is unique up to a constant, it follows that

Sp+q(x1, ..., xp+q) = ResX(Sp+1(x1, ..., xp, X), Sq+1(xp+1, ..., xp+q, X))

The above lemmas gives the explicit construction of all summation polynomials of an elliptic

curve, namely, one can compute Sm for m ≥ 3 from Sm−1 and S3 by applying lemma(2.4.4)

with p = m− 2 and q = 2.

Summation polynomials have some nice properties which are given by the following propo-

sition.

Proposition 2.4.5. Let m ∈ N with m ≥ 3. Then the m-th summation polynomial Sm of an
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elliptic curve E has the following properties:

(a) Sm is symmetric.

(b) Sm has degree 2m−2 in each variable.

(c) Sm is absolutely irreducible.

(d) Sm(X1, ..., Xm−1, Xm) = S2
m−1(X1, ..., Xm−1)X

2m−2

m + ...

Proof. (a) By proposition(2.4.1) Sm(x1, ..., xm) = 0 iff there existm points (x1, y1), ..., (xm, ym) ∈

E(F) such that

(x1, y1) + ...+ (xm, ym) = 0

Since the group law on elliptic curve is abelian, by proposition(2.4.1) we again have

Sm(x1, ...xi−1, xj , xi+1, ..., xj−1, xi, xj+1, ..., xm) = 0

for any 1 ≤ i < j ≤ m. Thus

Sm(x1, ..., xm) = 0

if and only if

Sm(x1, ...xi−1, xj , xi+1, ..., xj−1, xi, xj+1, ..., xm) = 0

Thus Sm is symmetric.

(b) By induction and the definition of resultant, one has degXm Sm ≤ 2m−2. In addition, one

can always find m − 1 points (x1, y1), ..., (xm−1, ym−1) ∈ E(F) such that the x-coordinates of
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2m−2 points

(x1, y1)± . . .± (xm−1, ym−1)

are pairwise different. In fact, we can prove the following stronger claim.

Claim: There exist m − 1 points (x1, y1), ..., (xm−1, ym−1) ∈ E(F) such that the following

hold

1. 2∗((xi1 , yi1)+ ...+(xik , yik))−2∗((xj1 , yj1)+ ...+(xjl , yjl)) 6= 0, for any 1 ≤ k ≤ m−1,0 ≤

l ≤ m− 1 with k + l ≤ m− 1,where 1 ≤ i1, ..., ik, j1, ..., jl ≤ m− 1 are pairwise different.

2. ±(x1, y1)± . . .± (xm−1, ym−1) 6= 0.

We can find such m − 1 points by induction on m. For m = 2, since #E(F) = ∞ and

#E[2] = {P ∈ E(F) : 2∗P = 0} is finite, we can find a point satisfying the above two conditions.

Now suppose for m = r we can find r− 1 points P1 = (x1, y1), ..., Pr−1 = (xr−1, yr−1) satisfying

the two results in the claim. For m = r + 1, we just need to choose a point Pr = (xr, yr) such

that

• 2 ∗ Pr 6= 2 ∗ (Pi1 + ... + Pik − Pj1 − ... − Pjl), for any 1 ≤ k ≤ r − 1, 0 ≤ l ≤ r − 1 with

k + l ≤ r − 1,where 1 ≤ i1, ..., ik, j1, ..., jl ≤ r − 1 are pairwise different.

• Pr 6= ±P1 ± . . .± Pr−1

we can always find such a point Pr, since there are only finite many points such that one of the

above two inequalities becomes an equality. Once we choose such a point Pr, the claims hold.

Since two points P and Q have the same x-coordinate if and only P = Q or P + Q = 0,

from the above claim, it is easy to see there exist m− 1 points (x1, y1), ..., (xm−1, ym−1) ∈ E(F)

such that the x-coordinates of 2m−2 points

(x1, y1)± . . .± (xm−1, ym−1)



24 2. Preliminaries

are pairwise different.

Thus by proposition(2.4.1), the polynomial Sm(x1, ..., xm−1, Xm) in the variable Xm has

2m−2 roots. So degXm Sm = 2m−2. The same result holds for all other variables since Sm is

symmetric by (a).

(c) See [11], Proposition 2.1.

(d) Let Cm denote the coefficient of Sm at X2m−2

m . Then Cm ∗X2m−2

m is equal to the polynomial

Z2m−2

m Sm(X1, ..., Xm−1,
Xm

Zm
)

evaluate at Zm = 0.

By applying lemma(2.4.4) with p = m− k − 1 and q = k + 1,for k ≥ 1, we have

Z2m−2

m Sm(X1, ..., Xm−1,
Xm

Zm
) =Z2m−2

m ResX(Sm−k(X1, ..., Xm−k−1, X), Sk+2(Xm−k, ...,
Xm

Zm
, X))

=ResX(Sm−k(X1, ..., Xm−k−1, X), Z2k

m Sk+2(Xm−k, ...,
Xm

Zm
, X)).

By induction,

ResX(Sm−k(X1, ..., Xm−k−1, X), Z2k

m Sk+2(Xm−k, ...,
Xm

Zm
, X))(Zm=0) =

ResX(Sm−k(X1, ..., Xm−k−1, X), Z2k

m Sk+2(Xm−k, ...,
Xm

Zm
, X)(Zm=0)) =

ResX(Sm−k(X1, ..., Xm−k−1, X), X2k

m S
2
k+1(Xm−k, ..., Xm−1, X)) =

ResX(Sm−k(X1, ..., Xm−k−1, X), X2k

m ) ∗Res2X(Sm−k(X1, ..., Xm−k−1, X), Sk+1(Xm−k, ..., Xm−1, X)) =

X2m−2

m S2
m−1(X1, ..., Xm−1)

Thus Cm = S2
m−1(X1, ..., Xm−1).

Notice that the number of terms of a summation polynomial grows very quickly with m. In
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fact, the polynomial is rather dense and we can expect that Sm has 2O(m2) terms. By using the

evaluation/interpolation method to construct resultants, it takes time 2O(m2) to construct the

m-th summation polynomial Sm.

The following table shows the number of terms for Sm for a field with characteristic 2.

Tab. 2.1: Number of terms of summation polynomials

m No. of terms Degree

2 2 1

3 5 4

4 24 12

5 729 32

6 148300 80

In practice, efficiently computing summation polynomial is hard. To the best of our knowl-

edge, the current record is to compute the 8-th summation polynomial, see [19]. As such, to

find an efficient way to compute large summation polynomial is an interesting open problem.

For singular curves, we can define summation polynomials similarly. These summation

polynomials are related to some famous problems. To the best of our knowledge, [29] is the first

article considering summation polynomials of singular curves. In the remainder of this section,

we briefly summarize the results of this article.

For any curve(singular or nonsingular)E defined over F by the following Weierstrass equa-

tion:

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6,

we define summation polynomials of E as follows:

S2 = X1 −X2 ∈ F[X1, X2]
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S3 =(X2
1X

2
2 +X2

1X
2
3 +X2

2X
2
3 )− 2 · (X2

1X2X3 +X1X
2
2X3 +X1X2X

2
3 )

− b2 · (X1X2X3)− b4 · (X1X2 +X1X3 +X2X3)− b6 · (X1 +X2 +X3)− b8 ∈ F[X1, X2, X3],

where b2, b4, b6, b8 is the same as lemma(2.4.3).

For m ≥ 4,

Sm = ResX (Sm−1(X1, . . . , Xm−2, X), S3(Xm−1, Xm, X)) ∈ F[X1, . . . , Xm].

We have the following propositions for two singular curves. The first proposition gives the

connection between discrete logarithm of field elements and evaluations of summation polyno-

mials, while the second proposition provides a relationship between sums of field elements and

the summation polynomial evaluations.

Proposition 2.4.6. Let E be the singular curve defined over F by the Weierstrass equation:

Y 2 +XY = X3.

For m ≥ 3, let Sm ∈ F[X1, . . . , Xm] denote the m-th summation polynomial of E. Let x1, x2, ..., xm ∈

F∗ \ {1}. Then there are ni ∈ {−1, 1} (i = 1, . . . ,m) such that xn1
1 · · ·xnmm = 1 if and only if

Sm(
x1

(x1 − 1)2
, . . . ,

xm
(xm − 1)2

) = 0.

Proposition 2.4.7. Let E be the singular curve defined over F by the Weierstrass equation:

Y 2 = X3

For m ≥ 3, let Sm ∈ F[X1, . . . , Xm] denote the m-th summation polynomial of E. Let x1, x2, ..., xm ∈

F \ {0}. Then there are ni ∈ {−1, 1} (i = 1, . . . ,m) such that n1x1 + · · · + nmxm = 0 if and
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only if

Sm(
1

x21
, . . . ,

1

x2m
) = 0.

This proposition shows that there is a connection between summation polynomial and the

famous subset sum problem. More concretely, let Fq be a finite field of cardinality q = pn. The

subset sum problem is the following. Given x1, . . . , xm, a ∈ Fq, determine whether or not there

are εi ∈ {0, 1} such that
∑m

i=1 εixi = a. If p 6= 2, this problem is equivalent to decide if Sm+1

evaluates to zero at certain points, where Sm+1 is the summation polynomial of the singular

curve E in proposition(2.4.7).

Assume that x1, . . . , xm, a ∈ Fq are given as in the subset sum problem. Write xi = 2yi,i =

1, 2, ...,m. Then the subset sum problem has a solution if and only if Sm+1(y1, . . . , ym, a− y1−

. . .− ym) = 0. Indeed, if Sm+1(y1, . . . , ym, a− y1− . . .− ym) = 0, then by proposition(2.4.7), we

can write
∑m

i=1 niyi − (a− y1 − . . .− ym) = 0 (ni ∈ {±1}). Set εi = (ni + 1)/2 ∈ {0, 1}. Then

one has

a =
∑
i

(ni + 1)yi =
∑
i

εixi.

The proof of the other direction is similar.

Fix p ≥ 5. The subset sum problem over Fpn is NP-complete. Thus the above statement

says to check if a summation polynomial evaluates at certain points to zero or not is difficult,

namely, it is a NP-complete problem. From this, we again see that summation polynomial is a

complicate polynomial.
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3. KNOWN METHODS FOR SOLVING

ZERO-DIMENSIONAL POLYNOMIAL SYSTEMS

In this chapter, we review some classical methods and time complexity for solving systems of

multivariate polynomial equations over a finite field.

We first define the main problem.

Problem 3.0.8. [Polynomial Systems Solving over Finite Fields] Let Fq be a finite field of

cardinality q. Given m polynomials f1(X1, ..., Xn), ..., fm(X1, ..., Xn) ∈ Fq[X1, ..., Xn],determine

if there exists any one vector (z1, ..., zn) ∈ Fnq such that f1(z1, ..., zn) = ... = fm(z1, ..., zn) = 0.

Furthermore, output one such vector (z1, . . . , zn) if it exists.

We remark that it is sufficient to find one solution of the polynomial system for cryptographic

applications. We only consider zero-dimensional polynomial systems(see definition(3.0.9)) in

this chapter.

Definition 3.0.9. An ideal I ⊆ R = Fq[X1, ..., Xn] is called zero-dimensional if the dimension

of the Fq-vector space R/I is finite, i.e. dimFq(R/I) <∞.

We have the following results about the relationship between the number of solutions of a

zero-dimensional ideal and the dimension of the corresponding vector space determined by this

ideal. The following proposition gives a bound on the number of solutions over algebraic closure

of a zero-dimensional ideal and when this bound can be achieved.

Proposition 3.0.10. For a zero-dimensional ideal I = 〈f1, ..., fm〉 ⊆ Fq[X1, ..., Xn] with
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f1(X1, ..., Xn), ..., fm(X1, ..., Xn) ∈ Fq[X1, ..., Xn], the following hold:

(a) the number of solutions of I in Fq is bounded by dimFq(R/I), i.e. the polynomial system

f1(X1, ..., Xn) = ... = fm(X1, ..., Xn) = 0

has at most dimFq(R/I) solutions in Fq
n

.

(b) if I is a radical ideal of Fq[X1, ..., Xn], then the number of solutions of I in Fq equal to

dimFq(R/I).

Proof. (a) See [32], Proposition 3.7.5 of Chapter 3.

(b) See [32], Theorem 3.7.19 of Chapter 3.

3.1 Gröbner basis method for solving polynomial systems

In this section, we first introduce some basic concepts and then review Gröbner basis method

for solving polynomial systems. Gröbner basis remains one of the most effective approaches to

solve polynomial equations.

3.1.1 Gröbner basis

The concept of Gröbner basis was introduced by Buchberger [6]. It is a special basis of an ideal

and has some good properties. It is a useful tool to solve polynomial systems.

Definition 3.1.1 (Monomial ordering). A monomial ordering ≤ on R = Fq[X1, ..., Xn] is a

total ordering on the set of monomials of R satisfying:

1. 1 ≤ u, for all monomials u ∈ R.

2. ≤ is compatible with multiplication, i.e. if u ≤ v then uw ≤ vw, for all monomials

u, v, w ∈ R.
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3. ≤ is well-ordering, i.e. every nonempty subset of monomials of R has the smallest element

with respect to ≤.

A monomial ordering ≤ on R is called graded if in addition to the above, one has:

deg(u) < deg(v) =⇒ u ≤ v,

where deg is the total degree of the monomial.

The most commonly used monomial orderings are the lexicographical ordering (lex for short),

the degree lexicographical ordering (dlex for short) and the degree reverse lexicographical or-

dering (drl for short). See [10] for the definition of the orderings. In particular, dlex and drl

orderings are graded orderings.

To a polynomial f =
∑

α∈Zn≥0
cαX

α ∈ R (where we use Xα = Xα1
1 ...Xαn

n for α = (α1, ..., αn)

), define the leading term of f to be

LT(f) = cβX
β,

and the leading monomial of f to be

LM(f) = Xβ,

where Xβ is the maximal monomial of f with respect to ≤ such that cβ 6= 0.

In addition, we set LT(0) = 0.

Let F be a finite subset of R. Let LT(F ) = {LT(f) : f ∈ F}.

Let I ⊆ R be an ideal. We let

LT(I) = 〈LT(f) : f ∈ I〉 ⊆ R

be the leading term ideal of I, that is, the ideal generated by the leading terms of all polynomials
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in I.

Definition 3.1.2 (Gröbner basis). Let I ⊆ R = Fq[X1, ..., Xn] be an ideal and ≤ be a monomial

ordering on R. A Gröbner basis of the ideal I w.r.t the monomial order ≤ is a finite set

G = {g1, ..., gt} ⊆ I satisfying:

LT(I) = 〈LT(g) : g ∈ G〉.

Definition 3.1.3 (Reduced Gröbner basis). A reduced Gröbner basis of I is a Gröbner basis

G of I such that:

1. The leading term of each g ∈ G has coefficient 1.

2. No monomial of g lies in 〈LT(g′) : g′ ∈ G \ {g}〉,for all g ∈ G.

Each ideal has a unique reduced Gröbner basis. For a proof of this fact, see [10], Proposition

6 of Chapter 2, §7.

In the following, we will review some algorithms for computing a Gröbner basis. Some basic

concepts are necessary before introducing these algorithms.

Definition 3.1.4. Let K be a field. Let R = K[X1, ..., Xn], f, r ∈ R with f 6= 0 and let

P = {p1, ..., ps} ⊆ R be a finite set. Fix a monomial order ≤ on R. Then we say that f reduces

to r modulo P , written

f −→P r,

if there exist a1, ..., as ∈ R such that

f =

s∑
i=1

aipi + r,
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and

LT(aipi) ≤ LT(f),

whenever aipi 6= 0, i = 1, ..., s.

See [10], Definition 1 of Chapter 2,§9, where the definition is for r = 0.

Definition 3.1.5 (Multivariate polynomial division). Let K be a field, R = K[X1, ..., Xn], and

fix a monomial order ≤ on R. Let F = (f1, ..., fs) be an ordered finite subset of R. Then every

f ∈ R can be written as

f =
s∑
i=1

aifi + r,

with some ai, r ∈ R, i = 1, ..., s satisfying one of the following:

1. r = 0; or

2. None of the terms that appears in r is divisible by LT(fi), i = 1, ..., s, and LT(aifi) ≤ LT(f)

if aifi 6= 0.

We call r the remainder of f on division by F , written as r = f
F

.

Note that r usually depends on the order of the elements in F . Specifically, different or-

derings of the elements may result in different remainders. An ordering of the polynomials is

called a reductor. Further, it is clear that for an ordered set G = (g1, ..., gs) ⊆ R and f, r ∈ R,

f
G

= r implies that f −→G r. However, the converse is false.

Definition 3.1.6 (S-polynomial). Let f, g ∈ R = K[X1, ..., Xn]\{0}. Let t = lcm(LM(f),LM(g)),

where lcm denotes the least common multiple. Then the S-polynomial of f and g is defined as
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follows:

S(f, g) =
t

LT(f)
f − t

LT(g)
g.

Using S-polynomials, we have the following criterion to check whether a given finite set of

polynomials is a Gröbner basis of an ideal.

Theorem 3.1.7 (Buchberger’s Criterion). Let I 6= {0} be an ideal of R = K[X1, ..., Xn]. Then

G = {g1, ..., gt} ⊆ I is a Gröbner basis of I for a monomial ordering on R if and only if

S(gi, gj)
G

= 0, for i 6= j ∈ {1, ..., t}.

Proof. See [10], Theorem 6 of Chapter 2, §6

We remark that in the above theorem, if we replace S(gi, gj)
G

= 0 by S(gi, gj) −→G 0, the

theorem is still correct (see [10], Theorem 3 of Chapter 2, §9 for the proof).

Based on Buchberger’s Criterion, we have the following Buchberger’s algorithm to compute

a Gröbner basis of a given ideal.

Algorithm 3.1.8 (Buchberger’s algorithm). Input: F = {f1, ..., fs} ⊆ R = K[X1, ..., Xn] \ {0}

Output: a Gröbner basis of I = 〈f1, ..., fs〉

1 . G := F

2 . REPEAT

3 . G′ := G

4 . FOR each pair {p, q}, p 6= q in G′ DO

5 . S := S(p, q)
G′

6 . IF S 6= 0 THEN G := G ∪ {S}

7 . UNTIL G = G′
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This version of Buchberger’s algorithm indeed computes a Gröbner basis of an ideal, but it is

not efficient in practice. Let’s explore this algorithm in greater detail. The algorithm begins with

reducing S-polynomials of all pairs of the generators of the ideal. If the remainder is nonzero,

then append this remainder to the generating set to form a new generating set and then repeat

this process until all S-polynomials reduce to zero. Notice that the most time consuming part of

the algorithm is the reduction of S-polynomials. In a concrete implementation of this algorithm,

one has to make some choices at different stages: First, one has to decide on how to select a

pair of the generators(some references call critical pair ) to form an S-polynomial of this pair.

Second, one needs to choose a reductor when performing the reduction of the S-polynomial to

obtain a remainder, where a reductor means the order of the polynomials when carrying out the

multivariate polynomial division. These two choices have a significant influence on the efficiency

of the whole algorithm, since some choices of the order of the S-polynomials and reductors may

result in drastically more numbers of reductions of S-polynomials and thus leading to a huge

time complexity of the algorithm.

Many other algorithms have been proposed to improve Buchberger’s algorithm. Essentially,

these algorithms follow two main approaches. In practice, many pairs of polynomials may

result in S-polynomials that reduce to 0. Thus, one method is to find a strategy to predict

these S-polynomials that reduce to 0 without explicitly computing them. Another approach is

to improve the time to perform reduction or the method of doing reduction. In the following,

we will briefly introduce two algorithms F4 [15] and F5 [16] which are based on Buchberger’s

algorithm. Before introducing these two algorithms, we first describe the relation between linear

algebra and polynomial division.

3.1.2 Gaussian elimination and polynomial division

We begin by describing how to construct a matrix from a set of polynomials. In other words,

given a set of polynomials, we can construct a matrix corresponding to this set of polynomials.
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Let F = (f1, ..., fs) be an ordered finite subset of R = K[X1, ..., Xn] with K a field, and

let M≤(F ) be the set of monomials appearing as terms of all fi in F (For simplicity, in the

remaining of this thesis when we say the set of monomials in a set of polynomials we mean the

set of monomials appearing as terms of all polynomials in that set). Sort all the elements in

M≤(F ) in descending order with respect to the monomial ordering ≤. Let t = #M≤(F ) and

mi be the i-th element of M≤(F ). Write fi =
∑t

λ=1 aiλmλ, for all 1 ≤ i ≤ s. The matrix MF

corresponding to F is defined to be:

MF = (aij)1≤i≤s,1≤j≤t

For example, let F = (f1, f2, f3) ,where f1 = x3 − 2xy + 1, f2 = x2y + 2y2 + y, f3 = x2 + y in

F5[x, y] with lexicographic ordering such that x > y. Then the matrix MF corresponding to F

is

MF =

x3 x2y x2 xy y2 y 1


1 0 0 −2 0 0 1

0 1 0 0 2 1 0

0 0 1 0 0 1 0

.

Such matrices constructed from several polynomials is useful. In the following, we will

illustrate how to do polynomial division by doing Gaussian elimination on a matrix constructed

from several polynomials.

Let f ∈ R = K[X1, ..., Xn] and F = (f1, ..., fs) be an ordered finite subset of R. Suppose

that we want to do polynomial division of f by F . Our aim is to construct an appropriate

matrix and perform Gaussian elimination on this matrix and read off the remainder from the

reduced row echelon form. Before introducing how to construct this matrix, we first illustrate

the method with a simple example.
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Example 3.1.9. Divide f = x2 +xy2 + 1 by f1 = xy+ 1 and f2 = x+ 1 using the lexicographic

ordering with x > y in Q[x, y]. The multivariate polynomial division does the following steps:

1. f − xf2 = xy2 − x+ 1,

2. (xy2 − x+ 1)− yf1 = −x− y + 1,

3. (−x− y + 1) + f2 = −y + 2.

So the remainder is −y + 2 and we have f = yf1 + (x− 1)f2 + (−y + 2).

Now let F = (f, xf2, yf1, f2). Then M≤(F ) = {xy2, x2, x, y, 1}. Thus the matrix MF

corresponding to F is

MF =

x2 xy2 x y 1


1 1 0 0 1 ← f

1 0 1 0 0 ← xf2

0 1 0 1 0 ← yf1

0 0 1 0 1 ← f2

The reduced row echelon form of MF is:

M̃F =



1 0 0 0 −1

0 1 0 0 2

0 0 1 0 1

0 0 0 1 −2


The last row of M̃F corresponds to the polynomial y − 2, which is, up to multiplication by

a nonzero constant, equal to the remainder. Thus doing Gaussian elimination on the matrix

MF does nearly the same as doing polynomial division, with the minor difference being that we

can only read off the remainder up to multiplication by a nonzero constant from the reduced
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row echelon form. However, this is enough, since we only need to know the remainder up to

multiplication by a nonzero constant in the computation of Gröbner basis.

From the above example, we see that in order to obtain the remainder of dividing f by F ,

we can construct the matrix corresponding to a set of polynomials F containing f , as well as

polynomials of the form mifi,where mi is a monomial. It remains to determine these monomials.

This problem can be solved through exploring the polynomial division algorithm [10]. In each

step of the algorithm, the algorithm looks for the smallest i such that LT(fi) divides LT(h),

where h is the intermediate result. If such an fi exists, one changes the intermediate result h

to h − qifi with qi = LT(h)
LT(fi)

. So it is natural to add the polynomial LM(qi)fi to F . However,

we do not know which fi will be chosen in each step apriori without doing the polynomial

division algorithm. To predict this fi chosen in each step, observe that the exact value of

each intermediate result is not critical, since we only care about the monomials appearing in

the intermediate result. As such, it is sufficient to assume that the intermediate result h− qifi

contains all the monomials of h and qifi except for the leading term LT(h) as it is cancelled in the

subtraction, where fi and qi are determined by the previous step. Using this assumption, we can

predict all the monomials mi needed to construct F possibly with some redundant monomials.

In practice, the number of this redundancy is small. In general, we have the following algorithm

to construct the matrix.

Algorithm 3.1.10. Input: f , an ordered set F = (f1, ..., fs) ⊆ R = K[X1, ..., Xn], a monomial

ordering ≤ on R;

Output: matrix MF corresponding to a set of polynomials F such that the remainder f
F

(up

to multiplication by a nonzero constant) can be read off from the reduced row echelon form of

MF

1 . F := {f}, D := M≤(F ), where M≤(F ) denotes the ordered set of monomials in F sorted in

descending order with respect to the monomial ordering ≤.

2 . REPEAT
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3 . D := D \ {D[0]}, where D[0] is the first element of the ordered set D.

4 . Look for the smallest i such that LM(fi) divides D[0]. If such an i exists, let q := D[0]
LM(fi)

.

5 . F := F ∪ {qfi}.

6 . D := D ∪M(qfi) \ {D[0]} sorted in descending order w.r.t ≤ , where M(qfi) is the set of

monomials of qfi.

7 . UNTIL D is empty.

8 . Construct MF according to F .

Doing Gaussian elimination on MF in the above algorithm, we can read off the remainder

f
F

(up to multiplication by a nonzero constant) from the reduced row echelon form M̃F . There

are two cases, namely

1. f
F

= 0: this corresponds to a zero row of M̃F ,

2. f
F 6= 0: then LT(f

F
) cannot be divided by any LT(fi),i = 1, ..., s, and thus this polyno-

mial corresponds to a row of M̃F having a pivot which is not a pivot in MF . Finding the

row in M̃F with such a property gives the remainder f
F

(up to multiplication by a nonzero

constant).

Note that the above algorithm can be easily modified to construct a matrix M such that per-

forming Gaussian elimination on M gives us the remainders of several polynomials g1, g2, ..., gt

divided by F = (f1, ..., fs) through the reduced row echelon form. In fact, the F4 algorithm

uses this idea to reduce several S-polynomials simultaneously.

3.1.3 F4 and F5 algorithm

F4 algorithm is an enhanced version of Buchberger’s algorithm with respect to efficiency. This

algorithm introduces two main changes compared to Buchberger’s algorithm: one of which is

to select several critical pairs( see 3.1.11 for the definition) at each step instead of only one
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pair in Buchberger’s algorithm, while the other is to use Gaussian elimination on appropriate

matrices to replace the reduction of S-polynomials through multivariate polynomial division.

Before describing the F4 algorithm, we give some definitions needed in the algorithm.

Definition 3.1.11 (Critical pair). Let f, g ∈ R = K[X1, ..., Xn]\{0}. Let t = lcm(LM(f),LM(g)),

where lcm denotes the least common multiple. The critical pair of f and g is defined as

Pair(f, g) := (t,
t

LM(f)
, f,

t

LM(g)
, g).

Further, we define

Left(Pair(f, g)) := (
t

LM(f)
, f), Right(Pair(f, g)) := (

t

LM(g)
, g)

The following is a basic version of the F4 algorithm.

Algorithm 3.1.12 (Algorithm F4). Input: F = {f1, ..., fs} ⊆ R = K[X1, ..., Xn] \ {0};

Output: G, a Gröbner basis of I = 〈f1, ..., fs〉

1 . G := F , P := {Pair(fi, fj)|1 ≤ i < j ≤ s}, d:=0.

2 . REPEAT

3 . d := d+ 1.

4 . Pd := Select(P ), where Select(P ) is any function such that Select(P ) is not empty.

5 . P := P \ Pd, Ld := Left(Pd) ∪Right(Pd).

6 . F̃d
+

:= Reduction(Ld, G).

7 . For h ∈ F̃d
+

do

8 . P := P ∪ {Pair(h, g)|g ∈ G}, G := G ∪ {h}.

9 . UNTIL P is empty.

10 . Return G.
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The Select function in step 4 is the selection strategy to compute S-polynomials. If the

size of Select(P ) is always 1, then this algorithm is the Buchberger’s algorithm. If the size of

Select(P ) is larger than 1, then in step 6 the Reduction step reduces several S-polynomials at

the same time. There are many different strategies available, see [15] for the details.

The Reduction in step 6 is the following subalgorithm

Algorithm 3.1.13 (Reduction). Input: L, a finite subset of M × R, where M is the set of

monomials in R,

G, a finite subset of R

Output: a finite subset of R

1 . F :=Symbolic Preprocessing(L,G).

2 . Construct matrix MF corresponding to F using the method in 3.1.2 and do Gaussian elimi-

nation on MF , M̃F := Reduced row echelon form of MF .

3 . F̃ := {f |f corresponds to nonzero row of M̃F }.

4 . F̃+ := {f ∈ F̃ |LT(f) 6∈ LT(F )}.

5 . Return F̃+

In step 1 of subalgorithm Reduction, there is a Symbolic Preprocessing subalgorithm. The

aim of Symbolic Preprocessing is to prepare to construct a matrix to read off remainders from

the row echelon form of this matrix. This algorithm is the same as algorithm3.1.10. Specifically,

it is as follows.

Algorithm 3.1.14 (Symbolic Preprocessing). Input: L, a finite subset of M ×R, where M is

the set of monomials in R

G, a finite subset of R

Output: a finite subset of R

1 . F := {tf |(t, f) ∈ L}, D := LT(F ).
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2 . REPEAT

3 . Choose an element m ∈ M(F ) \ D, where M(F ) is the set of all monomials in F , D :=

D ∪ {m}.

4 . If there exists g ∈ G such that LM(g) divides m, then m1 := m
LM(g) , F := F ∪ {m1 ∗ g}.

5 . UNTIL M(F ) = D.

6 . Return F .

In this section, we have only described the basic version of F4 algorithm. For the improved

version, see [15].

The F5 algorithm is also based on Buchberger’s algorithm. This algorithm aims to reduce

useless computations: namely to remove S-polynomials with zero reduction. It introduces a new

powerful criterion to detect useless critical pairs and computes Gröbner basis incrementally. F5

algorithm is a very efficient algorithm in practice. For example , a Gröbner basis of cyclic 10 was

first computed by the F5 algorithm. Also, in the case of regular sequence, it was proved that

useless critical pairs are avoided in F5 algorithm, i.e. there is no useless critical pair generated

in F5 algorithm. For details, see [16].

3.1.4 Finding solutions via Gröbner basis

In the previous subsections, we have described how one can compute Gröbner basis of a poly-

nomial system. We now discuss how one can compute the solutions of the polynomial system

from a Gröbner basis with respect to some appropriate monomial ordering.

Gröbner basis method for solving multivariate polynomial system is based on the following

proposition.

Proposition 3.1.15 (The triangle form). For a zero-dimensional ideal I ⊆ R = Fq[X1, ..., Xn],

let G = {g1, ..., gt} be the reduced Gröbner basis with respect to lex order with X1 > X2 > ... >
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Xn. Order the elements of G by LT(g1) > LT(g2) > ... > LT(gt). Then for all i ∈ {1, ..., n},

there exists j = ji ∈ {1, ..., t} such that LT(gj) = Xdi
i for some integer di > 0.

Proof. See [10], Theorem 6 of Chapter 5,§3.

This proposition shows that the Gröbner basis of a zero-dimensional ideal w.r.t lexicographic

order can be used to solve problem(3.0.8) in the following way:

1. Compute the reduced Gröbner basis G of the ideal I = 〈f1, ..., fm〉 w.r.t. lex order with

X1 > X2 > ... > Xn.

2. Take a univariate polynomial in Xn from G and solve it using Berlekamp’s algorithm [51].

Note that the existence of such univariate polynomial is ensured by I is a zero-dimensional

ideal, see proposition(3.1.15).

3. Use back substitution to get all the values of X1, ..., Xn−1 through the triangle form of G.

We remark that the degrees of Gröbner basis w.r.t lexicographic order can be very large,

and thus computing such a Gröbner basis can lead to large computational complexity. On the

other hand, the degree reverse lexicographic order(denoted DRL) has been proven to be the

fastest monomial order for computing Gröbner basis of an ideal [4]. Therefore, in practice, the

method of Gröbner basis to solve problem(3.0.8) typically consists of two steps. First, compute

the Gröbner basis of the ideal I = 〈f1, ..., fm〉 w.r.t. DRL using F4 or F5 algorithms [15] [16].

Second,use the FGLM algorithm [18] to change the Gröbner basis wrt DRL to a Gröbner basis

wrt lex order and then using the triangle form of lex Gröbner basis to get the solutions of I.

Finally, we summarize the complexity of this approach. F4 and F5 are efficient algorithms

to compute Gröbner basis. As previously discussed, these two algorithms primarily perform

linear algebra on a Macaulay matrix.

Definition 3.1.16 (Macaulay matrix). Let d be a positive integer and let F = {f1, ..., fl} ⊆

R = Fq[X1, ..., Xn] with deg(fi) ≤ d,for i = 1, ..., l. Let T ⊆ R be all the monomials of degree
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less than or equal to d sorted w.r.t a monomial ordering. The Macaulay matrix Md is defined

as follows. Consider all the polynomials tjfi of deg(tjfi) ≤ d with tj ∈ T and fi ∈ F . The rows

of Md correspond to the coefficients of tjfi written as a linear combination of elements in T and

the columns correspond to the sorted monomials. Here d is called the degree of the Macaulay

matrix Md.

Essentially, the F4 and F5 algorithms successively construct a Macaulay matrix Md for

increasing d and do Gaussian elimination on this matrix until a Gröbner basis is found. Lazard

[33] proved the following theorem:

Theorem 3.1.17. Let F = {f1, ..., fl} ⊆ R. There exists a positive integer D such that

performing Gaussian elimination on Macaulay matrices of F with degree 1, 2, ..., D will compute

a Gröbner basis of the ideal I which is generated by F .

Consequently, the complexity of these two algorithms is determined by the complexity of

Gaussian elimination. In particular, the maximal degree D in the computation determines the

complexity of the algorithms. Specifically, the maximal degree D in the computation using F4

or F5 algorithms under the degree reverse lexicographic order is called the degree of regularity

and we denote it as dreg. The complexity of these two algorithm is as follows.

Theorem 3.1.18. [ [17]] Let I be a zero-dimensional ideal with n variables and dreg be the

degree of regularity of I. Then the F4 and F5 Gröbner basis algorithms need

O

((
n+ dreg − 1

dreg

)ω)

field operations, where ω is the linear algebra constant.

The complexity of FGLM algorithm is as follows.

Theorem 3.1.19 ( [18]). Let I be a zero-dimensional ideal with n variables and G be a Gröbner

basis for I with respect to DRL. Let Ω be the number of solutions of I in an algebraic closure.
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Then computing a Gröbner basis Glex with respect to a lexicographic ordering using FGLM

algorithm from G needs

O
(
nΩ3

)
field operations.

Remark 3.1.20. It remains an open problem to determine the degree of regularity of a ran-

dom zero-dimensional polynomial system. For a regular sequence F = (f1, ..., fs)(see [17] for

definition), the degree of regularity of the polynomial system defined by F is bounded by its

Macaulay bound:
∑s

i=1(deg(fi) − 1) + 1( [17]). And the last degree dF (see definition(5.1.5)) is

also bounded by this Macaulay bound(see remark(5.1.10 for detail).

3.2 The XL algorithm

In this section, we review the method of using eXtended Linearization(XL) algorithm to solve

multivariate polynomial systems. In [9], the authors introduce XL algorithm to solve polynomial

equations. According to [9], the algorithm is described as follows:

Definition 3.2.1 (XL algorithm). Let F = {f1, ..., fs} ⊆ R = K[X1, ..., Xn] \ {0}. The XL

algorithm is designed to solve the polynomial system defined by F . For a positive integer D,

the procedure of XL algorithm at degree D is the following:

1. Multiply: Generate all polynomials of the form mifj with deg(mifj) ≤ D, where mi is

a monomial.

2. Linearize: Consider each monomial of degree ≤ D as a new variable and do Gaussian

elimination on the equations obtained in 1. The ordering on the monomials must be such

that all the terms containing one specific variable (say X1) are eliminated last.
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3. Solve: Assume that step 2 yields at least one univariate equation in the powers of X1.

Solve this equation over the finite fields (e.g. with Berlekamp’s algorithm).

4. Repeat: Simplify the equations and repeat the process to find the values of the other

variables.

Observe that in order to perform Step 2 in the XL algorithm, one must have the number

of equations at least as large as the number of monomials involved. As such, one must select

a sufficiently big D such that this condition holds. The XL algorithm has many variants. For

more details of the variants, see [53].

In [3] and [47], the authors showed that XL algorithm is in fact a less efficient version of the

F4 algorithm. Indeed, notice that the XL algorithm seeks to construct a large enough Macaulay

matrix that allows one to find the solutions by one Gaussian elimination operation. On the other

hand, the main ideas of the F4 algorithm are to progressively construct Macaulay matrices of

increasing sizes, performing Gaussian elimination at each stage, until one finds the solutions.

This notion was similarly employed in [13] which proposed a variant of the XL algorithm known

as the MutantXL algorithm. In the following, we briefly review the concept of mutants and the

mutantXL algorithm.

Definition 3.2.2 (Mutant). Let I = 〈f1, ..., fm〉 ⊆ R = K[X1, ..., Xn] and f ∈ I. Write f as

f =

m∑
i=1

gifi,

where gi ∈ R,i = 1, ...,m. The level of this specific representation of f is defined as follows:

max{deg(gifi) : i = 1, ...,m}.

Then, the level of f is defined to be the minimum level of all the different representations of f .

The polynomial f is called a mutant with respect to {f1, ..., fm} if deg(f) is less than the level
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of f .

Intuitively, a mutant f is a polynomial that is formed by linear combinations of the gener-

ating polynomials gifi such that the leading terms of some of the gifi cancel out. Based on this

concept, [13] introduced the mutantXL algorithm which improves the XL algorithm.

For a parameter D, the MutantXL algorithm carries out steps 1 and 2 of 3.2.1. Then

mutantXL searches for univariate polynomials in the same way as step 3 of 3.2.1. If no univariate

polynomial exists, then mutantXL searches for mutants which are new polynomials of degree less

than D constructed from the generating polynomials. If mutants are found at this stage, these

mutants are multiplied by monomials as in step 1 such that the new polynomials have degree

bounded by D and added to the system. This is known as the mutant strategy. The algorithm

then proceeds in the same way as in 3.2.1. This is the main idea underlying the mutantXL

algorithm at degree D. Essentially, MutantXL algorithm seeks to enlarge the polynomial system

without incrementing D through adopting the mutant strategy. Thus this algorithm is more

efficient than the original XL algorithm. Following this first version, other variants of the

MutantXL algorithm were subsequently proposed, namely the MXL2 and MXL3 algorithms

(see [36] and [35] for details of these two algorithms). However, the article [2] shows mutant

strategy is equivalent to some selection strategy used in Gröbner basis algorithm such as F4

and as a result, all the MXL family algorithms are redundant variants of the F4 algorithm.
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4. THE INDEX CALCULUS METHOD FOR ECDLP –

DEVELOPMENTS AND PROGRESS

In this chapter, we will survey the developments on the index calculus method for the ellip-

tic curve discrete logarithm problem. Specifically, we will present the key ideas and results

contained in the following research papers [11,12,21,22,39,43].

4.1 Gaudry and Diem’s Results

4.1.1 Gaudry’s Result

In [22], Gaudry focused on the elliptic curve discrete logarithm problem defined over Fqn with

q prime or a prime power and n is small. In particular, he solved ECDLP defined over Fq3 in

heuristic asymptotic running time Õ(q4/3), where Õ means that there exists an constant c such

that Õ(q4/3) = O(q4/3 logc(q4/3)).

Gaudry’s proposed factor base:

The factor base used in [22] is F = {(x, y) ∈ E(Fqn)|x ∈ Fq}. The size of F is roughly equal

to q on a heuristic assumption.

In the sieving stage, we wish to compute #F + 1 relations, where a relation is expressing

aP + bQ with a sum of n elements in F for randomly chosen integers a and b. Gaudry used

the summation polynomial Sn+1 to find such a relation. Gaudry heuristically argued that the

probability of finding one relation is 1/n!.

Further, by using the “large primes” trick introduced in Thériault’s algoritm [49] and its
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variants [23], Gaudry obtained the following heuristic complexity result:

Heuristic result 4.1.1. [22] Let n ∈ Z≥2 be fixed and q prime or a prime power that goes

to infinity. Then the discrete logarithm problem on any elliptic curve defined over Fqn can be

solved by a randomized algorithm in heuristic asymptotic running time Õ(q2−2/n), where the

constant in Õ() depends on n.

Note that the above result applied only to small n, since the constant hidden in the Õ(q2−2/n)

is exponential in n which grows very fast with n.

4.1.2 Diem’s Results

Extending the factor base

In [11], Claus Diem considered a similar factor base as in [22]. He showed that there exist a class

of elliptic curves defined over finite fields such that index calculus method takes subexponential

time to solve the discrete logarithm problem on these elliptic curves. We highlight the main

results in [11] as follows.

The main result of Claus Diem’s paper [11] is the following theorem.

Theorem 4.1.2. The elliptic curve discrete logarithm problem over finite fields Fqn can be

solved in an expected time of

eO(max{log (q),n2}).

Following this theorem, Diem derived the following results:

(i) Let sequences of prime powers (qi)i∈N and natural numbers (ni)i∈N with ni → ∞ and

ni
log (qi)

→ 0 for i → ∞ be given. Then the elliptic curve discrete logarithm problem over

finite fields Fqnii can be solved in an expected time of (qnii )o(1).

(ii) Let β ∈ [12 , 1) and a, b > 0 be fixed. Let α := 1−β
2β ∈ (0, 12 ], γ := 2β

β+1 < 1 and n ∈ Z≥0
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such that

a · log (q)α ≤ n ≤ b · log (q)β.

Then the elliptic curve discrete logarithm problem over finite fields Fqn can be solved in

an expected time of eO((log qn)γ).

(iii) Let positive real numbers a < b be fixed and n ∈ Z≥0 such that

a ·
√

log(q) ≤ n ≤ b ·
√

log(q).

Then the elliptic curve discrete logarithm problem over finite fields Fqn can be solved in

an expected time of eO((log qn)2/3).

In his subsequent work in [12], Claus Diem extended his work in [11] by considering a more

generalized factor base. Let 1 < m < n′ < n be positive integers such that mn′ ≈ n. Let V be

a subspace of Fqn over Fq of dimension n′.

In this case, Diem considered this factor base F = {(x, y) ∈ E(Fqn)|x ∈ V }.

Observe that when n′ = 1, we obtain the preceding factor base. It is heuristically assume

that |F| ≈ qn′ . With this extended factor base and by employing results of algebraic geometry,

Diem established the following stronger result.

Theorem 4.1.3. The elliptic curve discrete logarithm problem over finite fields Fqn can be

solved in an expected time of

eO(max{log(q),n·(log q)1/2,n3/2}).

Furthermore, if q is even, then the time complexity is

eO(max{log q,n·log(q)1/2,n·(logn)1/2}).

Theorem 4.1.3 leads to the following results.
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(i) Let sequences of primes (qi)i∈N and natural numbers (ni)i∈N with qi → ∞ and ni → ∞

for i→∞ be given. Suppose we have the following additional conditions:

(a) ni
log(qi)2

→ 0 for i→∞

or

(b) qi is even for all i and log(ni)
log(qi)2

→ 0 for i→∞,

then the elliptic curve discrete logarithm problem over finite fields Fqnii can be solved in

an expected time of (qnii )o(1).

(ii) Let β ≥ 1
2 and a, b > 0 be fixed. Let q be even, α := 1

2β+1 , γ := 1 − 1
2

1
β+1 and n ∈ Z≥0

such that

a · log (q)α ≤ n ≤ b · log (q)β (4.1)

Then the elliptic curve discrete logarithm problem over finite fields Fqn can be solved in

an expected time of eO((log qn)γ). Furthermore, if β ≤ 1, then the same holds over all finite

fields Fqn with n satisfying (4.1).

A special case is the following: For a, b > 0 and n ∈ Z≥0 such that

a · log(q)1/3 ≤ n ≤ b · log(q).

Then the elliptic curve discrete logarithm problem over finite fields Fqn can be solved in

an expected time of eO((log qn)3/4).

(iii) Let β ∈ [1, 2) and a, b > 0 be fixed. Let α := 2−β
3β , γ := 3

2
β
β+1 and n ∈ Z≥0 such that

a · log (q)α ≤ n ≤ b · log (q)β.

Then the elliptic curve discrete logarithm problem over finite fields Fqn can be solved in

an expected time of eO((log qn)γ).
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Remark 4.1.4. In this thesis, we have described a more simplified version of the factor bases

proposed by both Gaudry and Diem [11, 12, 22]. This is to provide a more readable exposition

of their work which contains the flavour of the general approach.

4.2 Solving the summation polynomials using Weil descent

So far, we have seen that in the case of Fqn , a possible factor base is F = {(x, y) ∈ E(Fqn)| x ∈

V } for some appropriate vector subspace V of Fqn . In the sieving step, our goal is to write

a point as a sum of some of the points in F . This can be done with the aid of summation

polynomials as we proceed to show.

Suppose that we wish to write each point R as a sum of m points in the factor base so

that we are dealing with the summation polynomial Sm+1. Let {θ1, . . . , θn} be a basis of Fqn

over Fq and let {ν1, . . . , νn′} be a basis of V over Fq. Clearly, each νi, i = 1, . . . , n′ is a linear

combination of the θ1, . . . , θn.

Define mn′ new variables xij ∈ Fq such that xi =
∑n′

j=1 xijνj , i = 1, . . . ,m, j = 1, . . . , n′.

Let R = (x, y) ∈ E(Fqn). In this case, we will solve Sm+1(x1, . . . , xm, x) = 0 or equivalently,

Sm+1(
∑n′

j=1 x1jνj , . . . ,
∑n′

j=1 xmjνj , x) = 0. Here, the former equation has unknowns in Fqn

while the unknowns in the latter equation are in Fq.

Expanding everything in terms of θi and equating the coefficients to 0, we now obtain:

f1(x11, . . . , xmn′) = 0, . . . , fn(x11, . . . , xmn′) = 0 for some f1, . . . , fn ∈ Fq[x11, . . . , xmn′ ].

Let us illustrate with a concrete example.

Example 4.2.1. Consider the field F24 and let α be its generator with α4 = α+1. Let E denote

the elliptic curve over F24 be defined by y2 + xy = x3 + αx + 1 + α. Then (1, 0) ∈ E. Let V

be the subspace with basis {1, α}. Since S3(x1, x2, x3) = x21x
2
2 + x21x

2
3 + x22x

2
3 + x1x2x3 + 1 + α,

S3(x1, x2, 1) = x21x
2
2 + x21 + x22 + x1x2 + 1 + α.

Let x1 = x11+x12α and x2 = x21+x22α. Substituting for x1 and x2 yields (x211+x212α
2)(x221+

x222α
2) + x211 + x212α

2 + x221 + x222α
2 + (x11 + x12α)(x21 + x22α) + 1 + α = 0.
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Since xij ∈ F2, i, j = 1, 2, x2ij = xij. Thus x11x21 + x11x22α
2 + x12x21α

2 + x12x22(1 + α) +

x11 + x12α
2 + x21 + x22α

2 + x11x21 + x11x22α+ x12x21α+ x12x22α
2 + 1 + α = 0.

x12x22 + x11 + x21 + 1 + (x12x22 + x12 + x22 + x11x22 + x12x21 + 1)α + (x11x22 + x12x21 +

x12x22 + x11 + x22)α
2 = 0.

In particular, we have: f1 = x12x22 + x11 + x21 + 1 = 0, f2 = x12x22 + x12 + x22 + x11x22 +

x12x21 + 1 = 0, f3 = x11x22 + x12x21 + x12x22 + x11 + x22 = 0.

Here we have 3 equations in 4 unknowns.

Remark 4.2.2. (1) In general, the problem reduces to solving n polynomials equations in

mn′ ≈ n variables over Fq.

(2) The probability that a point R can be represented as a sum of m points in F is 1/m! by

a heuristic assumption.

(3) This system of equations is typically solved using Gröbner basis algorithms. On the other

hand, Diem derived his results by solving these polynomial systems using a geometric

method introduced by Rojas.

4.3 ECDLP over binary fields

4.3.1 The Result of Faugère et al.

In [21], Faugère et al. considered ECDLP over binary fields F2n . Inspired by the work of

Gaudry and Diem, they proposed a factor base FV := {(x, y) ∈ E(F2n)|x ∈ V }, where V

is a vector subspace of F2n/F2. In particular, they focused on the sieving step. Following

the approach outlined in the preceding section, they first reduced the problem of finding a

relation to a problem of solving a multivariate polynomial over F2n . Second, in order to solve

this multivariate polynomial, they employed the method of Weil descent to get an equivalent

boolean polynomial system. They argued that this system has a special structure and they

exploited this structure to devise a linearization algorithm to tackle this polynomial system.
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Finally, they deduced that the complexity of solving ECDLP over F2n is O(2ωt), where t ≈ n/2

under some heuristic assumptions.

We now concentrate on the case where q = 2 and n a prime. According to Diem’s estimate,

the time complexity of the algorithm is exp(O(n(log n)1/2)), which is worse than exhaustive

search.

More precisely, let f ∈ F2n [x1, . . . , xm] be a multivariate polynomial in m variables and let

V be a vector subspace of F2n/F2, we want to solve f(x1, x2, . . . , xm) = 0 under the linear

constraints x1, . . . , xm ∈ V .

First, let us examine what happens to the degree of the variables when we apply the Weil

Descent to a multivariate polynomial in F2n . Let x1 = x11ν1 + . . .+ x1n′νn′ . Let e =
∑l

i=0 ei2
i

be a positive integer, ei = 0, 1. We have xe1 = (x11ν1 + . . .+x1n′νn′)
e =

∏l
i=0((x11ν1)

ei2
i
+ . . .+

(x1n′ν′)
ei2

i
) =

∏l
i=0(x

ei
11ν

ei2
i

1 + . . .+ xei1n′ν
ei2

i

n′ ).

Hence we observe that the degree of each term is at most the Hamming weight of e.

We have thus proved the following lemma:

Lemma 4.3.1. let f ∈ F2n [x1, . . . , xm] be a multivariate polynomial in m variables such that

the degree of each variable xi is at most 2di − 1. Let xi =
∑n′

j=1 xijνj , i = 1, . . . ,m for some

xij ∈ F2. Then the resulting polynomial has degree at most
∑m

i=1 di.

Let {θi| i = 1, . . . , n} be a basis of F2n over F2 and let {νi| i = 1, . . . , n′} be a basis of V

over F2. We introduce mn′ variables xij over F2 such that xi =
∑n′

j=1 xijνj . By replacing each

xi with the above equation and reducing by the field equations, we obtain

0 = f(x1, x2, . . . , xm) = f(
n′∑
j=1

x1jνj , . . . ,
n′∑
j=1

xmjνj) = f1θ1 + f2θ2 + . . .+ fnθn

for some f1, f2, . . . , fn ∈ F2[x11, . . . , xmn′ ] which depend on f and on the vector subspace V .

Thus solving f(x1, x2, . . . , xm) = 0 under the linear constraints x1, . . . , xm ∈ V is equivalent to
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solving the following boolean polynomial system:

f1 = f2 = · · · = fn = 0 (4.2)

We return to our summation polynomial Sm+1. Recall that the degree of each variable xi in

Sm+1 is 2m−1. It follows that the degree with respect to each block of variables (xi1, xi2, . . . , xin′)

is m − 1. Consequently, our system in question consists of n boolean polynomials in mn′ ≈ n

variables with the degree of each polynomials at most m(m− 1).

Let d be a positive integer.

Consider the set Mon(d) of all multi-linear monomials in x11, . . . , xmn′ such that the degree

with respect to each block of variables is at most d. The total number of such monomials can

be estimated by M(d) =
(∑d

d′=0

(
n′

d′

))m
.

Since Sm+1 = 0, we have gSm+1 = 0 for any monomial g. We construct all polynomials

of the form gSm+1 such that the degree with respect to each block of variables is at most d.

The number of all such monomials g can be computed as E(d) =
(

2t(
∑d

d′=t

(
n′−t
d′−t
))m

, where

t = m− 1.

Let G be a matrix with the columns indexed by monomials in Mon(d) such that G is the

coefficient matrix constructed from all the polynomials obtained from gSm+1’s above. This is

commonly referred as the Macaulay matrix. It was shown in [21] that if d ≈ n′/2,nE(d) > M(d),

and we can perform the Gaussian elimination on G to solve for the variables.

Assumption: Here, we assume that almost all the rows of G generated by this way are linearly

independent with a high probability.

Experiments were performed to verify this assumption. Under such an assumption, with

d ≈ n′/2, the variables xij , i = 1, . . . ,m, j = 1, . . . , n′, can be solved via linearization.

By choosing m ≈ n′ ≈ n1/2, this yields a complexity estimate of 2O(ωn/2) to solve the

ECDLP.
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4.3.2 Petit and Quisquater’s Result

In [39], C. Petit and J. Quisquater used some heuristic assumptions on the degree of regularity

and first fall degree of a polynomial system arising from a weil descent to achieve a subexpo-

nential complexity O(2cn
2/3 logn).

In Gröbner basis computations, under some fixed monomial ordering, we essentially compute

the s-polynomials of polynomials and recursively add the remainder to the list of polynomials.

Let L be the set of all polynomials generated in the process of computing the Gröbner basis.

The largest degree of the polynomials in L is known as the degree of regularity of the system.

It can be shown that in computing the Gröbner basis, we are in fact performing elimination

on matrices constructed from the coefficients of the polynomials in L with respect to the mono-

mials. Consequently, the degree of regularity dreg gives us a good estimate of the complexity

of the algorithm involved. Specifically, for n variables, the complexity can be estimated to be

O(nωdreg), where ω is the linear algebra constant. It follows that a good estimate on the degree

of regularity of the polynomial system will yield a good estimate on its complexity.

Definition 4.3.2. Let R be a multivariate polynomial ring over a field K. Let h1, . . . , hl be a

set of polynomials in R. The first fall degree of {h1, . . . , hl}, denoted by dff , is defined as the

smallest degree d ≥ deg(hi) for all i = 1, 2, . . . , l such that there exist polynomials g1, . . . , gl in

R with maxi{deg(gi) + deg(hi)} = d and deg(
∑l

i=1 gihi) < d,
∑l

i=1 gihi 6= 0.

Let f be a polynomial over F2n in m variables x1, . . . , xm such that the degree of each

variables is at most 2t − 1 for some integer t. As before, we do the Weil descent on f , i.e.

replace each of the variables xi by xi1ν1 + . . . + xin′νn′ ,i = 1, . . . ,m. Here, the degree with

respect to each variable is bounded by t. We obtain a set of polynomials as in 4.2. By consider

x1f and performing weil descent again, we can deduce that the first fall degree of the system

{f1(x11, . . . , xmn′), . . . , fn(x11, . . . , xmn′)} is at most mt+ 1.

In [39], Petit et. al proposed the following assumption:
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Assumption 4.3.3. Let E be an elliptic curve defined over F2n. Let V be a random vec-

tor space of dimension n′ over F2 and let R be a random point on the curve. Let f :=

Sm+1(x1, x2, . . . , xm, xR), where xR denote the x-coordinate of R. For the system 4.2 from

f , we have dreg = dff + o(1) with a high probability.

Petit et. al verified the above assumption by experiments. The following is a brief complexity

analysis of the index calculus method.

First, the complexity of computing the (m + 1)th summation polynomial is 2t1 , where

t1 ≈ m(m + 1). By the above assumption, the degree of regularity dred ≈ m2 + 1. Using

dedicated block Gröbner basis algorithms, the complexity to solve this system is O((n′)ω(m
2+1)),

where ω is the linear algebra constant. The probability that a point Ri := aiP + biQ can be

written as a sum of m points in the factor basis is about 1/m!. We require around 2n
′

such

relations, and thus we need to solve about 2n
′
m! summation polynomials. The total complexity

for the sieving step of the index calculus method is 2t2 , where t2 = logm!+n′+(m2 +1)ω log n′.

Finally, the linear algebra step has the complexity of 2t3 , where t3 ≈ logm + log n + ω′n′ and

ω′ is the sparse linear algebra constant. Therefore, the total time is T := 2t1 + 2t2 + 2t3 .

For 1/2 ≤ α ≤ 1, put m = n1−α and n′ = nα. We obtain t1 ≈ n2(1−α), t2 ≈ (1− α)n1−α +

nα + ωα(n2(1−α) + 1) log n, t3 ≈ (2 − α) log n + ω′nα. Taking α := 2/3, which minimizes the

total complexity, we eventually obtain a total complexity of O(2cn
2/3 logn), where c := 2ω/3 and

ω is the linear algebra constant.

Remark 4.3.4. It seems that Assumption(4.3.3) is questionable. Recently, Ming-Deh A.

Huang, Michiel Kosters and Sze Ling Yeo raised doubt on this assumption in [26, Section5.2].

They gave some experiment results to show their query on this assumption.



5. ON THE LAST FALL DEGREE OF

ZERO-DIMENSIONAL WEIL DESCENT SYSTEMS

This chapter is a joint work with Ming-Deh A. Huang, Michiel Kosters and Sze Ling Yeo [25].

In this chapter, we give a method for solving zero-dimensional polynomial systems.

5.1 Last fall degree

In this section we define a new concept named last fall degree. It is related to a polynomial

system. This notion is a parameter for the complexity of solving the polynomial system, and is

independent of any monomial order. Later, we will use this notion to study the complexity of

Weil descent systems.

Let k be a field and let R = k[X0, . . . , Xm−1] be a polynomial ring. Note that the affine

group Affm(k) = km o GLm(k) acts on R by affine change of variables, more precisely, let

A = (v,A1) ∈ Affm(k) with v ∈ km and A1 ∈ GLm(k) and f ∈ R,then the action of A on f is

defined as follows:

Af(X) := f(A1X + v)

where X = (X0, ..., Xm−1)
t is the column vector for variables. This action preserves the total

degree.

Here we fix some notations used throughout this chapter. The set of polynomials of degree

≤ i in R is denoted by R≤i.
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Let F be a finite subset of R and let I ⊆ R be the ideal generated by F . We set deg(F) =

max{deg(f) : f ∈ F}. Furthermore, we set degXi(F) = max{degXi(f) : f ∈ F} for i ∈

{0, ...,m− 1}.

5.1.1 Constructible polynomials

Definition 5.1.1. For i ∈ Z≥0, we let VF ,i be the smallest k-vector subspace of R satisfying

the following two conditions:

(i) F ∩R≤i = {f ∈ F : deg(f) ≤ i} ⊆ VF ,i;

(ii) hg ∈ VF ,i, for all g ∈ VF ,i and h ∈ R with deg(hg) ≤ i.

We set VF ,∞ = I and VF ,−1 = ∅.

If F is fixed, we just use Vi for abbreviation of VF ,i. Intuitively, Vi is the largest subset of

I which can be constructed from F by doing operations of degree at most i. Note that Vi is a

finite-dimensional k-vector space with dimension satisfying:

dimk(Vi) ≤ dimk R≤i =

(
m+ i

i

)
≤ (m+ i)i.

Notice that for any f ∈ I, there is an i ∈ Z≥0 such that f ∈ Vi. Phrased differently, we have

I = V∞ =
⋃
i∈Z≥0

Vi.

Definition 5.1.2. For g, h ∈ R and i ∈ Z≥0 t {∞}. We write g ≡F ,i h if g − h ∈ VF ,i. If F is

fixed, we often write g ≡i h. We write g ≡ h if g ≡∞ h, which means g − h ∈ I.

Proposition 5.1.3. Let F ,G ⊂ R be finite subsets, i ∈ Z≥0, A ∈ Affm(k) and k′/k a field

extension. Then the following hold:

(i) VF ,i can be constructed in a number of field operations which is polynomial in (m+ i)i and

in the cardinality of F .
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(ii) if F ⊆ G, then VF ,i ⊆ VG,i;

(iii) if Spank(F) = Spank(G) and i ≥ deg(F), then VF ,i = VG,i;

(iv) one has AVF ,i = VAF ,i, where AF = {Af : f ∈ F};

(v) one has VF ,i ⊗k k′ = V{f⊗k1: f∈F},i ⊂ k
′[X0, . . . , Xm−1].

Proof. i: One can construct the VF ,i using linear algebra as follows. Fix a graded order on R.

Construct a matrix for F ∩R≤i using the method in 3.1.2. Then put this matrix in reduced row

echelon form and remove the 0 rows. Then we do the following step. For every row, multiply

the corresponding polynomial g by all monomials t with deg(tg) ≤ i and add a new row to the

matrix corresponding to tg. After doing this, do Gaussian elimination on the new matrix to

reduced row echelon form and remove 0 rows. If the number of rows increased in this step, then

repeat the step. If not, the process is finished and one has computed a basis of VF ,i. Since the

computations all occur in R≤i, a finite dimensional space of dimension bounded by (m + i)i,

one obtains the complexity result.

ii,v: Follows directly from the definitions.

iii: Spank(F) = Spank(G) implies that deg(F) = deg(G). For i ≥ deg(F), we have VG,i ⊇

G ∩R≤i = G, and hence

VG,i ⊇ Spank(G) = Spank(F) ⊇ F .

From the definitions of VG,i and VF ,i , we have

VG,i ⊇ VF ,i.

Similarly, we have

VF ,i ⊇ VG,i.

Thus

VF ,i = VG,i.
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iv: By the definition of VF ,i and the action of Affm(k), we find that AVF ,i is a k-vector

subspace of R. For any element g = Ag1 ∈ AVF ,i with g1 ∈ VF ,i and h ∈ R such that

deg(hg) ≤ i, let h1 = A−1h ∈ R. Notice that the action of Affm(k) respects degrees, then we

have

deg(h1g1) = deg(h1) + deg(g1) = deg(h) + deg(g) = deg(hg) ≤ i

hence h1g1 ∈ VF ,i and

hg = Ah1 ·Ag1 = A(h1g1) ∈ AVF ,i

Also we have

AVF ,i ⊇ A(F ∩R≤i) = AF ∩R≤i.

So we have proven that AVF ,i is a k-vector subspace of R satisfies the following two:

1. AF ∩R≤i ⊆ AVF ,i;

2. if g ∈ AVF ,i and if h ∈ R with deg(hg) ≤ i, then hg ∈ AVF ,i.

By the definition of VAF ,i, we have

AVF ,i ⊇ VAF ,i.

Similarly, one has

A−1VAF ,i ⊇ VF ,i.

Apply the action of A to both sides of the above, we have

VAF ,i ⊇ AVF ,i.
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Thus finally we have VAF ,i = AVF ,i.

Remark 5.1.4. Let f1, f2, g1, g2 ∈ R. Assume f1 ≡i f2, g1 ≡j g2. Assume that deg(f1) ≤ i

and deg(g2) ≤ j. Then one has

f1g1 − f2g2 = f1(g1 − g2) + g2(f1 − f2) ∈ Vi+j .

Hence we have f1g1 ≡i+j f2g2.

Let F ⊆ R be a finite subset generating a nonzero ideal I. Let ≤ be a graded order on R.

We set

dF ,≤ = min{i : (LT(v) : v ∈ VF ,i) = LT(I)}.

Equivalently, it is the minimal i such that VF ,i contains a Gröbner basis for I with respect to

≤. Any algorithm which tries to compute a Gröbner basis has to do computations up to this

degree. One particular order is the so-called degree reverse lexicographic order ≤revlex. One calls

dF ,≤revlex
the degree of regularity of F (in literature, there are many different definitions, but in

this chapter we will choose this one). This definition of degree of regularity ≤revlex is bounded

up by another definition of degree of regularity dreg which is introduced in section(3.1.4)(for

detail see remark(5.1.10) below).

5.1.2 Last fall degree

We now define the last fall degree.

Definition 5.1.5. Let F be a finite subset of R and let I be the ideal generated by F . We

define the last fall degree of F to be the minimal d ∈ Z≥0 t{∞} such that for all f ∈ I we have

f ∈ Vmax{d,deg(f)} and denote it by dF .

Note that the above definition implies that for i ≥ dF , one has VF ,i = I ∩R≤i.
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Proposition 5.1.6. Let F ,G ⊂ R be finite subsets which generate ideals I respectively J . Let

A ∈ Affm(k) and k′/k be a field extension. The following hold, where ≤ is any graded monomial

order.

(i) One has: dF ∈ Z≥0.

(ii) One has dF ≤ dF ,≤.

(iii) One has: dF is the largest c ∈ Z≥0 such that Vc ∩R≤c−1 6= Vc−1.

(iv) If Spank(F) = Spank(G), then one has max(dF , deg(F)) = max(dG ,deg(F)).

(v) One has: dF = dAF .

(vi) Consider the set {f ⊗ 1 : f ∈ F} ⊂ k′[X0, . . . , Xm−1]. One has: d{f⊗1: f∈F} = dF .

(vii) If I = J and F ⊆ G, then one has dG ≤ dF .

(viii) If g ∈ VF ,j, then one has dF ≤ max(j, dF∪{g}).

Proof. i, ii: i follows directly from ii. Assume that c is such that VF ,c contains a Gröbner basis

B with respect to ≤. We need to show dF ≤ c. Take f ∈ I and write f =
∑

b∈B abb with

deg(abb) ≤ deg(f) for b ∈ B. This is possible because B is a Gröbner basis for a graded order.

Let i = max(c,deg(f)),note that we have the following:

B ⊆ VF ,c ⊆ VF ,i,

thus deg(abb) ∈ VF ,i, and hence one finds f ∈ Vmax(c,deg(f)), thus dF ≤ c.

iii: Let c be as in the property, let f ∈ Vc ∩ R≤c−1 and f /∈ Vc−1. Then deg(f) ≤ c − 1.

Suppose dF ≤ c− 1, then max(dF ,deg(f)) ≤ c− 1. By definition of last fall degree, we have

f ∈ Vmax(dF ,deg(f)) ⊆ Vc−1
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this contradicts to f /∈ Vc−1, thus we must have dF ≥ c.

Again by definition of last fall degree, there exists g ∈ I such that g /∈ Vmax(dF−1,deg(g)).

Suppose deg(g) ≥ dF , then we have

g ∈ Vmax(dF ,deg(g)) = Vdeg(g) = Vmax(dF−1,deg(g)),

this contradicts to g /∈ Vmax(dF−1,deg(g)), thus we must have deg(g) ≤ dF −1. Therefore we have

g ∈ I ∩R≤dF−1

and

g /∈ Vmax(dF−1,deg(g)) = VdF−1

So one finds

VdF ∩R≤dF−1 = I ∩R≤dF−1 6= VdF−1.

iv: Spank(F) = Spank(G) implies that deg(F) = deg(G) and 〈F〉 = 〈G〉. We have the

following two cases.

1. If dF > deg(F), by (iii) we have f ∈ VF ,dF and f /∈ VF ,dF−1, so deg(f) ≤ dF − 1. From

Proposition 5.1.3(iii), we have

VF ,dF−1 = VG,dF−1 (5.1)

By definition, we have

f ∈ VG,max(dG ,deg(f)) (5.2)
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Suppose dG ≤ dF − 1,then max(dG ,deg(f)) ≤ dF − 1, thus by 5.2 and 5.1 we have

f ∈ VG,dF−1 = VF ,dF−1,

this contradicts to f /∈ VF ,dF−1. Thus we must have dG ≥ dF > deg(F) = deg(G).

Now start from dG > deg(G) we get, we can prove that dF ≥ dG similarly as above, thus

we obtain dF = dG and max(dF , deg(F)) = max(dG , deg(F)) as required.

2. If dF ≤ deg(F), suppose dG > deg(F) = deg(G), from the above, we can deduce that

dF ≥ dG > deg(F), contradiction. Thus we obtain dG ≤ deg(F). So max(dF , deg(F)) =

max(dG , deg(F)).

v: One easily finds 〈AF〉 = A〈F〉. Now for any f ∈ 〈AF〉, we can write f = Af1 for

f1 ∈ 〈F〉 = I. By definition, we have

f1 ∈ VF ,max(dF ,deg(f1)) (5.3)

Note that the action of Affm(k) respects degrees and from Proposition 5.1.3(iv) and 5.3, we

have

f = Af1 ∈ AVF ,max(dF ,deg(f1)) = VAF ,max(dF ,deg(f1)) = VAF ,max(dF ,deg(f))

Thus by definition of last fall degree, we have

dAF ≤ dF ,

Similarly,

dA−1(AF) ≤ dAF ,
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thus dAF = dF .

vi: Follows directly from the definitions.

vii: For any f ∈ J = I, by definition we have

f ∈ VF ,max(dF ,deg(f)).

From F ⊆ G and Proposition 5.1.3(ii), one has

f ∈ VG,max(dF ,deg(f)).

Thus dG ≤ dF by definition.

viii: For i ≥ j, since g ∈ VF ,j ⊆ VF ,i, we have

(F ∪ {g}) ∩R≤i ⊆ VF ,i.

Thus VF∪{g},i ⊆ VF ,i. And we have VF ,i ⊆ VF∪{g},i by Proposition 5.1.3(ii). Therefore one has

VF∪{g},i = VF ,i.

It is easy to see that 〈F〉 = 〈F ∪ {g}〉 as g ∈ VF ,j . For any f ∈ I = 〈F〉 = 〈F ∪ {g}〉, we

have

f ∈ VF∪{g},max(dF∪{g},deg(f)) ⊆ VF∪{g},max(max(j,dF∪{g}),deg(f)) = VF ,max(max(j,dF∪{g}),deg(f))

(5.4)

note the equality in 5.4 we used max(max(j, dF∪{g}), deg(f)) ≥ j and VF∪{g},i = VF ,i for i ≥ j.

Thus it follows dF ≤ max(j, dF∪{g}).

Property ii in combination with iii gives a method (using a monomial order and a Gröbner

basis computation) to compute the last fall degree. It would be of great importance to find a
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method which does not use a monomial order and which does not use a Gröbner basis compu-

tation.

Remark 5.1.7. Let F be a finite subset of R. It is in general not true that VF ,dF generates

the same ideal as F . For example, if m = 1 and F = {f} with f not constant, then one has

dF = 0, whereas VF ,0 does not generate (f).

Proposition 5.1.8. Let I ⊆ R be a zero-dimensional ideal. Let ≤ be a graded monomial order.

Let B be the reduced Gröbner basis of I with respect to ≤. Then one has deg(B) ≤ dimk(R/I).

Proof. Let B be the reduced Gröbner basis of I. Let Xa1
1 Xa2

2 · · ·Xam
m be the leading term of

b ∈ B. Note that the set

{Xb1
1 X

b2
2 · · ·X

bm
m : 0 ≤ bi ≤ ai, not all bi = ai}

is independent in R/I over k, because B is the reduced Gröbner basis. This set has cardinality

(a1 + 1) · · · (am + 1)− 1. Hence we find

a1 + a2 + . . .+ am ≤ (a1 + 1)(a2 + 1) · · · (am + 1)− 1 ≤ dimk(R/I).

The result follows.

Corollary 5.1.9. Let F ⊂ R be finite subset which generates a zero-dimensional ideal I. Let

≤ be any graded monomial order on R. Then one has:

dF ≤ dF ,≤ ≤ max{dF , dimk(R/I)}.

Proof. One has dF ≤ dF ,≤ by Proposition 5.1.6. Let B be the reduced Gröbner basis of I

with respect to ≤. By Proposition 5.1.8 one has B ⊆ Vmax{dF ,dimk(R/I)}. We conclude dF ,≤ ≤

max{dF , dimk(R/I)}.
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Remark 5.1.10. For another definition of degree of regularity dreg which is introduced in

section(3.1.4), we have dreg ≥ dF ,≤revlex
. By the definition of dreg, all polynomials are contained

in VF ,dreg in each loop of F4 or F5 algorithm and hence the Gröbner basis are also contained in

VF ,dreg . Thus we have dreg ≥ dF ,≤revlex
by the definition of dF ,≤revlex

. By the above corollary, we

have dF ≤ dreg, i.e., the last fall degree dF is upper bounded by the degree of regularity dreg.

Remark 5.1.11. We call an ideal I ⊆ R radical if R/I has no nilpotent elements. Assume

that I is a radical ideal. Then dimk(R/I) is equal to the number of solutions of I over k. We

give a brief sketch. Note that R/I is reduced, since I is radical. Set S = R/I⊗k k. Note that S

is still reduced. Since S is a reduced Artinian ring and by the Nullstellensatz, it is isomorphic

to k
e

where e is the number of solutions of I over k. One has dimk(R/I) = dimk(S) = e.

5.1.3 Solving systems

We will now discuss how one can solve a multivariate zero-dimensional system once the last fall

degree is known.

Proposition 5.1.12. [26] Let k be a field. Assume that one can factor polynomials of degree at

most t using a number of field equations which is polynomial in g(t) where g is some function.

Let F ⊂ R be a finite set. Assume that the ideal I generated by F is radical and that the system

has at most e solutions over k. Set d = max(dF , e). Then one can find all solutions of I in k

in a number of field operations which is polynomial in the cardinality of F , g(d) and (m+ d)d.

Proof. Compute Vd with a number of field operations polynomial in the input size of F and

(m+ d)d (Proposition 5.1.3i). We will work in Vd to find all the solutions.

Assume that all solutions over k of the system are

Z(F) = {(a0,0, . . . , a0,m−1), . . . , (at,0, . . . , at,m−1)} ⊂ k
m
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with t < e. Since I is a radical ideal, by the Nullstellensatz and Galois theory, one has

h0 =
∏

a∈{ai,0:i=0,...,t}

(X0 − a) ∈ I.

Using linear algebra, and the definition of the last fall degree, one can find h0 as the nonzero

polynomial of minimal degree d0 in Vd ∩ Spank{1, X0, . . . , X
e
0}. Factor h0 with a number of

operations polynomial in g(t). Assume that a0 is a root of h0 in k. We will find all solutions

over k with X0 = a0. Set h′0 = h0/(X0−a0) of degree d0− 1. By the Nullstellensatz and Galois

theory, one has

h1 = h′0
∏

a∈{ai,1:i=0,...,t,ai,0=a0}

(X1 − a) ∈ I.

Using linear algebra, one finds h1 as the polynomial of minimal degree d1 in

Vd ∩ Spank{h′0, X1h
′
0, . . . , X

e−d0+1
1 h′0}. Factor h1/h

′
0 over k. Pick a solution a1 over k and

find all solutions with X0 = a0, X1 = a1 using the similar recursive procedure. Hence one can

find all solutions over k with the claimed number of field operations.

If k is a finite field of cardinality q, one can factor a polynomial of degree bounded by t with

operations polynomial in max(log(q), t) in a probabilistic way and max(q, t) in a deterministic

way [50].

Remark 5.1.13. Note that as input of Proposition 5.1.12 we need an upper bound on dimk(R/I)

and dF . One can bound dF from computing a Gröbner basis first, but this defies the purpose

of using this approach. If I is radical, then dimk(R/I) is equal to the number of solutions of

the system over k (Remark 5.1.11).

In practice one can often construct the VF ,i until one finds monovariate polynomials and

then eliminate variables. In that case, one does not need the bound on d, although one then

does not know when the procedure terminates. The latter is the approach of MutantXL.
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5.1.4 Comparison

In this subsection we will compare the above approach of solving a system F which generates

a zero-dimensional ideal I. Set e = dimk(R/I).

Let us first discuss the relation between our method for solving polynomial systems and

algorithms such as XL and MutantXL. To emulate the MutantXL algorithm (see for example [7])

one computes V0, V1, V2, . . . , Vi until one produces a monovariate polynomial, which is bound

to happen for Vi with i = max(dF , e). Once this monovariate polynomial has been found, one

can factor it and solve various systems where the given variable is evaluated at a zero of the

monovariate polynomial. Hence one reduces to solving similar systems with less variables. This

MutantXL algorithm is an extension of the more classical XL algorithm, as in [9]. The XL

algorithm is very similar, but one does not ‘use relations which cause the degree to fall’. The

method we have described has two advantages over the descriptions of MutantXL in literature.

First of all, our formulation of MutantXL involving the Vi is much cleaner than what one finds

in literature. Second, it shows that in many cases the substitution is not needed: one often

finds monovariate polynomials in the same step and one can proceed as in Proposition 5.1.12.

Other algorithms for solving such a polynomial system apply the following strategy. One

first computes a Gröbner basis for a monomial order ≤ of our choice. Then one uses the efficient

FGLM algorithm [18] to compute a Gröbner basis for the lexicographic order. Once one has

a Gröbner basis for a lexicographic order, one can easily solve the system. To achieve this

efficiently, one needs to pick a good monomial order ≤ and a good algorithm for computing

a Gröbner basis. We emulate the computation of a Gröbner basis as follows: one computes

the V0, V1, V2, . . . , Vi until Vi contains a Gröbner basis with respect to ≤. Algorithms such

as F4 or F5 [15, 16] very efficiently construct the various Vi , by creating for example sparse

polynomials, and creating not too many new polynomials. Hence in practice one can solve much

bigger systems than with naive implementations, but theoretically such algorithms should not

be that much faster (they should have essentially the same complexity). The other question is
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which monomial order ≤ one should pick. If there is a Gröbner basis B of degree d, then one

has B ⊆ Vmax{dF ,d} by definition (and it seems unlikely to happen earlier). Hence we need to

find an order such that there is a guaranteed Gröbner basis of a low degree. In practice one

usually picks ≤revlex, because a Gröbner basis of low degree exists, much smaller than the one

for the lexicographic order (see [33]).

Which of the two methods is better? The complexity of the first method relies on max{dF , dimk(R/I)},

whereas the complexity of the second method essentially relies on dF ,≤ (or dF ,≤revlex
when

the degree reverse lexicographic order is chosen). Note that by Proposition 5.1.9 one has

dF ,≤ ≤ max{dF , dimk(R/I)}. Based on this, we conclude that it is general better to use a

Gröbner basis algorithm than a MutantXL algorithm. If dimk(R/I) is smaller than dF (say if a

system is radical and has a unique solution over an algebraic closure), it seems that both meth-

ods have essentially the same complexity. Hence in general it seems better to use a Gröbner basis

algorithm in all situations. Similar results have also been obtained in for example [2], where it

is shown that MutantXL algorithms are versions of F4 and F5 algorithms with redundancies.

So why would one be interested in looking at the last fall degree dF? Firstly, dF does not

rely on any monomial order. Picking a monomial introduces asymmetry and it makes it hard

to prove certain theoretical complexity statements. In this chapter, we come across one such

situation. We start with a polynomial system F and then apply Weil descent to this system to

obtain a system F ′ in a different polynomial ring. It is not even clear how one should relate

monomial orders between the two polynomial rings, hence it seems to be hard to compare the

various dF ,≤ and dF ′,≤′ . It seems more natural to compare their last fall degrees. We manage

to compare both last fall degrees without the use of any heuristics (Theorem 1.1.1). One other

advantage of the last fall degree is that it behaves well with respect to various operations

(Proposition 5.1.6).
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First fall degree

It is often hard to estimate the degree of regularity dF ,≤revlex
of a system. Hence one uses

heuristical methods to find bounds. In heuristics, one often says that dF ,≤revlex
is close to the

first c such that Vc∩R≤c−1 6= Vc−1. This c is called the first fall degree of the system. Actually,

most articles, such as [39], use a slightly different definition of the first fall degree. They say

that the first fall degree dF ,f is the first d ≥ deg(F) such that there exists gf ∈ R for f ∈ F

such that d = maxf∈F (deg(gff)) and deg(
∑

f∈F gff) < d and
∑

f∈F gff 6= 0. By definition we

have dF ,f ≤ dF if dF ≥ deg(F) and dF > 0. The idea behind this heuristic is that once a degree

fall occurs, many more must occur and the system will sort of ‘collapse’. Proposition 5.1.6iv

shows that the last fall degree is the last c such that Vc∩R≤c−1 6= Vc−1 and as described above,

this last fall degree captures the complexity of a polynomial system quite nicely. It is quite

easy, with the help of combinatorics, to find an upper bound on the first fall degree. However,

it seems to be much harder to directly bound the last fall degree. Quite often combinatorics

gives a first fall degree which does not depend on the number of variables, which seem to be

too optimistic for a degree of regularity in a non zero-dimensional system. See Section 5.5 for

more discussions.

We hope that the framework with the last fall degree allows one to prove complexity state-

ments of solving certain systems in a rigorous way.

5.2 Weil descent

Let q be a prime power. Let n ∈ Z≥1 and let k be a finite field of cardinality qn. Let k′ be the

subfield of k of cardinality q. In this section, we introduce two Weil descent transforms for a

finite subset of R = k[X0, . . . , Xm−1].

Let F ⊂ R be a finite set of polynomials. Suppose we want to find the common zeros of
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these polynomials in k. Let I be the ideal generated by

Ff = F ∪ {Xqn

i −Xi : i = 0, . . . ,m− 1}.

We want to find the zeros of Ff .

5.2.1 Weil descent

Let α0, . . . , αn−1 be a basis of k/k′. Write Xi =
∑n−1

j=0 αjXij . For f ∈ F and j = 0, . . . , n− 1,

we define [f ]k ∈ R′ = k′[Xij , i = 0, . . . ,m− 1, j = 0, . . . , n− 1] with degXij ([f ]k) ≤ q − 1 by

f

n−1∑
j=0

αjX0j , . . . ,
n−1∑
j=0

αjXm−1 j

 ≡ n−1∑
j=0

[f ]jαj (mod Xq
ij −Xij , i = 0, . . . ,

m− 1, j = 0, . . . , n− 1).

The system

F ′ = {[f ]j : f ∈ F , j = 0, . . . , n− 1}

is called the Weil descent system of F with respect to α0, . . . , αn−1. There is a bijection between

the solutions over k (or k) of Ff and the solutions over k′ (or k) of

F ′f = F ′ ∪ {Xq
ij −Xij : i = 0, . . . ,m− 1, j = 0, . . . , n− 1}.

Note that the ideals generated by Ff and F ′f are radical ideals.

An interesting choice for the αi is a normal basis, that is, a basis with αi = θq
i

for some

θ ∈ k. Such a basis always exists.

Remark 5.2.1. A different choice of αi merely results in a linear change of the variables Xij

and a linear change of the polynomials [f ]i and the field equations Xq
ij − Xij . Indeed, let
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β0, . . . , βn−1 be another basis. Let [f ]′i be the corresponding Weil descent polynomials with

respect to this new basis. We can write βi =
∑n−1

j=0 cijαj and αi =
∑n−1

j=0 dijβj with cij , dij ∈ k.

Let C = (cij)i,j be the corresponding matrix. One has:

f(

n−1∑
j=0

βjX0j , . . . ,

n−1∑
j=0

βjXm−1 j) = f(

n−1∑
k=0

αk

n−1∑
j=0

cjkX0j , . . . ,

n−1∑
k=0

αk

n−1∑
j=0

cjkXm−1 j)

≡
n−1∑
i=0

diag(C, . . . , C)[f ]iαi

=
n−1∑
j=0

(
n−1∑
i=0

dijdiag(C, . . . , C)[f ]i

)
βj

≡
n−1∑
j=0

[f ]′jβj .

In the first ≡ we used that diag(C, . . . , C) acts on (Xq
ij −Xij : i, j). Note that in the last step

we might still need to reduce and we used that. We get a similar expression if we swith the roles

of the two different bases. We first see that deg(F ′) does not depend on the choice of basis.

If d is the last fall degree of F ′f with respect to the αi, and d′ with respect to the βi, we

conclude that deg(F ′) does not depend on the choice of basis and that

max{d,deg(F ′)} = max{d′,deg(F ′)}.

5.2.2 Another model for Weil descent

For practical reasons, we will often work with another model of Weil descent. This model is

defined over k and not over the subfield k′.

Let S = k[Xij : i = 0, . . . ,m − 1, j = 0, . . . , n − 1]. Let e0, . . . , em−1 ∈ Z≥0. Let X
e′i
i

be the remainder of division of Xei
i by Xqn

i − Xi. Write e′i =
∑n−1

j=0 e
′
ijq

j in base q with
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e′ij ∈ {0, 1, . . . , q − 1}. We set

m−1∏
i=0

Xei
i =

m−1∏
i=0

X
e′i0
i0 · · ·X

e′i n−1

i n−1 ∈ S.

We extend this definition k-linearly for all polynomials in R. This gives a map¯: R → S. We

set

F = {f : f ∈ F}

and we set, where by convention Xin = Xi0,

Ff = F ∪ {Xq
ij −Xi j+1 : i = 0, . . . ,m− 1, j = 0, . . . , n− 1}.

We let I be the ideal generated by Ff . Note that I is radical.

There is a bijection between the zero set of I (over k or k) and that of I (over k or k). If

for example Xi = ai ∈ k gives a zero of I, then (Xi0, . . . , Xi n−1) = (ai, a
q
i , . . . , a

qn−1

i ) gives a

zero of I.

In the following, we prove several lemmas which will be used later. We define ≡ and ≡i

with respect to Ff unless stated otherwise.

Lemma 5.2.2. Let h1, h2 ∈ R, g ∈ S.

(i) h1 + h2 ≡max(deg(h1),deg(h2))
h1 + h2;

(ii) h1 · h2 ≡deg(h1)+deg(h2)
h1h2;

(iii) There exists h3 ∈ R with degXi(h3) < qn such that g ≡deg(g) h3.

Proof. i: By definition¯: R → S is a k-linear map, thus we have h1 + h2 = h1 + h2 which is a

stronger result.
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ii: One can first prove the cases that h1 and h2 are monomials(it is easy to check and thus

we omit the proof) and then the general case follows by operation¯is k-linear.

iii: One can prove the case g = Xe00
00 · · ·X

e0 n−1

0 n−1 first and use similar method to prove the

statement is hold when g is a monomial and then the result follows by operation¯is k-linear.

We define a k-algebras homomorphism ϕ : S → R which maps Xij to Xqj

i . This map has

the following properties.

Lemma 5.2.3. Let h ∈ R. The following statements hold:

(i) ϕ(h) ≡ h (mod Xqn

i −Xi, i = 0, . . . ,m− 1);

(ii) h ∈ I if and only if h ∈ I.

Proof. i: A simple computation shows the result holds when h is a monomial, then the general

case holds by the two maps ϕ and¯are k-linear.

ii: Let h ∈ I. Recall I is the ideal generated by

Ff = F ∪ {Xqn

i −Xi : i = 0, . . . ,m− 1}.

Write h =
∑m−1

i=0 bi(X
qn

i −Xi) +
∑

f∈F aff , for some polynomials bi, af ∈ R. Modulo I we find

with Lemma 5.2.2:

h =

m−1∑
i=0

bi(X
qn

i −Xi) +
∑
f∈F

aff ≡
m−1∑
i=0

bi(Xi0 −Xi0) +
∑
f∈F

aff ≡ 0.

Thus h ∈ I as required.

Conversely, let h ∈ I. Write h =
∑m−1

i=0

∑n−1
j=0 cij(X

q
ij − Xi j+1) +

∑
f∈F bff , for some
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polynomials cij , bf ∈ S. By i, we have

ϕ(h) =
m−1∑
i=0

n−1∑
j=0

ϕ(cij)ϕ(Xq
ij −Xi j+1) +

∑
f∈F

ϕ(bf )ϕ(f)

≡
m−1∑
i=0

ϕ(ci n−1)(X
qn

i −Xi) +
∑
f∈F

ϕ(bf )f (mod Xqn

i −Xi, i = 0, . . . , n− 1).

Thus ϕ(h) ∈ I and we conclude h ∈ I by i and the condition h ∈ R.

Degree bounds

Recall the definition of τ . For r ∈ R≥0 and c, t ∈ R≥1 we set

τ(r, c, t) = b2t(c− 1)
(

logc

( r
2t

+ 1
)

+ 1
)
c.

The inequality of arithmetic and geometric means gives for x1, . . . , xt > 0 the following:

log(x1 · x2 · . . . · xt) ≤ t log

(
x1 + x2 + . . .+ xt

t

)
.

Lemma 5.2.4. Let g ∈ R \ {0}. Then one has

deg(g) ≤ τ(deg(g), q,m/2).

Proof. Let g ∈ k[X] \ {0}. Note that for any positive integer b, we can write

b = b0 + b1q + ...+ brq
r,

with r = blogq(b)c. Then one has

deg(g) ≤ (q − 1)
(
logq(deg(g) + 1) + 1

)
.
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Let g ∈ R\{0}. It is enough to prove the result for monomials. Assume that g = Xa0
0 · · ·X

am−1

m−1 .

Then by the first part and the inequality of arithmetic and geometric means, one has

deg(g) ≤
m−1∑
i=0

(q − 1)
(
logq(ai + 1) + 1

)
= (q − 1)

(
logq(

m−1∏
i=0

(ai + 1)) +m

)

≤ m(q − 1)

(
logq(

1

m

m−1∑
i=0

(ai + 1)) + 1

)
= m(q − 1)

(
logq(

deg(g)

m
+ 1) + 1

)
.

Lemma 5.2.5. Let i ∈ Z≥0. Set s = τ(i, q,m). Then one has

VFf ,i ⊆ VFf ,s.

Proof. Assume i > 0. Let f ∈ Ff nonzero with deg(f) ≤ i. Then Lemma 5.2.4 gives

f ∈ VFf ,s. Assume g ∈ VFf ,i, h ∈ R both non constant such that deg(gh) ≤ i. Note that

gh ≡Ff ,deg(g)+deg(h) gh by Lemma 5.2.2ii. Then Lemma 5.2.4 gives, together with the inequali-

ty of arithmetic and geometric means,

deg(gh) = deg(g) + deg(h) ≤ m(q − 1)

(
logq(

deg(g)

m
+ 1) + 1

)
+m(q − 1)

(
logq(

deg(h)

m
+ 1) + 1

)
≤ 2m(q − 1)

(
logq(

i

2m
+ 1) + 1

)
.

The result then follows easily (use Lemma 5.2.2i for the additivity).
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5.3 Last fall degree and descent

5.3.1 Relating the types of Weil descent

Let k be a finite field of cardinality qn and let k′ be the subfield of k of cardinality q. Let F ⊂ R

be a finite subset. We will now compare the systems Ff and F ′f . We imitate a proof from

Granboulan et al. [24, Section 4.2].

Proposition 5.3.1. One has:

max{dF ′f , q,deg(F ′)} ≤ max{dFf , q,deg(F ′)}.

Proof. By Remark 5.2.1 we may assume that the Weil descent is done with respect to a normal

basis {θ, θq, . . . , θqn−1} of k/k′. Set

G = {f, f q, ..., f qn−1 : f ∈ F} ∪ {Xq
ij −Xi j+1 : i = 0, . . . ,m− 1, j = 0, . . . , n− 1}.

Note that we have Ff ⊆ G. Note furthermore that both sets generate the same ideal since

f ql ≡Ff ,∞ f
ql

by Lemma 5.2.2ii. Hence we have dG ≤ dFf (Proposition 5.1.6vi, vii).

Since k/k′ is a separable extension, the matrix (θq
i+j

)n−1i,j=0 is invertible (independence of

characters). Consider the linear change of variables defined by

Yij =

n−1∑
k=0

θq
j+k
Xik.

By convention, we set Yij = Yi j (mod n). We first notice that the field equations of the two
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systems are the same up to a linear change of equations:

Y q
ij − Yi j+1 =

n−1∑
k=0

θq
j+k+1

Xq
ik −

n−1∑
k′=0

θq
j+1+k′

Xik′

=

n−1∑
k=0

θq
j+k+1

(Xq
ik −Xik).

We claim:

f ql(. . . , Yij , . . .) ≡
n−1∑
k=0

θq
k+l

[f ]k (mod Xq
ij −Xij , i = 0, . . . ,m− 1, j = 0, . . . , n− 1).

It is enough to prove the claim for f = c
∏m−1
i=0 Xei

i , since both Weil descent models are additive.

Let X
e′i
i be the remainder of division of Xei

i by Xqn

i −Xi and e′i =
∑n−1

j=0 aijq
j with aij ∈

{0, 1, . . . , q − 1}.

This gives modulo Y q
ij − Yi j+1

f ql(..., Yij , ...) = cq
l
m−1∏
i=0

n−1∏
j=0

Y
aij
i j+l.

Furthermore, modulo Xq
ij −Xij , we have

f q
l
(. . . ,

n−1∑
k=0

θq
k
Xik, . . .) = cq

l
m−1∏
i=0

(

n−1∑
k=0

θq
k
Xik)

qlei ≡ cql
m−1∏
i=0

(
n−1∑
k=0

θq
k
Xik)

qle′i

= cq
l
m−1∏
i=0

(

n−1∑
k=0

θq
k
Xik)

ql
∑n−1
j=0 aijq

j

≡ cq
l
m−1∏
i=0

n−1∏
j=0

(

n−1∑
k=0

θq
k+l+j

Xik)
aij .

Thus we get the following equation from the above two identities modulo Xq
ij − Xij , since
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[f ]qk ≡ [f ]k:

f ql(. . . , Yij , . . .) ≡ f q
l
(. . . ,

n−1∑
k=0

θq
k
Xik, . . .) ≡

(
n−1∑
k=0

θq
k
[f ]k

)ql
≡

n−1∑
k=0

θq
k+l

[f ]k.

In other words, there exist polynomials h
(l)
ij ∈ S, such that

f ql(. . . , Yij , . . .) =
n−1∑
k=0

θq
k+l

[f ]k +
∑
i,j

h
(l)
ij (Xq

ij −Xij).

One has deg(f ql) = deg(f) = maxk(deg([f ]k)) by [28, Proposition 3.2]. Since {Xq
ij −Xij : i =

0, . . . ,m− 1, j = 0, . . . , n− 1} forms a Gröbner basis for any graded order, we may assume that

deg(h
(l)
ij (Xq

ij −Xij)) ≤ deg(f ql).

Hence we have shown that the systems G and F ′f can be obtained from each other through

an invertible linear change of variables and a change of polynomials. From Proposition 5.1.6iv,v

we conclude

max{dF ′f , q,deg(F ′)} = max{dG , q,deg(F ′)} ≤ max{dFf , q,deg(F ′)}.

5.3.2 GCD computations

Let q be a prime power and let k be a finite field of cardinality qn. Let F ⊂ k[X] be a finite

set (hence we set m = 1). Consider the Weil descent system Ff introduced in 5.2.2. Define ≡j

and Vj with respect to Ff . For e ∈ Z≥0, write e =
∑

i aiq
i in base q with ai ∈ {0, 1, ..., q − 1},

we set w(e) =
∑

i ai. For f =
∑

i biX
i 6= 0, we set w(f) = max(w(i) : bi 6= 0). Note that

w(f) ≥ deg(f), with equality if deg(f) < qn.

We start with a technical lemma, which is one of the main ingredients in the proof of the
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main theorem.

Lemma 5.3.2. [26] Let h2 ∈ k[X] nonzero of degree d. Set u = τ(2d, q, 1). Assume h2 ≡u 0.

Let h1 ∈ k[X]. Let h3 be the remainder of division of h1 by h2. Then one has h1 ≡max{u,w(h1)}

h3.

Proof. If d = 0, the result follows by definition. Now we assume d > 0.

Write h2 =
∑d

i=0 biX
i where bd 6= 0. It suffices to prove the result for h1 = Xe as taking

remainders is additive. Let re denote the remainder of division of Xe by h2. For g ∈ k[X] with

deg(g) ≤ d, one has deg(g) ≤ τ(d, q, 1/2) by lemma 5.2.4. Furthermore, we have τ(d, q, 1/2) ≤

u/2 by a simple computation. In particular, we have deg(re) ≤ u/2.

We will prove the following statements successively:

(i) for e ∈ {0, 1, . . . , qd− 1}, we have Xe ≡u re;

(ii) if e, e′ satisfy w(e) + w(e′) ≤ u, Xe ≡u re and Xe′ ≡u re′ , then Xe+e′ ≡u re+e′ ;

(iii) for e with w(e) ≤ u, we have Xe ≡u re;

(iv) one has Xe ≡max{u,w(e)} re.

i: For e = 0, . . . , d − 1, the remainder is Xe itself and the result follows. One has rd =

−1
bd

∑d−1
i=0 biX

i and thus the condition h2 ≡u 0 implies Xd ≡u rd. We continue by induction.

Assume the statement holds for cases smaller than e and that e ≤ qd − 1. In the following we

prove the statement for e. Write re−1 =
∑d−1

j=0 cjX
j . Note that re is the remainder of division

of Xre−1 by h2, which gives re =
∑d−1

j=0 cjrj+1. Note that e− 1 ≤ qd− 2 = qlogq(d)+1− 2. Write

e− 1 = a0 + a1q+ ...+ asq
s with ai ∈ {0, 1, . . . , q− 1} and thus s = blogq(e− 1)c < 1 + logq(d).

We have the following two cases:

1. if all ai = q− 1, i.e e− 1 = qs+1− 1 ≤ qd− 2, this gives s+ 1 ≤ logq(qd− 1) < 1 + logq(d)

and thus deg(Xe−1) = (q − 1)(s+ 1) < (q − 1)(1 + logq(d)) ≤ (q − 1)(2 + logq(d))− 1.
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2. if some ai 6= q−1, then deg(Xe−1) ≤ a0+...+as ≤ (q−1)(s+1)−1 < (q−1)(2+logq(d))−1.

Thus we have proven deg(Xe−1) ≤ b(q − 1)
(
logq(d) + 2

)
− 1c.

So we have

deg(X) + deg(Xe−1) ≤ 1 + b(q − 1)
(
logq(d) + 2

)
− 1c = b(q − 1)

(
logq(d) + 2

)
c ≤ u.

Using Lemma 5.2.2 and the induction hypothesis, we find

Xe ≡u X ·Xe−1 ≡u X · re−1 ≡u
d−1∑
j=0

cjXj+1 ≡u
d−1∑
j=0

cjrj+1,

and this gives the required remainder.

ii: Without loss of generality assume that w(e′) ≤ u/2. Then one has u ≥ max(w(e) +

w(e′), deg(re) + w(e′),deg(re) + deg(re′)) and one has deg(rere′) ≤ 2d − 2 ≤ qd − 1. Lemma

5.2.2 and i give

Xe+e′ ≡u Xe ·Xe′ ≡u re ·Xe′ ≡u re · re′ ≡u rere′ ≡u re+e′ .

Note that re+e′ is the remainder of rere′ divided by h2 and thus the last ≡u in the above

equation follows by i.

iii: Using ii and induction, we easily reduce to the case where e = qi. Note that qi = q · qi−1

and that u ≥ q. We can then apply ii and the proof follows by induction.

iv: We prove this statement by induction on w(e) > u. Write e = e1 + e2 with u ≤ w(e1) <

w(e), and w(e1) + w(e2) = w(e). One has (Lemma 5.2.2 and iii)

Xe ≡max{u,w(e)} Xe1 ·Xe2 ≡max{u,w(e)} re1 ·Xe2

≡max{u,w(e)} re1 · re2 ≡max{u,w(e)} re.
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The above lemma allows us to use the Euclidean algorithm to compute a gcd.

Proposition 5.3.3. [26] Assume F = {f} with f nonzero. Set u = τ(2 deg(f), q, 1) and set

g = gcd(f,Xqn −X). We have: g ∈ Vu.

Proof. Let f1 be the remainder of division of Xqn −X by f . One has f ≡u 0. By Lemma 5.3.2,

we have f1 ≡u 0 . Let f2 be the remainder of division of f by f1. Similarly, we find f2 ≡u 0.

Hence we can follow the Euclidean algorithm and we obtain g ∈ Vu.

5.3.3 Last fall degree of Weil descent systems

For a finite subset F ⊂ R, we denote by Z(F) the set of zeros of F over k. Let k′′ be a field

extension of k. For i = 0, . . . ,m− 1, we write

πi,F ,k′′ =
∏

x∈{xi: ∃(x0,...,xm−1)∈Z(F)∩k′′m}

(Xi − x) ∈ k[Xi].

We write πi,F for πi,F ,k.

We are finally ready to prove the main theorem (Theorem 1.1.1).

Theorem 5.3.4. Let k be a finite field of cardinality qn. Let F ⊂ R be a finite subset. Let I

be the ideal generated by F . Assume that the following hold:

• I is zero-dimensional, say one has |Z(F)| ≤ s;

• I is radical;

• there is a coordinate t such that the projection map Z(F)→ k to coordinate t is injective;

Let F ′f be the Weil descent system of F to the subfield k′ of cardinality q using some basis of

k/k′, together with the field equations (Subsection 5.2.1). Then one has

dF ′f ≤ max (τ(max(dF , deg(F), (m+ 1)s, 1), q,m),m · τ(2s, q, 1), q) .
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Proof. We have dF ′f ≤ max(dFf , q,deg(F ′)) by Proposition 5.3.1.

Without loss of generality, we may assume that t = 0. We can then write

Z(F) = {(a, γ1(a), . . . , γm−1(a)) : a ∈ k, π0,F (a) = 0}

for some γi ∈ k[X0] of degree < s by the Lagrange interpolation formula and by Galois theory.

Indeed, we can just put

γi =
∑

x=(x0,...,xm−1)∈Z(F)

xi
∏

(x′0,...,x
′
m−1)∈Z(F)\{x}

X0 − x′0
x0 − x′0

.

Note that gcd(π0,F , X
qn

0 −X0) = π0,F ,k and one also has

Z(F) ∩ km = {(a, γ1(a), . . . , γm−1(a)) : a ∈ k, π0,F ,k(a) = 0}.

Set r0 = max(dF , s, 1). By definition we have πi,F , Xj − γj ∈ VF ,r0 , since I is radical. Set

r1 = τ(r0, q,m). By Lemma 5.2.5, we have πi,F , Xj − γj ∈ VFf ,r1 . Set r2 = max(r1, τ(2s, q, 1)).

We have π0,F ,k, πj,F , Xj − γj ∈ VFf ,r2 (for j = 1, . . . ,m− 1) by Proposition 5.3.3.

Now consider the system

G = {π0,F ,k, π1,F , . . . , πm−1,F} ∪ {X1 − γ1, . . . , Xm−1 − γm−1}.

We have G ⊆ VFf ,r2 . Let I ′ be the ideal generated by Ff . Note that I ′ is the same as the ideal

generated by G, because both ideals are radical and have the same zero set. We first bound dG .

Let h ∈ I ′. One easily obtains

h ≡G,deg(h) h′

for some h′ ∈ R with degXi(h
′) < s using π0,F ,k and πi,F (i = 1, . . . ,m − 1). Then one can
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replace Xi (i > 0) with γi and do reductions with π0,F ,k to make a polynomial in k[X0] and

conclude

h ≡G,max(deg(h),(m+1)s) 0.

Hence we have dG ≤ (m+ 1)s.

Let h ∈ S. We first claim that there is h1 ∈ R with degXi(h1) < s and

h ≡Ff ,max{deg(h),m·τ(2s,q,1),r2} h1.

We may assume that h is a monomial. By Lemma 5.2.2iii, there is a h3 ∈ R with degXi(h3) < qn

with h ≡Ff ,deg(h) h3. Note that h3 can be chosen to be a monomial, say h3 = Xa0
0 · · ·X

am−1

m−1 .

Set wi = deg(Xai
i ). Without loss of generality, we may assume w0 ≥ w1 ≥ . . . ≥ wm−1. Let j

be maximal such that wj > τ(2s, q, 1). Let gi be the remainder of division of Xai
i by πi,F (and

by π0,F ,k if i = 0). By Lemma 5.3.2 for i = 0, . . . , j we have

Xai
i ≡Gf ,wi gi

and for i = j + 1, . . . ,m− 1 we have

Xai
i ≡Gf ,τ(2s,q,1) gi

We find (Remark 5.1.4)

Xa0
0 · · ·X

aj
j ≡Gf ,w0+...+wj

g0 · · · gj .
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We obtain by Lemma 5.2.2ii and Remark 5.1.4:

h ≡Ff ,deg(h) h3 ≡Ff ,deg(h) X
a0
0 · · ·X

am−1

m−1

≡Ff ,max(deg(h),m·τ(2s,q,1),r2) g0 · · · gj ·X
aj+1

j+1 · · ·X
am−1

m−1

≡Ff ,max(deg(h),m·τ(2s,q,1),r2) g0 · · · gm−1

≡Ff ,max(deg(h),m·τ(2s,q,1),r2) g0 · · · gm−1.

This finishes the proof of the claim.

Let I be the ideal generated by Ff . Assume h ∈ I. By the above there is h1 ∈ R with

degXi(h1) < s and

h ≡Ff ,max(deg(h),m·τ(2s,q,1),r2) h1.

From Lemma 5.2.3 it follows that h1 ∈ I ′. We have h1 ∈ VG,(m+1)s by the above. From Lemma

5.2.5 we have h1 ∈ VGf ,τ((m+1)s,q,m)). Hence we conclude:

h ∈ VFf ,max(deg(h),τ((m+1)s,q,m),m·τ(2s,q,1),r2)

where r2 = max(r1, τ(2s, q, 1)) = max(τ(max(dF , s, 1), q,m), τ(2s, q, 1)). Summarizing, this

gives

h ∈ VFf ,max(deg(h),τ(max((m+1)s,dF ,1),q,m),m·τ(2s,q,1)).

The result then follows.
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5.3.4 Possible improvements of the main theorem

In this subsection, we will discuss how one can improve Theorem 5.3.4. Our main goal is to

obtain a result for which the last fall degree of a Weil descent system does not depend on n.

If one reads the proof carefully, one notices that one can replace (m+ 1)s by m(s− 1)− 1 +

(s− 1) = (m+ 1)(s− 1)− 1 if m > 1. For m = 1, one can prove a much simpler theorem using

mostly Proposition 5.3.3. The result is the following statement.

Theorem 5.3.5. Let k be a finite field of cardinality qn. Assume m = 1. Let F ⊂ R be a

finite subset. Let d ∈ Z≥0 such that there ∃f ∈ F with 0 ≤ deg(f) ≤ d, and such that for all

g ∈ F we have deg(g) ≤ τ(2d, q, 1). Let F ′f be the Weil descent system of F to the subfield k′

of cardinality q using some basis of k/k′, together with the field equations (Subsection 5.2.1).

Then one has

dF ′f ≤ max(τ(2d, q, 1), q).

Proof. (Sketch) As in the proof of Theorem 5.3.4, we work with the system Ff .

Set u = τ(2d, q, 1) and set g = gcd(F ∪ {Xqn −X}). Using Lemma 5.3.2 and Proposition

5.3.3, one can prove g ≡u 0.

Let h ∈ I. By Lemma 5.2.2iii, one has h ≡deg(h) h2 for some h2 ∈ k[X]. Since h2 ∈ I, it

follows from Lemma 5.2.3ii that h2 ∈ I. Hence h2 has remainder 0 when divided by g. From

Lemma 5.3.2, we conclude

h ≡max(deg(h),u) h2 ≡max(deg(h),u) 0.

This finishes the proof.

One can also study the Weil descent of a systemH which consists of F and some polynomials

in one of the variables of weight at most τ(2s, q, 1) (such as linear subspace constraints). One
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can easily generalize as in Theorem 5.3.5 and exactly the same result should hold (the extra

polynomials do not play a role). We did not use this formulation, because it looks a bit more

complex.

We believe that the three conditions in the theorem, I is zero-dimensional, I is radical and

a projection map is injective, can be replaced by the condition dimk(R/I) ≤ s, but we do not

know how to prove this. The following lemma says that if |k| >
(
s
2

)
, that after a linear change

of variables the last condition automatically holds.

Lemma 5.3.6. Let k be a field, n ∈ Z≥0 and let v1, . . . , vr ∈ kn be distinct. Assume that

|k| >
(
r
2

)
. Then there exists a matrix A ∈ GLn(k) such that the first coordinates Av1, . . . , Avr

are pairwise distinct.

Proof. Assume that k is a finite field. Let q = |k|. Let 〈 , 〉 be the standard inner product on

kn. It is equivalent to find y ∈ kn such that 〈y, v1〉, . . . , 〈y, vr〉 are distinct, that is, such that

for i 6= j one has 〈y, vi − vj〉 6= 0. There qn−1 vectors y with 〈y, vi − vj〉 = 0. There are at least

qn −
(
r
2

)
qn−1 vectors which make none of the inner products zero. Hence if qn >

(
r
2

)
qn−1, the

result follows. The proof for an infinite field follows in a similar way.

With our techniques it seems impossible to remove the condition that the system is zero-

dimensional (see also Section 5.5).

5.4 Multi-HFE

In this section we discuss the security of a version of the multi-HFE public key cryptosystem.

Let us first describe the idea of this cryptosystem. The idea of multi-HFE is that it is easy to

solve zero-dimensional systems with few variables, but it becomes harder when the number of

variables increases (the complexity should be exponential in the number of variables). Using

Weil descent, one can construct a system with a lot of variables from a system with only a
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few variables. One can use this construction as a trap door. The idea of HFE (hidden field

equations) was first introduced in [37]. We discuss a version of multi-HFE below.

We pick a public field k of cardinality q and public integers m,n (where m is not too big;

the variant with m = 1 is called simply HFE). We let kn be a field extension of k of degree n.

The message space will be km×n. The private key consists of a zero-dimensional system

F ⊂ kn[X0, . . . , Xm−1]

of at least m + 2 equations. The owner of the private key computes a Weil descent system

{f ′0, . . . , f ′r−1} = F ′ ⊆ k[Xij : i = 0, . . . ,m− 1, j = 0, . . . , n− 1] of F to k (with r > mn) and he

stores the basis chosen for the Weil descent. Furthermore, also part of the private key are an

A ∈ Affnm(k) and B ∈ GLr(k). He then constructs a system F ′′ = {f ′′0 , . . . , f ′′r−1} defined by

[f ′′0 , f
′′
1 , . . . , f

′′
r−1]

T = B[Af ′0, Af
′
1, . . . , Af

′
r−1]

T .

This system F ′′ is made public and is a disguised Weil descent system (here A makes an affine

change of variables, and B makes linear combinations of the equations themselves).

To encrypt a message M ∈ km×n, one computes

M ′ = encr(M) = (f ′′0 (M), f ′′1 (M), . . . , f ′′r−1(M)) ∈ kr.

To decrypt M ′ ∈ kr, one needs to find the usually unique M with M ′ = encr(M). One computes

[m′′0, . . . ,m
′′
r−1]

T = B−1M ′. Consider the system F ′M ′ = {f ′i −m′′i : i = 0, . . . , r− 1}. One easily

finds mf ∈ kn such that F ′M ′ is the Weil descent of FM ′ = {f −mf : f ∈ F}. The latter system

is a system in a small number of variables with a usually unique solution. Hence one should be

able to solve this system efficiently with the private key (with say a Gröbner basis algorithm)

and find the solution M0. One then finds M = A−1M0.
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Without knowing the private keys, one might be tempted to solve

M ′ = (f ′′0 (M), f ′′1 (M), . . . , f ′′r−1(M))

directly, with the restriction that M ∈ km×n. This is a system in m × n variables, which is a

priori very hard to solve, especially when the security parameter n is chosen to be quite large.

One expects that the degree of regularity or last fall degree of such a system, when the system

F ⊂ k[X0, . . . , Xm−1] is fixed or if dF is bounded, grows with n, resulting in a time which is

exponential in n to solve the system.

Our results however, show that if F ⊂ k[X0, . . . , Xm−1] is fixed, and under some mild

restrictions on the system F ′M ′ (which should almost always hold in practice), the last fall

degree of such a system does not depend on n (Theorem 5.3.4). This shows that in most cases,

one can solve such system using Proposition 5.1.12 in a way which depends only in a polynomial

way on n, whereas one expects it to depend on n in say an exponential way. Similarly, with the

help of Proposition 5.1.9, one sees that the degree of regularity of such a system often does not

depend on n.

5.4.1 Comparison

There are various papers in literature regarding the hardness of solving HFE and multi-HFE.

One type of attack on HFE tries to solve the system F ′M ′ , and this was first introduced

in [20]. In this paper it was shown in a practical way that HFE can be cracked easily with

the help of Gröbner basis computations. The maximal degree of the polynomials needed to

solve the system does not seem to depend on n (see [20, Table 3]). This is very similar to our

observation. The authors of [14] obtained heuristical arguments, based on the first fall degree

assumption, which explain why the maximal needed degree does not grow with n. However,

in [29], the authors raise doubt to the first fall degree heuristic. A first attempt to prove, without

heuristics, that one can solve HFE efficiently using Gröbner basis techniques, is [38]. A first
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complete proof of the complexity of solving HFE using the techniques from this chapter, can be

found in [26]. See also Theorem 5.3.5. It is interesting to see that the upper bounds on say the

last fall degree as in Theorem 5.3.5 we have obtained seem to be off by only a small constant

factor (as in [38]).

In literature, one finds another (practical) method which has been used to attack Multi-

HFE systems. See for example [5]. This strategy is different from the one we have described

above, and seems unlikely to apply to our slightly more general setup. Often one restricts

to a polynomial system F such that Weil descent only gives quadratic polynomials. That is,

the only monomials appearing in F are of the form Xqu

i Xqv

j . This makes the Weil descent

system easier and the key space much smaller. One can obtain a private key (multiple keys give

equivalent systems) by solving certain systems, related to the MinRank problem, with Gröbner

basis algorithms. With such a private key, one can easily solve the system. One can solve the

required systems in polynomial time in n, since similar to our results, the degree of regularity of

the systems does not depend on n. In [5] it is also discussed why HFE is safer than Multi-HFE

and they say that choosing m = 1 seems to be optimal for security reasons.

As far as we are aware, our proofs are the first proofs which give complexity bounds for

solving the systems F ′M ′ directly. Also, our systems F ′M ′ are more general than one usually

finds in literature. We show that systems coming from multi-HFE are easier to solve than

expected, that is, the last fall degree and the degree of regularity of F ′M ′ do not depend on n.

However, we expect that our upper bounds are not as close to the true values as in the HFE

case. We have not done any numerical computations to verify this.

5.5 Non zero-dimensional systems

Let k be a finite field of cardinality q and let kn be an extension of k of degree q. Let f ∈ R =

k[X0, . . . , Xm−1] with m ≥ 2. It has been suggested (see for example [39]) that the Weil descent

system of {f} (or in general a polynomial system which need not be zero-dimensional) from kn
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to k, the first fall degree is close to the degree of regularity, the largest degree reached during

Gröbner basis computation. An example of the Weil descent of a single polynomial comes

from one of the approaches to solve the elliptic curve discrete logarithm problem (ECDLP)

using summation polynomials (see for example [11]). In this case the first fall degree does not

depend on n and it is very tempting to adopt the first fall degree assumption as it leads to

heuristically subexponential attack on ECDLP over finite fields of small characteristics. Such

a subexponential algorithm would have a major impact on the security of many protocols.

However more recent works (see for example [29] and [26]) have cast serious doubt on the first

fall degree assumption: the degree of regularity does seem to depend on n.

What we have shown in this chapter is that to a large extent the last fall degree of the Weil

descent system of a zero-dimensional polynomial system is independent of n (Theorem 5.3.4).

This has enabled us to successfully solve HFE and multi-HFE systems with rigorously proven

time complexity, as the underlying polynomial systems are zero-dimensional. Unfortunately,

the system coming from a single multivariate polynomial, without field equations, is not zero-

dimensional and our approach using projection polynomials does not work (Theorem 5.3.4).

The system only becomes zero-dimensional when we add the field equations.

We do think that it is of great interest to study such systems coming from a single multi-

variate polynomial (or systems which are not zero-dimensional). We hope that the method of

this chapter is a step in the right direction.



6. SPECIAL VECTOR SPACES AND APPLICATION

TO BINARY ECDLP

In this chapter, we will consider the ECDLP over the field F = Fq, see also definition 2.2.1,

where q = 2n for some integer n. In Chapter 4, we have reviewed the recent works on solving

ECDLP via the index calculus approach (Section 2.3). As mentioned, one of the main challenges

is to construct a nice factor base that yields an efficient relation search step. Using summation

polynomials, one promising approach in this direction is to consider vector spaces as factor bases

and carry out the relation search by solving summation polynomials with suitable linearized

constraints. Moreover, one common method to solve the latter problem is by means of Weil

descent. However, some challenges remain with this line of approach:

• Find a rigorous way to estimate the complexity of the relation search;

• Is Weil descent the most efficient way to solve the polynomial system arising from the

summation polynomial and the linearized constraints?

• Is the complexity for any vector space similar? In other words, are there vector spaces

that result in more efficient relation search steps as compared to a random vector space?

The main focus of this chapter is to find suitable vector sub-spaces that gives rise to a more

efficient relation search step for the index calculus approach. We recall the relation search step

as: we seek to solve the following problem:
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Problem 6.0.1. Let V be a F2-vector subspace of Fq with dimension n′. Given a point R ∈

E(Fq), find, if any, m points P1, ..., Pm ∈ F , such that R = P1 + ...+ Pm.

We investigate a sub-class of vector spaces with nice characteristic polynomials. Using these

vector spaces, we transform the polynomial system into one with smaller degrees. We provide

complexity bounds for our approach and give conditions such that an efficient index calculus

method will result. Finally, we provide some concrete examples of vector spaces with the nice

properties.

6.1 Solving a multivariate polynomial with vector space constraints

In this section, we describe a method to solve problem(6.0.1) when the F2-vector subspace of

F2n with dimension n′ has some nice properties.

6.1.1 Motivation

For an elliptic curve E defined over F2n and fixed integers m and n′ with mn′ ≈ n, we typically

choose n′ =
⌈
n
m

⌉
in our index calculus approach for optimal results. We consider the summation

polynomial Sm+1(x1, . . . , xm, a), where a = x(R) is the x-coordinate of some point R ∈ E(F2n).

Henceforth, we will simply write f(x1, . . . , xm) to denote Sm+1(x1, . . . , xm, a) throughout this

chapter.

Let V be a vector subspace of Fq over F2 with dimension n′. Let L(x) denote the charac-

teristic polynomial of V :

L(x) :=
∏
v∈V

(x− v).

It is well known that L(x) is a linearized polynomial over Fq, that is,

L(x) =
n′∑
i=0

aix
2i .
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By proposition(2.4.1), to solve problem(6.0.1), it suffices to solve the following polynomial

system:

f(x1, . . . , xm) =0,

L(xi) =0, i = 1, . . . ,m. (6.1)

In other words, we are solving a single multivariate polynomial f(x1, . . . , xm) with the

constraints that L(xi) = 0 for i = 1, 2, . . . ,m.

In order to motivate our method, let us review a special case. Concretely, we consider the

case where n is a composite number and write n = mn′. In this special case, we choose the

vector space as V = F2n′ . Recall that the usual method to solve problem6.0.1 is via Weil

descent(see section5.2.1 or 4.2 for the details) together with Gröbner basis algorithms. Here, we

briefly review the ideas involved. Choose a basis {1, w, ..., wn−1} of F2n over F2 and {v1, ..., vn′}

a basis of V over F2. Write

xi =
n′∑
j=1

vjxij

for new variables xij ,i = 1, ...,m,j = 1, ..., n′.

Substituting xi by the above representation, we obtain

f

 n′∑
j=1

vjx1j , . . . ,
n′∑
j=1

vjxmj

 ≡ n−1∑
j=0

fjw
j (mod x2ij − xij , i = 1, . . . ,

m, j = 1, . . . , n′)

for some fi ∈ F2[x11, ..., xmn′ ] with degxij (fk) ≤ 1.

Then system6.1 is equivalent to the following:
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fi =0, i = 0, ..., n− 1,

x2ij − xij =0, i = 1, . . . ,m, j = 1, ..., n′ (6.2)

Thus, we obtain a polynomial system over F2 which is typically solved via Gröbner basis to

obtain a solution to problem6.0.1.

Instead of deriving a polynomial system over F2, we now construct a system over Fq as

follows. Since our vector space is a subfield, L(x) = x2
n′ − x. Write f =

∑
αMM , where M is

a monomial in x1, . . . , xm. Observe that for any i = 0, . . . ,m− 1,

gi ≡f2
in′

=
∑

α2in
′

M M2in
′
≡
∑

α2in
′

M M mod (L(x1), . . . , L(xm)).

Note that here we have L(xi) = x2
n′

i − xi.

Let gi =
∑
α2in

′

M M ,i = 0, ...,m − 1. We consider the following equivalent system of sys-

tem(6.1)

gi =0, i = 0, ...,m− 1,

L(xi) =0, i = 1, . . . ,m. (6.3)

Once again, we can use Gröbner basis algorithms to solve this system over Fq. Note that

gi, i = 1, ...,m − 1 have the same monomials as f , so we have added new polynomials to

system(6.1) without increasing the number of monomials and thus we make the system(6.1)

more over-defined through introducing these new polynomials. In practice, an over-defined

system is widely believed to be solved more easily via Gröbner basis methods, so we expect
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that system(6.3) may be easier to solve. We conducted some experiments to compare this

method and the method of Weil descent. The experimental result shows that our method uses

less computation time than the usual Weil descent method, i.e computing the Gröbner basis of

system(6.3) uses less time than computing the Gröbner basis of system(6.2). The experimental

result is recorded in table(6.1).

Tab. 6.1: The computation time of Weil descent method and our method

n n′ m TimeW (s) TimeO(s)

12 4 3 0.31 0.19

15 5 3 2.87 0.59

18 6 3 28.91 0.6

21 7 3 129.95 21.97

24 8 3 1404.2 172.93

In the table, TimeW denotes the time for the Weil descent method and TimeO denotes the

time for our method, both expressed in seconds.

Next, we analyze the time complexity of our approach.

For a symmetric polynomial g ∈ Fq[x1, ..., xm], let g̃(s1, . . . , sm) be the corresponding poly-

nomial in the elementary symmetric variables s1, . . . , sm, where

si =
∑

1≤j1<j2<...<ji≤m
xj1xj2 ...xji .

Now we consider the following system:

g̃i(s1, . . . , sm) =0, i = 0, ...,m− 1, s1, ..., sm ∈ F2n′ . (6.4)

As each xi is in a subfield, the elementary symmetric variables si are in the subfield as well.

We have omitted the characteristic equations L(si) = 0 as they are field equations. Thus, we

wish to solve the system over the field Fq.

We follow the approach of Diem [12, Introduction] to solve the above system.
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By lemma(6.1.3) below, we know that each polynomial in system(6.4) has total degree

bounded by 2m−1. Thus system(6.4) has at most 2m(m−1) solutions over F2n′ . One can use

an algorithm by M. Rojas( [41]) to solve this system. The time complexity is polynomial in

2m(m−1) · log(2n). In particular, we suppose it is bounded by (2m(m−1) · log(2n))C1 for some

constant C1.

We invoke two standard heuristic assumptions in the literature below:

Assumption 6.1.1. Assume the following:

(a)

#F ≈ 2n
′
;

(b) the probability of a point R ∈ E(Fq) that can be splitted as a sum of m points in F is roughly

1
m! .

Note that once we get a solution of system(6.4), we can recover xi (if they exist) by factoring

a univariate polynomial with degree m over F2n′ . This can be done in time polynomial in

max(log(2n
′
),m) in a probabilistic way [50]. We suppose it is bounded by max(log(2n

′
),m)C2

for some constant C2.

By the above analysis, the time complexity of the relation search step(collect roughly 2n
′

relations ) is bounded by:

2n
′ ·m! ·

(
(2m(m−1) · log(2n))C1 + 2m(m−1) · (max(log(2n

′
),m))C2

)
.

A simple computation shows that the above number is bounded by:

2t, where t ≈ n′ +m logm+ C · (log n+m2), where C is a constant.

Next, the linear algebra step needs time roughly (2n
′
)w, where w is the linear algebra

constant. The time to compute the summation polynomial is roughly 2t1 with t1 ≈ m(m+1) [39].
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Thus the total time to solve ECDLP for this case via index calculus is:

2t + 2t1 + (2n
′
)w.

Using the same method as Petit et al. [39, Section 5.3], let n′ := nα and m := n1−α, and

take α = 2
3 . It follows that the total time complexity is O(2cn

2
3 ), which is subexponential.

Note that the above time complexity obtained is under the condition that n = m · n′ with

n′ = n
2
3 and m = n

1
3 and some heuristic assumptions.

Finally, let us investigate the complexity of solving system(6.4) via Gröbner basis algorithms.

Specifically, we conducted some experiments with the Magma Computational Algebra system

to investigate the degree of regularity of m randomly generated polynomials over F2n in m

variables, each with degree bounded di. Table(6.2) record our results.

From the table(6.2), we see that the degree of regularity of the system is of the form
∑

i di+

c(m, di), where c(m, di) depends on m and di. According to the Macaulay bound, the degree

of regularity of a regular system of m polynomials fi in m variables is bounded by B = 1 +∑
i(deg(fi) − 1) =

∑
imdi + 1 − m. It seems reasonable to conjecture that the degree of

regularity of our system is bounded by B. Consequently, the complexity of solving system(6.4)

is O((B+m)mw) = O(2wm
2
), where w is the linear algebra constant. This complexity is identical

to that derived in our analysis above and thus, yields the same time complexity for the whole

index calculus algorithm.

The above experimental results and time complexity analysis motivate us to ask:

When n is prime, can we modify the above method to obtain a nice time complexity for

ECDLP?

Before we turn to that question, we observe that the complexity to solve system(6.4) plays

an important part in deriving a sub-exponential complexity for our entire algorithm. In our

system, the polynomials g̃i have relatively small degree. This is primarily because we have

constructed m different gi’s with the same degree as f . In particular, the nice structure of the
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Tab. 6.2: The degree of regularity of random polynomial system

n m di Dreg

21 2 (2, 2) 5

21 2 (2, 3) 6

21 2 (2, 4) 7

21 2 (2, 5) 8

21 2 (2, 10) 13

21 2 (3, 3) 7

21 2 (3, 4) 8

21 2 (3, 5) 9

21 2 (3, 6) 10

21 2 (3, 7) 11

21 2 (4, 4) 9

21 2 (4, 5) 10

21 2 (4, 6) 11

21 2 (4, 7) 12

21 2 (4, 8) 13

21 2 (4, 9) 14

21 2 (5, 5) 11

21 2 (5, 6) 12

21 2 (5, 7) 13

21 2 (5, 8) 14

21 2 (5, 9) 15

21 2 (5, 10) 16

21 2 (6, 6) 13

21 2 (7, 7) 15

21 2 (8, 8) 17

21 2 (9, 9) 19

21 2 (10, 10) 21

21 2 (11, 11) 23

21 2 (12, 12) 25

21 2 (13, 13) 27

21 2 (20, 20) 41

21 2 (30, 30) 61

21 2 (40, 40) 81

n m di Dreg

21 3 (2, 2, 2) 7

21 3 (2, 3, 4) 11

21 3 (2, 3, 5) 12

21 3 (2, 3, 6) 13

21 3 (2, 3, 7) 14

21 3 (3, 3, 3) 11

21 3 (3, 4, 5) 14

21 3 (3, 4, 6) 15

21 3 (3, 4, 7) 16

21 3 (3, 5, 6) 16

21 3 (3, 5, 7) 17

21 3 (3, 6, 7) 18

21 3 (4, 4, 4) 14

21 3 (4, 5, 6) 18

21 3 (4, 5, 7) 19

21 3 (4, 6, 7) 20

21 3 (5, 5, 5) 18

21 3 (5, 6, 7) 21

21 3 (6, 6, 6) 21

21 3 (7, 7, 7) 24

21 3 (8, 8, 8) 28

21 3 (9, 9, 9) 31

21 3 (10, 10, 10) 35

21 3 (11, 11, 11) 38

21 3 (12, 12, 12) 42

21 3 (13, 13, 13) 45

21 3 (14, 14, 14) 49

21 3 (15, 15, 15) 52

n m di Dreg

21 4 (2, 2, 2, 2) 10

21 4 (2, 3, 4, 5) 18

21 4 (2, 3, 4, 6) 19

21 4 (2, 3, 5, 6) 20

21 4 (2, 4, 5, 6) 21

21 4 (3, 3, 3, 3) 16

21 4 (3, 4, 5, 6) 23

21 4 (4, 4, 4, 4) 21

21 4 (5, 5, 5, 5) 26

Dreg denotes the degree of regularity of the random polynomial system.
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linearized polynomials L(xi) helps us construct sufficient polynomials of small degree.

6.1.2 Special vector subspaces

Let F = F2n and let V be a F2-vector subspace of F with dimension n′. Similar to the analysis

in the above subsection, in this section, we consider V to be a vector subspace with a nice

characteristic polynomial, namely, its characteristic polynomial L(x) has the following form:

L(x) = x2
n′

+
n′′∑
i=0

cix
2i

with n′′ << n′, where ci ∈ F .

Remark 6.1.2. For a random n′-dimensional F2-vector subspace of F2n , one will expect n′′ to

be around n′. Now, one can compute the number of vector subspaces of dimension n′ to be

n′−1∏
i=0

(2n − 2i)/
n′∏
i=0

(2n
′ − 2i) ≈ 2n

′(n−n′).

On the other hand, let L(x) = x2
n′

+
∑n′−1

i=0 aix
2i represent an arbitrary linearized polynomial

over F2n . There are around 2n(n
′−n′′) different ways to fix the coefficients ai for i = n′′ +

1, . . . , n′ − 1. Hence, if we let n′′ ≈ n′2/n, we may find a linearized polynomial with ai = 0

for i = n′′ + 1, . . . , n′ − 1. However, it remains an open problem to construct such a linearized

polynomial (if it exists) or to find other linearized polynomials with smaller n′′.

In this section, we suppose the existence of special vector subspaces of F2n (that is, whose

corresponding linearized polynomials have n′′ sufficiently small relative to n′) for various pa-

rameters n and n′. We will use this assumption to study the complexity to solve system(6.1).

Let V be a vector subspace of F = F2n with characteristic polynomial L(x) of the following

form:

L(x) = x2
n′

+
n′′∑
i=0

cix
2i .
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For 0 ≤ i ≤ n, let Li(x) denote the remainder of x2
i

divided by L(x), i.e, Li(x) ≡ x2
i

mod L(x). We have the following:

• deg(Li(x)) = 2di , for 0 ≤ di < n′.

• Ln(x) = x.

• If i < n′ − 1, then di+1 = di + 1.

Let I0 = {i|di−1 6= di− 1, 1 ≤ i ≤ n}. Let i1, . . . , im be m indices in I0 such that di1 ≤ . . . ≤

dim and the sum d = di1 + . . .+ dim is the smallest.

For a positive integer j, let f̃j(s1, ..., sm) denote the symmetrized polynomial of

f(x1, . . . , xm)2
j

mod (L(x1), . . . , L(xm)).

Consider the degree reverse lexicographic order on Fq[s1, ..., sm] with sm > sm−1 > ... > s1.

Under this monomial order, we have the following lemma.

Lemma 6.1.3. • f(x1, . . . , xm)2
i

mod (L(x1, ), . . . , L(xm)) has degree bounded by 2di+m−1

in each variable xj.

• Observe that each f(x1, . . . , xm)2
i

mod (L(x1), . . . , L(xm)) is symmetric. After sym-

metrization, f̃i(s1, . . . , sm) has degree bounded by 2di+m−1.

Proof. • Since Li(xj) ≡ x2
i

j mod L(xj),j = 1, . . . ,m, we have

f(x1, . . . , xm)2
i ≡ f (i)(x2i1 , . . . , x2

i

m) ≡ f (i)(Li(x1), . . . , Li(xm)) mod (L(x1, ), . . . , L(xm)),

where f (i)(x1, ..., xm) has the same monomials as f(x1, ..., xm) but with the coefficients

raise to power 2i. Note that f(x1, . . . , xm) has degree bounded by 2m−1 in each variable

xj and deg(Li(xj)) = 2di ,j = 1, . . . ,m.
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It follows that f (i)(Li(x1), . . . , Li(xm)) has degree bounded by 2di+m−1 in each variable

xj .

• Since f(x1, . . . , xm) is a symmetric polynomial, then the first statement follows easily.

Suppose the total degree of f̃i(s1, . . . , sm) is larger than 2di+m−1. Then there exists a

term
∏m
j=1 s

aj
j such that

∑m
j=1 aj > 2di+m−1. Note that the degree of

∏m
j=1 s

aj
j with

respect to variable x1 is
∑m

j=1 aj . This contradicts that each variable of f(x1, . . . , xm)2
i

mod (L(x1), . . . , L(xm)) has degree bounded by 2di+m−1.

To solve system (6.1), we consider the following alternative system:

f̃i1 =0,

. . .

f̃im =0. (6.5)

Note that the choice of i1, . . . , im assures that for any 1 ≤ i 6= j ≤ m, f̃ii is not a power

of f̃ij . Further, note that we have omitted the linearized constraints on xi. In particular, this

system has m equations in m variables. Experiments show that with high probability, this

system is zero-dimensional. Thus, we will first find the solutions of this system, solve for the

corresponding xi’s and then check if they satisfy the linearized constraints.

We use a similar method as in section(6.1.1) to estimate the complexity of our approach. In

order to to solve system(6.1), we first solve system(6.5). Since each polynomial in system(6.5)

has degree bounded by 2dij+m−1, thus system(6.5) has at most 2m(m−1)+d solutions over F2n ,

where d =
∑m

j=1 dij . One can use an algorithm by M. Rojas( [41]) to solve this system. The

time complexity is polynomial in 2d+m(m−1) · log(2n). Assume it is bounded by (2m(m−1)+d ·

log(2n))C1 for some constant C1. Then one can recover xi (if they exist) by factoring a univariate

polynomial with degree m over F2n , which can be done in time polynomial in max(log(2n),m)
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in a probabilistic way [50]. We suppose it is bounded by max(log(2n),m)C2 for some constant

C2. Finally, we check if each xi satisfies L(xi) = 0, which is trivial.

By using the same heuristic assumptions as in section(6.1.1), the time complexity of the

relation search step is bounded by:

2t = 2n
′ ·m! ·

(
(2m(m−1)+d · log(2n))C1 + 2m(m−1)+d · (max(log(2n),m))C2

)
.

The time for the linear algebra step is roughly (2n
′
)w, where w is the linear algebra constant,

and the time to compute the summation polynomial is roughly 2t1 with t1 ≈ m(m+ 1) [39].

Consequently, the total time complexity of the index calculus approach to solve ECDLP on

F2n is:

2t + 2t1 + (2n
′
)w.

Since 0 ≤ d < n, the above time complexity is totally decided by d. In particular, if

d = O(nω) for some constant 0 < ω < 1, we obtain a sub-exponential algorithm.

Suppose that we have n′′ ≈ n′2/n = n′/m. In this case, one checks that din′ = in′′ for

i = 1, 2, . . . ,m− 1. In particular, we have

d =
m−1∑
i=0

in′′ = m(m− 1)n′′/2 = (m− 1)n′ ≈ n.

So far, it is not clear if vector spaces with small values of d exist. In the next section, we

generalize the ideas presented so far to try to further reduce the degrees of the polynomials in

the system in order to obtain smaller values of d.

6.2 A transformation

In this section, we introduce a transformation on the variables of system(6.1). In addition, we

restrict L(x) ∈ F2[x]. The other notations for this section are the same as before.
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6.2.1 Polynomials L(x) with coefficients in F2

Let L be the set of linearized polynomials with coefficients in F2 equipped with the symbolic

multiplication ⊗. More precisely, for two linearized polynomials L1(x), L2(x) ∈ F2[x], we define

the symbolic multiplication ⊗ as follows:

L1(x)⊗ L2(x) := L1(L2(x)).

It is easy to verify that L1(x)⊗ L2(x) = L2(x)⊗ L1(x). Under this symbolic multiplication ⊗,

L forms an abelian group with x as the neutral element.

Consider the map ϕ : F2[x] → L which maps xi to x2
i
. Extend this map F2-linearly for all

polynomials in F2[x].Explicitly, under this map, a polynomial l(x) =
∑t

i=0 aix
i ∈ F2[x] maps to

L(x) =
∑t

i=0 aix
2i ∈ L. One can easily show that ϕ satisfies the following two properties:

1. ϕ(l1(x)l2(x)) = ϕ(l1(x))⊗ ϕ(l2(x)),

2. ϕ(l1(x) + l2(x)) = ϕ(l1(x)) + ϕ(l2(x)),

where l1(x), l2(x) ∈ F2[x].

Now for any l(x) ∈ F2[x], we call L(x) := ϕ(l(x)) the associated linearized polynomial.

Lemma 6.2.1. Let l1(x) and l2(x) be two polynomials in F2[x] and let L1(x), L2(x) be the

associated linearized polynomials. We have l1(x)|l2(x) if and only if L1(x)|L2(x). In particular,

let l2(x) = xn − 1. Then l1(x)|(xn − 1) if and only if its linearized polynomial L1(x) has all its

roots in an F2-vector subspace of F2n.

The proof of the above lemma is straightforward and we omit the details.

We fix two integers n, n′ and an F2-vector subspace of Fq = F2n with dimension n′. Let

L(x) be the characteristic polynomial of V . Suppose L(x) ∈ F2[x].
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For a linearized polynomial L′(x) ∈ F2[x], it introduces an F2-linear map:

Fq →Fq

a 7→L′(a).

Since L(L′(a)) = 0, for a ∈ V , it follows that the above map introduces an F2-linear map on V

when it restricts to V .

Let l(x) ∈ F2[x] be the polynomial corresponding to L(x) under the map ϕ introduced

above. Similarly, let l′(x) ∈ F2[x] corresponds to L′(x). Now suppose gcd(l(x), l′(x)) = 1, or

equivalently, gcd(L(x), L′(x)) = x. Under this condition, the following map is injective:

V →V

a 7→L′(a).

Thus this map is an isomorphism and its inverse exists.

Now we use the transformation xi = L′(yi), i = 1, ...,m for system(6.1). This yields the

following system in the variables yi:

f(L′(y1), . . . , L
′(ym)) mod (L(y1), . . . , L(ym)) =0,

L(yi) =0, i = 1, . . . ,m. (6.6)

Note that since yi ∈ V , yi satisfies the characteristic equation L(yi) = 0 as well. To avoid

using too many variables, we will simply use xi in place of yi in the above system, and thus we

consider the following system which is equivalent to system(6.1):

f(L′(x1), . . . , L
′(xm)) mod (L(x1), . . . , L(xm)) =0,

L(xi) =0, i = 1, . . . ,m. (6.7)
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By treating f(L′(x1), . . . , L
′(xm)) mod (L(x1), . . . , L(xm) as a multivariate polynomial, we can

do the same thing as constructing system(6.5) from system(6.1). To be more precise, we consider

the following problem:

Let V be a vector subspace of Fq over F2 with dimension n′. Let L(x) be the characteristic

polynomial of V . Assume that L(x) ∈ F2[x]. We look for a linearized polynomial L′(x) ∈ F2[x]

satisfying gcd(L′(x), L(x)) = x. Similarly, we let Li(x) = (L′(x))2
i

mod L(x) and deg(Li(x)) =

2di ,i = 0, ..., n. Let I0 = {i|di−1 6= di− 1, 1 ≤ i ≤ n}. Let i1, . . . , im be m indices in I0 such that

di1 ≤ . . . ≤ dim and the sum d = di1 + . . .+ dim is the smallest.

To solve system (6.7), we consider the following system:

fi1 =0,

. . .

fim =0. (6.8)

where fij = (f(L′(x1), . . . , L
′(xm)))2

ij
mod (L(x1), ..., L(xm)), j = 1, ...,m.

Since all polynomials in the above system are symmetric, we consider the corresponding

system with every polynomial symmetrized:

f̃i1 =0,

. . .

f̃im =0. (6.9)

As in the previous case, the time complexity of solving this system primarily depends on

the degrees d′ijs, namely, we like to have di1 + . . .+ dim as small as possible.



110 6. Special vector spaces and application to binary ECDLP

Next, we describe how we may find L′(x) by exploiting the map ϕ. By 6.2.1, we have

ϕ(xi ∗ l′(x)) = ϕ(xi)⊗ ϕ(l′(x)) = x2
i ⊗ L′(x) = L′(x2

i
) = (L′(x))2

i
.

Suppose that xi ∗ l′(x) = qi(x) ∗ l(x) + li(x), where li(x) is the remainder of xi ∗ l′(x) divided by

l(x). By 6.2.1 and above, we have

(L′(x))2
i

= ϕ(qi(x) ∗ l(x) + li(x)) = ϕ(qi(x))⊗ ϕ(l(x)) + ϕ(li(x)) = ϕ(qi)(L(x)) + ϕ(li(x)).

thus ϕ(li(x)) is the remainder of (L′(x))2
i

divided by L(x), i.e, Li(x) = ϕ(li(x)).

From the above two equalities and 6.2.1, it is easy to see that gcd(L′(x), L(x)) = x if and

only if gcd(l′(x), l(x)) = 1.

Using the one-to-one correspondence between linearized polynomials with coefficients in F2

and polynomials in F2[x], the above problem of finding a linearized polynomial L′(x) ∈ F2[x]

satisfying gcd(L′(x), L(x)) = x is equivalent to finding l′(x) ∈ F2[x] with gcd(l′(x), l(x)) = 1.

Furthermore, let Hl(x) denote the group F2[x]/l(x))∗. Consider the cyclic subgroup G = 〈x〉

of Hl(x). Now, for each l′(x) ∈ Hl(x), the coset l′(x)G comprises the elements {l′(x), xl′(x), . . .}.

Thus, in finding for the m indices dij that give a smallest sum d, one looks for such elements in

the coset.

Note that the case of L′(x) = x is the special case discussed in the preceding section.

By allowing L′(x) to vary, we have now greatly increased the search space to find m indices

where the corresponding degrees are small. This is the main motivation for considering the

transformation in this section.

It is clear that the complexity analysis when using transformations is identical to that carried

out earlier. We have seen that a complexity bound on solving System (6.5) can be done via

Rojas’s results. We performed some experiments with Magma to investigate the degree of

regularity for some vector spaces using our approach. Concretely, for each set of parameters
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n,m, n′, we select an L(x) and L′(x) and compute the respective di’s. We then compute the

Gröbner basis of both System (6.8) and System (6.9) using the ‘GroebnerBasis” function in

Magma to determine its regularity. The results are summarized in table(6.3) and table(6.4).

Tab. 6.3: The degree of regularity of System (6.8)

n m n′ di MacBound Dreg

7 2 3 (0, 1) 11 8

7 3 3 (0, 1, 2) 43 25

15 2 7 (0, 3) 35 32

17 2 8 (3, 3) 63 40

21 2 10 (4, 4) 127 88

23 2 11 (3, 5) 159 128

31 2 15 (2, 5) 143 128

35 2 17 (7, 7) 1023 704

Tab. 6.4: The degree of regularity of System (6.9)

n m n′ di MacBound Dreg

7 2 3 (0, 1) 5 4

7 3 3 (0, 1, 2) 13 12

15 2 7 (0, 3) 17 16

17 2 8 (3, 3) 31 32

21 2 10 (4, 4) 63 64

23 2 11 (3, 5) 79 80

31 2 15 (2, 5) 71 72

35 2 17 (7, 7) 511 512

In the above two tables, Dreg denotes the degree of regularity of the polynomial system and

MacBound denotes the Macaulay bound of this polynomial system.

From these results, one sees that the Macaulay bound seems to approximate the degree of

regularity of the symmetrized system (System (6.9)) pretty well. Using the Macaulay bound

as an approximate for the degree of regularity of the system, one again obtains the complexity

bound derived in the previous section.

Finally, under the standard heuristic assumptions(6.1.1) and System (6.9) is zero-dimensional,

we summarize the analysis and results of these two sections in the following heuristic result.
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Heuristic result 6.2.2. Using all the notations as above, suppose that there exists a vector

subspace of F2n with dimension n′ such that there exists a transformation L′(x) and the corre-

sponding set di1 , di2 , . . . , dim with d = di1 + . . . + dim = O(nω) for some constant 0 < ω < 1,

then we have a sub-exponential index calculus algorithm with FV = {(x, y) ∈ E(F2n)|x ∈ V }as

the factor base.

6.3 Examples

In the previous section, we have seen that for fixed n,m, n′, we like to seek for a vector space

of dimension n′ with the following properties: Let L(x) be its characteristic polynomial. Then,

there exists some L′(x) with gcd(L(x), L′(x)) = 1 and there are m indices ij for which the

degree of L′(x)2
ij

mod L(x) are as small as possible. In general, there does not seem to be a

straightforward method to find such vector spaces. In this section, we present some examples

for some choices of n,m and n′.

6.3.1 Subfield case

Suppose that m|n. We let L(x) = x2
n′ − x. With i1 = n′, i2 = 2n′, . . . , im = mn′ yield

di1 = . . . = dim = 0. In particular, we have d = 0.

6.3.2 More concrete examples

In the following, the examples do not apply the transformation introduced in section(6.2). In

this case, we can always choose im = n and thus dim = 0. Therefore we omit im = n and

dim = 0 in the examples.

Let k be a positive integer. Consider l(x) = x2
k−1

+ x2
k−2

+ . . .+ x2 + x+ 1. Squaring l(x)
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produces:

l(x)2 =(x2
k−1

+ . . .+ x2 + x+ 1)2

=x2
k

+ . . .+ x2
2

+ x2 + 1

=x2
k − x+ l(x).

Since l(x) and x are coprime, it follows that l(x)|(x2k−1 − 1). By Lemma 6.2.1, we conclude

that L(x) = x2
2k−1

+ x2
2k−2

+ . . .+ x2
2

+ x2 + x is a linearized polynomial with roots in F
22k−1 .

This leads to the following example:

Let m = 2, n = 2k − 1, n′ = 2k−1. L(x) = x2
2k−1

+ x2
2k−2

+ . . . + x2
2

+ x2 + x. Hence,

di1 = 22
k−2 ≈ n/4 and we have d = n/4.

Next, let t be a positive integer and let n|(2t − 1). Then xn − 1 can be factored into a

product of irreducible factors, each of degree dividing t. Let g be a product of some of these

factors such that the total degree of g is n′. Consider the ring F2[x]/〈g〉 and let G be its cyclic

subgroup generated by x. We seek to find examples where G contains at least m low degree

polynomials which are coprime to x.

Table(6.5) gives a list of polynomials l(x) which are factors of xn−1 and their corresponding

values of di1 , di2 , . . . , dim−1 .
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Tab. 6.5: Some parameters for di without using transformation

m n l(x) di
3 31 x10 + x6 + x5 + x4 + 1 (5, 6)

3 31 x11 + x9 + x5 + x3 + x+ 1 (5, 8)

3 43 x14 + x12 + x10 + x7 + x4 + x2 + 1 (7, 10)

3 43 x15 + x14 + x13 + x12 + x11 + x10 + x8 +
x7 + x5 + x4 + x3 + x2 + x+ 1

(10, 10)

4 73 x18 + x17 + x15 + x13 + x11 + x10 + x9 +
x6 + x5 + x3 + x2 + x+ 1

(10, 11, 14)

4 73 x19 +x17 +x14 +x11 +x10 +x8 +x5 +x4 +
x3 + 1

(11, 11, 14)

4 89 x22 +x18 +x17 +x12 +x11 +x6 +x2 +x+1 (14, 14, 15)

4 89 x23 + x22 + x19 + x17 + x13 + x11 + x7 +
x6 + x3 + 1

(14, 15, 19)

3 109 x36 + x34 + x32 + x30 + x28 + x27 + x26 +
x21 + x20 + x19 + x18 + x17 + x16 + x15 +
x10 + x9 + x8 + x6 + x4 + x2 + 1

(29, 29)

We also perform some experiments to consider the transformation introduced in section(6.2).

Table(6.6) gives a list of polynomials l(x) with their corresponding values of di1 , di2 , . . . , dim

which are the smallest ones among all cosets. Note that in this case, im does not necessarily

equal to n and dim does not necessarily equal to 0.

From the above experimental results, we see that the degrees of list of di using transformation

are smaller than the degrees of list of di without transformation. Thus after a transformation,

d may become smaller and thus give an improved time complexity.

6.3.3 Examples with transformations

In this subsection, we will consider the transformation introduced in section(6.2).

First, let m = 2. In the following, we introduce a result needed. We only consider one

variable polynomial ring R = F [x] = Fq[x] with q a prime power.

Definition 6.3.1. Let f(x) = anx
n + ... + a1x + a0 ∈ F [x] with an 6= 0. Then the reciprocal



6.3. Examples 115

Tab. 6.5: Some parameters for di without using transformation(continued)

m n l(x) di
3 109 x37 + x36 + x35 + x34 + x33 + x32 + x31 +

x30 + x29 + x26 + x22 + x15 + x11 + x8 +
x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

(29, 29)

4 113 x28 + x23 + x22 + x20 + x17 + x16 + x15 +
x14 + x13 + x12 + x11 + x8 + x6 + x5 + 1

(19, 23, 23)

4 113 x29 + x27 + x26 + x22 + x21 + x18 + x16 +
x13 + x11 + x8 + x7 + x3 + x2 + 1

(23, 23, 25)

6 127 x21 + x20 + x18 + x17 + x16 + x10 + x9 +
x8 + x5 + x4 + x2 + x+ 1

(5, 10, 10, 13, 15)

6 127 x22 +x20 +x19 +x16 +x11 +x8 +x6 +x4 +
x3 + 1

(5, 10, 15, 17, 17)

4 127 x28 + x27 + x26 + x24 + x18 + x16 + 1 (12, 14, 20)

5 127 x28 + x27 + x26 + x24 + x18 + x16 + 1 (12, 14, 20, 21)

4 127 x29 + x28 + x27 + x23 + x21 + x18 + x15 +
x13 + x10 + x7 + x6 + x3 + x+ 1

(17, 19, 20)

5 127 x29 + x28 + x27 + x26 + x23 + x22 + x19 +
x16 + x15 + x14 + x11 + x5 + x4 + 1

(17, 20, 20, 22)

5 151 x30 + x28 + x26 + x22 + x18 + x16 + x15 +
x14 + x12 + x8 + x4 + x2 + 1

(15, 19, 19, 22)

5 151 x31 + x30 + x28 + x26 + x24 + x23 + x22 +
x20 + x19 + x17 + x16 + x15 + x14 + x12 +
x11 + x9 + x8 + x7 + x5 + x3 + x+ 1

(19, 19, 25, 25)

polynomial f∗ of f is defined by

f∗(x) = xnf(
1

x
) = a0x

n + a1x
n−1 + ...+ an

Definition 6.3.2. Let f(x) ∈ F [x] be a nonzero polynomial. If f(0) 6= 0, then the least positive

integer e such that f(x) divides xe−1 is called the order of f and denoted by ord(f) = ord(f(x)).

If f(0) = 0, then f(x) = xhg(x) for uniquely determined g with g(0) 6= 0; ord(f) is then defined

to be ord(g).

Remark 6.3.3. Let f be a nonzero polynomial in F [x] and f∗ its reciprocal polynomial. Then

ord(f) = ord(f∗).
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Tab. 6.6: Some parameters for di using transformation

m n l(x) di
3 31 x10 + x8 + x7 + x5 + x3 + x2 + 1 (3, 3, 5)

3 31 x10 + x6 + x5 + x4 + 1 (4, 5, 5)

2 41 x20 + x18 + x17 + x16 + x15 + x14 + x11 +
x10 + x9 + x6 + x5 + x4 + x3 + x2 + 1

(8, 8)

3 43 x14 + x11 + x10 + x9 + x8 + x7 + x6 + x5 +
x4 + x3 + 1

(6, 6, 6)

2 47 x23 + x19 + x18 + x14 + x13 + x12 + x10 +
x9 + x7 + x6 + x5 + x3 + x2 + x+ 1

(7, 11)

2 71 x35 + x33 + x28 + x27 + x26 + x25 + x24 +
x17 + x13 + x8 + x7 + x5 + x4 + x+ 1

(11, 17)

3 73 x27+x23+x16+x14+x10+x8+x6+x3+1 (12, 13, 15)

2 79 x39 + x36 + x35 + x31 + x30 + x29 + x27 +
x26 + x25 + x24 + x21 + x20 + x19 + x18 +
x16 +x14 +x13 +x11 +x5 +x4 +x2 +x+ 1

(18, 18)

Proposition 6.3.4. Let l(x) ∈ F [x] with l∗(x) as its reciprocal. Let G = 〈x̄〉 be the sub-

group of (F [x]/l(x))∗ and G∗ be the corresponding subgroup in (F [x]/l∗(x))∗. Then {deg(H) :

H is a coset of G} = {deg(H∗) : H∗ is a coset of G∗}.

Proof. Let m = deg(l). For any f(x) ∈ F [x] with gcd(f, l) = 1, f has a unique expression

f = xh ∗ g with h ∈ N and g(0) 6= 0. Then fG = gG. So from now on, when we say coset fG

we assume f(0) 6= 0 and deg(f) < deg(l) = m. We have the following claim.

Claim: deg(fG) = deg(f∗G∗).

For any element xaf ∈ fG, it has a unique expression xaf ≡ xbr mod (l) with b ∈ N,

r(0) 6= 0 and b+ deg(r) < m.

Then we have a ≥ b. Since if a < b, then a + deg(f) ≥ m > b + deg(r) and f ≡ xb−ar

mod (l), it follows that b− a+ deg(r) < m. Note that deg(f) < m. Hence, we have f = xb−ar,

which contradicts f(0) 6= 0.

Now since a ≥ b, we have xa−bf ≡ r mod (l). If a = b,then f = r. Thus, we consider the

case a > b. If a− b + deg(f) < m,we must have r = xa−bf which is impossible since r(0) 6= 0.

Thus a− b+ deg(f) ≥ m. Suppose xa−bf − r = l ∗h for some h ∈ F [x]. It follows that h(0) 6= 0
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and then f∗ − xa−b+deg(f)−deg(r)r∗ = l∗h∗. Thus we have the following equation:

f∗ ≡ xa−b+deg(f)−deg(r)r∗ mod (l∗).

Note that a− b+ deg(f) ≥ m > deg(r). It follows that t := a− b+ deg(f)− deg(r) > 0 and we

have

x(n−1)t+bf∗ ≡ xnt+br∗ ≡ xbr∗ mod (l∗),

where n = ord(l).

So we prove that for every element xbr ∈ fG, we can find an element x(n−1)t+bf∗ ∈ f∗G∗

with the same degree as deg(r) = deg(r∗). By symmetry, for every element in f∗G∗, we can

find an element in fG with the same degree. Thus deg(fG) = deg(f∗G∗).

Using this claim, it is easy to see that the proposition follows.

We will now give a rough bound for max(di1 , di2) based on some assumptions and proposi-

tion(6.3.4). First, let us see an concrete example to illustrate the basic idea.

Let n = 31 and n′ = 15. Note that we have the following factorization of x31 − 1 in F2[x]:

x31− 1 = (x− 1) ∗ (x5 + x2 + 1) ∗ (x5 + x3 + 1) ∗ (x5 + x3 + x2 + x+ 1) ∗ (x5 + x4 + x2 + x+

1) ∗ (x5 + x4 + x3 + x+ 1) ∗ (x5 + x4 + x3 + x2 + 1).

Let li(x), i = 1, ..., 6 denote the irreducible factors of x31 − 1 with degree 5. We have
(
6
3

)
different factors of x31−1 with degree equal to n′, i.e, there are

(
6
3

)
different l(x) to choose. Now

we fix one l(x) and let L(x) be the image of l(x) under the map ϕ introduced in section(6.2).

By section(6.2), we seek to find one coset of (F2[x]/(l(x)))? with respect to G = 〈x̄〉 such

that this coset contains two polynomials with the least degrees among all possible cases and

the quotient of these two polynomial is not equal to a power of x. Note that the cardinality of

(F2[x]/(l(x)))? is 313 and #G = 31, and thus there are 312 cosets of (F2[x]/(l(x)))? with respect

to G.
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We wish to bound max(di1 , di2) heuristically.

Let us suppose all elements of (F2[x]/(l(x)))? are equally distributed in all these 312 cosets

of G. Given a degree bound D, there are 2D polynomials in F2[x] with the constant term equal

to 1, i.e., polynomials of the form 1+a1x+a2x
2+...+aDx

D, ai ∈ F2. Among these polynomials,

at most 3 ∗ 2D−5 of them are not coprime to l(x). Hence, we may just assume that around 2D

polynomials of degree bounded by D and constant term 1 lie in the group (F2[x]/l(x))∗. Note

that the quotient of any two of these polynomials is not equal to a power of x. The probability

of at least one coset containing two of these elements can be computed similar to the birthday

problem. In particular, among these 2D elements, we ask the probability that at least two of

them will lie in the same coset. In other words, referring to the birthday problem, the cosets

represent the days of a year while the elements represent the birthdays of different people. This

probability can be computed as:

P = 1− (N − 1)× . . .× (N −B + 1)

NB
= 1− (1− 1

N
)× . . .× (1− B − 1

N
),

where N = 312 is the number of cosets, B ≈ 2D is the number of polynomials.

We have the following approximation:

(1− i

N
) ≈ e−

i
N , i = 1, ..., B − 1.

Thus P ≈ 1− e
−B2

2N .

Since there are 20 different l(x) and half of them have the same sets of degree by propo-

sition(6.3.4), if P > 1
10 , then there exists some l(x) such that one coset of G = 〈x̄〉 in

(F2[x]/(l(x)))? contains at least two polynomials we are seeking. A simple computation shows

that B ≈ 14, so D ≈ 4, i.e max(di1 , di2) ≤ 4.

We perform experiments to run through all the l(x) and l′(x). In each case, we record

the degrees of the two smallest elements in the coset. From our experiments, we find that we
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can choose l(x) = x15 + x11 + x10 + x2 + 1. In this case D = 5, and the two polynomials

with the least degrees lie in the same coset are x2 + 1 and x5 + x + 1. Another choice is

l(x) = x15 + x13 + x5 + x4 + 1, in which case D = 5, and the two polynomials with the least

degrees lie in the same coset are x2 + 1 and x5 + x4 + 1. The heuristic bound is close to the

practical result.

Remark 6.3.5. Strictly speaking, each element in (F2[x]/l(x))∗ may not have an equal prob-

ability to be in each of the cosets. This is because not all the cosets have the same number

of elements with constant term 1. However, for large enough parameters, the difference is

negligible. Hence, the bound we obtained should be a good approximate for the bound we seek.

For some values of n, we can use the above example to give a heuristic bound for max(di1 , di2).

We consider the following special form of n. Let n = 2t − 1 be a prime number, and so t is also

a prime. It is well known that xn − 1 has the following factorization in F2[x]:

xn − 1 = (x− 1) ∗ f1(x) ∗ . . . ∗ f2r(x),

where fi(x)’s are irreducible factors of xn − 1 with the same degree t, r = 2t−1−1
t .

We let n′ = 2t−1 − 1. There are
(
2r
r

)
different factors of xn − 1 with degree n′. Fix one

factor l(x) of xn − 1 with degree n′. The group (F2[x]/(l(x)))? has (2t − 1)r = nr elements and

G = 〈x̄〉 has n elements. It follows that there are nr−1 cosets of G. Suppose D is the degree

bound. Then the probability of at least one coset containing two elements we are seeking is:

P ≈ 1− e−
B2

2N ,

where N = nr−1, B ≈ 2D. Since there are
(
2r
r

)
different l(x), we let 1 − e−

B2

2N ≈ 2

(2rr )
. We give

some values of t and max(di1 , di2) in table(6.7).

We see from the table that for small values of n, max(di1 , di2) < n/4 but it approaches to

n/4 for larger n. According to the result in the previous subsection, for n = 2t − 1, one may
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Tab. 6.7: Some bound for max(di1 , di2)

t n Bound for max(di1 , di2)

7 127 22

11 2047 417

13 8191 1730

17 131071 28909

19 524287 117270

find d = n/4 when transformations are not exploited. It suggests that one may find cosets with

smaller sums, especially when n is small.

Finally, with the help of Magma, we run through all possible l(x) and l′(x) for some parame-

ters of n,m and n′ to find the smallest sets of di1 , . . . , dim . Table(6.8) gives a list of polynomials

l(x) with their corresponding values of di1 , di2 , . . . , dim which are the smallest ones among all

cosets. Note that in this case, im does not necessarily equal to n and dim does not necessarily

equal to 0.

Tab. 6.8: Smallest di

m n l(x) di
2 41 x20 + x18 + x17 + x16 + x15 + x14 + x11 +

x10 + x9 + x6 + x5 + x4 + x3 + x2 + 1
(8, 8)

3 43 x14 + x11 + x10 + x9 + x8 + x7 + x6 + x5 +
x4 + x3 + 1

(6, 6, 6)

2 47 x23 + x19 + x18 + x14 + x13 + x12 + x10 +
x9 + x7 + x6 + x5 + x3 + x2 + x+ 1

(7, 11)

2 71 x35 + x33 + x28 + x27 + x26 + x25 + x24 +
x17 + x13 + x8 + x7 + x5 + x4 + x+ 1

(11, 17)

3 73 x27+x23+x16+x14+x10+x8+x6+x3+1 (12, 13, 15)

2 79 x39 + x36 + x35 + x31 + x30 + x29 + x27 +
x26 + x25 + x24 + x21 + x20 + x19 + x18 +
x16 +x14 +x13 +x11 +x5 +x4 +x2 +x+ 1

(18, 18)

To summarize, in this chapter, we have identified a class of vector spaces with nice properties

based on the characteristic polynomials that may help to speed up the relations search step in

the index calculus approach to solve ECDLP. We have analyzed the time complexity to solve
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ECDLP given such vector spaces. We have also provided some concrete examples of the vector

spaces we seek for small parameters. It remains an open and interesting problem to construct

such vector spaces for arbitrary parameters that leads to a more efficient ECDLP attack.



122 6. Special vector spaces and application to binary ECDLP



7. CONCLUSIONS

This thesis focuses on solving zero-dimensional polynomial systems and their applications to

cryptography. Concretely, motivated by the many applications of polynomial systems in cryp-

tography, such as in the design of multivariate cryptosystems and in the cryptanalytic attacks on

elliptic curve cryptosystems, we investigated the problem of solving zero-dimensional polynomial

systems in greater detail. We proposed a new notion called last fall degree and a correspond-

ing framework which turned out to be useful to help us analyze the complexity of polynomial

systems arising from Weil descent. These polynomial systems arise in both the design of multi-

HFE cryptosystem as well as in the index calculus approach to solve the elliptic curve discrete

logarithm problem. Using our proposed framework, we proved that the multi-HFE scheme is

not secure. At the same time, we argued that our framework cannot be directly applied to the

polynomial system from ECDLP applications. Instead, we proposed a different framework to

solve such polynomial systems. Specifically, by using a class of vector subspaces with nice prop-

erties, we proposed a direct method to solve the polynomial system without using Weil descent.

We provided complexity bounds on our approach based on some heuristic assumptions. More

importantly, we derived some conditions for which our approach will become sub-exponential.

Even though we did not break ECDLP with explicit constructions of the vector spaces we seek,

we believe that our approach is interesting in its own right and provided some direction to find

factor bases that may give rise to a sub-exponential index calculus attack on ECDLP.
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7.1 Future work

Several possible research directions can be further explored. The first is from chapter5, where

one can consider removing some conditions of theorem(5.3.4). For instance, it will be interesting

to remove the condition that I is radical and/or the restriction that there is a coordinate t such

that the projection map Z(F)→ k to coordinate t is injective , and try to give a bound on the

last fall degree of the Weil descent system.

As for our approach to solve ECDLP, it remains an open and interesting problem to deter-

mine if vector spaces with the conditions to result in a sub-exponential index calculus attack

on ECDLP exists for prime n, and if so, construct such vector spaces explicitly.
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tosystems using gröbner bases. In Advances in Cryptology - CRYPTO 2003: 23rd Annual

International Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003.

Proceedings, pages 44–60. Springer, 2003. [3, 92]

[21] J. C. Faugère, L. Perret, C. Petit, and G. Renault. Improving the complexity of index

calculus algorithms in elliptic curves over binary fields. In Advances in Cryptology—

EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 27–44.

Springer, Heidelberg, 2012. [6, 49, 54, 56]

[22] P. Gaudry. Index calculus for abelian varieties of small dimension and the elliptic curve

discrete logarithm problem. Journal of Symbolic Computation, 44(12):1690–1702, 2009. [6,

49, 50, 53]



128 Bibliography
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