MOLECULAR AND NANO-STRUCTURED CATALYST DESIGN TOWARD
DYE SENSITIZED SOLAR FUEL PRODUCTION

HAN JIANYU

SCHOOL OF CHEMICAL AND BIOMEDICAL ENGINEERING

2015
MOLECULAR AND NANO-STRUCTURED CATALYST DESIGN TOWARD
DYE SENSITIZED SOLAR FUEL PRODUCTION

HAN JIANYU

School of Chemical and Biomedical Engineering

A thesis submitted to the Nanyang Technological University In partial fulfilment of the requirement for the

degree of Doctor of Philosophy

2015
ACKNOELEDEGEMENTS

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Xu Rong for the continuous supporting of my Ph.D. study and related research. Her academic rigor and dedicated attitude have great effect on me and continue inspiring me to try my best on my research. I sincerely appreciate her guidance, encouragement, generosity and patience.

Besides my supervisor, I also would like to thank my lab mates, Dr. Zhou Tianhua, Dr. Zhang Wei, Dr. Wang Yabo, Dr. Hong Jindui, Dr. Wang Danping, Dr. Chen Chunping, Dr. Amin Yoosofi Booshehri, Dr. Pan Yunxiang, Dr. Zou Yinjun, Dr. Xu you, Mr. Goh Chun Kiat Simon and Mr. Yin Shenming. They manufactured a harmonious academic environment and did me a lot favor in the research work. I was enjoying working with all of them.

Also, my thanks go to the technical staffs and professional officers in our school and in the project of SinBeRise. Thank their assistance on chemical purchase and instrument training and using.

Last but not the least, I would like to thank my family. My grandmother, my father and my mother devote all their love to me and provide me a comfort and warm environment. Finally, special thanks go to my wife Wu Yafeng and my lovely daughter Han Yunxi for enlightening my life. Thank you for your accompanying.
TABLE OF CONTENT

ACKNOWLEDGEMENTS ... I

TABLE OF CONTENT ... II

LIST OF FIGURES .. IV

LIST OF TABLES ... VIII

LIST OF SCHEMES .. IX

LIST OF ABBREVIATIONS ... X

CHAPTER 1 INTRODUCTION .. 1

1.1 Background and motivations .. 1

1.2 Objectives and scope .. 2

1.3 Major contributions of the thesis .. 3

CHAPTER 2 LITERATURE REVIEW ... 5

2.1 Fundamental principles of photocatalytic water splitting .. 5

2.2 Water reduction ... 6

 2.2.1 Semiconductor based systems for water reduction ... 7

 2.2.2 Dye sensitized systems for water reduction ... 9

 2.2.3 Summary ... 13

2.3 Water oxidation ... 13

 2.3.1 Heterogeneous WOCs ... 13

 2.3.2 Homogeneous WOCs ... 17

 2.3.4 Summary ... 21

2.4 Overall water splitting .. 22

2.5 Summary of literature review .. 24

CHAPTER 3 DYESENSITIZED NICKEL COMPLEXES WITH MIXED DONORS

FOR HYDROGEN PRODUCTION ... 26

3.1 Introductions .. 26

3.2 Experimental methods .. 27

 3.2.1 Preparation of materials .. 27

 3.2.2 Materials characterization ... 28

 3.2.3 Photocatalytic water splitting measurement .. 29

3.3 Results and discussion .. 29

3.4 Conclusion ... 38
TABLE OF CONTENT

CHAPTER 4 METAL-ORGANIC FRAMEWORK IMMOBILIZED COBALT OXIDE NANOPARTICLELS FOR EFFICIENT PHOTOCATALYTIC WATER OXIDATION .. 39
 4.1 Introduction .. 39
 4.2 Experimental .. 41
 4.2.1 Material and reagents ... 41
 4.2.2 Material preparation ... 41
 4.2.3 Photocatalytic activity measurement ... 42
 4.2.4 Electrochemistry .. 43
 4.2.5 Materials characterization ... 43
 4.3 Results and discussion ... 44
 4.4 Conclusions .. 58

CHAPTER 5 POLYOXOMETALATES IMMOBILIZED ON MIL-101(Cr) AS EFFICIENT CATALYST FOR WATER OXIDATION ... 60
 5.1 Introduction .. 60
 5.2 Experimental .. 61
 5.2.1 Material and reagents ... 61
 5.2.2 Preparation of materials .. 62
 5.2.3 Photocatalytic activity measurement ... 64
 5.2.4 Electrochemistry .. 64
 5.2.5 Materials characterization ... 65
 5.3 Results and Discussion ... 66
 5.4 Conclusion ... 76

CHAPTER 6 CONCLUSIONS AND OUTLOOK .. 77
 6.1 Conclusions .. 77
 6.2 Outlook .. 78

LIST OF PUBLICATIONS ... 83
REFERENCE ... 85
LIST OF FIGURES

Figure 2-1 Fundamental principles of water splitting using semiconductor photocatalysts..5

Figure 2-2 (a) Donor level and acceptor level formed by ions doping, (b) Formation of new valence band by nonmetal doping, (c) Band gap engineering by formation of solid state solution...7

Figure 2-3 Based principles of H₂ evolution using dye sensitized semiconductors. ..10

Figure 3-1 Molecular structure of the complexes, (A) NiL₂ and (C) Ni(NiL₂)₂Cl₂, and photos of aqueous solutions of (B) NiL₂ (60 °C, 1.6 mM) and (D) Ni(NiL₂)₂Cl₂ (room temperature, 0.8 mM). ...27

Figure 3-2 (A) Simulated and experimental XRD patterns of mononuclear NiL₂ complex powder. (B) UV-vis spectrum of NiL₂ complex dissolved in water (0.8 mM, 60 °C). (C) FTIR spectrum of NiL₂ complex..30

Figure 3-3 Time course of hydrogen evolution using Ni(II)-mecaptoethylamine complexes, (A) [NiL₂] = 0.8 mM, (B) [NiL₂] = 1.6 mM, (C) [NiL₂] = 2.4 mM, and (D) [Ni(NiL₂)₂]²⁺ = 0.8 mM (100 mL solution, 15 vol% TEOA, [ErY] = 3.2 mM, pH = 8.5, light source: 300 W Xe lamp, λ > 420 nm). ...31

Figure 3-4 Time course of hydrogen evolution using (A) NiL₂ (1.6 mM) and (C) Ni(NiL₂)₂²⁺ (0.8mM) with a 300 W Xe lamp equipped with different long-pass cut-off filters, and the QEs under photons with different wavelengths over (B) NiL₂ and (D) Ni(NiL₂)₂²⁺ complexes. Other reaction conditions were the same as those in Figure 3-3. ...33

Figure 3-5 UV-vis spectra of (A) the reaction mixture of NiL₂ system at different reaction time (the reaction mixture was filtered before analysis), and (B) the mixture without NiL₂ catalyst while keeping other conditions the same. All solutions were diluted 10 times before analysis. The reaction conditions were the same as those in Figure 3-3..34

Figure 3-6 UV-vis spectra of reaction mixture of Ni(NiL₂)₂²⁺ system at different reaction time. All solutions were diluted 10 times before analysis. The reaction
conditions were the same as those in Figure 3-4.

Figure 3-7 Cyclic voltammograms of (A) NiL$_2$ (1.6 mM, 60 °C) and (B) Ni(NiL$_2$)$_2^{2+}$ (0.8 mM) in water using a glassy carbon working electrode with a scan rate of 50 mV/s.

Figure 4-1 (a) Powder XRD patterns of simulated MIL-101, Co$_{1.4}$/MIL-101, Co$_{2.6}$/MIL-101, Co$_{3.9}$/MIL-101 (I) and Co$_{4.9}$/MIL-101, and (b) N$_2$ adsorption isotherm activated MIL-101, Co$_{1.4}$/MIL-101, Co$_{2.6}$/MIL-101, Co$_{3.9}$/MIL-101 and Co$_{4.9}$/MIL-101. FTIR spectra of (c) MIL-101, [Co(NO$_3$)$_2$]$_{0.6}$/MIL-101 and (d) [Co(NO$_3$)$_2$]$_{0.8}$/MIL-101, Co$_x$/MIL-101. (e) N$_2$ adsorption isotherm of activated MIL-101, Co$_{1.4}$/MIL-101, Co$_{2.6}$/MIL-101, Co$_{3.9}$/MIL-101 (I) and Co$_{4.9}$/MIL-101.

Figure 4-2 (a) XPS spectrum of Co 2p of I, (b) XANES spectra of I (Co$_{3.9}$/MIL-101) before and after the photocatalytic reaction, Co(OH)$_2$, Co$_3$O$_4$ and Co(NO$_3$)$_2$, (c) the experimental and simulated XANES spectra of I, and (d) Raman spectra of bare MIL-101, I and Co$_3$O$_4$.

Figure 4-3 TEM images of MIL-101 (a) and I (Co$_{3.9}$/MIL-101) (b, d), bright filed TEM image of I (c), Co$_{1.4}$/MIL-101 (g), Co$_{2.6}$/MIL-101 (h) and Co$_{4.9}$/MIL-101 (i) and EDX elemental mapping results of Cr (e) and Co (f).

Figure 4-4 (a) Time course of O$_2$ evolution over Co$_{1.4}$/MIL-101, Co$_{2.6}$/MIL-101, Co$_{3.9}$/MIL-101 and Co$_{4.9}$/MIL-101 as the catalysts. (b) Time course of O$_2$ evolution with different initial pH values. (c) UV-vis spectra of the supernatant solutions after reaction for 70 min at different pH. The solutions were diluted to one tenth for analysis. (d) Time course of O$_2$ evolution over different amount of I as the catalysts. (e) Time course of O$_2$ evolution at different concentration of [Ru(bpy)$_3$]Cl$_2$. (f) Time course of O$_2$ evolution at different concentration of Na$_2$S$_2$O$_8$. (g) Time course of O$_2$ evolution at different concentration of borate buffer. (h) Time course of O$_2$ evolution over I, recycled I, 2 ([Co(NO$_3$)$_2$]$_{0.6}$/MIL-101), recycled 2, Co$_3$O$_4$ (6 nm), Co$_{3.7}$/SiO$_2$ and the mixture of cobalt nitrate and MIL-101 with an equivalent amount of leached Co$^{2+}$ in I. Reaction condition: 12.5 mg of I, 7.5 mM of Na$_2$S$_2$O$_8$, 1.0 mM of [Ru(bpy)$_3$]Cl$_2$ in 50 mL of 10 mM borate buffer, 300 W Xenon lamp, $\lambda > 420$ nm.
Figure 4-5 (a) Powder XRD patterns of bare MIL-101, 1 and 1 after the photocatalytic reaction, (b) Co 2p XPS spectrum of 1 after the photocatalytic reaction, (c) XANES spectra 1 after the reaction and reference Co(OH)$_2$, Co$_3$O$_4$ and Co(NO$_3$)$_2$, and (d) the experimental and simulated XANES spectra of 1 after photocatalytic reaction.

Figure 4-6 (a) N$_2$ adsorption isotherm of SiO$_2$ nanosphere. The BET surface area of SiO$_2$ nanosphere was determined to be 14.2 m2/g. (b,c) TEM images of Co$_{3.7}$/SiO$_2$.

Figure 4-7 (a) Cyclic voltammetry (CV) curves of MIL-101, 1 and Co$_{3.7}$/SiO$_2$ at a scan rate of 20 mV/s, (b) linear sweep voltammetry (LSV) curves of MIL-101, 1, Co$_{3.7}$/SiO$_2$ and without catalyst at a scan rate of 2 mV/s, (c) Tafel plots of 1 and Co$_{3.7}$/SiO$_2$ obtained from LSV curves, and (d) Nyquist plots of MIL-101, 1 and Co$_{3.7}$/SiO$_2$. All tests were performed in O$_2$-saturated electrolyte (borate buffer, pH = 9) with a rotating rate of 1600 rpm.

Figure 5-2 (a) XPS spectra of Co 2p of CoPOM and CoPOM/MIL-101, (b) XANES spectra of 1 (Co$_{3.9}$/MIL-101) before and after the photocatalytic reaction, Co(OH)$_2$, Co$_3$O$_4$ and Co(NO$_3$)$_2$, (c) the experimental and simulated XANES spectra of 1, and (d) Raman spectra of bare MIL-101, 1 and Co$_3$O$_4$.

Figure 5-3 TEM images of (a) MIL-101 and (b, c) CoPOM/MIL-101, (d) bright field TEM image of CoPOM/MIL-101, and (e-h) EDX elemental mapping results of various elements.

Figure 5-4 (a) Time course of O$_2$ evolution over different pH, (b) Time course of O$_2$ evolution over different amount of CoPOM/MIL-101 as the catalysts, (c) Time course of O$_2$ evolution at different concentration of [Ru(bpy)$_3$]Cl$_2$, (d) Time course of O$_2$ evolution at different concentration of Na$_2$S$_2$O$_8$. Reaction condition:
Figure 5-5 (a) Time course of O\textsubscript{2} evolution over CoPOM/MIL-101, recycled CoPOM/MIL-101 and CoPOM. Reaction condition: 12.0 mg of catalysts, 5.0 mM of Na\textsubscript{2}S\textsubscript{2}O\textsubscript{8}, 1.0 mM of [Ru(bpy)\textsubscript{3}]Cl\textsubscript{2} in 50 mL of 40.0 mM borate buffer, pH = 8, 300 W Xenon lamp, λ > 420 nm. (b) FTIR spectra of CoPOM, CoPOM/MIL-101 and recovered CoPOM/MIL-101. (c) XPS of CoPOM/MIL-101 and recovered CoPOM/MIL-101. (d) XNAES of CoPOM, CoPOM/MIL-101 and recovered CoPOM/MIL-101.

Figure 5-6 Time course of O\textsubscript{2} evolution over CoPOM/MIL-101, the leached amounts of Co2+ and CoPOM.

Figure 5-7 (a) Cyclic voltammetry (CV) curves of CoPOM/MIL-101, CoPOM and without catalyst at a scan rate of 20 mV/s, (b) Linear sweep voltammetry (LSV) curves of CoPOM/MIL-101, CoPOM and without catalyst at a scan rate of 2 mV/s, (c) Tafel plots of CoPOM/MIL-101 and CoPOM obtained from LSV curves, and (d) i-t plots of CoPOM/MIL-101 and CoPOM. All tests were performed in O\textsubscript{2}-saturated electrolyte (borate buffer, pH = 8) with a rotating rate of 1600 rpm. (e) Linear sweep voltammetry (LSV) curves of CoPOM/MIL-101 before and after stability test, (f) LSV curves of CoPOM before and after stability test at a scan rate of 2 mV/s.
LIST OF TABLES

Table 2-1 Summary of Co$_3$O$_4$ based photocatalytic water oxidation reaction...........15
Table 2-2 Summary of photocatalytic water oxidation using of POM was WOCs. ...19
Table 4-1 Percentages of cobalt loaded on MIL-101...45
Table 4-2 BET surface area and pore volume of Co$_x$/MIL-101 samples.................45
Table 4-3 Summary of the photocatalytic oxygen evolution performances of catalysts investigated in this work ..52
Table 5-1 ICP determined cobalt concentration in solution after photocatalytic reaction before and after extraction using THpA$^+$..72
LIST OF SCHEMES

Scheme 2-1 Chemical structure illustration of xanthene dyes. .. 11

Scheme 3-1 Proposed mechanism of photocatalytic hydrogen evolution over NiL2 complex using ErY and TEOA as the PS and sacrificial electron donor, respectively.

... 37
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET</td>
<td>Brunauer-Emmett-Teller</td>
</tr>
<tr>
<td>BJH</td>
<td>Barrett-Joyner-Halenda</td>
</tr>
<tr>
<td>BPY</td>
<td>2,2’-bipyridine</td>
</tr>
<tr>
<td>CB</td>
<td>conduction band</td>
</tr>
<tr>
<td>CV</td>
<td>cyclic voltammetry</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>EA</td>
<td>elemental analysis</td>
</tr>
<tr>
<td>EIS</td>
<td>electrochemical impedance spectroscopy</td>
</tr>
<tr>
<td>EY</td>
<td>Erythrosin yellowish</td>
</tr>
<tr>
<td>FL</td>
<td>fluorescein</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>ICP</td>
<td>inductively coupled plasma</td>
</tr>
<tr>
<td>LSV</td>
<td>linear sweep voltammetry</td>
</tr>
<tr>
<td>MCNT</td>
<td>multi-walled carbon nanotube</td>
</tr>
<tr>
<td>ME</td>
<td>mercaptoethanol</td>
</tr>
<tr>
<td>MLCT</td>
<td>metal to ligand charge transfer</td>
</tr>
<tr>
<td>MOF</td>
<td>metal-organic framework</td>
</tr>
<tr>
<td>NHE</td>
<td>normal hydrogen electrode</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>PCET</td>
<td>proton coupled electron transfer</td>
</tr>
<tr>
<td>POM</td>
<td>polyoxometalates</td>
</tr>
<tr>
<td>QE</td>
<td>quantum efficiency</td>
</tr>
<tr>
<td>RDE</td>
<td>rotating disk electrode</td>
</tr>
<tr>
<td>SCE</td>
<td>saturated calomel electrode</td>
</tr>
<tr>
<td>TEOA</td>
<td>triethanolamine</td>
</tr>
<tr>
<td>TGA</td>
<td>thermal gravimetric analysis</td>
</tr>
<tr>
<td>TOF</td>
<td>turnover frequency</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>TON</td>
<td>turnover number</td>
</tr>
<tr>
<td>UV-vis</td>
<td>ultraviolet-visible spectroscopy</td>
</tr>
<tr>
<td>VB</td>
<td>valence band</td>
</tr>
<tr>
<td>XANES</td>
<td>X-ray absorption near edge structure</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray photoelectron spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
</tbody>
</table>
ABSTRACT

Harnessing the solar light and subsequent storage the solar energy in the form solar fuel hold the promise to address the future energy supply. Photocatalytic water splitting and photocatalytic carbon dioxide reduction are the most attractive but challenging technologies for solar to fuel conversion. The main difficulty of these two reactions lies in the lack of low cost, stable and efficient catalysts. In this thesis, the research work is dedicated to the design and development of efficient catalysts that can withstand the cruel reduction and oxidation conditions in photocatalytic water splitting systems.

Firstly, inspired by nature, two complexes formed between Ni(II) and β-mecaptoethylamine with a mixed S and N donor environment are investigated. A metal free dye, Erythrosin yellowish was used as photosensitize for light harvesting. Both complexes are found to be active and inexpensive catalysts for photocatalytic hydrogen evolution by water reduction. An excellent quantum efficiency of 30.9% was obtained at 480 nm. A reaction mechanism involving intramolecular proton transfer from N atom to Ni centre was proposed. This work provides us with useful clues to further explore noble-metal free complexes with a relevant environment to natural enzymes toward development of earth-abundant photocatalyst systems for solar hydrogen production.

Secondly, cobalt oxide nanoparticles have been successfully embedded into the zeotypic giant cavities of MIL-101, a well-known metal organic framework (MOF) with excellent stability, by a facile impregnation and heat treatment method. The incorporated nanoparticles of 2-3 nm display an excellent dispersion and narrow size distribution. The apertures of the MOF, which is smaller than the size of cobalt oxide nanoparticles, prevent the nanoparticles from aggregation and leaching. A Ru(bpy)$_3^{2+}$-Na$_2$S$_2$O$_8$ system was evolved to conduct the photocatalytic water oxidation reaction in borate buffer using above material. This hybrid material induces great enhancement in photocatalytic water oxidation activity of cobalt oxide with a high turnover frequency (TOF) of 0.012 s$^{-1}$ per cobalt atom, which is more than 9 fold.
ABSTRACT

compared with that of the unsupported Co₃O₄ nanoparticles. Moreover, MIL-101 plays the role of promoting the charge transfer as evidenced by the Nyquist plots. This study suggests that MIL-101 as a chemically stable MOF is a promising support for encapsulation of catalyst nanoparticles for photocatalytic applications.

Finally, a cobalt based polyoxometalate (POM) catalyst, CoPOM, was successfully immobilized in the cavities of MIL-101 by an impregnation method. The CoPOM anions are bounded to MIL-101 tightly by electronic static interaction with excellent dispersion. This host-guest material system constructed with earth abundant elements only show high performances for photocatalytic water oxidation when sanitized by Ru(bpy)₃²⁺. The combination also shows enhanced activity and stability compared with the free CoPOM. In addition, it is likely that the cavities of MIL-101 play an important role in protecting the active CoPOM anions from decomposition. Moreover, the highly porous structure offers an environment for the stacking of homogeneous catalytic anions per MOF particulate to achieve higher TOF. The immobilized catalysts can be recovered from the reaction solution, which is significant for potential practical application.

In summary, this thesis work is focused on the development of economical, stable and efficient catalysts for both photocatalytic water reduction and oxidation sensitized by organic dyes. Biomimetic complexes with various coordination environments have been investigated as the catalysts for photocatalytic water reduction, which provide insight into designing of more efficient water reduction catalysts. This is followed by two systems evolving MIL-101 as the substrate to immobilize both homogeneous and heterogeneous catalysts for water oxidation. It was found the incorporation of catalysts in the cavities of MIL-101 not only can enhance their activities for water oxidation but also can improve their stabilities.
CHAPTER 1 INTRODUCTION

1.1 Background and motivations

Nowadays the reserve fossil fuels including petroleum, coal and natural gas are being exhausted at an accelerated rate. The world’s reliance on fossil fuels causes not only environmental problems but also geopolitical issues. As a result, searching for substituting clean and renewable energy sources is an urgent task in order to relieve the energy and environmental crisis. Among all the renewable energy resources we know to date, solar energy represents the most promising one. The amount of solar radiation intercepted by Earth is more than sufficient to meet current and projected energy uses well beyond 2100. Solar energy can be harnessed as thermal energy for heating or be converted to electricity by photovoltaics. In addition, solar energy can also be transformed to chemical energy and stored in the form of chemical bonds in certain compounds. These compounds obtained by artificial photosynthesis are called solar fuels. In natural photosynthesis, plants absorb the solar energy to oxidize water to generate oxygen. The resultant electrons are at sufficiently negative redox potential to reduce carbon dioxide for hydrocarbons production. Inspired by nature, researchers intend to develop artificial photosynthesis following the biological blueprint. Typically, two artificial photosynthetic reactions are evolved for solar fuel production: (1) the overall water splitting reaction (2) the carbon dioxide reduction reactions. The solar fuels generated from above reactions are hydrogen and hydrocarbons.

In early 1970, the concept of “Hydrogen Economy” was proposed by the University of Michigan. Hydrogen fuel is believed to be the ultimate replacement for fossil hydrocarbons. Hydrogen is attractive because the product of its combustion or oxidation is only water when it is burned to produce heat or reacted with oxygen in fuel cell to produce electricity. Moreover, hydrogen possesses high energy density by weight. Each mole of H₂ can store 273 kJ of energy in the form of chemical bond as
shown in Equation 1. However, currently hydrogen is mainly produced from sources of fossil origin, which deviates from the renewable goal. A breakthrough in photocatalytic water splitting reaction was reported by Honda and Fujishima in 1972 using TiO$_2$ as the photocatalyst, which prompted the scientific community that it was possible to produce hydrogen in a sustainable and clean way by using solar energy9. Since then, intensive efforts have been made to study basic principles of photocatalysis and design efficient photocatalysts. Expectedly, it is promising to step into the “Hydrogen Economy” in 21st century if the quantum efficiency for water splitting can be enhanced to be higher than 10% for practical applications.

$$\text{H}_2\text{O} \rightarrow \text{H}_2 + \frac{1}{2}\text{O}_2; \quad \Delta G = +237 \text{ kJ/mol} \quad (1)$$

In contrast, in natural photosynthesis, plants facilitate light-driven carbohydrate formation by oxidizing water to provide electrons and protons needed for CO$_2$ reduction7. The water oxidation reaction is essential for solar to fuel conversion since water is the only inexpensive and rich source to provide protons and electrons in a tetra scale10. However, water oxidation is challenging since it requires to overcome the high activation energy (Equation 2) for removal of four electrons coupled with four protons to form one oxygen molecule. As a consequence, development of efficient water oxidation catalyst (WOC) is urgent for solar fuel production.

$$2\text{H}_2\text{O} \rightarrow \text{O}_2 + 4\text{H}^+ + 4\text{e}^-; \quad \Delta G=+475 \text{ kJ/mol} \quad (2)$$

1.2 Objectives and scope

Since the pioneering finding by Fujishima and Honda, both the water reduction half-reaction and water oxidation half-reaction have been extensively studied. In spite of the paid efforts, most of the obtained results to date are still far away form practical applications. Noble metals are commonly employed as active sites to react with water to produce hydrogen or oxygen. Some noble metal free catalysts showed low activity or poor durability. It is still challenging to achieve low cost, stable, visible light harvesting and efficient catalysts for both water reduction and water oxidation. The objectives and scope of this thesis are summarized as following to meet such
challenges:

(1) To develop an efficient bio-mimetic water reduction catalyst with earth abundant elements. In nature, hydrogenases constructed from Fe and Ni with a variety of coordination types are efficient catalysts for proton reduction, which inspired us to develop bio-mimetic Ni complexes with a variety coordinative environment for photocatalytic water reduction. This work is presented in Chapter 3.

(2) To immobilize water oxidation catalyst on the substrate for enhanced photocatalytic activity. Immobilization of metal oxides such as Co$_3$O$_4$ in cavities of proper substrates (like metal-organic frameworks) can reduce their size thus generating more active sites to improve their activity for photocatalytic water oxidation. This work is presented in Chapter 4.

(3) To deposit homogeneous molecular catalyst on the substrate for enhanced stability and activity. The stability of homogeneous molecular catalyst is a main concern for their large scale application. They are not easily recoverable after the reaction from the homogeneous solution. The MIL-101, a robust MOF, was employed to encapsulate the macular catalyst to stabilize and recover the catalyst. This work is presented in Chapter 5.

In summary, this thesis work is focused on developing of transition metal based, stable and efficient catalysts for both photocatalytic water reduction and water oxidation.

1.3 Major contributions of the thesis

Contributions of this thesis to the field of photocatalysis for solar fuel generation are summarized as following:

(1) The biomimetic complexes constructed from earth abundant elements are active and inexpensive catalysts for H$_2$ generation by water reduction. Excellent quantum efficiency was obtained for the complexes with the N and S mixed donor. It provides useful clues for development of noble-metal free complexes with various coordinative environment that mimics natural enzymes toward solar fuel production.
(2) Cobalt oxide nanoparticles of 2-3 nm can be successfully embedded into the cavities of MIL-101 with excellent dispersion and narrow size distribution by a facile impregnation and calcination method. The incorporated cobalt oxides are highly active for water oxidation and stable. The MIL-101 facilitates charge transfer in the photocatalytic process. This method can be extended to develop other metal oxides and metal sulfides immobilized MOFs for a wider range of applications.

(3) A highly efficient homogeneous molecular water oxidation catalyst [Co(H$_2$O)$_2$(PW$_9$O$_{34}$)$_2$]$^{10-}$ (CoPOM) was immobilized on MIL-101 by electrostatic interaction. The coordination between MIL-101 and CoPOM can not only stabilize CoPOM but also enhance its activity for water oxidation. Moreover, the heterogenization of molecular CoPOM makes it easily recycled from the solution after reaction.
CHAPTER 2 LITERATURE REVIEW

2.1 Fundamental principles of photocatalytic water splitting

There are three main processes during the photocatalytic reactions as shown in Figure 2-1. Initially the photosensitizers absorb photons to generate electron/hole pairs. The band structure of semiconductors is composed of valence band (VB) and conduction band (CB). The energy difference between the minimum of CB and maximum of VB is called band gap. When the energy of the incident light is higher than band gap, electrons located in the VB will be excited to CB, leaving positively charged holes in the VB. Secondly, the photo-generated electrons and holes will migrate to the surface of the catalyst. Finally, water reduction and/or water oxidation happens by reacting with these charge carriers.

Several points should be noted during the whole process. Firstly, the band structure of semiconductors should match well with the redox potentials of water, which means the CB should be more negative than the redox potential of H⁺/H₂ (0 V vs. NHE), while the VB has to be more positive than the redox potential of O₂/H₂O (1.23 V vs. NHE). As an uphill reaction, the water splitting reaction has Gibbs free energy change.

![Figure 2-1](image.png)

Figure 2-1 Fundamental principles of water splitting using semiconductor photocatalysts.
of 1.23 eV. Therefore, the band gap should be greater than 1.23 eV, while less than 3.0 eV to achieve visible light absorption. Secondly, the recombination of electrons and holes often takes place during the charge migration process. Crystalline defects, which act as charge recombination centers will enhance this recombination. Long migrating paths will cause enhanced recombination because of rising transmitting time. Thus decreasing the defects by calcination and shrinking the size of the catalysts are effective approaches to enhance the activity. Thirdly, surface properties such as active sites and surface areas play important roles in the water redox step. Cocatalysts loaded on the surface will often promote the charge separation hence lowering surface recombination.

2.2 Water reduction

Though several breakthroughs have been achieved in the recent decades, realization of photocatalytic overall water splitting is still a tough task. Since water splitting consists of water reduction and water oxidation, while water oxidation reaction involving a complicated four-electron transferring process. This half reaction requires accumulation of charge coupled with removal of four protons to form one oxygen molecule, which is considered as the obstacle to achieve photocatalytic overall water splitting11. But this obstacle does not hinder us from studying each half reaction separately. Investigating half reactions employing sacrificial reagents is meaningful to evaluate catalytic performances including thermodynamic and kinetic aspects. Furthermore, adding sacrificial reagents could be significant for practical hydrogen production if low cost reducing reagents are developed12-15. When the reactions are carried out in aqueous solutions with electron donors, such as metal sulfides and triethanolamine (TEOA), photo-generated holes are scavenged by these donors instead by water, which enrich electron levels in CB and enhance hydrogen production. On the other hand, oxygen evolution from water splitting will be promoted by adding electron scavengers.

Generally, photocatalytic reactions according to the type of photosensitizers can be classified into semiconductor based systems and dye sensitized systems.
2.2.1 Semiconductor based systems for water reduction

Conventional metal oxides semiconductors are constructed of d⁰ metal16-23 (Ti⁴⁺, Zr⁴⁺, Nb⁵⁺, Ta⁶⁺, W⁶⁺, Mo⁶⁺), d¹⁰ metal24-28 (In³⁺, Ga³⁺, Ge⁴⁺, Sn⁴⁺, Sb⁵⁺), and f⁰ metal29 (Ce⁴⁺). Among all the metal oxides, TiO\textsubscript{2} is the most well known semiconductor. However, just like many other metals oxides constructed by d⁰ or d¹⁰ metal ions, TiO\textsubscript{2} can only absorb UV light due to its wide band gap. Because valence bands of these photocatalysts are composed of O 2p orbitals, of which the potential is about 3.0 eV vs. NHE, while their conduction bands consisting of d orbitals of metals are more negative than 0 eV vs. NHE. To fully utilize the solar light, it is necessary to modify these materials for visible light harvesting. Based on the research results in the past decades, several common approaches have been concluded: (1) band gap engineering by ions doping, (2) developing solid solution to control band structure, (3) creating novel single phase visible light responsive catalysts.

![Diagram](image)

Figure 2-2 (a) Donor level and acceptor level formed by ions doping, (b) Formation of new valence band by nonmetal doping, (c) Band gap engineering by formation of solid state solution.
Doping transition metal into crystal sites of metal oxides is one of the most effective methods to develop visible responsive photocatalysts by creating impurity levels in the forbidden band as shown in Figure 2-2a. Since Borgarello et al. found that Cr$^{3+}$ doped TiO$_2$ could produce hydrogen under visible light in 198230,31, many transitions metals including Ni, V, Cr, Mo, Fe, Sn, Mn have been successfully doped into TiO$_2$ for visible light harvesting$^{31-36}$. Unlike metal ion doping, nonmetal ion doping narrows the band gap by shifting the valence band upward instead of forming impurity levels in the forbidden band as shown in Figure 2-2b. Nonmetal ions such as S and N have 3p and 2p orbitals respectively, which have more negative potentials than 2p orbitals of O. Therefore, N and S are often doped into metal oxides to narrow the band gap by shifting the valence band upward. Many methods including sputtering and implantation techniques37, high temperature sintering under nitrogen containing atmosphere38, sol–gel processes39 and hydrothermal treatment40, spray pyrolysis41, and supercritical methods42 have been employed to dope N and S at TiO$_2$. Solid solution is another method to align the band gap as shown in Figure 2-2c. These solid solutions are usually formed by a wide band gap and a narrow band gap semiconductor. Band structures including the band gap and the band positions can be adjusted by varying the ratio of both components. Metal oxides with similar crystal structures can form solid solution through solid state reactions43.

Valence band of metal sulfides consisting of S 3p orbitals is more negative than that of metal oxides. Thus metals sulfides are promising candidates for visible light driven photocatalysis. The main drawback is photocorrosion. CdS with a band gap of 2.4 eV achieved impressive efficiency and quantum yield for hydrogen production under visible light when loaded with cocatalysts such as NiS and Pt$^{44-47}$. Metal sulfides with similar crystals structure can also form solid state solution to enhance the activity. Solid solutions formed by ZnS and other sulfides involving CdS, AgInS$_2$ and CuInS$_2$ displayed excellent performances for hydrogen production$^{48-52}$.

Metal (oxy)nitrides developed by Domen’s group possesses light absorption up to 500-600 nm. Oxynitrides constructed by Ti$^{4+}$, Nb$^{5+}$, Ta$^{5+}$ with d0 configuration can
evolve H\textsubscript{2} or O\textsubscript{2} in sacrificial reagents respectively53-55. It is still hard for these materials to split water into H\textsubscript{2} and O\textsubscript{2} separately if no sacrificial reagent is present. However, this obstacle can be overcome by forming solid-state solutions. Since 2005, Domen and his coworkers have systematically studied the GaN-ZnO solid-state solutions56-61. Both of GaN and ZnO have a band gap larger than 3.0 eV. However, when they form the solid state solutions denoted as GaN:ZnO, the p-d repulsion between N 2p and Zn 3d orbitals shift the valence band upward without changing the conduction band62. As a result, the band position is suitable to split water into hydrogen and oxygen under visible light without any sacrificial reagent. When loaded with Rh\textsubscript{2-x}Cr\textsubscript{x}O\textsubscript{3} as the cocatalysts, the quantum efficiency of this solid solution can reach \(\sim\)2.5% at 420-440nm57. And it is also reported that the GaN:ZnO is photo stable. It can maintain its 50% activity even after half a year63. Besides this GaN:ZnO solid solution, Domen and his coworkers develop another solid solution denoted as \((\text{Zn}_{1+x}\text{Ge})(\text{N}_2\text{O}_x)\)64,65, which is also favorable for overall water splitting under visible light. Carbon nitride is another metal free nitrides that can function as water reduction catalyst under visible light.

\textbf{2.2.2 Dye sensitized systems for water reduction.}

Dye sensitized systems are also effective to achieve visible light harvesting. Many types of metal complex dyes and metal free dyes have been demonstrated to be powerful for visible light driven water splitting. The dye sensitized systems depending on the catalysts used can be classified into dye sensitized semiconductor systems and dye sensitized metal complex systems. The basic principles of dye sensitized semiconductor based photocatalytic hydrogen evolution are shown in Figure 2-3. However, the mechanism of dye sensitized complexes-based water splitting by photocatalysis is much more complicated.
Based principles of H2 evolution using dye sensitized semiconductors.

In study of dye sensitized metal complexes for water reduction reactions, the main choices for light absorber are noble metal complexes with a charge transfer excited state. These complexes are constructed of noble metals including variants of Ru(II) tris(bipyridine) (Ru(bpy)3²⁺)⁶⁶,⁶⁷ and bis(terpyridine) (Ru(terpy)₂²⁺)⁶⁸ complexes, Ir(III) phenylpyridine (Ir(ppy)₃³⁺)⁶⁹ complexes and Pt(II) bipyridine or terpyridine acetylide complexes⁷⁰,⁷¹. A triplet-excited state exists by metal to ligand charge transfer (MLCT) for all above complexes when excited by visible light. The long lifetime of this triplet state facilitates these excited complexes to have sufficient time to transfer the charges to the catalyst. Despite the intensive and valuable studies, drawbacks of these photosensitizers are instability for long time irradiation and the use of noble metal, which render them not to be suitable for practical applications. Therefore, metal-free dyes are explored for visible light harvesting. In 1985, Shimidzu’s group reported detailed studies on xanthene dyes working as sensitizers⁷². This series of heavy halogenated dyes including Rose Bengal, Erythrosine, Eosine and so on as shown in Scheme 2-1 displayed high efficiency for visible light harvesting. However, they undergo dehalogenation under long irradiation. The half dehalogenated Rhodamine B and the totally dehalogenated Fluorescein showed quite good stability but low activity. The indispensable heavy halogenated attribute to intersystem crossing for existence, which is absolute necessary for the long-lived triplet excited state. Both the noble
metal complexes and metal free organic dyes are investigated as photosensitizers for photocatalytic water reduction reaction.

![Scheme 2-1 Chemical structure illustration of xanthene dyes.](attachment:image.png)

In early 1981, Krishnan and Sutin found the first Ru(bpy)$_3^{2+}$ sensitized metal complex system for water reduction using cobalt bipyridine complexes as the catalysts73. Before that, numerous cobalt complexes have been widely applied for electocatalytic water reduction74. It is curious that if the driving force could be substituted by solar light. Eisenberg and Fisher reported two cobalt macrocyclic complexes for electocatalytic water reduction and carbon dioxide reduction in 198074. Then these two complexes were demonstrated to be effective for photocatalytic water and carbon dioxide reduction simultaneously under visible light when Ru(bpy)$_3^{2+}$ was used as the photosensitizer75. Cobaloxime-based complexes are another series catalysts for hydrogen production when sensitized by Ru(bpy)$_3^{2+}$. The first example was reported by Lehn et al in 198376. However, the instability and air sensitivity limit their application. Then a more stable BF$_2$-annulated cobaloxime was reported by Espenson in 198677. Sun and his coworkers then investigated BF$_2$-annulated tis(dimethylglyoximate) for water reduction sensitized by Eosine Y and Rose bengal78. Recently, Eisenberg’s group reported H-bridged Co(III)- bis(dimethylglyoximate) complexes bearing a axial pyridine ligand. These catalysts showed outstanding performances for hydrogen production in CH$_3$CN and water mixed solution no matter sensitized by platinum chromophore or Eosine Y79.

LITERATURE REVIEW
Apart from cobalt, nickel and iron are also promising earth abundant elements for constructing water reduction catalysts. It is known that hydrogenases for proton reduction are constructed by nickel and iron80. Inspired by this, many biomimetic nickel and iron-based complexes have been explored for hydrogen evolution81-83. DuBois and coworkers systematically studied the $[\text{Ni}(\text{P}_2\text{Ar}_2\text{N}_2\text{Ar}_2)](\text{BF}_4)_2$ for electrocatalytic hydrogen production, which contained two non-coordinating active sites of each ligand84-86. The same catalysts then were used for photocatalytic hydrogen production by McLaughlin and coworkers sensitized by Ru(bpy)_3^{2+} and Eosine Y87. Hydrogenase-like iron complexes were reported by Sun et al., which was active for hydrogen production when using Ru(bpy)_3^{2+} as the sensitizer and ascorbic acid as the sacrificial reagent88. Beller’ group reported that the $[\text{Ir(bpy)(ppy)}_2]\text{PF}_6$ sensitized iron carbonyl complexes were also effective catalysts for hydrogen production89. Recently a long-lived nickel thiolate complexes reported by Eisenberg obtained TONs as high as 5500 after 40 hours when fluorescein was used as photosensitizer90. Our group also reported a self-assembled nickel thiolate complex, which displayed impressive activity for hydrogen production. And an quantum efficiency (QE) of 24.5\% was achieved at 460 nm when sensitized by Erythrosin B91. These biomimetic metal complexes are made of nontoxic, low cost and earth abundant elements. They are expected to represent the economical and environmentally benign systems.

In spite of the above achievements, there are limited reports on metal complexes with mixed donor for dye sensitized water reduction. Moreover, the currently obtained QE is still far away practical applications. In addition, the mechanism of the dye sensitized metal complexes for water reduction is also not clear yet. Development of more complexes with various types of donor environment will help study the effect coordinated ligand thus providing us clues for designing of more efficient water reduction catalysts.
2.2.3 Summary

From the above literature review, it can be concluded that it is quite a difficult task to align the band positions for visible light absorption while retaining sufficient driving force for water reduction. The advantage of dye-sensitized systems lies in the separation of light absorber and catalyst just as that done in nature, which makes it much easier to amend both components to achieve high efficiency. The inspiration from nature prompts us to develop biomimetic complexes for catalytic water reduction.

2.3 Water oxidation

As mentioned above, the water oxidation reaction is considered to be the bottleneck for solar fuel production since it requires the transferring of four electrons to form one O-O bond. This calls for water oxidation catalysts (WOCs) capable of overcoming thermodynamic potential of water oxidation to accumulate four oxidizing equivalents. And it should also avoid the formation of high-energy intermediates that can damage the WOCs. Thus, the proton coupled electron transfer (PCET) is essential to neutralize the charge when the multielectron-transfer catalysis occurred. The PCET allow for removal one electron coupled with a proton preventing the accumulation of charge to form high-energy intermediates. Therefore, a successful WOC should be stable to oxidize, hydrolytic and thermal degradation, efficient to catalyze water oxidation with high turnover frequency, and amendable to adapt different conditions. Numbers of heterogeneous and homogeneous WOCs have been investigated for the purpose to meet these challenges.

2.3.1 Heterogeneous WOCs

Transition metal oxides have been intensively investigated as WOCs. They are stable enough to withstand the harsh conditions for water oxidation. In early 1970s, colloidal noble metal oxide particles were evaluated as highly efficient WOCs especially the iridium oxides and ruthenium oxides. One recent example used SBA-15 confined RuO₂ nanoparticles as catalyst for chemical and photochemical
water oxidation. Under the optimized conditions, a high TOF of 0.027 s\(^{-1}\) with an O\(_2\) yield of 95 % was achieved in photocatalytic water oxidation reaction using Ru(bpy)\(_3\)\(^{2+}\) as photosensitizer\(^{99}\). Another intriguing observation is that succinic stabilized IrO\(_2\) capable of function as both photosensitizer and catalyst. The photocatalytic process involves a visible excitation between Ir-d (t\(_{2g}\)) and Ir-d (e\(_g\)) bands\(^{100}\). Although the noble metal based metal oxides have been demonstrated to be efficient WOCs, these metals are among the scarcest element on earth, which limited their prospect for large-scale application.

As a result, great efforts have been made to develop first-row transition metal WOCs. In light of that WOC of photosystem II in nature is composed of four manganese atoms, many cubane manganese clusters have been investigated as WOCs\(^{101-103}\). However, they are found to be precursors of active manganese oxides\(^{104,105}\). Some other manganese complexes are even reported to decompose to form manganese oxide without addition of oxidant\(^{106,107}\). One challenge is hard to identify the structure of the generated manganese oxide since they have more than 30 types of crystal structure with different valencies\(^{108}\). Dimukes and Greenblat studied the relationship between structure and activity\(^{109}\). They concluded that most manganese oxides are efficient WOCs while α-MnO\(_2\) and β-MnO\(_2\) are inactive. Unfortunately, these active manganese oxides can only work at alkaline conditions. Their performance for catalytic water oxidation will significantly drop at neutral pH. Recently, particular interest is dedicated to study the calcium manganese oxides\(^{110,111}\) since the calcium has been demonstrated an essential component of WOCs in photosystem II\(^{112}\). Several examples containing the CaMn\(_3\)O\(_4\) cubane core have shown enhanced activity compared with those only containing bare manganese cubane core\(^{110,113}\). The obtained results to date indicate that the biomimetic manganese oxides are efficient WOCs. Higher activity can be obtained by simple substitution of inactive metal center. These investigations also provide useful insights for the development more biomimetic metal oxides for catalytic water oxidation.

Apart from manganese oxides, another most studied heterogeneous first-row transition metal WOCs are catalysts containing cobalt. The most well-known one
should be the cobalt phosphate (Co-Pi) discovered by Nocera. It is self-assembled in aqueous phosphate buffer solution containing cobalt (II) salts when external potential is applied. The analysis of its structure by XAS and EXAFS found that it possessed cobalt cubane-type structural motif mimicking the tetranuclear manganese cluster in the natural photosynthetic systems. The in situ formed Co-Pi film exhibited a TOF of 2×10^{-3} s$^{-1}$ with an overpotential of 410 mV in neutral water. Its ability of undergo self-assembly and self-healing together with its high efficiency make it one of the most potential candidate for practical application.

Another cobalt-based WOC containing the cubane motif is the spinel Co$_3$O$_4$. In early 1988, Harriman has found that spinel Co$_3$O$_4$ was an efficient WOC for electrochemical water oxidation. Recently, Singh studied the electrochemical catalytic performance of spinel Co$_3$O$_4$ and La-doped Co$_3$O$_4$ for water oxidation. The application of Co$_3$O$_4$ in photocatalysis was discovered very recently with an initial work by Jiao and Frei. Since then, many works have been done to investigate the spinel Co$_3$O$_4$ as WOCs in photocatalysis using [Ru(bpy)$_3$]$^{2+}$ as the photosensitizer as summarized in Table 2-1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>TOF (s$^{-1}$)</th>
<th>Notes</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co$_3$O$_4$/SBA-15</td>
<td>0.34a</td>
<td>Nanorods in channel of SBA-15</td>
<td>2012121</td>
</tr>
<tr>
<td>Co$_3$O$_4$/KIT-6</td>
<td>0.41a</td>
<td>Three-dimensional structure in pores of KIT-6</td>
<td>2012121</td>
</tr>
<tr>
<td>Co$_3$O$_4$/Al$_2$O$_3$</td>
<td>0.46a</td>
<td>Nanoparticles on the surface</td>
<td>2012121</td>
</tr>
<tr>
<td>Co$_3$O$_4$ (6nm)</td>
<td>0.25a</td>
<td>Free nanoparticles</td>
<td>2012121</td>
</tr>
<tr>
<td>Mg-Co$_3$O$_4$</td>
<td>0.24b</td>
<td>Mg doped mesoporous Co$_3$O$_4$</td>
<td>2013122</td>
</tr>
<tr>
<td>Co$_3$O$_4$/SBA-15</td>
<td>0.64c</td>
<td>Co$_3$O$_4$ immobilized on SBA-15</td>
<td>2013123</td>
</tr>
<tr>
<td>Mn-Co$_3$O$_4$</td>
<td>0.87d</td>
<td>Mn doped Co$_3$O$_4$</td>
<td>2014124</td>
</tr>
<tr>
<td>Ni-Co$_3$O$_4$</td>
<td>0.45d</td>
<td>Ni doped Co$_3$O$_4$</td>
<td>2014124</td>
</tr>
</tbody>
</table>
According to the obtained results, we can conclude as following:

1. The spinel Co$_3$O$_4$ nanoparticles with smaller size are significantly more active as WOCs.

2. The three-dimensional porous KIT-6 loaded Co$_3$O$_4$ showed higher activity than the two-dimensional structure loaded one. It indicates that the three-dimensional porous structure provide better accessibility to catalytic sites.

3. The immobilized Co$_3$O$_4$ nanoparticles showed higher activity and better recyclability than free ones demonstrating that the supports can hinder the nanoparticles from aggregations.

4. The Mg-Co$_3$O$_4$ shows an induction for photocatalytic water oxidation since the catalyst undergo surface restructuring, where leaching of Mg creates defects. It implies that the initial structure is less important for long-term water oxidation.

5. The doping of Mn suggests that higher activity is achievable by doping of Mn in certain lattice.

These studies provide us many useful clues for further improving the photocatalytic performance of Co$_3$O$_4$ such as immobilizing the Co$_3$O$_4$ on certain supports. Many efforts are made to reduce the nanoparticle size and prevent the nanoparticles from...
aggregation. Moreover, the environment and structure surrounding the Co$_3$O$_4$ are essential as they also affect the catalytic performance. Therefore, searching for new methods of modifying Co$_3$O$_4$ nanoparticles such as immobilizing the Co$_3$O$_4$ on certain supports are necessary to make it a more efficient WOC.

2.3.2 Homogeneous WOCs

Since the early findings of Ruthenium based complexes as WOCs126,127, great amount of mononuclear and multinuclear WOCs constructed of ruthenium and iridium have been investigated128-131. However, most ruthenium and iridium based WOCs are applied in electrocatalysis and are suffered from degradation132. Nevertheless, these findings result in great interest in design of molecular WOCs based on earth abundant first-row transition metals including manganese, iron and cobalt.

As a metal chosen by nature in photosystem II, manganese has attracted many interests from scientists. Manganese has a wide range of oxidation states, which make it promising in mulitelectron catalysis. However, theses high-valent states also bring the problem of instability demanding for ligand stabilization to prevent them from degradation. It requires that these ligands must be robust and stable enough against oxidation degradation. Thus, only a few stable manganese-based WOCs for photocatalysis are discovered133. Even though, the derivatives produced by the degradation of manganese complexes are suspected to be the real catalyst for water oxidation.

Recently, iron is recognized as suitable elements for preparing WOCs since it is abundant on earth, low toxic and natural available134,135. Like manganese, the access of high oxidation states makes iron prospective in mulitelectron catalysis while also requires robust ligand to stabilize the architecture of high-valent iron species136. Therefore, it is challenging to design an iron-based complex with feasible structure and enough robustness for catalytic water oxidation reactions. The first example was reported in 2010 using Ce$^{4+}$ as oxidant137. Later, light driving water oxidation using
iron based WOCs was reported in 2013138. However, it was found that the Fe\textsubscript{2}O\textsubscript{3} derived from the complexes were found to be the true catalysts for water oxidation.

In early 1980s, the simple cobalt salts have been realized to be active in catalytic water oxidation139. However, the interest in preparation of molecular cobalt-based WOCs was negligible until the finds of heterogeneous Co-Pi catalyst by Nocera. Since then, scientists are dedicated to develop efficient molecular cobalt-based WOCs. Unfortunately, the progress is hindered by the instability Co2+ center. Though cobalt-based WOCs applied in electrocatalysis have been explored for several years, the first example capable of catalyzing water oxidation using the visible light as driving force was reported by the group of Lau in 2012140. Then, Sakai’s group discovered that a series of cobalt-porphyrin complexes are active in photocatalytic water oxidation using [Ru(bpy)\textsubscript{3}]2+ as the photosensitizer141. Later, the group of Pizzolato demonstrated that the cobalt salophen is an efficient catalyst for both electrochemical and photochemical water oxidation142. Recently, Ding and Ma reported a single-site cobalt salen complex which showed high activity toward photocatalytic water oxidation.143 Lately, they found that the CoO\textsubscript{x} derived from the above complex was responsible for the activity.

The first-row transition metal based metal complexes are found to be active in catalytic water oxidation. Unfortunately, majority of them are not robust enough to withstand the highly oxidizing conditions. The coordinated organic ligands are degraded after long time reaction. Thus, development of carbon free molecular catalysts based on first-row transition metals may be an alternative. Polyoxometalates (POMs) are a series polyatomic ions, consisting of early transition metals (eg., V, Nb, W, Mo) bridged by oxygen atoms. Metals in POMs are usually in their highest oxidation state with d0 electronic configuration, which make them to be oxidative inert. The POMs serving as WOCs can undergo fast and reversible mulitelectron-transfer redox transformations without significant structural alteration. Their oxygen-enriched surfaces can also provide robust all-inorganic systems to encapsulate and protect active WOCs. Another advantage of POMs working as WOCs is that their structure is amendable for further mechanistic and computational
The photocatalytic water oxidation using of POM was WOCs are summarized in Table 2-2.

Table 2-2 Summary of photocatalytic water oxidation using of POM was WOCs.

<table>
<thead>
<tr>
<th>POM</th>
<th>TOF(s⁻¹)</th>
<th>Reaction conditions</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb₉K₂[{Ru₄O₄(OH)₂(H₂O)₂}]₂{(γ-SiW₁₀O₃₆)₂}</td>
<td>0.08</td>
<td>Xe lamp (420-520nm), 5.0µM catalyst, 1.0mM [Ru(bpy)₃]²⁺, 5.0mM Na₂S₂O₈, 20mM sodium phosphate buffer(pH=7.2).</td>
<td>¹⁴⁴2009</td>
</tr>
<tr>
<td>Cs₉[(γ-PW₁₀O₃₆)₂Ru₄O₅(OH)(H₂O)₄</td>
<td>0.13</td>
<td>Xe lamp (420-520nm), 5.0µM catalyst, 1.0mM [Ru(bpy)₃]²⁺, 5.0mM Na₂S₂O₈, 20mM sodium phosphate buffer(pH=7.2).</td>
<td>¹⁴⁵2010</td>
</tr>
<tr>
<td>Cs₁₀[Ru₄O₄(OH)(H₂O)₄]₂{(γ-SiW₁₀O₃₆)₂}</td>
<td>0.008</td>
<td>50 W LED lamp (λ>550nm), 60µM catalyst, 0.1mM [Ru{(µ-dpp)Ru(bpy)₂}₃]⁸⁺, 10mM Na₂S₂O₈, 10mM phosphate buffer(pH=7.2).</td>
<td>¹⁴⁶2010</td>
</tr>
<tr>
<td>Na₁₀[Co₄(H₂O)₂(α-PW₉O₃₄)₂]</td>
<td>-</td>
<td>Xe lamp (420-520nm), 5.0µM catalyst, 1.0mM [Ru(bpy)₃]²⁺, 5.0mM Na₂S₂O₈, 20mM sodium phosphate buffer(pH=7.2).</td>
<td>¹⁴⁷2011</td>
</tr>
<tr>
<td>K₁₀.₂Na₈.8[Co₄(μ-OH)(H₂O)₃]{(SiW₁₉O₇₀)₂}</td>
<td>0.1</td>
<td>Xe lamp (420-520nm), 10µM catalyst, 1.0mM [Ru(bpy)₃]²⁺, 5.0mM Na₂S₂O₈, 25mM sodium borate buffer(pH=9.0).</td>
<td>¹⁴⁸2012</td>
</tr>
<tr>
<td>K₁₀H₂[Ni₅(OH)₆(H₂O)₉]₂{Si₂W₁₈O₆₆}</td>
<td>-</td>
<td>LED lamp (455nm), 1.0mM [Ru(bpy)₃]²⁺, 5.0mM Na₂S₂O₈, 25mM sodium borate buffer(pH=8.0).</td>
<td>¹⁴⁹2012</td>
</tr>
<tr>
<td>Cs₁₀[Ru₄(μ-O)₄(μ-OH)₂(H₂O)₄]₂{(γ-SiW₁₀O₃₆)₂}</td>
<td>280</td>
<td>Laser, 0.5µM catalyst, 0.1mM [Ru(bpy)₃]²⁺, 5.0mM Na₂S₂O₈, 80mM sodium phosphate buffer(pH=7.0).</td>
<td>¹⁵₀2012</td>
</tr>
<tr>
<td>α-K₆Na[{Ru₃O₃(H₂O)Cl₂}(SiW₉O₃₄)]</td>
<td>0.7</td>
<td>LED lamp (470 nm), 50 µM catalyst, 1.0mM [Ru(bpy)₃]²⁺, 5.0mM Na₂S₂O₈, 20mM Na₂SiF₆ buffer(pH=5.8).</td>
<td>¹⁵₁2012</td>
</tr>
<tr>
<td>K₁₁Na₁[Co₄(H₂O)₂(SiW₉)]</td>
<td>0.4</td>
<td>LED lamp (470 nm), 42 µM catalyst,</td>
<td>¹⁵₁2012</td>
</tr>
<tr>
<td>POM Structure</td>
<td>Conditions</td>
<td>Photocatalyst</td>
<td>References</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>(NH$_4$)$_3$[CoMo6O${24}$H$_6$]</td>
<td>0.11</td>
<td>300 W Xe lamp (420-490nm), 20µM catalyst, 0.4mM [Ru(bpy)$_3$]$^{2+}$, 3.0mM Na$_2$S$_2$O$_8$, 100mM sodium borate buffer (pH=8.0).</td>
<td>1522012</td>
</tr>
<tr>
<td>(NH$_4$)6[Co2Mo${10}$O${39}$H$_4$]</td>
<td>0.16</td>
<td>300 W Xe lamp (420-490nm), 20µM catalyst, 0.4mM [Ru(bpy)$_3$]$^{2+}$, 3.0mM Na$_2$S$_2$O$_8$, 100mM borate buffer (pH=9.0).</td>
<td>1522012</td>
</tr>
<tr>
<td>K7[CoIIICoII(H2O)${11}$O]${30}$</td>
<td>0.5</td>
<td>16 mW LED lamp ($\lambda$$>$420nm), 15µM catalyst, 1.0mM [Ru(bpy)$_3$]$^{2+}$, 5.0mM Na$_2$S$_2$O$_8$, 80mM borate buffer (pH=9).</td>
<td>1532013</td>
</tr>
<tr>
<td>Na$_{10}$[Co$_4$(H$_2$O)$_2$(α-VW)9O${34}$]</td>
<td>-</td>
<td>17mW LED lamp (455 nm), 2.0 µM catalyst, 1.0mM [Ru(bpy)$_3$]$^{2+}$, 5.0mM Na$_2$S$_2$O$_8$, 80mM borate buffer (pH=9.0).</td>
<td>1542014</td>
</tr>
<tr>
<td>Na$_{30}$K$_2$[Co$_4$(OH)$_3$(PO$_4$)$_4$(SiW9O${34}$)$_4$]</td>
<td>0.053</td>
<td>300 W Xe lamp (420-800nm), various catalyst, 1.0mM [Ru(bpy)$_3$]$^{2+}$, 5.0mM Na$_2$S$_2$O$_8$, 80mM borate buffer (pH=9.0).</td>
<td>1552014</td>
</tr>
<tr>
<td>Na$_{30}$K$_2$[Co$_4$(OH)$_3$(PO$_4$)$_4$(GeW9O${34}$)$_4$]</td>
<td>0.105</td>
<td>300 W Xe lamp (420-800nm), various catalyst, 1.0mM [Ru(bpy)$_3$]$^{2+}$, 5.0mM Na$_2$S$_2$O$_8$, 80mM borate buffer (pH=9.0).</td>
<td>1552014</td>
</tr>
<tr>
<td>Na$_{28}$[Co$_4$(OH)$_3$(PO$_4$)$_4$(PW9O${34}$)$_4$]</td>
<td>-</td>
<td>300 W Xe lamp (420-800nm), various catalyst, 1.0mM [Ru(bpy)$_3$]$^{2+}$, 5.0mM Na$_2$S$_2$O$_8$, 80mM borate buffer (pH=9.0).</td>
<td>1552014</td>
</tr>
<tr>
<td>Na$_{28}$[Co$_4$(OH)$_3$(PO$_4$)$_4$(AsW9O${34}$)$_4$]</td>
<td>-</td>
<td>300 W Xe lamp (420-800nm), various catalyst, 1.0mM [Ru(bpy)$_3$]$^{2+}$, 5.0mM Na$_2$S$_2$O$_8$, 80mM borate buffer (pH=9.0).</td>
<td>1552014</td>
</tr>
</tbody>
</table>

An initiative discovery of POM as efficient WOC was reported simultaneously by
two independent group156,157. They found that \([\{\text{Ru}_4\text{O}_4(\text{OH})_2(\text{H}_2\text{O})_4\}(\gamma-\text{SiW}_{10}\text{O}_{36})_2\}]^{10^{-}}\) (RuSiPOM) comprising a tetraruthenate can carry out water oxidation reaction at neutral condition (pH=7) using \([\text{Ru}(\text{bpy})_3]^{3+}\) as oxidant or at acidic condition (pH=0.6) using Ce4+ as the oxidant. Hill’s group then investigated its performance for photocatalytic water oxidation144. A TOF of 0.08 s-1 and a quantum efficiency of 0.045 were then obtained for the RuSiPOM using \([\text{Ru}(\text{bpy})_3]^{2+}\) as the photosensitizer. The first POM-based WOCs \([\text{Co}_4(\text{H}_2\text{O})_2(\alpha-\text{PW}_{9}\text{O}_{34})_2]\)10- (CoPOM) comprised of earth abundant elements was found by Hill in 2010158. It was reported that 0.12 µM of CoPOM showed a TOF > 5 s-1. Light driving water oxidation with CoPOM was also achieved later by Hill and his coworkers147. Since then, many POMs containing cobalt capable of catalyzing water oxidation have been reported as summarized in Table 2.

Despite the aforementioned achievements, the POM-based WOCs also suffer from the drawbacks of instability. The carbon-free POMs are stable to oxidative degradation and heat as indicated above. However, the hydrolytic stability is a main concern since many POMs will decompose to form metal oxide under certain pH. To find the solutions, Bonchio and Hill immobilize the RuSiPOM on multiwalled carbon nanotubes159 (MWCNT) and graphene160 respectively. Both of them found that the RuSiPOM interfacing with the supports showed enhanced activities and improved stabilities. Xie and coworkers studied the effect of carbon nitride to CoPOM by immobilizing the latter to the former161. As anticipated, the combination of CoPOM and carbon nitride resulted in higher electrocatalytic activity due to the synergistic effect between them. In addition, the immobilization of soluble POMs on substrates also makes them to be recovered from the solution more easily, which is essential for practical application. Thus, it can be concluded that immobilization of POMs on some substrates have been demonstrated an efficient method to stabilize POMs and enhance their activity for water oxidation.

\textbf{2.3.4 Summary}

Both heterogeneous and homogeneous WOCs are reviewed. The catalytic activities of heterogeneous WOCs are strongly affected by their crystal phase, particle size and
morphology. Compared with the heterogeneous ones, the homogeneous WOCs are less stable. Nevertheless, studying the homogeneous WOCs help understand the intrinsic mechanism of the water oxidation and provide more useful clues for designing of more efficient catalysts. And it was found that substrates do affect the stability and catalytic performance of both heterogeneous and homogeneous WOCs. Thus, searching for suitable substrates to immobilize the WOCs is an ideal method for improving their activities and stabilities.

2.4 Overall water splitting

The Z-scheme water splitting inspired by natural photosynthesis in green plants was introduced by Bard in 1979. The photosystems I and II harvest photons of different wavelengths. Charges move between photosystem I and photosystem II through shuttle redox mediators, oxidizing water to oxygen under visible light. In artificial Z-scheme systems, it is similar that two different photocatalysts named as water oxidation catalysts (WOC) and water reduction catalysts (WRC) are combined by shuttle redox mediators. The basic principle of Z-scheme water splitting is illustrated in Figure 2-6. In a H₂ evolution system, water is reduced to hydrogen by reacting with excited electrons at WRCs while the hole is scavenged by the electron donor. Thus electron donor (D) transform to its oxidized form (A). At the WOCs side, water is oxidized to form oxygen and the electron acceptor (A) will reduced at the same time. Thus a cycle of redox pairs of D and A are formed and water is splitting into hydrogen and oxygen during the same time.
In the past decades, numbers of systems have been explored for Z-scheme water splitting. Kudo and coworkers reported a system in 2004, in which 1% Rh doped SrTiO$_3$. A quantum yield of 0.3% was obtained at 440 nm when BiVO$_4$. Then in 2009, Sayama found the Cs$^+$ treated PtO$_x$. Three times higher activity was achieved compared with the system using untreated PtO$_x$/WO$_3$ worked as WRC and Bi$_2$Mo$_2$O$_6$, WO$_3$, or BiVO$_4$ functioned as WOC$_4$ was used as WOC under visible light and Fe$^{2+}$/Fe$^{3+}$ were employed as redox mediators. Before that, Abe et al. reported a system consisting of Pt loaded SrTiO$_3$ doped with Cr and Ta and PtO$_x$-loaded WO$_3$ with I$^-/IO_3^-$ as mediators. x-WO$_3$ obtains 10 times higher activity for oxygen evolution in the presence I$^3^-$. This finding was applied in Z-scheme water splitting using a mixture of Pt/SrTiO$_3$:Cr/Ta and Cs$^+$-treated PtO$_x$/WO$_3$ under visible light. It is also possible to apply a photocatalyst treated with different methods to both sides of the system. Kudo reported such a system containing Na and V codoped SrTiO$_3$ as an oxygen evolution catalyst and Rh doped SrTiO$_3$ as hydrogen evolution catalyst when Ru was loaded on both sides as cocatalysts. In particularly, besides Fe$^{3+}$/Fe$^{2+}$ and IO$_3^-$/I$^-$ couples,
[Co(bpy)$_3$]$^{3+/2+}$, [Co(phen)$_3$]$^{3+/2+}$ and even reduced graphene oxide were found effective redox mediators in the Ru/SrTiO$_3$:Rh and BiVO$_4$ systems. Kudo and coworkers also reported that this system even can work just by inter particle electron transfer without adding any mediator.

Other than metal oxides, metal (oxy)nitrides are also applied in Z-scheme water splitting. Compared with metal oxides, metal (oxy)nitrides may be more suitable materials to be applied in Z-scheme systems because of their proper band position. In 2005, Abe et al. reported a Z-scheme system containing a Pt-loaded TaON as a HER. A higher quantum yield of 0.5% was obtained compared with above-mentioned examples. Perovskite oxynitrides of ATaO$_3$ having absorption edges at 520, 600, and 660 nm respectively, were examined as a H$_2$ evolution photocatalyst in Z-scheme water splitting for the purpose of better utilizing of visible light. However an even lower quantum yield of 0.1% was obtained because of defects on their surface. Domen et al. discovered that the defects on the surface of the oxynitrides could be suppressed by ZrO$_2$. A six times higher quantum yield of 6.2% was obtained by combining Pt-loaded ZrO$_2$/ZrO$_2$/TaON with PtOx/WO$_3$ and an IO$_3^−$/I$^−$ shuttle redox mediator.

2.5 Summary of literature review

Compared with the semiconductor based photocatalytic systems, the dye-sensitized systems take the advantages of separation of light absorber and catalyst just as that done in nature. Thus, we can optimize both components for better utilization of solar energy and higher catalytic efficiencies. It is inspiring to learn from nature to design some low cost biomimetic complexes. The work presented in Chapter 3 was dedicated to studying the complexes with various coordination environments, which can help us understand the intrinsic mechanism and provide us clues for design of more efficient biomimetic catalysts.

Both the homogeneous and heterogeneous WOCs suffered from the problem of instability for prolonged photocatalytic reactions. It has been demonstrated that
immobilization of WOCs on proper substrates helps improve stability and activities. In Chapters 4 and 5, we report the use of the one metal-organic framework as the substrate to investigate its effect on activities and stabilities of both homogeneous and heterogeneous WOCs.
CHAPTER 3 DYESENSITIZED NICKEL COMPLEXES WITH MIXED DONORS FOR HYDROGEN PRODUCTION

(This chapter is adapted from “ J. Y. Han, W. Zhang, T. H. Zhou, X. Wang, R. Xu, Nickel-complexes with a mixed-donor ligand for photocatalytic hydrogen evolution from aqueous solutions under visible light, RSC Advances, 2012, 2, 8293-8296.” Reproduced from ref.162 with permission of The Royal Society of Chemistry)

3.1 Introductions

As indicated above, biomimetic metal complexes made of earth abundant Ni, Co and Fe are prospect catalysts for hydrogen production under visible light when sensitized with dyes. In a previous work of our group, a nickel-thiolate complex self-assembled in aqueous solution of TEOA also was discovered to show high efficiency. This complex formed between Ni(II) and 2-mercaptoethanol (Ni-ME) obtained a quantum efficiency of 25% at 460 nm when sensitized with Erythrosin Y. In light of the knowledge that some enzymes have been shown to contain Ni in the active sites with a variety of coordination types, model complexes involving mixed donors are worthwhile studying. In this work, a simple ligand with N and S donors, β-mecaptoethylamine (L), was chosen to form a mononuclear complex NiL₂, which could be further transformed to trinuclear complex Ni(NiL₂)₂ reacting with Ni(II) (Figure 3-1). The facile preparation method of NiL₂ crystal was described by Jicha and Busch half a century ago. Both complexes were found as active catalysts for hydrogen evolution in aqueous solutions when sensitized by Erythrosin yellowish (EY).
Figure 3-1 Molecular structure of the complexes, (A) NiL₂ and (C) Ni(NiL₂)₂Cl₂, and photos of aqueous solutions of (B) NiL₂ (60 °C, 1.6 mM) and (D) Ni(NiL₂)₂Cl₂ (room temperature, 0.8 mM).

3.2 Experimental methods

3.2.1 Preparation of materials

Sodium hydroxide, 2-mercaptoethylamine hydrochloride, nickel chloride hexahydrate, Erythrosin yellowish (ErY) and Triethanolamine (TEOA) were purchased from Alfa Aesar. These reagents were analytical grade and used without further purifications. All the other starting materials were of reagent grade quality and were obtained from commercial sources without further purification. The preparation of Ni(II) complexes was according to the previous report by Jicha and Busch with slight modifications.¹⁶³

Ni(NH₂CH₂CH₂S)₂ [NiL₂]. First, 10.5 mmol of 2-mercaptoethylamine hydrochloride and 20 mmol of sodium hydroxide were dissolved in 20 mL of deionized water. This clear ligand solution was added dropwise to a 20 mL aqueous solution containing 5 mmol of nickel chloride hexahydrate at 60 °C under stirring. The color of the solution turned red at the beginning of ligand addition. After the complete addition, the red color faded and green crystals were precipitated from the solution. The stirring was continued for another 15 min after which the mixture was allowed to cool to room temperature. The green crystal was collected by filtration and
washed with deionized water and ethanol before being dried in vacuum at 50 °C. Yield: 92% (0.97 g). Composition calculated for C₄H₁₂N₂NiS₂: C, 22.77; H, 5.73; N, 13.28; S, 30.40. Found: C, 22.75; H, 5.92; N, 13.18; S, 30.52.

\[\text{[Ni(Ni(NH₂CH₂CH₂S)₂)_2]Cl₂} \quad \text{[Ni(NiL₂)_2]Cl₂} \]

Briefly, 13.2 mmol of 2-mercaptoethylamine hydrochloride was dissolved in 12.5 mL of ethanol. Then, a second solution was prepared by dissolving 26.4 mmol of sodium hydroxide in 50 mL of aqueous ethanol (volume ratio of water/ethanol = 2:3). The second solution was added into the first one followed by removal of sodium chloride formed during the neutralization by filtration. Then the ligand solution was added dropwise to a 15 mL aqueous solution containing 9.9 mmol of nickel chloride hexahydrate at 60 °C under stirring. The solution turned to red in color and the dark green crystals were precipitated from the red solution immediately. After complete addition of the ligand, the final solution was allowed to stand in the ice bath for 2 h for better crystallization. The crystal formed was separated by filtration and washed with cold ethanol. The final product was dried in vacuum at 50 °C for 1 d. Yield: 77% (1.39 g). Composition calculated for C₈H₂₄Cl₂N₄Ni₃S₄: C, 17.42; H, 4.39; N, 10.16; S, 23.25. Found: C, 17.39; H, 4.38; N, 10.11; S, 23.56.

3.2.2 Materials characterization

Powder X-ray diffraction (XRD) patterns of NiL₂ and Ni(NiL₂)₂Cl₂ crystals were recorded on a X-ray diffractometer (Bruker AXS D8, Cu Kα, λ = 1.5406 Å, 40 kV and 20 mA) in the range of 10 °–60 °. The simulated XRD patterns were calculated using single-crystal X-ray diffraction data, which was obtained from Cambridge Crystallographic Data Centre (CCDC) and processed by Mercury v1.4 program provided by CCDC. Fourier transform infrared (FTIR) spectra were obtained on a Digilab FTS 3100 FTIR with a 4 cm⁻¹ resolution and in the range of 400-4000 cm⁻¹ using a standard KBr disk technique. Elemental analysis for C, H, N, and S was performed on a Vario EL III Element analyzer. The UV-visible absorption spectra were obtained on an UV-visible spectrophotometer (UV-2450, Shimadzu). Cyclic voltammetry experiments were performed on CHI 660D electrochemical station under
a three-electrode cell system consisting of a glassy carbon working electrode, a Pt wire counter electrode and a saturated calomel reference electrode. NiL₂ complex was dissolved in water by heating the solution to 60 °C at a concentration of 1.6 mM. The concentration of Ni(NiL₂)₂Cl₂ was 0.8 mM. All measurements were carried out in aqueous solutions after purging of Argon thoroughly. The scan started at reduction with a rate of 50 mV/s for all measurements. All redox potentials were reported versus SCE.

3.2.3 Photocatalytic water splitting measurement

Visible light driven hydrogen evolution reactions were conducted in a closed gas circulation and evacuation system fitted with a top window Pyrex cell. A circulating cooling water system was used to maintain the reactor at room temperature. In a typical reaction, 0.16 mmol of NiL₂ complex and 0.32 mmol of Erythrosin yellowish (ErY) were added to 100 mL of 15 vol% triethanolamine (TEOA) solution under vigorous stirring. The pH value of the TEOA solution was prior adjusted to 8.5 using concentrated aqueous HNO₃ solution. The light source was a 300 W Xenon lamp with a long-pass cut-off filter (λ > 420 nm). The produced hydrogen was detected using an online gas chromatography. Different long-pass filters (λ > 420, 455, 475, 500 and 520 nm) and band-pass filters (centered at 420, 440, 460, 480, 500, 520, 550 nm) were equipped when conducting reactions under photons of different wavelengths and collecting quantum efficiency (QE) results, respectively. The reaction solutions were irradiated under λ > 420 nm for 1 h before switching to band-pass filters during QE measurement. The amount of hydrogen produced in the subsequent 2 h was used to calculate QE using the equation 10. The number of photons from irradiation was measured using a silicon photodiode (13 DAS 005, MELLES GRIOT) connected to a broadband power/energy meter (13 PEM 001, MELLES GRIOT).

3.3 Results and discussion

The configuration around Ni(II) atom is square planar and the crystal structure is made up of trans NiL₂ according to single crystal X-ray diffraction study, although
trans-cis isomerization could occur in the solution164. The obtained green solid was characterized by XRD, FTIR, UV-vis and CHNS elemental analyses. All the analytic results consistently showed the formation of NiL\textsubscript{2} complex (Figure 3-2). Although

Figure 3-2 (A) Simulated and experimental XRD patterns of mononuclear NiL\textsubscript{2} complex powder. (B) UV-vis spectrum of NiL\textsubscript{2} complex dissolved in water (0.8 mM, 60 °C). (C) FTIR spectrum of NiL\textsubscript{2} complex.

NiL\textsubscript{2} is only slightly soluble in aqueous solution, upon raising the temperature to around 60 °C, the solid can be completely dissolved at a concentration of 1.6 mM (the optimized concentration for photoreaction) or higher and the solution exhibits a light orange color (Figure 3-1B). The UV-vis spectrum (Figure 3-2B) shows the characteristic ligand-to-metal charge transfer (262 nm), $^{1}A_{1g} - ^{1}B_{2g}$ transition (300 nm) and $^{1}A_{1g} - ^{1}A_{2g}$ transition (473 nm) of NiN\textsubscript{2}S\textsubscript{2} chromophore165. In aqueous solution, two NiL\textsubscript{2} complexes can further act as ligands to coordinate to the third Ni(II) ion via both thiolate sulfur donors to form a trinuclear cluster which is positively charged and soluble in water, Ni(NiL\textsubscript{2})\textsubscript{2}$^{2+}$ (Figure 3-1C and 3-1D)163. In addition, the broad and
asymmetric bands indicate an overlap of transitions contributed by both terminal NiN₂S₂ and central NiS₄\(^{165,166}\). Although the properties of these two complexes have been studied to a certain extent, their catalytic activities in photocatalytic water splitting reactions have not been explored so far.

The photocatalytic hydrogen evolution reactions were carried out with NiL₂ and Ni(NiL₂)\(^{2+}\) catalysts dispersed and dissolved in aqueous solutions, respectively. Erythrosin yellowish (ErY) and triethanolamine (TEOA) were used as the PS and sacrificial reagent, respectively. The time course of hydrogen evolution is shown in Figure 3-3. It can be seen that both the mono- and trinuclear complexes are active catalysts under visible light irradiation for hydrogen generation. Under the optimized conditions for NiL₂, the amount of hydrogen produced reached 3.8 mmol and the reaction ceased at above 20 h (Figure 3-3B). A slight decrease in the amount of hydrogen generated was resulted when the concentration of NiL₂ was lowered to 0.8 mM (Figure 3-3A) or increased to 2.4 mM (Figure 3-3C). Other conditions including the type of xanthene dyes, the concentration of reaction solution were also optimized. The optimum pH value was found as 8.5. In the current system, a basic condition was

\[\text{Figure 3-3 Time course of hydrogen evolution using Ni(II)- mecaptoethylamine complexes, (A) [NiL₂] = 0.8 mM, (B) [NiL₂] = 1.6 mM, (C) [NiL₂] = 2.4 mM, and (D) [Ni(NiL₂)₂]^{2+} = 0.8 mM (100 mL solution, 15 vol\% TEOA, [ErY] = 3.2 mM, pH = 8.5, light source: 300 W Xe lamp, λ > 420 nm).} \]
necessary to keep the dyes in the deprotonated anion form which is dissolvable in water for efficient light absorption and electron transfer to the catalyst. In addition, it has been shown that protonated TEOA under acidic condition is a less effective donor79. On the other hand, the activity of the water-soluble trinuclear complex is slightly lower. Under the optimized condition, 3.2 mmol of hydrogen was produced (Figure 3-3D). In all these cases, an induction period of about 1 h was found before substantial amounts of hydrogen evolved. A similar observation was reported by Eisenberg and co-workers on cobaloxime based catalyst167. And control experiments suggest that no hydrogen evolved in the absence of PS or catalyst.

Compared to inorganic semiconductor photocatalysts with a narrow light absorption range, the advantage of dye sensitized photocatalyst system lies on the extended visible light absorption to longer wavelengths. As displayed in Figure 3-4, when the cut-off filter of longer wavelengths up to 520 nm was used, the total amount of hydrogen producible for both systems did not change much, although the hydrogen production rate was lowered mainly due to the reduction in light intensity.
Figure 3-4 Time course of hydrogen evolution using (A) NiL$_2$ (1.6 mM) and (C) Ni(NiL$_2$)$_2^{2+}$ (0.8mM) with a 300 W Xe lamp equipped with different long-pass cut-off filters, and the QEs under photons with different wavelengths over (B) NiL$_2$ and (D) Ni(NiL$_2$)$_2^{2+}$ complexes. Other reaction conditions were the same as those in Figure 3-3.

More remarkably, the quantum efficiency (QE) measured for the system containing NiL$_2$ complex is as high as 30.9% at 480 nm and still remains at 21.8% at 480 nm and still remains at 21.8% at 520 nm (Figure 3-4B). Such features are desirable toward more efficient utilization of visible light (400-700 nm). Compared to NiL$_2$ system, the trinuclear complex Ni(NiL$_2$)$_2^{2+}$ gave rise to lower QEs with the highest value of 19.3% obtained at 520 nm.
DYESENSITIZED NICKEL COMPLEXES WITH MIXED DONORS FOR HYDROGEN PRODUCTION

Figure 3-5 UV-vis spectra of (A) the reaction mixture of NiL₂ system at different reaction time (the reaction mixture was filtered before analysis), and (B) the mixture without NiL₂ catalyst while keeping other conditions the same. All solutions were diluted 10 times before analysis. The reaction conditions were the same as those in Figure 3-3.

The stability of the PS was studied by monitoring the UV-vis absorption spectrum of the reaction mixture at different reaction time. Heavy halogen-substituted xanthene dyes are known to have high intersystem crossing yield favourable for the formation of long-lived 3ππ* triplet state which injects electron to the catalysts. Nevertheless, the halogen groups can be easily photobleached through reductive quenching. The xanthene ring of ErY is substituted with two iodide atoms. Its halogen-free analogue is fluorescein (FL). The maximum absorption of ErY and FL in aqueous TEOA solution (pH = 8.5) is at around 520 nm and 488 nm, respectively. As shown in Figure 3-5, the PS in the reaction mixture in the presence of NiL₂ is much more stable (Figure 3-5A) compared to that without the catalyst but in the presence of TEOA electron donor (Figure 3-5B). At 2 h of photoreaction, the peak position was shifted to 500 nm due to the cleavage of one C-I bond. The peak intensity was also slightly lowered. At longer reaction time, the peak position progressively shifted to 488 nm, corresponding to the loss of the remaining iodide leading to FL. Compared to the previous studies on Ni-thiolate systems involving xanthene dyes, a better stability of PS in this system was found since there was no significant change in peak intensity.
in the period of 2-24 h of reaction. Similar observations were made when trinuclear Ni(NiL₂)²⁺ complex was used as the catalyst (Figure 3-6).

![UV-vis spectra of reaction mixture of Ni(NiL₂)²⁺ system at different reaction time. All solutions were diluted 10 times before analysis. The reaction conditions were the same as those in Figure 3-4.](image)

Figure 3-6 UV-vis spectra of reaction mixture of Ni(NiL₂)²⁺ system at different reaction time. All solutions were diluted 10 times before analysis. The reaction conditions were the same as those in Figure 3-4.

In contrast, photobleaching of ErY occurred rapidly in the absence of the catalyst. Figure 3-6B shows that the peak intensity was greatly reduced at 0.5 h of irradiation. Based on the above results, it can be concluded that the favourable electron transfer from the excited state of PS to the catalyst plays an imperative role in improving the stability of PS.
Figure 3-7 Cyclic voltammograms of (A) NiL\(_2\) (1.6 mM, 60 °C) and (B) Ni(NiL\(_2\))\(_2^{2+}\) (0.8 mM) in water using a glassy carbon working electrode with a scan rate of 50 mV/s.

Electrocatalytic properties of the complexes were investigated in order to provide some insight into the reaction mechanism. The black cyclic voltammogram (CV) curve in Figure 3-7A for NiL\(_2\) in the absence of acid exhibits no reduction waves. In the presence of dilute acetic acid (HAc), the colored curves show that there is an obvious increase in the current. At an HAc concentration of 0.1 mM, a reduction wave can be observed at around -0.5 V (green curve) for Ni(II/I). Hence, it is suggested that the protonated form of NiL\(_2\) can accept electron. A similar observation was reported by Eisenberg and co-workers for [Ni(pyS)\(_3\)]\(^-\) complex in which Ni(II) is in a mixed S and N donor environment\(^{90}\). Further increase of acid concentration led to better developed reduction waves. At higher acid concentration of 0.5-0.7 mM, the waves were shifted to more positive positions at about -0.4 V, indicating that protonation of the Ni(I) centre takes place at a rate faster than the overall catalytic rate\(^{168}\). Under this condition, the half-wave potential of Ni(II/I) is determined by the protonation rate while the current is determined by the overall catalytic rate. The CV curves shown in Figure 3-7B present different behaviour of Ni(NiL\(_2\))\(_2^{2+}\) complex. A broad reduction wave around -0.4 V was observed in the absence of acid, consistent with accepting of
electron by the NiS$_4$ chromophore as shown in our earlier work91. However, the current did not increase significantly when the acid concentration was increased.

Scheme 3-1 Proposed mechanism of photocatalytic hydrogen evolution over NiL$_2$ complex using ErY and TEOA as the PS and sacrificial electron donor, respectively.

In light of the results and phenomena obtained so far, a photocatalytic hydrogen evolution mechanism over NiL$_2$ complex is proposed in Scheme 1. The complex is first protonated by adopting a proton from water to the amine species which could cause the breaking of the N chelating to the Ni(II) centre. The resultant protonated complex then electrostaticly interact with depronated PS under basic conditions and further accepts an electron from the excited triplet state of the PS (3ErY) leading to reduction of Ni(II) to Ni(I) species. Both theoretical studies and experimental works have suggested that the base sites like N atoms near the metal centres could act as an intramolecular proton transfer relay for more efficient hydrogen processing$^{169-171}$. In light with this, it is proposed that the proton from N atom is subsequently transferred to the Ni centre and becomes a hydride intermediate, in conjunction with the
acceptance of another electron from the excited PS. In the following step, the complex adopts another proton from water to the same N atom for charge neutralization. Finally, the proton (H\(^+\)) and hydride (H\(^-\)) attached to N and Ni atoms, respectively, form a hydrogen molecule as the expected product. After releasing of molecular hydrogen, the complex is restored for the next cycle of hydrogen evolution reaction. Simultaneously, the oxidized PS is reduced by TEOA electron donor. The oxidative quenching pathway was confirmed by the CV studies of the redox potentials of ErY and TEOA.

3.4 Conclusion

The present work has shown that the complexes formed between Ni(II) and \(\beta\)-mecaptoethylamine with a mixed S and N donor environment are active and inexpensive catalysts for photocatalytic hydrogen evolution by water splitting. An excellent quantum efficiency of 30.9\% was obtained at 480 nm. A reaction mechanism involving intramolecular proton transfer from N atom to Ni centre was proposed. This work provides us with useful clues to further explore noble-metal free complexes with a relevant environment to natural enzymes toward development of earth-abundant photocatalyst systems for solar hydrogen production.
CHAPTER 4 METAL-ORGANIC FRAMEWORK IMMOBLIZED COBALT OXIDE NANOPARTICELS FOR EFFICEINT PHOTOCATALYTIC WATER OXIDATION

4.1 Introduction

Artificial photosynthesis by splitting water into hydrogen and oxygen or converting CO₂ into hydrocarbons has been intensively studied towards sustainable development by renewable energy. The water oxidation half reaction is essential for solar fuel production since water is known to be the only cheap and abundant source to provide protons and electrons in a tetra scale. However, improving the efficiency of a catalyst for water oxidation is challenging because forming one oxygen molecule requires overcoming high activation energy to transfer four electrons. Inspired by nature, where visible light absorption and the multi-electron catalytic process are conducted by separate components, a Ru(bpy)₃²⁺–Na₂S₂O₈ system has been developed enabling us to simultaneously optimize visible light capture and multi-electron catalytic rate. To date, colloidal iridium oxide is one of the most remarkable catalysts for water oxidation in such a system with a turnover frequency (TOF) of up to 40 s⁻¹ in aqueous solutions. Even though, iridium as one of the most scarce elements on the earth may not be suitable for potential large scale applications.

As a result, extensive efforts have been paid to the first row transition metal catalysts for water oxidation with a particular emphasis on catalysts containing cobalt. Various forms of cobalt compounds ranging from heterogeneous cobalt oxides, and CoPi catalysts to homogeneous polyoxometalates, and complexes have shown comparable activities and advantages. Among these, cobalt oxides are of particular interest not only due to their excellent activity and long-term durability but also owing to their tunable sizes and morphologies in the form of nanocube, nanorod, spheres or mesoporous structure, which strongly affect the catalytic activities. For instance, it was found that reducing the particle size of Co₃O₄ can efficiently improve the activity for water oxidation. This enhancement lies in the
generation of more surface active sites and promotion of charge transfer121. To avoid the aggregation but simultaneously minimize the size of cobalt oxides, various supports have been employed including conjugated polymer, silica and aluminum oxide121. It was found that cobalt oxide catalysts loaded on these supports display significant enhancement in water oxidation activity compared with the unsupported cobalt oxide nanoparticles, which has inspired us to develop a suitable support to encapsulate cobalt oxides as water oxidation catalysts.

Metal-organic frameworks (MOFs) comprised of metal clusters and bridging organic ligands have emerged as a new class of functional materials for various applications owing to their tunable and uniform pore structure and design flexibility182-184. Recently MOFs have been extensively applied as support materials in heterogeneous catalysis. Among them, MIL-101, a highly porous and robust MOF, which possesses two hydrophilic zeotypic cavities with diameters of 29 Å and 34 Å, is a promising candidate for nanoparticle deposition. Henschel et al prepared a hydrogenation catalyst, Pd/MIL-101 by incipient wetness impregnation method to incorporate Pd nanoparticles into MIL-101185. Pan et al discovered that Pd@MIL-101 can significantly enhance the catalytic efficiency in one-step synthesis of methyl isobutyl ketones186. More recently, Jiang et al developed bimetallic ultrafine PdAg@MIL-101 as multifunctional catalysts for a one-pot cascade reaction187. Though various types of metal nanoparticles have been successfully deposited in the interior of MIL-101188, development of oxide incorporated MOFs has met with limited success with only a few reports in the literature. Fischer and co-workers reported the syntheses of TiO\textsubscript{2} and ZnO nanoparticles embedded MOF-5 by gas infiltration of Ti or Zn precursors followed by slow hydrolysis or treatment with dilute O\textsubscript{2}189. In another report, Balu et al prepared Fe\textsubscript{2}O\textsubscript{3} deposited MIL-101 using a microwave assisted method190,191. In view of these, MIL-101 was chosen for deposition of cobalt oxide nanoparticles which are shown as efficient oxygen evolution catalysts. In this report, various concentrations of cobalt oxide nanoparticles are embedded in MIL-101 by a simple and facile method involving impregnation
followed by heat treatment method. The obtained materials have shown great enhancement for photocatalytic water oxidation reaction at optimized reaction conditions compared to bare Co$_3$O$_4$ and cobalt oxide supported on silica sphere.

4.2 Experimental

4.2.1 Material and reagents.

Chromium(III) nitrate nonahydrate (99%) was obtained from Acros. Ethanol absolute was purchased from Merck. Dimethylformamide (DMF, ≥ 99.8%), hexane (98.5%), 2-propanol and ammonia solution (25%) were obtained from Fisher. Nitric acid (67-69 wt%) was obtained from Sinopharm Chemical. Terephthalic acid (98+%), aqueous hydrofluoric acid (HF, 46 wt%) and sodium persulfate (98%) were obtained from Alfa Aesar. Ammonium fluoride (NH$_4$F, ≥ 98%), cobalt(II) nitrate tetrahydrate (≥ 98%), cobalt(II) acetate tetrahydrate (≥ 98%), Nafion solution (5%) and tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate ([Ru(bpy)$_3$]Cl$_2$·6H$_2$O, 99.95%) were obtained from Sigma-Aldrich. All chemicals were used without further purification.

4.2.2 Material preparation

Preparation of MIL-101. MIL-101 was prepared according to the literature method with slight modification191,192: Terephthalic acid (1.993 g, 12.0 mmol), Cr(NO$_3$)$_3$·9H$_2$O (4.802 g, 12.0 mmol), HF (0.6 mL) and deionized water (84 mL) were added to a 125 mL Teflon-lined autoclave and the mixture was heated at 220 °C for 8 h. After cooling to the room temperature, the resultant solid was isolated by filtration and washed with 150 mL of DMF to remove unreacted terephthalic acid. The green powder was then treated solvothermally with ethanol at 100 °C for 12 h twice. Ion exchange was carried out by dispersing the solid in 150 mL of NH$_4$F aqueous solution (300 mM) with stirring for 10 h at 70 °C. The green product was collected by filtration and then washed with hot water at around 80 °C several times. The final green powder was dried in vacuum at 150 °C and stored in dry cabinet for further use.
Loading of cobalt oxide on MIL-101. A double solvent method was first used to promote the impregnation of Co$^{2+}$ cations into the cavity of MIL-101. Typically, the as-prepared MIL-101 (150 mg, 0.13 mmol) was dispersed in 30 mL of anhydrous hexane by ultrasonication for 15 min followed by stirring vigorously for 20 min. Then, 200 µL of 0.6 M (or 0.2 M, 0.4 M and 0.8 M) cobalt nitrate aqueous solution was added slowly in 20 min using a syringe pump. The mixture was stirred for another 2 h. Then the settled solid was isolated by removing hexane. The obtained product was placed in air overnight and was then dried at 150 °C in air for 3 h. The dried sample named as [Co(NO$_3$)$_2$]$_a$/MIL-101 ($a = 0.2, 0.4, 0.6$ or 0.8) was calcined at 250 °C for 3 h in argon with a flow rate of 20 mL/min followed by heating at 150 °C in static air. The final sample obtained was denoted Co$_x$/MIL-101 (x is the weight percentage of cobalt determined by ICP).

Loading of cobalt oxide on silica nanospheres. Nonporous silica nanospheres with an average diameter of around 200 nm were prepared according to the literature method. Cobalt oxide was loaded using the method described above except that MIL-101 was replaced by silica nanospheres and the concentration of cobalt nitrate aqueous solution was 0.6 M.

Preparation of Co$_3$O$_4$. Co$_3$O$_4$ nanoparticles were prepared using a solvothermal method. In a typical synthesis, 200 µL of 0.8 M cobalt acetate aqueous solution, 27 mL of ethanol, 0.675 mL of 25 wt% ammonia aqueous solution and 2 mL of deionized water were mixed in a 100 mL round bottom flask and then kept at 80 °C with stirring for 10 h. The mixture was transferred to a 48 mL Teflon-lined autoclave and heated at 150 °C for 3 h. The obtained product was separated by centrifugation, washed with ethanol and deionized water and dried at 50 °C in vacuum.

4.2.3 Photocatalytic activity measurement.

Visible light driven water oxidation reactions were conducted in a closed gas circulation and evacuation system fitted with a top window Pyrex cell. A circulating cooling water system was used to maintain the reactor at room temperature. In a typical reaction, 12.5 mg of the catalyst, 0.05 mmol of [Ru(bpy)$_3$]Cl$_2$ and 0.375 mmol
of Na$_2$S$_2$O$_8$ were added to 50 mL of 10 mM sodium borate buffer solution. The pH was adjusted to 9 by concentrated nitric acid. The light source was a 300 W Xenon lamp with a long-pass cut-off filter ($\lambda >$ 420 nm). The evolved oxygen was detected by an online gas chromatography. The O$_2$ yield was calculated after 70 min irradiation according to the following equation. The turnover frequency (TOF) was calculated using the initial rates of O$_2$ evolution during the first 20 min.

\[
\text{O}_2\text{ yield} = \frac{\text{moles of evolved } O_2}{\text{moles of } Na_2S_2O_8 \text{ added}} \times 100\%
\]

\[
\text{TOF} = \frac{\text{moles of evolved } O_2}{\text{moles of cobalt}} \frac{1}{\text{reaction time}}
\]

4.2.4 Electrochemistry.

Electrochemical performance for water oxidation was carried out on a Metrohm Autolab electrochemical workstation with a conventional three-electrode system in 10 mM borate buffer at pH 9. A Pt plate and an Ag/AgCl (3M KCl) were used as the counter electrode and reference electrode, respectively. The working electrode was prepared as following. Firstly, 5 mg of the catalyst was suspended in a mixture of 10 μL of 5 wt% nafion ethanol solution, 250 μL of 2-propanol and 750 μL of deionized water by ultrasonication. Then, 10 μL of the suspension was dropped on the surface of 5 mm carbon glassy rotating disk electrode (RDE) and was placed in air to dry naturally. Prior to the measurement, the electrolyte was bubbled with oxygen until saturation. After that, the sample on the RDE was subjected to potential cycling in the range of 0.2 V to 1.4 V with a scan rate of 100 mV/s for 40 cycles. Cyclic voltammetry (CV) was then recorded at a scan rate of 20 mV/s. Linear sweep voltammetry (LSV) was obtained at a scan rate of 2 mV/s. Tafel plot was obtained using the data obtained from LSV with resistance correction. The electrochemical impedance spectroscopy (ESI) was recorded in the frequency range of 100 kHz to 100 mHz at the potential of 1.1 V. All tests were performed in O$_2$-saturated electrolyte with a rotating rate of 1600 rpm.

4.2.5 Materials characterization.

Powder X-ray diffraction (XRD) patterns were recorded on a X-ray diffractometer.
(Bruker AXS D8, Cu Kα, λ = 1.5406 Å, 40 kV and 20 mA) in the range of 5°-65°. FT-IR spectra were obtained with a Perkin Elmer FT-IR Spectrum GX using KBr technique in the range of 1800–400 cm⁻¹. The UV-visible absorption spectra were obtained on a UV-visible spectrophotometer (UV-2450, Shimadzu). An Agilent 7700x Inductively Coupled Plasma (ICP) was used to determine the cobalt contents. Brunauer-Emmet-Teller (BET) surface area was measured by N₂ adsorption and desorption at 77 K using a Quantachrome Autosorb-6 sorption system. All samples were degassed at 150 °C for 12 h in vacuum before analysis. Pore size distribution was obtained by Barrett-Joyner-Halenda (BJH) method using the adsorption curve of the isotherm. The total pore volume was estimated by the amount of nitrogen adsorbed at the relative pressure of 0.99. The structural and morphological investigation and elemental mapping were conducted with and transmission electron microscopy (TEM, JEOL, JEM-2100F), attached with energy-dispersive X-ray (EDX) spectroscopy. The X-ray photoelectron spectroscopy (XPS) analysis was carried out on an AXIS-HSi, Kratos Analytical and the binding energy was calibrated using the C 1s peak at 284.7 eV. The Raman spectra were measured on a Renishaw instrument, using a He/Ne laser with a wavelength of 785 nm. The Co K-edge X-ray absorption near edge structure (XANES) spectra were recorded at Singapore Synchrotron Light Source (SSLS) using a beam line with energy of 1.85 GeV. A Si(111) monochromator was used for varying the energy in the desired range. Calibration was performed with a Co foil using the first point of Co inflection.

4.3 Results and discussion

Cobalt oxide nanoparticles have been successfully loaded in the cages of MIL-101 by a facile double solvent impregnation and heat treatment method. The resultant Coₓ/MIL-101 samples have been well characterized by various techniques. Firstly, the actual loading of cobalt (1.4-4.9 wt%) at various precursor concentrations determined by ICP method matches well with the theoretical loading (1.5-5.2 wt%) as shown in Table 4-1, indicating that the double solvent method using water and hexane is effective to impregnate cobalt salt into MIL-101. As shown in Figure 4-1a, the
experimental powder XRD pattern of MIL-101 was in good agreement with the simulated pattern, confirming the purity and good crystallinity of MIL-101. After loading cobalt oxide, it can be observed that the characteristic XRD peaks of MIL-101 (Figure 4-1a) in all the samples are retained, indicating that the crystal structure of MIL-101 is kept intact during the treatment. The lack of detectable signals of cobalt oxide phase should be due to their low contents as well as small particle sizes confined by the pores of MIL-101. The N₂ adsorption measurement of MIL-101 shows type I property with secondary uptakes at $P/P₀$ of around 0.1 and 0.2 (Figure 4-1b), suggesting the presence of two monodispersed windows of around 1.6 nm and 2.1 nm based on the pore size distribution profile. The BET surface area of MIL-101 was measured to be 4199 m$²$/g, which is consistent with the literature reported value.55 The single point pore volume was estimated to be 2.29 mL/g at a relative pressure of 0.99. After loading of cobalt oxide nanoparticles, the BET surface areas of all the samples are reduced and the extent of the reduction increases with the loading (Table 4-2). The surface area of Co$_{4.9}$/MIL-101 with the highest cobalt loading is reduced to 1459 m$²$/g. The total pore volume correspondingly decreases from 2.39 to 0.827 mL/g with the increasing loading of cobalt oxides, indicating that cavities are partially blocked by the embedded nanoparticles. On the other hand, the pore size distribution remains the same. These results suggest that the nanoparticles are successfully embedded in the interior of MIL-101.

Table 4-1 Percentages of cobalt loaded on MIL-101.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Precursor concentration (mol/L)</th>
<th>Theoretical percentage (wt%)</th>
<th>Determined percentage (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co$_{1.4}$/MIL-101</td>
<td>0.2</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Co$_{2.6}$/MIL-101</td>
<td>0.4</td>
<td>2.8</td>
<td>2.6</td>
</tr>
<tr>
<td>Co$_{3.9}$/MIL-101</td>
<td>0.6</td>
<td>4.1</td>
<td>3.9</td>
</tr>
<tr>
<td>Co$_{4.9}$/MIL-101</td>
<td>0.8</td>
<td>5.2</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Table 4-2 BET surface area and pore volume of Co$_x$/MIL-101 samples.
<table>
<thead>
<tr>
<th>Sample</th>
<th>BET surface area (m²/g)</th>
<th>Pore volume (cm³/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-101</td>
<td>4199</td>
<td>2.39</td>
</tr>
<tr>
<td>Co_{1.4}/MIL-101</td>
<td>3821</td>
<td>2.08</td>
</tr>
<tr>
<td>Co_{2.6}/MIL-101</td>
<td>3105</td>
<td>1.63</td>
</tr>
<tr>
<td>Co_{3.9}/MIL-101</td>
<td>2411</td>
<td>1.26</td>
</tr>
<tr>
<td>Co_{4.9}/MIL-101</td>
<td>1459</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Figure 4-1 (a) Powder XRD patterns of simulated MIL-101, as-prepared MIL-101, Co_{1.4}/MIL-101, Co_{2.6}/MIL-101, Co_{3.9}/MIL-101 (I) and Co_{4.9}/MIL-101, and (b) N₂ adsorption isotherm activated MIL-101, Co_{1.4}/MIL-101, Co_{2.6}/MIL-101, Co_{3.9}/MIL-101 and Co_{4.9}/MIL-101. FTIR spectra of (c) MIL-101,
[Co(NO$_3$)$_2$]$_{a}$/MIL-101 and (d) [Co(NO$_3$)$_2$]$_{0.8}$/MIL-101, Co$_x$/MIL-101. (e) N$_2$ adsorption isotherm of activated MIL-101, Co$_{1.4}$/MIL-101, Co$_{2.6}$/MIL-101, Co$_{3.9}$/MIL-101 (1) and Co$_{4.9}$/MIL-101.

XPS and XANES were then employed to determine the chemical and phase compositions of the embedded nanoparticles in the MOF taking the Co$_{3.9}$/MIL-101 (1) as the example. The high-resolution XPS spectrum of Co 2p is shown in Figure 4-2a. The two peaks at 779.4 eV and 781.5 eV can be assigned to Co 2p$_{3/2}$ in Co$_3$O$_4$ and divalent Co$^{2+}$ in other species, respectively194,195. Though the peak for Co$_3$O$_4$ is dominant, the characteristic shake-up satellite also indicates the presence of Co(II) compounds. XANES was applied to further investigate the types cobalt species present in the sample. The Co K-edge XANES spectrum of 1 is shown in Figure 4-2b together with the relevant cobalt standards. A linear combination method was used to fit all possible compositions of cobalt species in 1 using the above standards. The best fitting result obtained for 1 is shown in Figure 4-2c. It was found that cobalt species in 1 are comprised of Co$_3$O$_4$, Co(NO$_3$)$_2$ and Co(OH)$_2$ with a molar ratio of 77:17:6, which is consistent with the finding from XPS. Raman spectrum of 1 was investigated to further confirm the composition. For comparison, the spectrum of bulk Co$_3$O$_4$ was also studied. As shown in Figure 4-2d, the three characteristic peaks at 868, 810 and 629 cm$^{-1}$ are ascribed to MIL-101. Four additional weak peaks at 681, 606, 479 and 457 cm$^{-1}$ are observed in the spectrum of 1. Compared to the characteristic A$_{1g}$, F$_{2g}$, F$_{2g}$ and E$_g$ phonon modes of Co$_3$O$_4$ centered at 691, 619, 522 and 481 cm$^{-1}$, these four peaks are blue shifted and broadened. To the best of our knowledge, nanoparticles of smaller sizes and of better dispersion exhibit blue shift in Raman spectrum at high laser power due to thermal effect196, which may well support the current observation made. The XANES fitting results, coupled with XPS and Raman results indicate that the majority of Co(NO$_3$)$_2$ impregnated in the mesopores of MIL-101 has been
converted to Co$_3$O$_4$ after heat treatment. As a relatively mild condition (≤ 250 °C) was applied during heat treatment in order not to affect the structure of the MOF, it is not surprised that a certain percentage of Co(NO$_3$)$_2$ is still retained or partially converted to Co(OH)$_2$ by hydrolysis in the presence of moisture. Furthermore, compared with the FTIR spectra of [Co(NO$_3$)$_2$]$_6$/MIL-101 before heat treatment, the spectra of Co$_x$/MIL-101 samples do not display distinguishable absorption at 1385 cm$^{-1}$ associated with ν_3 vibrational mode of NO$_3^-$ (Figure 4-1c&d), which further confirms the decomposition of the majority of Co(NO$_3$)$_2$ to form cobalt oxide.

Figure 4-2 (a) XPS spectrum of Co 2p of 1, (b) XANES spectra of 1 (Co$_{3.9}$/MIL-101) before and after the photocatalytic reaction, Co(OH)$_2$, Co$_3$O$_4$ and Co(NO$_3$)$_2$, (c) the experimental and simulated XANES spectra of 1, and (d) Raman spectra of bare MIL-101, 1 and Co$_3$O$_4$.

The location and distribution of cobalt oxide nanoparticles were examined by TEM, bright field TEM and elemental mapping analyses. Figure 4-3a shows the typical
octahedral morphology of MIL-101 with a smooth surface. After loading of cobalt oxide, it is seen that nanoparticles of are uniformly distributed in MIL-101 for 1. No particles on the external surface of MIL-101 can be easily distinguished. The EDX result of 1 confirms the existence of cobalt in MIL-101 with a weight percentage of around 3.3% which is consistent with that determined by ICP. The good dispersion of cobalt oxide nanoparticles in MIL-101 is further evidenced from elemental mapping results. As shown in Figure 4-3e-f, together with chromium, the cobalt element is uniformly distributed in the area of the particle examined. The size and distribution of cobalt oxide nanoparticles in the other three samples are presented in Figure 4-3g-i. Nanoparticles with a narrow size distribution and good dispersion can be clearly observed in all the samples. As there is only a small atomic weight difference between Cr and Co, it is challenging to determine the size of cobalt oxide nanoparticles exactly. Based on the above XRD, N₂ adsorption, TEM and elemental mapping results, it can be concluded that cobalt oxide nanoparticles are successfully embedded in the cages of MIL-101. Hence the size of cobalt oxide nanoparticles should be around 2-3 nm as restricted by the cavity size of MIL-101. Such ultra small cobalt oxide nanoparticles are expected to display excellent activity for water oxidation.
Figure 4-3 TEM images of MIL-101 (a) and 1 (Co$_{3.9}$/MIL-101) (b, d), bright filed TEM image of 1 (c), Co$_{1.4}$/MIL-101 (g), Co$_{2.6}$/MIL-101 (h) and Co$_{4.9}$/MIL-101 (i) and EDX elemental mapping results of Cr (e) and Co (f).
Figure 4-4 (a) Time course of O$_2$ evolution over Co$_{1.4}$/MIL-101, Co$_{2.6}$/MIL-101, Co$_{3.9}$/MIL-101 and Co$_{4.9}$/MIL-101 as the catalysts. (b) Time course of O$_2$ evolution with different initial pH values. (c) UV-vis spectra of the supernatant solutions after reaction for 70 min at different pH. The solutions were diluted to one tenth for analysis. (d) Time course of O$_2$ evolution over different amount of I as the catalysts. (e) Time course of O$_2$ evolution at different concentration of [Ru(bpy)$_3$]Cl$_2$. (f) Time course of O$_2$ evolution at different concentration of Na$_2$S$_2$O$_8$. (g) Time course of O$_2$ evolution at different concentration of borate buffer. (h) Time course of O$_2$ evolution
over 1, recycled 1, 2 ([Co(NO$_3$)$_2$]$_{0.6}$/MIL-101), recycled 2, Co$_3$O$_4$ (6 nm), Co$_{3.7}$/SiO$_2$ and the mixture of cobalt nitrate and MIL-101 with an equivalent amount of leached Co$^{2+}$ in 1. Reaction condition: 12.5 mg of 1, 7.5 mM of Na$_2$S$_2$O$_8$, 1.0 mM of [Ru(bpy)$_3$]Cl$_2$ in 50 mL of 10 mM borate buffer, 300 W Xenon lamp, λ > 420 nm.

The Co$_x$/MIL-101 samples were evaluated for photocatalytic water oxidation using the [Ru(bpy)$_3$]$^{2+}$–Na$_2$S$_2$O$_8$ system in borate buffer aqueous solutions driven by visible light (λ > 420 nm). As shown in Figure 4-4a and Table 4-3, under the same conditions, both the initial rate and final yield of oxygen evolution increase with the cobalt content till 3.9% (1) as the optimum loading. The reaction conditions including pH, and the concentrations of the catalyst, [Ru(bpy)$_3$]Cl$_2$ photosensitizer, Na$_2$S$_2$O$_8$ electron acceptor and buffer have been optimized (Figure 4-4d-g). It is known that in the [Ru(bpy)$_3$]$^{2+}$–Na$_2$S$_2$O$_8$ system, water oxidation is highly dependent on pH. As shown in Figure 4a, the highest O$_2$ evolving rate is obtained at pH 9. At either lower or higher pH values, the activity is dropped remarkably. It is understood that [Ru(bpy)$_3$]$^{3+}$ is the real oxidant thermodynamically favorable for oxidizing water to O$_2$ in such a system. The [Ru(bpy)$_3$]$^{3+}$ species is generated by oxidative quenching of the excited [Ru(bpy)$_3$]$^{2+*}$ triplet state. At higher pH, the reduction of [Ru(bpy)$_3$]$^{3+}$ is accelerated, resulting in the enhancement of water oxidation rate. However, a spontaneous reduction of [Ru(bpy)$_3$]$^{3+}$ to [Ru(bpy)$_3$]$^{2+}$ at higher pH is accompanied with decomposition of the photosensitizer by oxidation of the bipyridine ligand198. It is evidenced from the UV-vis absorption spectra (Figure 4-4c) of the reaction supernatant solution that the characteristic metal-to-ligand charge transfer (MLCT) band of [Ru(bpy)$_3$]$^{2+}$ at 452 nm is decreased by 14% (pH 10) and 20% (pH 11), respectively. When pH was lower than 9, the low activity could be partially attributed to the low buffering capacity. For instance, the pH of the solution after the reaction was measured to be 2.2 with an initial pH of 7.

Table 4-3 Summary of the photocatalytic oxygen evolution performances of catalysts investigated in this work.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Reaction condition</th>
<th>Initial rate (µmol/min)</th>
<th>TOF(s⁻¹ per Co atom)×10³</th>
<th>O₂ yield (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co₁.₄/MIL-101</td>
<td>a</td>
<td>3.24</td>
<td>18.2</td>
<td>68</td>
<td>This work</td>
</tr>
<tr>
<td>Co₂.₆/MIL-101</td>
<td>a</td>
<td>4.33</td>
<td>13.1</td>
<td>71</td>
<td>This work</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>6.05</td>
<td>12.2</td>
<td>88</td>
<td>This work</td>
</tr>
<tr>
<td>Co₄.₉/MIL-101</td>
<td>a</td>
<td>4.05</td>
<td>6.5</td>
<td>82</td>
<td>This work</td>
</tr>
<tr>
<td>Co₃.₇/SiO₂</td>
<td>a</td>
<td>3.48</td>
<td>7.4</td>
<td>53</td>
<td>This work</td>
</tr>
<tr>
<td>Co₃O₄ (6 nm)</td>
<td>b</td>
<td>0.64</td>
<td>1.3</td>
<td>12</td>
<td>This work</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>3.17</td>
<td>6.4</td>
<td>54</td>
<td>This work</td>
</tr>
<tr>
<td>Co₃O₄/KIT-6 (3.8%)</td>
<td>c</td>
<td>-</td>
<td>0.41</td>
<td>71</td>
<td>121</td>
</tr>
<tr>
<td>Co₃O₄/SBA-15 (4.0%)</td>
<td>c</td>
<td>-</td>
<td>0.34</td>
<td>63</td>
<td>121</td>
</tr>
<tr>
<td>Co₃O₄/Al₂O₃ (4.0%)</td>
<td>c</td>
<td>-</td>
<td>0.46</td>
<td>84</td>
<td>121</td>
</tr>
<tr>
<td>Co₃O₄ (6 nm)</td>
<td>c</td>
<td>-</td>
<td>0.25</td>
<td>47</td>
<td>121</td>
</tr>
<tr>
<td>Co₃O₄</td>
<td>d</td>
<td>-</td>
<td>0.24</td>
<td>-</td>
<td>123</td>
</tr>
<tr>
<td>Co₃O₄/SBA-15 (4.0%)</td>
<td>e</td>
<td>-</td>
<td>0.64</td>
<td>-</td>
<td>123</td>
</tr>
</tbody>
</table>

*12.5 mg of catalysts, 7.5 mM of Na₂S₂O₈, 1.0 mM of [Ru(bpy)₃]Cl₂ in 50 mL of 10.0 mM borate buffer, pH = 9, 300 W Xenon lamp, λ > 420 nm.

*0.66 mg of catalysts, 7.5 mM of Na₂S₂O₈, 1.0 mM of [Ru(bpy)₃]Cl₂ in 50 mL of 10.0 mM borate buffer, pH = 9, 300 W Xenon lamp, λ > 420 nm.

*75 mg catalyst, 1.67 mM [Ru(bpy)₃]Cl₂, 13.5 mM Na₂S₂O₈, 68.5 mM Na₂SO₄, Na₂SiF₆⁻, NaHCO₃ buffer, pH = 5.8, 300 W Xe lamp, λ>400 nm.

*d10 mg catalyst, 1.5 mM [Ru(bpy)₃]Cl₂, 13.5 mM Na₂S₂O₈, 68.5 mM Na₂SO₄, Na₂SiF₆⁻-NaHCO₃ buffer, pH = 5.8, 300 W Xe lamp, λ>400 nm.

*e200 mg catalyst, 1.5 mM [Ru(bpy)₃]Cl₂, 13.5 mM Na₂S₂O₈, 68.5 mM Na₂SO₄,
Na$_2$SiF$_6$–NaHCO$_3$ buffer, pH = 5.8, 240 mW emission line (476 nm) of an Ar ion laser.

Under the optimized conditions, the amount of oxygen evolved increases approximately linearly for the first 20 min before gradually leveling off for 1 (Figure 4-4h). The TOF of 1 based on the reaction rate in the first 20 min and the oxygen yield after 70 min were calculated to be 1.2×10$^{-2}$ s$^{-1}$ per cobalt atom and 88%, respectively. These values are remarkably higher than those of the control Co$_3$O$_4$ nanoparticles (6 nm) at 1.3×10$^{-3}$ s$^{-1}$ for TOF and 12% for oxygen yield (Table 4-3). At the lowest cobalt loading, a highest TOF of 1.8×10$^{-2}$ s$^{-1}$ can be obtained for sample Co$_{1.4}$/MIL-101 with a reasonably high yield of 68%. On the other hand, at the highest loading of 4.9%, a high yield of 82% is maintained although the TOF is decreased to 1.2×10$^{-2}$ s$^{-1}$ per cobalt atom.

Figure 4-5 (a) Powder XRD patterns of bare MIL-101, 1 and 1 after the photocatalytic reaction, (b) Co 2p XPS spectrum of 1 after the photocatalytic reaction, (c) XANES spectra 1 after the reaction and reference Co(OH)$_2$, Co$_3$O$_4$ and Co(NO$_3$)$_2$, (d) Co K-edge.
and (d) the experimental and simulated XANES spectra of 1 after photocatalytic reaction.

In order to probe the stability of 1, after recovering the catalyst by centrifugation and washing, the catalyst was re-dispersed in a fresh reaction solution. Figure 4-4h shows that there is no significant drop in activity with 90% of the activity retained in the second run. Furthermore, the XRD pattern of the recovered 1 remains consistent with that of MIL-101 (Figure 4-5a), which indicates the framework of MIL-101 remains intact after the photoreaction. XANES and XPS spectra for the recovered 1 also signify that cobalt oxide remains embedded in the MOF (Figure 4-5b-d). On the other hand, when the sample [Co(NO₃)₂]₀.₆/MIL-101 (2) before heat treatment was examined for photocatalytic water oxidation under the same condition, several different observations can be made. Firstly, the sample displays a much lower activity (oxygen yield: 54% and TOF: 6.4×10⁻³ s⁻¹ per cobalt atom). In addition, it is less stable with its TOF dropped 33% in the second run. The supernatant solutions of 1 and 2 after the first photoreaction run were analyzed with ICP to detect the leached cobalt species. Only a trace amount of cobalt was detected for 1 which accounts for 5% of the cobalt loaded, while 40% percent of cobalt has been leached for 2. To further exclude the activity of 1 from the leached cobalt cations, a mixture of an equivalent amount of leached Co²⁺ in 1 and 12.5 mg of MIL-101 was used for photocatalytic water oxidation under the same condition (Figure 4-4h). It was found that only a very low O₂ yield of 8% can be obtained, confirming that the trace amount of the leached cobalt species should not be responsible for the high activity of 1.
Figure 4-6 (a) N$_2$ adsorption isotherm of SiO$_2$ nanosphere. The BET surface area of SiO$_2$ nanosphere was determined to be 14.2 m2/g. (b,c) TEM images of Co$_{3.7}$/SiO$_2$.

To further explore the effect of the support on the activity, nonporous SiO$_2$ nanosphere (200 nm) was also investigated as the support. Cobalt oxide was loaded on silica nanospheres using the same method as that on MIL-101. The N$_2$ adsorption isotherm of SiO$_2$ shown in Figure 4-6a confirms a nonporous feature of the material and the surface area was determined to be 14.2 m2/g. As shown in Figure 4-6b-c, cobalt oxide nanoparticles of 5-10 nm are dispersed on the surface of SiO$_2$ nanospheres and some aggregation can be observed. The actual loading of cobalt on SiO$_2$ nanospheres is 3.7 wt% as determined by ICP analysis. As shown in Fig 4-4h, Co$_{3.7}$/SiO$_2$ also displays a relatively high activity for water oxidation compared to the bare Co$_3$O$_4$ (6 nm). However, both the oxygen yield (53%) and TOF (0.74×10^{-2} s$^{-1}$) of Co$_{3.7}$/SiO$_2$ are significantly lower than those of 1 with a similar cobalt loading. The enhancement in activity should be largely due to the narrow size and good dispersion of cobalt oxide nanoparticles in the well-defined pore structure of the MOF. In addition, the activity of 1 is apparently higher than some reported values of Co$_3$O$_4$ based photocatalytic water oxidation systems (Table 4-3) due to the smaller particle sizes and more exposed surface active sites. However, a direct comparison of the activity data may not be very meaningful since different reaction conditions were adopted in different groups. On the basis of above observations, it can be concluded that the nanocluster of cobalt oxide embedded in MIL-101 affords an efficient and stable water oxidation under visible light in the [Ru(bpy)$_3$]$^{2+}$–Na$_2$S$_2$O$_8$ system.
Figure 4-7 (a) Cyclic voltammetry (CV) curves of MIL-101, 1 and Co$_{3.7}$/SiO$_2$ at a scan rate of 20 mV/s, (b) linear sweep voltammetry (LSV) curves of MIL-101, 1, Co$_{3.7}$/SiO$_2$ and without catalyst at a scan rate of 2 mV/s, (c) Tafel plots of 1 and Co$_{3.7}$/SiO$_2$ obtained from LSV curves, and (d) Nyquist plots of MIL-101, 1 and Co$_{3.7}$/SiO$_2$. All tests were performed in O$_2$-saturated electrolyte (borate buffer, pH = 9) with a rotating rate of 1600 rpm.

The electrochemical catalytic water oxidation performance of 1 in 10 mM borate buffer (pH = 9) was also investigated. The CV curves of the 1$^{\text{st}}$ and 40$^{\text{th}}$ cycle at a scan rate of 100 mV/s in the range of 0.2 to 1.5 V vs. NHE are nearly the same indicating that 1 is stable in borate buffer solution. The CV curve of 1 at a scan rate of 20 mV/s is shown in Figure 4-7a. An oxidation wave associated with Co(II) to Co(III) transformation appears at E_p of 0.81 V followed by the onset potential at 1.0 V199. The overpotential of 1 is estimated to be 473 mV at the current density of 1 mA/cm2 from the LSV curve (Figure 4-7b). For comparison, Co$_{3.7}$/SiO$_2$ shows a similar LSV curve but with a lower current density and higher overpotential (519 mV). Furthermore, Tafel slope of 1 at pH 9 in borate buffer was calculated to be 90 mV, which is slightly
smaller than that of Co$_{3.7}$/SiO$_2$ (98 mV) (Figure 4-7c). Electrochemical impedance spectroscopy (EIS) was used to evaluate the kinetics of charge transfer. The Nyquist plots obtained in the frequency range of 100 kHz-100 mHz at the potential of 1.1 V for 1, Co$_{3.7}$/SiO$_2$ and bare MIL-101 are displayed in Figure 4-7d. Arcs in the Nyquist plot are related to charge transfer resistance (R_{ct}), which exists at all the interfaces of electrode and electrolyte. Though the bare MIL-101 has a large charge transfer resistance with a fitted R_{ct} value of 1283 Ω, the R_{ct} value dramatically decreases to 68 Ω for 1 by loading of cobalt oxide nanoparticles. A larger R_{ct} value of 102 Ω was measured for Co$_{3.7}$/SiO$_2$. Thus, it can be concluded that MIL-101 as a substrate not only confines the particle size of the catalyst but may also promote charge transfer through favorable interactions among the catalyst, framework and electrolyte, although the exact mechanism is to be further investigated. The electrochemical behavior of 1 under neutral pH was also studied in 100 mM phosphate buffer (pH=7). The CV curves of 1 before and after 40 continuous cycles remain the same demonstrating that 1 is also stable in the phosphate buffer under neutral pH (Fig.S20). Tafel slope under the neutral condition is estimated to be 102 mV per decade indicating that 1 is less efficient at the neutral pH compared with alkaline conditions. The overpotential at the current density of 1 mA/cm2 determined according to the LSV curve is 490 mV. This value is much higher than that of iridium oxides (η=250 mV) while is comparable to the literature reported value of Co$_3$O$_4$ (η=480 mV).

4.4 Conclusions

In conclusion, cobalt oxide nanoparticles have been successfully embedded into the zeotypic giant cavities of MIL-101 by a facile impregnation and heat treatment method. The incorporated nanoparticles of 2-3 nm display an excellent dispersion and narrowed size distribution. The apertures of the MOF, which is smaller than the size of cobalt oxide nanoparticles, prevent the nanoparticles from aggregation and leaching. This combination induces great enhancement in photocatalytic water oxidation activity with a high TOF of 0.012 s$^{-1}$ per cobalt atom, which is more than 9 fold compared with that of the unsupported Co$_3$O$_4$ nanoparticles. Moreover, MIL-101
also plays the role of promoting charge transfer as evidenced by the Nyquist plots. This study suggests that MIL-101 as a chemically stable MOF is a promising support for encapsulation of catalyst nanoparticles for photocatalytic applications.
CHAPTER 5 POLYOXOMETALATES IMMOBLIZED ON MIL-101(Cr) AS EFFICIENT CATALYST FOR WATER OXIDATION

5.1 Introduction

The water oxidation half reaction is essential in solar fuel production since water is known to be the only abundant source that can provide the protons and electrons at large scale\(^{10,114}\). However, the oxidation of water to form molecular oxygen is a complicated process because it is required to overcome high activation energy to remove four electrons and four protons from two water molecules\(^{172}\). For these reasons, improvement of the efficiency of water oxidation catalysts (WOCs) remains to be challenging despite the considerable achievements in recent years.

Interestingly, a series of homogeneous molecular WOCs comprised of earth abundant elements are found to be highly effective catalysts for water oxidation with a particular emphasis on polyoxometalates (POMs)\(^{151-157,201}\). The POMs serving as WOCs can undergo fast and reversible multielectron-transfer redox transformation without significant structural alteration. Their oxygen-enriched surfaces can provide robust all-inorganic systems to encapsulate and protect active WOCs. A recent remarkable discovery in this filed is the report of \([\text{Co(H}_2\text{O)}_2\text{(PW}_{9}\text{O}_{34})_2]^{10-}\) (CoPOM) by Hill and co-workers\(^{158}\), which exhibits a high turnover frequency (TOF) of more than 5 s\(^{-1}\) at pH 8 when using Ru(bpy)\(^{3+}\) as the oxidant. A subsequent work by Lian and Hill also investigated the photocatalytic performance of CoPOM using the Ru(bpy)\(^{3+}\) as the photosensitizer and Na\(_2\)S\(_2\)O\(_8\) as the sacrificial reagent\(^{147}\). A turnover number of 220 was obtained, which is even superior than the precious metal based POM \([\{\text{Ru}_4\text{O}_4\text{(OH)}_2\text{(H}_2\text{O)}_4\}\{\gamma\text{-SiW}_{10}\text{O}_{36}\}]^{10-}\)\(^{156}\).

Despite the aforementioned advantages of CoPOM, its stability as well as the nature of the active species has become a bone of contention. Some derivatives from CoPOM were suspected to be the dominant WOCs under the reaction conditions
applied. More recently, Hill and co-workers have confirmed that CoPOM is the dominant catalyst though some derivatives are generated. Since CoPOM as a homogeneous catalyst is difficult to be recycled, some efforts have been devoted to the development of POM immobilized solid catalysts. For example, Xie and co-workers recently reported the use of mesoporous carbon nitride (C₃N₄) to immobilize CoPOM for electrocatalytic water oxidation with a TOF of 0.3 s⁻¹. The mesoporous structure of C₃N₄ can not only enhance the catalytic activity of CoPOM, but also offer a method for the stacking of catalytic sites per projected geometrical area to fully utilize the solar flux. It is worthwhile to investigate other materials to identify suitable supports so that the catalytic performances and stability of these polyoxometalate catalysts can be enhanced.

As a new class of hybrid porous materials, metal-organic frameworks (MOFs) are recognized as promising candidates for encapsulating functional species inside the cavities to facilitate the heterogeneous catalytic action. Despite the numerous MOF structures discovered, only a few have been reported with applications by incorporation of POMs. MIL-101, a well-recognized robust MOF which possesses two hydrophilic zeotypic cavities with diameters of 29 Å and 34 Å, have been used to encapsulate POMs. The coordinatively unsaturated site of MIL-101 allows for binding of inorganic ligands in POM anions. The MIL-101 encapsulated POMs have been exploited for various reactions such as alkene oxidation, Knoevenagel condensation, esterification, Baeyer condensation, CO oxidation, and hydrogenation of toluene. Herein, we immobilized CoPOM inside MIL-101 to realize photocatalytic and electrocatalytic water oxidation. Not only the catalyst can be recycled, the activity of CoPOM is enhanced due to the favorable interaction between CoPOM and the MIL-101 framework.

5.2 Experimental

5.2.1 Material and reagents
Sodium tungstate oxide dihydrate (≥ 99%), chromium(III) nitrate nonahydrate (≥ 99%) were purchased from Acros. Dimethylformamide (DMF, ≥ 99.8%) was obtained from Fisher. Terephthalic acid (≥ 98%), aqueous hydrofluoric acid (HF, 46 wt%), disodium hydrogenphosphate (≥ 99%), silver nitrate (≥ 99%) and sodium persulfate (98%) were obtained from Alfa Aesar. Ammonium fluoride (≥ 98%), cobalt(II) nitrate tetrahydrate (≥ 98%), tetra-n-heptylammonium bromide (≥ 99%) and tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate ([Ru(bpy)₃]Cl₂·6H₂O, 99.95%) were obtained from Sigma-Aldrich. All chemicals were used without further purification.

5.2.2 Preparation of materials

Preparation of MIL-101. MIL-101 was prepared according to the literature method with slight modifications. Terephthalic acid (1.993 g, 12.0 mmol), Cr(NO₃)₃·9H₂O (4.802 g, 12.0 mmol), HF (0.6 mL) and deionized water (84 mL) were added to a 125 mL Teflon-lined autoclave and the mixture was heated at 220 °C for 8 h. After cooling to the room temperature, the resultant solid was isolated by filtration and then washed in 150 mL of DMF to remove unreacted terephthalic acid. The green powder was then treated solvothermally with ethanol at 100 °C for 12 h twice. Ion exchange was carried out by dispersing the solid in 150 mL of NH₄F aqueous solution (300 mM) with stirring for 10 h at 70 °C. The green product was collected by filtration and washed with hot water at around 80 °C several times. The final green powder was dried in vacuum at 150 °C and stored in dry condition for further use.

Synthesis of Na₁₀[Co₄(H₂O)₂(PW₉O₃₄)₂] (CoPOM). CoPOM was synthesized according to the literature method. In a typical synthesis, Na₂WO₄·2H₂O (17.81 g, 54 mmol), Na₂HPO₄·7H₂O (1.61 g, 6 mmol) and Co(NO₃)₂·6H₂O (3.49 g, 12 mmol) were mixed in 50 mL of deionized water. The pH of the mixture was adjusted to 7.0 using hydrochloric acid solution. The resultant purple suspension was refluxed at 100 °C for 2 h. The solution was then saturated with NaCl and allowed to cool to room
temperature. The resulting purple crystals were collected, quickly washed with approximately 15 mL of deionized water and recrystallized from hot water.

Immobilizing CoPOM on MIL-101. CoPOM was immobilized on MIL-101 by an ion exchange method with F^- anions in MIL-101 replaced by CoPOM anions. The exchange condition was optimized. In a typical reaction, 250 mg of MIL-101 was suspended in 50 mL of CoPOM (450 μM) aqueous solution by ultrasonication for 20 min. The mixture was then stirred at 100 °C for 12 h. After that, the solid was collected by centrifugation and washed with deionized water for several times until the UV signal belonging to CoPOM in the supernatant was not observed. The obtained solid was dried at 50 °C in vacuum.

Stability study of CoPOM/MIL-101 and CoPOM. The stability of CoPOM/MIL-101 and CoPOM were investigated using a two-step process to measure the concentration of cobalt in the solution after the photoreaction. The tetra-n-heptylammonium nitrate (THpANO$_3$) toluene solution was prepared by a reaction of tetra-n-heptylammonium bromide (THpABr) with AgNO$_3$. In a typical reaction, 20 mL of 0.025 M AgNO$_3$ aqueous solution was added to 40 mL of 0.0125 M THpABr toluene solution. The resulting mixture was shaken vigorously and AgBr was precipitated from the mixture. The upper organic layer was then isolated after the mixture was left to stand for some time. The THpANO$_3$ toluene solution with a concentration of 0.0125 M was used to extract CoPOM anions from the reaction solution, which was collected after the photoreaction and centrifuged to isolate the dispersed catalysts. The latter was kept for further analysis. Then 10 mL of the above prepared THpANO$_3$ toluene solution was added to 10 mL of the supernatant of the reaction solution. The resulting mixture was shaken vigorously and then left to stand until the organic layer and aqueous layer were separated. The lower aqueous layer was collected for Inductively Coupled Plasma (ICP) analysis.
5.2.3 Photocatalytic activity measurement

Visible light driven water oxidation reactions were conducted in a closed gas circulation and evacuation system fitted with a top window Pyrex cell. A circulating cooling water system was used to maintain the reactor at room temperature. In a typical reaction, 12.5 mg of the catalyst, 0.05 mmol of [Ru(bpy)$_3${Cl$_2$} and 0.375 mmol of Na$_2$S$_2$O$_8$ were added to 50 mL of 10 mM sodium borate buffer solution. The pH was adjusted to 9.0 by concentrated nitric acid. The light source used was a 300 W xenon lamp with a long-pass cut-off filter ($\lambda > 420$ nm). The evolved oxygen gas was detected by an online gas chromatography (Agilent 6890N). The O$_2$ yield was calculated after 70 min irradiation according to the following equations. The turnover frequency (TOF) was calculated using the initial rates of O$_2$ evolution during the first 10 min.

$$\text{O}_2 \text{ yield} = \frac{\text{moles of evolved O}_2}{\text{moles of Na}_2\text{S}_2\text{O}_8 \text{ added}} \times 100\%$$

$$\text{TOF} = \frac{\text{moles of evolved O}_2 \text{ reaction time}}{\text{moles of cobalt}}$$

5.2.4 Electrochemistry

Electrochemical performance for water oxidation was carried out on a Metrohm Autolab electrochemical workstation with a conventional three-electrode system in 40 mM borate buffer ($\text{pH} = 8$) using Pt plate as the counter electrode and Ag/AgCl (3 M KCl) as the reference electrode. For the heterogeneous reaction, the working electrode was prepared as following. Firstly, 5 mg of catalyst was suspended in a mixture of 10 μL of 5 wt% nafion ethanol solution, 250 μL of 2- propanol and 750 μL of water by ultrasonication. Then, 10 μL of the suspension was dropped on the surface of 5 mm carbon glassy rotating disk electrode (RDE) and was placed in air for natural drying. For the homogeneous reaction, 0.13 μM of CoPOM was dissolved in 40 mM borate buffer. Prior to the measurement, the electrolyte was bubbled with oxygen until it was saturated with oxygen. After that, the sample on RDE was subjected to potential cycling in the range of 0.2 V to 1.6 V with a scan rate of 100 mV/s for 40 cycles.
Cyclic voltammetry (CV) was then recorded at a scan rate of 20 mV/s with a rotating rate of 1600 rpm. Linear sweep voltammetry (LSV) was obtained at the scan rate of 2 mV/s. Tafel plot was obtained from the LSV data with resistance correction. The electrolysis was conducted at the applied potential of 1.3 V vs. NHE. All tests were performed in O₂-saturated electrolyte with a rotating rate of 1600 rpm.

5.2.5 Materials characterization

Powder X-ray diffraction (XRD) patterns were recorded on an X-ray diffractometer (Bruker AXS D8, Cu Kα, λ = 1.5406 Å, 40 kV and 20 mA) in the range of 5°–65°. FT-IR spectra were obtained with a Perkin Elmer FT-IR Spectrum GX using KBr technique in the range of 1800–400 cm⁻¹. The UV-visible absorption spectra were obtained on an UV-visible spectrophotometer (UV-2450, Shimadzu). An Agilent 7700x Inductively Coupled Plasma (ICP) was used to determine the cobalt contents. BET surface area was measured by N₂ adsorption and desorption at -196 °C using a Quantachrome Autosorb-6 sorption system. All samples were degassed at 150 °C for 12 h in vacuum before analysis. Pore size distribution was obtained by Barrett-Joyner-Halenda (BJH) method using the adsorption curve of the isotherm. The total pore volume was estimated by the amount of nitrogen adsorbed at the relative pressure of 0.99. The structural and morphological investigation and elemental mapping were conducted with transmission electron microscopy (TEM, JEOL, JEM-2100F) and energy-dispersive X-ray (EDX) spectroscopy. The X-ray photoelectron spectroscopy (XPS) spectrum was collected using XPS (AXIS-HSi, Kratos Analytical) and the obtained binding energy was calibrated using the C 1s peak at 284.7 eV. The Raman spectra were measured by Raman spectroscopy (Renishaw), using a He/Ne laser with a wavelength of 785 nm. The Co K-edge X-ray absorption near edge structure (XANES) spectra was recorded at Singapore Synchrotron Light Source (SSLS) using a beam line with energy of 1.85 GeV. A Si(111) monochromator was used for varying the energy between the desired range. Calibration was performed with a Co foil using the first point of inflection Co.
5.3 Results and Discussion

The CoPOM/MIL-101 catalyst was assembled via electrostatic interaction between the two oppositely charged components. The first step involved the synthesis of MIL-101 and CoPOM separately according to the previous reported methods. The trimetric chromium (III) octahedral clusters in MIL-101 possess terminal water molecules, which can be removed from the framework after vacuum treatment at 150 °C for 12 h. It thus provides the coordinatively unsaturated sites as Lewis acid sites in the structure usable for the subsequent immobilization of CoPOM anions. As shown in Figure 5-1a, the experimental powder XRD patterns of MIL-101 and CoPOM are in good agreement with their simulated patterns, confirming the purity and good crystallinity of both materials. Upon immobilizing of CoPOM on MIL-101, the main peaks of MIL-101 are retained except that the intensities of peaks in 2θ range of 5-6° decrease (Figure 5-1b). The intense peaks of (511) and (531) lattice planes located at small angles in XRD pattern of MIL-101 demonstrate its porous structure. Upon immobilizing of CoPOM on MIL-101, the main peaks related to crystal planes of MIL-101, (6 0 6) and (7 5 3), are retained while the intensities of the peaks at low angles decrease. These findings suggest the encapsulation of CoPOM in the cavities of MIL-101 and the intact of the ordered structure of MIL-101. Diffraction peaks of crystalline CoPOM are not noticeable except for the two weak peaks in the range of 28-30° (Figure 5-1c), which suggests that there may exist short range order among the encapsulated CoPOM anions. The N₂ adsorption isotherm of MIL-101 (Figure 5-1d) shows type I property with secondary uptakes at $P/P₀$ of around 0.1 and 0.2, suggesting the presence of two monodispersed windows of around 16 Å and 21 Å based on the pore size distribution profile. Owing to the large dimension of CoPOM anion (11.5 Å × 12.8 Å × 17.2 Å), it can only be hosted in the large cages of MIL-101. The loading of CoPOM was determined to be 0.13 µmol/mg by ICP technique, which gives an estimation of 0.07 CoPOM anions per chromium corresponding to seven CoPOM anions in each cage. The total volume of seven CoPOM anions is around 15 nm³, which is smaller than the volume...
of the large cage of around 20 nm3. The loading percentage of CoPOM obtained in this work is higher than the typical loadings of POMs in MIL-101 reported by others205,210,211. The BET surface area and pore volume of the pristine MIL-101 are calculated to be 4055 m2/g and 2.11 mL/g, respectively. After incorporation of CoPOM the values drop to 1157 m2/g and 0.862 mL/g. On the other hand, the pore size distribution is the same (Figure 5-1e) suggesting the size of apertures in MIL-101 is maintained. These results indicate that the cavities are partially blocked by the immobilized CoPOM. The FTIR spectra of CoPOM, MIL-101 and CoPOM/MIL-101 are shown in Figure 5-1f. Apart from the peaks attributed to MIL-101, CoPOM/MIL-101 also exhibits a series of bands of CoPOM with P-O stretching (1031 cm$^{-1}$), terminal W-O stretching (937 cm$^{-1}$) and W-O-W bending (892 and 788 cm$^{-1}$). All the results confirm that CoPOM has been successfully immobilized in the cavities of MIL-101.

XPS and XANES spectroscopic techniques were applied to further confirm if the structure of CoPOM after being encapsulated in MIL-101 is retained. As shown in Figure 5-2a, compared with Co 2p\textsubscript{3/2} peaks of CoPOM crystal at 781.1 eV, the corresponding peak assigned to that in CoPOM/MIL-101 is slightly shifted to a higher energy at 781.6 eV, which should be caused by the electrostatic interaction of CoPOM with MIL-101161,212,213. Moreover, there are strong satellite peaks, which is indicative of Co(II) species. It is in good agreement with the Co state in POM158. To further probe the structural information, the Co K-edge XANES of CoPOM/MIL-101 and CoPOM was investigated (Figure 5-2b). Several standards including Co\textsubscript{3}O\textsubscript{4}, Co(OH)\textsubscript{2} and Co(NO\textsubscript{3})\textsubscript{2} were also analyzed for comparison. It was found that the XANES spectrum of Co in CoPOM/MIL-101 is very different from those of the standards studied. Its oxidation state can be confirmed to be +2 by comparing the K-edge position of CoPOM/MIL-101 with the standards. The XANES spectrum of CoPOM/MIL-101 is matched well with that of the bare CoPOM except that its adsorption energy is slightly shifted to higher energy, which is consistent with the XPS result. Combining both the XPS and XANES analysis results, it can be concluded that CoPOM is immobilized in MIL-101 with its structure retained and there is guest-host interaction in the hybrid material.

![Figure 5-2](image_url) (a) XPS spectra of Co 2p of CoPOM and CoPOM/MIL-101, (b) XANES
spectra of 1 (Co₃.9/MIL-101) before and after the photocatalytic reaction, Co(OH)₂, Co₃O₄ and Co(NO₃)₂, (c) the experimental and simulated XANES spectra of 1, and (d) Raman spectra of bare MIL-101, 1 and Co₃O₄.

TEM and EDX elemental mapping analyses were then applied to investigate the morphological properties and the spatial distribution of CoPOM in MIL-101. As shown in Figure 5-3, MIL-101 displays a typical octahedral shape with a smooth surface. After encapsulation of CoPOM, nanoparticles of around 3 nm with a good dispersion in the channel of MIL-101 are clearly observed (Figure 5-3b and 5-3c). These should be the clusters of encapsulated CoPOM anions. The EDX elemental mapping images of Cr, Co, P and W are shown in Figure 5-3e-h. The good dispersion of all the elements over a typical particle further confirms the uniform distribution of CoPOM in MIL-101. The atomic ratio determined by EDX is close to the elemental ratio in CoPOM molecule. The estimated CoPOM anions per chromium atom by the EDX is 0.08, which is close to the value determined by ICP. The TEM together with N₂ adsorption and EDX elemental mapping results suggest that the CoPOM anions are uniformly distributed in the cavities of MIL-101.

![Figure 5-3 TEM images of (a) MIL-101 and (b, c) CoPOM/MIL-101, (d) bright filed TEM image of CoPOM/MIL-101, and (e-h) EDX elemental mapping results of various elements.](image-url)
The photocatalytic activity of CoPOM/MIL-101 was examined for water oxidation driven by visible light ($\lambda > 420$ nm) in 40 mM borate buffer using Ru(bpy)_3^{2+} as the photosensitizer and $\text{Na}_2\text{S}_2\text{O}_8$ as the sacrificial reagent. The reaction conditions including pH and the concentrations of the catalyst, photosensitizer and sacrificial reagent were optimized (Figure 5-4). Under the optimized conditions, the amount of evolved O_2 is increased linearly for the first 30 min before leveling off (Figure 5-5a). The TOF of CoPOM/MIL-101 based on the reaction rate in the first 20 min and oxygen yield obtained after 70 min were calculated to be 7.1×10^{-3} s$^{-1}$ per cobalt atom and 66%, respectively. These two values are higher than the TOF (4.0×10^{-3} s$^{-1}$ per
cobalt atom) and O₂ yield (49%) with an equivalent amount of free CoPOM under the same reaction conditions. Moreover, CoPOM/MIL-101 can be recovered from the solution easily after the reaction. The recovered CoPOM/MIL-101 was characterized by FTIR, XPS and XANES methods. The results indicate that CoPOM is preserved in MIL-101 with its structure intact (Figure 5-5b-d). The recovered CoPOM was then dispersed in fresh reaction solution and there is only a small drop in the activity (Figure 5-5a). Therefore, CoPOM encapsulated in MIL-101 is found more active for photocatalytic water oxidation compared with bare CoPOM. The enhancement is likely due to the interaction between CoPOM and MIL-101 as evidenced by the XPS and XANES results.

Figure 5-5 (a) Time course of O₂ evolution over CoPOM/MIL-101, recycled CoPOM/MIL-101 and CoPOM. Reaction condition: 12.0 mg of catalysts, 5.0 mM of Na₂S₂O₈, 1.0 mM of [Ru(bpy)₃]Cl₂ in 50 mL of 40.0 mM borate buffer, pH = 8, 300 W Xenon lamp, λ > 420 nm. (b) FTIR spectra of CoPOM, CoPOM/MIL-101 and recovered CoPOM/MIL-101. (c) XPS of CoPOM/MIL-101 and recovered CoPOM/MIL-101. (d)XANES of CoPOM, CoPOM/MIL-101 and recovered CoPOM/MIL-101.

Table 5-1 ICP determined cobalt concentration in solution after photocatalytic reaction before and after extraction using THpA⁻.

<table>
<thead>
<tr>
<th>Aging time (h)</th>
<th>[Co] before extraction (µmol/L)</th>
<th>[Co] after extraction (µmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoPOM/MIL-101</td>
<td>5.4</td>
<td>1.8</td>
</tr>
<tr>
<td>CoPOM</td>
<td>-</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Figure 5-6 Time course of O₂ evolution over CoPOM/MIL-101, the leached amounts of Co²⁺ and CoPOM.

To further probe the stability of CoPOM/MIL-101 and CoPOM, a two-step process was applied to quantify the cobalt concentration in the solution after the reaction. Tetra-n-heptylammonium nitrate (THpANO₃) toluene solution was used to extract CoPOM anions from the aqueous solution². The concentration of cobalt in the aqueous solution before and after extraction was analyzed by ICP. The difference is attributed to the leached CoPOM from CoPOM/MIL-101. The concentration of cobalt in the aqueous solution after extraction is due to other dissolved cobalt species during the photocatalytic reaction. The results determined by ICP were shown in Table 5-1. It can be seen that the amount of soluble cobalt species produced during the
photocatalytic reaction is insignificant, which only accounts for 1.6% of total cobalt. This small amount of cobalt species should not be responsible for the high O₂ yield obtained based on the control experiment (Figure 5-6). As for CoPOM, the percentage that is leached to the reaction solution is about 2.8% of the total CoPOM in MIL-101. This amount of CoPOM is also not accountable for the overall high O₂ yield. The stability of free CoPOM was also examined by the same extraction method. A higher percentage of CoPOM (4.9%) was found to decompose to produce soluble cobalt species. Hence the immobilization of CoPOM in MIL-101 can improve its stability. Dynamic light scattering (DLS) was applied to investigate whether CoOₓ nanoparticles was produced during the reaction for both CoPOM/MIL-101 and CoPOM. No evidence of nanoparticles was shown for either CoPOM/MIL-101 or CoPOM. The above results suggest that CoPOM is stably immobilized on MIL-101 and the activity can be mostly recovered.
Figure 5-7 (a) Cyclic voltammetry (CV) curves of CoPOM/MIL-101, CoPOM and without catalyst at a scan rate of 20 mV/s, (b) Linear sweep voltammetry (LSV) curves of CoPOM/MIL-101, CoPOM and without catalyst at a scan rate of 2 mV/s, (c) Tafel plots of CoPOM/MIL-101 and CoPOM obtained from LSV curves, and (d) i-t plots of CoPOM/MIL-101 and CoPOM. All tests were performed in O₂-saturated electrolyte (borate buffer, pH = 8) with a rotating rate of 1600 rpm. (e) Linear sweep voltammetry (LSV) curves of CoPOM/MIL-101 before and after stability test, (f) LSV curves of CoPOM before and after stability test at a scan rate of 2 mV/s.
To further assess the electrochemical catalytic water oxidation performance, CoPOM/MIL-101 was deposited on a 5 mm carbon glassy rotating disk electrode (RDE). The catalytic activity was studied in 40 mM of sodium borate buffer (pH = 8) in a standard three electrode system. Electrochemical behavior of the solution dissolved with an equivalent amount of CoPOM was also investigated for comparison. The CVs of CoPOM/MIL-101 and CoPOM at the scan rate of 20 mV/s are shown in Figure 5-7a. No redox waves are observed since the cobalt-based redox processes in CoPOM are voltammetrically silent in aqueous media. The catalytic current due to water oxidation for CoPOM/MIL-101 occurs at ca. 1.1 V vs. NHE. The overpotential of CoPOM/MIL-101 was estimated to be 493 mV at the current density of 1 mA/cm² from LSV curve (Figure 5-7b). A similar LSV curve was obtained for CoPOM but with a lower current density and higher overpotential. Furthermore, Tafel slope for CoPOM/MIL-101 was calculated to be 69 mV/s, which is also smaller than 70 mV/s of CoPOM (Figure 5-7c). To further investigate the stability of CoPOM/MIL-101 and CoPOM in electrochemical catalytic progress, long-term electrolysis over 10000 s was carried out at the constant potential of 1.3 V vs. NHE. As shown in Figure 5-7d, the catalytic current of CoPOM/MIL-101 gradually became stable with bubbles generated on the surface of the working electrode. During the whole process, the current decreased slightly from 1.60 mA/cm² to 1.50 mA/cm², which should be caused by leakage of CoPOM. For comparison, catalytic current of CoPOM also dropped slightly drop from 1.34 mA/cm² to 1.29 mA/cm². The LSVs for both samples after the long-term electrolysis were also collected as shown in Figure 5-7e and 5-7f. It can be observed that a similar LSV curve was obtained for CoPOM/MIL-101 after the test. In contrast, a weak oxidation wave at around 0.9 V appears after the long-term electrolysis for CoPOM, indicating that CoOₓ derived from CoPOM could be generated on the surface of the working electrode. Thus, it can be concluded that the mesoporous structure of MIL-101 not only can enhance the catalytic activity of CoPOM but also improve its stability.
5.4 Conclusion

In conclusion, CoPOM has been successfully immobilized in the cavities of MIL-101 by the impregnation method. The CoPOM anions are bounded to MIL-101 tightly to the coordinatively unsaturated sites of MIL-101 with an excellent dispersion. This modular construct with earth abundant materials exhibits good performances for both photocatalytic and electrochemical catalytic water oxidation. The combination also shows enhanced activity and stability compared with the soluble CoPOM. It is likely that the MIL-101 environment plays an important role for protecting the active CoPOM anions from decomposition. The immobilized catalyst can be recovered easily from the reaction solution for reuse without significant drop in the activity. The MIL-101 as a substrate can immobilize both heterogeneous and homogeneous catalysts and enhance their activity and stability for water oxidation. However the MIL-101 plays different role in this two reaction. It promotes the charge transfer between the catalyst and electrolyte when cobalt oxide was immobilized. On the other hand, no such phenomenon was observed when CoPOM was encapsulated though there is interaction between them. Thus, a ten times higher activity was obtained for the cobalt oxide system.
CHAPTER 6 CONCLUSIONS AND OUTLOOK

6.1 Conclusions

The research work in this thesis is mainly focused on design of low cost, stable, efficient molecular and nanostructured catalysts toward dye sensitized solar fuel production. The main conclusions and findings are summarized as following:

(1) Dye sensitized nickel complexes with mixed donor for hydrogen production were developed. This work has shown that the complexes formed between Ni(II) and \(\beta \)-mecaptoethylamine with a mixed S and N donor environment are active and inexpensive catalysts for photocatalytic hydrogen evolution by water splitting. An excellent quantum efficiency of 30.9% was obtained at 480 nm. A reaction mechanism involving intramolecular proton transfer from N atom to Ni centre was proposed. This work provides us with useful clues to further explore noble-metal free complexes with a relevant environment to natural enzymes toward development of earth-abundant photocatalyst systems for solar hydrogen production.

(2) Cobalt oxide nanoparticles have been successfully embedded into the zeotypic giant cavities of MIL-101 by a facile impregnation and heat treatment method. The incorporated nanoparticles of 2-3 nm display an excellent dispersion and narrow size distribution. The apertures of the MOF, which are smaller than the size of cobalt oxide nanoparticles, prevent the nanoparticles from aggregation and leaching. This combination induces great enhancement in photocatalytic water oxidation activity with a high TOF of 0.012 s\(^{-1}\) per cobalt atom, which is more than 9 fold compared with that of the unsupported Co\(_3\)O\(_4\) nanoparticles. Moreover, MIL-101 also plays the role of promoting charge transfer as evidenced by the Nyquist plots. This study suggests that MIL-101 as a chemically stable MOF is a promising support for encapsulation of catalyst nanoparticles for photocatalytic applications.

(3) The polyoxometalates, CoPOM, was successfully immobilized in the cavities of MIL-101 by an impregnation method. The CoPOM anions are bounded to MIL-101 tightly by coordinating to the CUS of MIL-101 with excellent dispersion. This
modular construct with earth abundant materials shows high performance for both photocatalytic and electrochemical catalytic water oxidation. The combination also shows enhanced activity and stability compared with the free CoPOM. In addition, it is likely that the MIL-101 cavity plays an important role for protecting the active CoPOM anions from decomposition. Moreover, the highly porous structure offers an environment for the stacking of homogeneous catalytic anions in a single nanoparticle to achieve higher TOF. At last, the immobilized catalysts can be recovered from reaction solution, which is significant for the potential industrial application.

6.2 Outlook

Despite above mentioned achievements in dye sensitized molecular and nanostructured materials for water splitting; there is still critical challenge for researchers to design an efficient system for large scale practical application. Firstly, the efficiency for either half reaction is still too low to fully utilize the solar energy. Secondly, the mechanism of some intrinsic catalytic processes is not clear yet, which hinder us designing of more efficient catalyst. Thirdly, Dye and sacrificial reagents are still used in all the systems involving metal complexes as water splitting catalysts. The stability of the dye has to be dramatically improved in both strong reductive and oxidative conditions. Finally, as long as sacrificial reagents are used in photocatalytic water splitting system, it is impossible for us to say that we realize our objective of solar energy to chemical energy conversion. Coupling the water oxidation reaction with either water reduction reaction or CO$_2$ reduction reactions is the only approach to realize solar fuel production efficiently and environmental friendly.

(1) **Design novel metal complexes-based photocatalysts.** To date, although numbers of biomimetic metal complexes based on cobalt, iron, manganese and nickel have been explored for splitting water, there were no examples made of mixed metal centers so far as I know. It is known that hydrogenase and monooxygenase enzymes in nature contain more than one type of transition metal centers. For the monooxygenase enzymes, iron serves as the reaction center by activating oxygen
taking advantage of its redox capabilities, while other transition metals such as cobalt and manganese function as centers to bind oxygen. In light of this, it is curious that if mixed metal centers in synthetic metal complexes can act as differently in photocatalysis. Synergistic effect may also exist in these metal complexes. For example, if oxidative center and reductive center can designed in one complex, it could serve as an overall water splitting catalyst.

(2) **Build molecular device.** As indicated above, both the metal complexes and dyes are not very stable under the photocatalytic conditions. For example, Erythrosin Y used in our systems underwent photobleaching of both two iodide atoms in two hours upon irradiation. Reductive quenching took place since electron donor TEOA was present. However, Erythrosin Y was able to hold one iodide atom in the first two hours and loose the remaining iodide atom progressively in the next twenty-four hours if the catalyst was in the presence. This enhancement of stability can be attributed to the effective transfer of the electrons from the excited dye to our catalyst by oxidative quenching. It was seen that the stability of the photosensitized dye can be greatly enhanced by oxidative quenching. Building molecular device, which combines the photosensitizer and catalyst together, can dramatically promote oxidative quenching of photosensitizer by facilitating intramolecular electron transfer. Sun et al reported a porphyrin photosensitizer and a cobaloxime catalyst system by linking these two components. In this study, the fluorescence intensity was quenched only by 4% if the two components were physically mixed in the solution. A contrastive 64% quenching of the fluorescence intensity was observed when the two components were constructed as a molecular devices. The photocatalytic activity for hydrogen production also rose from 0 to 11 μmol in 5 hours. Hence, it is an effective approach to improve the electron transfer by building molecular devices.

(3) **Z-scheme water splitting.** Though both half reactions have been intensively studied, a system combining the both parts to construct an overall water splitting system is still rare. In 2009, Abe et al. reported the first example of Z-scheme water splitting involving dye sensitized systems. The mixture consisting of Pt-intercalated H2K2Nb6O17 sensitized by a coumarin dye for H2 evolution, IrO2–Pt co-loaded WO3
for O$_2$ evolution, and an I$^{3-}$/I$^-$/redox couple succeeded splitting water into hydrogen and oxygen under visible light. However, it seems that so far this is the only example involving dye sensitized component because of the instability of dyes under powerful redox conditions. In Abe’s case, the dye without thiophene rings also deactivated quickly under irradiation.

It has been thirty years since the discovery of Z-scheme water splitting. But compared with a unity of quantum yield green plants can achieve, an average quantum yield of 6% at 420-440 nm achieved is poor. Several obstacles await to be overcome. Though half reactions of water reduction have achieved quantum yield as high as 90% at the wavelength of 420nm, this half reaction is still the rate determining step for Z-scheme water splitting. Because when these water reduction photocatalysts are applied in Z-scheme systems, a pitiful average quantum yield was often obtained in the presence of redox mediators such as Fe$^{2+}$/Fe$^{3+}$ and IO$^{3-}$/I$^-$. Secondly, backward reactions are also a serious problem to hinder the promotion of the efficiency. It is that Fe$^{2+}$ or I$^-$ instead of water is oxidized at the WOC site. Thus enhancement of the selectivity of WOC is critical. Loading with suitable cocatalysts to promote forward reaction or directly remove the redox mediators are effective solutions. Kudo has reported Z-scheme systems without adding any mediators when Ru loaded Rh:SrTiO$_3$ and BiVO$_4$ are applied as WRC and WOC respectively. The range of the visible light that can be absorbed by the photocatalyst is another concern. If assuming a Z-scheme water splitting system attained with quantum yield of unity, the theoretical potential of photocatalysts with a 500 nm absorption edge has solar-energy-conversion efficiency of 7.9%, while photocatalysts with an absorption edge of 650 nm can obtain a conversion of 20.6%.

Building a mediator free Z-scheme water splitting is an appealing way to inhibit backward reaction. Direct transfer of electrons from WOC to WRC is possible, which has been proven by Kudo. To further promote the interparticle electron transfer, a more imitate contact between WRC and WOC with lower resistance is necessary. Gold and other conductive carbon and polymers connecting the WOC and WRC are promising approaches to facilitate this electron transfer. Dye sensitized systems may
also been employed for Z-scheme water splitting. Not only because of their wide range of visible light absorption, but also due to their ability to shuttle electrons. Very recently, Ishitani et al. reported such a Z-scheme system consisting of Ag-loaded TaON semiconductor and a Ru(II) dinuclear complex for CO₂ reduction.

(4) **Design of efficient catalysts for CO₂ reduction.** The research on photocatalytic CO₂ reduction toward solar fuel production is still at its early stage. Reduction of CO₂ is a tough task since high activation energy is required to activate CO₂ and the multiple reactions can occur as shown in equation 3-7. Though some efficiency for CO₂ reduction has been displayed by the conventional semiconductor-based photocatalysts, they exhibit limited photoresponse to visible light. It is promising to develop the dye sensitized CO₂ reduction system, in which the photosensitizer can be adjusted for better utilization of solar light and the catalyst can be modified for higher catalytic efficiency. Several systems involving ruthenium and rhenium complexes as photosensitizers have been studied for CO₂ reduction. Efficient catalysts are necessary to convert the photochemical one-electron transfer to multi-electron reduction of CO₂ in addition to the redox photosensitizer for photocatalytic fixation of CO₂. In future work, both the molecular and nanostructured catalysts will be investigated to develop efficient CO₂ reduction systems.

\[
\begin{align*}
 \text{CO}_2 + 2\text{H}^+ + 2e^- & \rightarrow \text{HCOOH} \quad E^0 = -0.61\text{V vs. NHE} \quad (3) \\
 \text{CO}_2 + 2\text{H}^+ + 2e^- & \rightarrow \text{CO} + \text{H}_2\text{O} \quad E^0 = -0.53\text{V vs. NHE} \quad (4) \\
 \text{CO}_2 + 4\text{H}^+ + 4e^- & \rightarrow \text{HCHO} + \text{H}_2\text{O} \quad E^0 = -0.48\text{V vs. NHE} \quad (5) \\
 \text{CO}_2 + 6\text{H}^+ + 6e^- & \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O} \quad E^0 = -0.38\text{V vs. NHE} \quad (6) \\
 \text{CO}_2 + 8\text{H}^+ + 8e^- & \rightarrow \text{CH}_4 + \text{H}_2\text{O} \quad E^0 = -0.24\text{V vs. NHE} \quad (7)
\end{align*}
\]
LIST OF PUBLICATIONS

(11) Yin, S. M.; Han, J. Y.; Zhou, T. H. and Xu, R. Recent Progress in g-C$_3$N$_4$ based low cost photocatalytic system: activity enhancement and emerging applications, *Catalysis Science & Technology*, 2015, accepted.
REFERENCE

(4) Pearce, J. M. Futures 2002, 34, 663.

(6) Styring, S. Faraday Discuss. 2012, 155, 357.

(92) Weinberg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.; Kent, C. A.;

(125) Wu, R.; Wang, D. P.; Han, J.; Liu, H.; Zhou, K.; Huang, Y.; Xu, R.; Wei,

(155) Han, X.-B.; Zhang, Z.-M.; Zhang, T.; Li, Y.-G.; Lin, W.; You, W.; Su,

