DESIGN OF COMPLIANT MECHANISMS BY STRUCTURAL OPTIMIZATION USING GENETIC ALGORITHMS

WANG NIAN FENG

SCHOOL OF MECHANICAL & AEROSPACE ENGINEERING

2008
Design of Compliant Mechanisms by Structural Optimization Using Genetic Algorithms

Wang Nian Feng

School of Mechanical & Aerospace Engineering

A thesis submitted to the Nanyang Technological University in fulfilment of the requirement for the degree of Doctor of Philosophy

2008
Abstract

Compliant mechanisms are single-piece jointless structures that use elastic deformation as a means to achieve motion. They have many advantages compared to conventional rigid-link mechanisms especially when the applications are in the micro-dimensional scale. Compliant mechanisms show good potential in MEMS/NEMS applications because these devices are manufactured on the sub-millimeter scale and therefore complex joints should best be avoided. In particular, compliant micro-grippers can be used for manipulation and assembly of electronic and optical micro-components, as well as for biological samples as in single cell manipulation, positioning and isolation. The use of mechanical micro-grippers that securely grip and transport objects to the desired location is also advantageous because it avoids optical or electrical interference with the object which may be a problem with other technologies such as optical tweezers, etc. The objective in this work is to design compliant mechanisms named grip-and-move manipulators that can grip an object and convey it from one point to another. Such a mechanism has useful applications in MEMS and various automation devices, but it is relatively complex because the relationship between their geometry and their elastic behavior can be highly complex and non-linear. The synthesis of such a mechanism is to be achieved by a structural optimization approach based on a genetic algorithm and a special representation scheme for defining the structural geometry upon a finite element grid.

In this work a morphological geometric representation scheme is coupled with a genetic algorithm to perform topology and shape optimization. It uses arrangements of ‘skeleton’ and ‘flesh’ to define structural geometry in a way that facilitates the transmission of topological/shape characteristics across generations in the evolutionary process and will not render any geometrically undesirable features such as disconnected ‘floating’ segments of material, ‘checkerboard’ patterns or single-node hinge connections
between elements. Furthermore, variability of the topology in the optimization process is enhanced by incorporating the ability to vary the connectivity of the curves used for defining the skeleton. As for the optimization process, a novel approach has been incorporated into the genetic algorithm to treat the relatively more important and/or challenging objectives as constraints whose ideal values will be adaptively changed (improved) during the evolutionary procedure. This helps to direct and focus the genetic search towards regions of interest in the objective space, thus is a useful and intuitive way for specifying the user’s preference and/or for tackling the harder objectives. In addition, to improve on the optimum results and convergence speed the genetic algorithm is hybridized with a local search strategy in which a novel constrained tournament selection is used as a single objective function.

The optimization procedure and a large-displacement non-linear FE analysis have been implemented through a C++ program. Before the developed genetic algorithm is relied upon for solving actual compliant mechanism problem, the performance is tested and tuned by some suitable and newly developed test problems. These test problems emulate structural topology optimization without the need for computationally costly structural analysis, with the aim of arriving at some optimal geometries. Such test problems referred to as ‘Target Matching Problems’ with conflicting/non-conflicting objectives are constructed. Two types of grip-and-move manipulators have been conceptualized based on the use of path generating compliant mechanisms. Two identical symmetric path-generating mechanisms can be used to construct the first kind of grip-and-move manipulator which can grip a work piece and convey it to anywhere along a fixed path. And a second type of compliant grip-and-move manipulator employs two identical path generating mechanisms with two degrees-of-freedom so that it can grip a workpiece and move it to anywhere within its working area instead of a line path. The design problems for these mechanisms have been formulated and then solved using the program, and several alternative manipulator designs have been realized and evaluated. The results are encouraging and some areas of future work are recommended.
Acknowledgements

The author expresses his thanks and gratitude to his supervisor Associate Professor Tai Kang for his advice and guidance in all aspects of the author’s research work.

I would also like to thank Nanyang Technological University for research scholarship and the excellent research environment.

Appreciation is due to staff of CANES for their assistance and support, especially Mr. Teo, Mr. Chesda, and Mr. Chia.

I would also like to express my thanks to my friends, Dr. Ren Ji, Dr. Che Faxing, Keif, Sashi, Dr. Zhao Xin, and Dr. Mao Rong Hai, for their helpful discussions.

I am indebted to my family members, especially to my parents and my wife for their patience and encouragement.
Contents

Abstract I

Acknowledgments III

Table of Contents IV

List of Figures VIII

List of Tables XIV

List of Abbreviation and Symbols XV

1 INTRODUCTION 1
 1.1 BACKGROUND 1
 1.1.1 Introduction to Compliant Mechanisms 1
 1.1.2 Advantages and Disadvantages of Compliant Mechanisms 2
 1.1.3 Application of Compliant Mechanisms 3
 1.1.4 Current Need for Compliant Mechanisms Development 5
 1.1.5 Introduction to Design Methods 6
 1.2 OBJECTIVES OF THIS RESEARCH 7
 1.3 SCOPE 7
 1.4 ORGANIZATION OF THESIS 9

2 LITERATURE REVIEW 10
 2.1 DIFFERENT TYPES OF COMPLIANT
 MECHANISMS 10
 2.1.1 Smooth Output Mechanisms 10
 2.1.2 Non-smooth Output Mechanisms 18
 2.1.3 Recent Advances in Compliant Mechanisms 20
 2.2 METHODS USED TO DESIGN COMPLIANT MECHANISMS 26
 2.2.1 Kinematics Approach 26
 2.2.2 Topology Optimization Method 29
 2.2.3 Genetic Algorithm 34
3 NONLINEAR FINITE ELEMENT ANALYSIS 48
 3.1 INTRODUCTION .. 48
 3.2 CONSTITUTIVE EQUATION 48
 3.3 FINITE ELEMENT FORMULATION 50
 3.4 PROCEDURES FOR EQUILIBRIUM SOLUTION 54
 3.5 TEST PROBLEM .. 58
 3.5.1 Problem Description 58
 3.5.2 Results .. 58

4 DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS 61
 4.1 SYMMETRIC PATH GENERATING MECHANISM 61
 4.2 FORMULATION .. 63
 4.2.1 Symmetric Path Objective 64
 4.2.2 Geometric Advantage Objective 65
 4.2.3 Combined Objective 66
 4.2.4 Stress Constraint ... 66
 4.3 MORPHOLOGICAL REPRESENTATION OF STRUCTURE GEOMETRY 67
 4.4 MULTICRITERION GENETIC ALGORITHM 74
 4.4.1 Pareto Ranking ... 75
 4.4.2 Selection Probability 75
 4.4.3 Adaptive Niche Count 76
 4.4.4 Non-overlapping Constraint Satisfaction 76
 4.4.5 Prescribed Number of Well-spread Solutions on a Front ... 77
 4.4.6 Best Set of Prescribed Number of Solutions in a Population ... 78
 4.4.7 Overall Algorithm 79
 4.5 RESULTS .. 79
 4.5.1 Run 1 .. 80
 4.5.2 Run 2 .. 91
 4.5.3 Run 3 .. 99
 4.6 DISCUSSION .. 107

5 IMPROVED METHODOLOGY 109
 5.1 ENHANCED GEOMETRIC REPRESENTATION SCHEME FOR STRUCTURAL TOPOLOGY OPTIMIZATION 109
 5.1.1 Enhanced Morphological Representation of Geometry 110
 5.1.2 Chromosome Encoding 112
Contents

5.1.3 Genetic Operators ... 113

5.2 MULTIOBJECTIVE OPTIMIZATION BY A
GENETIC ALGORITHM ... 119
 5.2.1 Adaptive Constraint 120
 5.2.2 Local Search ... 127

6 TEST PROBLEMS ... 133
 6.1 INTRODUCTION .. 133
 6.2 TARGET MATCHING PROBLEM 1 (WITH NON-CONFLICTING
OBJECTIVES) .. 135
 6.2.1 Formulation .. 135
 6.2.2 Results ... 140
 6.2.3 Results of Variants of Local Search Methodology ... 153
 6.2.4 Discussion .. 154
 6.3 TARGET MATCHING PROBLEM 2 (WITH CONFLICTING
OBJECTIVES) .. 155
 6.3.1 Formulation .. 155
 6.3.2 Results ... 158
 6.4 TARGET MATCHING PROBLEM 3 (WITH CONFLICTING
OBJECTIVES) .. 166
 6.4.1 Formulation .. 166
 6.4.2 Results ... 169
 6.5 TARGET MATCHING PROBLEM 4 (WITH CONFLICTING
OBJECTIVES) .. 177
 6.5.1 Formulation .. 177
 6.5.2 Results ... 179

7 DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF
MECHANISMS ... 187
 7.1 2-DOF PATH GENERATING MECHANISM 187
 7.2 FORMULATION .. 188
 7.2.1 Output Area Objective 189
 7.2.2 Distance Objective 191
 7.2.3 GA Constraints 192
 7.3 RESULTS .. 193
 7.3.1 Run 1 ... 194
 7.3.2 Run 2 ... 207
 7.3.3 Run 3 ... 220
 7.4 DISCUSSIONS AND CONCLUDING REMARKS 228

VI
8 CONCLUSION AND FUTURE WORK

8.1 CONCLUSION ... 230
 8.1.1 Formulation and Development of the Nonlinear FEM Program 230
 8.1.2 Enhanced Morphological Geometry Representation 231
 8.1.3 Handling Objectives as Adaptive Constraints for Multiobjective Structural Optimization 231
 8.1.4 Use of a Hybrid Strategy to Improve Search for the True Optimal Solution ... 232
 8.1.5 Design of Test Problems with Conflicting/Non-conflicting Objectives .. 232
 8.1.6 Design of Grip-and-move manipulators Using Symmetric Path-generating Mechanisms 233
 8.1.7 Design of Grip-and-move manipulators Using 2-DOF Compliant Mechanisms ... 234

8.2 ORIGINAL CONTRIBUTIONS ARISING FROM THIS WORK 234

8.3 RECOMMENDATIONS FOR FUTURE WORK 235
 8.3.1 Control of Mechanisms 235
 8.3.2 Edge Smoothening and Reanalysis of Structure 236
 8.3.3 Guidelines to Selecting Parameters and Setting Their Limits 236

References ... 237
List of Figures

1.1 Comparison of a rigid-body gripper with a compliant gripper. 2
2.1 Design domain of a gripper. 11
2.2 A planar compliant gripper and and its corresponding kinematic sketch. 11
2.3 (a) Aluminium design of compliant gripper and (b) its deformed configuration. 12
2.4 Microgripper. 12
2.5 Design domain of a compliant push-clamp. 13
2.6 (a) Compliant push-clamp; (b) Compliant pull-clamp. 13
2.7 Design domain of a displacement inverter. 14
2.8 Optimal solution and deformation of displacement inverters. 15
2.9 Displacement amplifier mechanism. 15
2.10 Sketch of path generating mechanism. 16
2.11 Optimum design of path generating mechanism (a) result from structural topology optimization (b) prototype. 16
2.12 Design domain of multiple output-port compliant mechanism. 17
2.13 Optimum design of shape morphing compliant mechanisms. 18
2.14 Gripper mechanism that (a) holds and (b) releases/places workpiece and exhibits snap-through behavior. 19
2.15 A polypropylene prototype of the grasp and pull gripper design. 20
2.16 Optimal topology: (a) optimal mechanism based on linear theory; (b) complete gripper design and elements under compression and tension; (c) optimal mechanism based on nonlinear theory; (d) complete gripper design and elements under compression and tension. 21
2.17 Design domain of 2-DOF mechanism. 24
2.18 Two-input two-output compliant mechanism. 24
2.19 (a) Design domain for a 2-DOF micro-scanner, (b) Topology optimized actuator composed of Nickel, and (c) Topology optimized 2-DOF actuator composed of Nickel and a material with half the Young’s modulus and half the thermal conductivity of Nickel. 24
2.20 Conceptual design of a 2-DOF compliant mechanism. 25
2.21 Two-axis planar compliant mechanism design. 25
2.22 Truss ground structure. 31
2.23 A unit cell of a microstructure. 32
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.24</td>
<td>(a) Surface and the x-y plane; (b) Partition of design domain.</td>
<td>34</td>
</tr>
<tr>
<td>2.25</td>
<td>Mapping from chromosome into topology: (a) corresponding binary values and (b) resulting topology.</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>Mechanism with boundary conditions.</td>
<td>59</td>
</tr>
<tr>
<td>3.2</td>
<td>Comparison between ABAQUS and newly developed program.</td>
<td>60</td>
</tr>
<tr>
<td>4.1</td>
<td>Sketch of a grip-and-move manipulator.</td>
<td>62</td>
</tr>
<tr>
<td>4.2</td>
<td>Design space for symmetric path mechanism.</td>
<td>63</td>
</tr>
<tr>
<td>4.3</td>
<td>Deviation between the left and right halves of path.</td>
<td>64</td>
</tr>
<tr>
<td>4.4</td>
<td>Definition of structural geometry by morphological scheme.</td>
<td>69</td>
</tr>
<tr>
<td>4.5</td>
<td>Thickness of ‘Flesh’ added to skeleton elements.</td>
<td>70</td>
</tr>
<tr>
<td>4.6</td>
<td>Chromosome code.</td>
<td>71</td>
</tr>
<tr>
<td>4.7</td>
<td>Some examples of crossover loops.</td>
<td>72</td>
</tr>
<tr>
<td>4.8</td>
<td>Example of crossover operation.</td>
<td>72</td>
</tr>
<tr>
<td>4.9</td>
<td>Mutation operation.</td>
<td>73</td>
</tr>
<tr>
<td>4.10</td>
<td>Crowding distance calculation.</td>
<td>77</td>
</tr>
<tr>
<td>4.11</td>
<td>Three non-dominated solutions at 500th generation.</td>
<td>81</td>
</tr>
<tr>
<td>4.12</td>
<td>Chromosome code of the optimal result with best combined objective.</td>
<td>82</td>
</tr>
<tr>
<td>4.13</td>
<td>Input/output/control points and Bezier curves of the optimal result with best combined objective.</td>
<td>82</td>
</tr>
<tr>
<td>4.14</td>
<td>Compliant grip-and-move manipulator (a) arrangement (b) prototype (c) symmetric paths from the FE analysis and prototype (Run 1).</td>
<td>84</td>
</tr>
<tr>
<td>4.15</td>
<td>Sample solutions from the initial (randomly generated) population.</td>
<td>85</td>
</tr>
<tr>
<td>4.16</td>
<td>Best feasible solutions from sample intermediate generations.</td>
<td>86</td>
</tr>
<tr>
<td>4.17</td>
<td>History of the best path objective (f_{path}).</td>
<td>87</td>
</tr>
<tr>
<td>4.18</td>
<td>History of the best combined objective (f_{com}).</td>
<td>87</td>
</tr>
<tr>
<td>4.19</td>
<td>History of the best GA objective (f_{GA}).</td>
<td>88</td>
</tr>
<tr>
<td>4.20</td>
<td>Plot of non-dominated solutions and elites at some sample generations.</td>
<td>89</td>
</tr>
<tr>
<td>4.21</td>
<td>Plot of cumulative non-dominated front up to some sample generations.</td>
<td>90</td>
</tr>
<tr>
<td>4.22</td>
<td>Three non-dominated solutions at 500th generation.</td>
<td>91</td>
</tr>
<tr>
<td>4.23</td>
<td>Chromosome code of the optimal result with best combined objective.</td>
<td>92</td>
</tr>
<tr>
<td>4.24</td>
<td>Input/output/control points and Bezier curves of the optimal result with best combined objective.</td>
<td>92</td>
</tr>
<tr>
<td>4.25</td>
<td>Compliant grip-and-move manipulator (a) arrangement (b) prototype (c) symmetric paths from the FE analysis and prototype (Run 2).</td>
<td>93</td>
</tr>
<tr>
<td>4.26</td>
<td>Sample solutions from the initial (randomly generated) population.</td>
<td>93</td>
</tr>
<tr>
<td>4.27</td>
<td>Best feasible solutions from sample intermediate generations.</td>
<td>94</td>
</tr>
<tr>
<td>4.28</td>
<td>History of the best path objective (f_{path}).</td>
<td>95</td>
</tr>
<tr>
<td>4.29</td>
<td>History of the best combined objective (f_{com}).</td>
<td>95</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.30</td>
<td>History of the best GA objective (f_{GA}).</td>
<td>96</td>
</tr>
<tr>
<td>4.31</td>
<td>Plot of non-dominated solutions and elites at some sample generations.</td>
<td>97</td>
</tr>
<tr>
<td>4.32</td>
<td>Comparison of non-dominated fronts between Run 3 and Run 2.</td>
<td>98</td>
</tr>
<tr>
<td>4.33</td>
<td>Three non-dominated solutions at 500th generation.</td>
<td>99</td>
</tr>
<tr>
<td>4.34</td>
<td>Chromosome code of the optimal result with best combined objective.</td>
<td>100</td>
</tr>
<tr>
<td>4.35</td>
<td>Input/output/control points and Bezier curves of the optimal result with</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>best combined objective.</td>
<td></td>
</tr>
<tr>
<td>4.36</td>
<td>Compliant grip-and-move manipulator (a) arrangement (b) prototype (c)</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>symmetric paths from the FE analysis and prototype (Run 3).</td>
<td></td>
</tr>
<tr>
<td>4.37</td>
<td>Sample solutions from the initial (randomly generated) population.</td>
<td>101</td>
</tr>
<tr>
<td>4.38</td>
<td>Best feasible solutions from sample intermediate generations.</td>
<td>102</td>
</tr>
<tr>
<td>4.39</td>
<td>History of the best path objective (f_{path}).</td>
<td>103</td>
</tr>
<tr>
<td>4.40</td>
<td>History of the best combined objective (f_{com}).</td>
<td>103</td>
</tr>
<tr>
<td>4.41</td>
<td>History of the best GA objective (f_{GA}).</td>
<td>104</td>
</tr>
<tr>
<td>4.42</td>
<td>Plot of non-dominated solutions and elites at some sample generations.</td>
<td>105</td>
</tr>
<tr>
<td>4.43</td>
<td>Plot of cumulative non-dominated front up to some sample generations.</td>
<td>106</td>
</tr>
<tr>
<td>5.1</td>
<td>Definition of structural geometry by morphological scheme.</td>
<td>111</td>
</tr>
<tr>
<td>5.2</td>
<td>Chromosome code.</td>
<td>112</td>
</tr>
<tr>
<td>5.3</td>
<td>Chromosome codes of crossover operation between parents.</td>
<td>115</td>
</tr>
<tr>
<td>5.4</td>
<td>Outcome of crossover operation between parents.</td>
<td>116</td>
</tr>
<tr>
<td>5.5</td>
<td>Mutation operation of on/off state.</td>
<td>119</td>
</tr>
<tr>
<td>5.6</td>
<td>Non-dominated sets obtained using different algorithms.</td>
<td>121</td>
</tr>
<tr>
<td>5.7</td>
<td>Non-dominated set far from the preferred portion of Pareto-optimal front.</td>
<td>121</td>
</tr>
<tr>
<td>5.8</td>
<td>The adaptive constraint method for conflicting objectives.</td>
<td>123</td>
</tr>
<tr>
<td>5.9</td>
<td>The adaptive constraint method for Non-conflicting objectives.</td>
<td>124</td>
</tr>
<tr>
<td>5.10</td>
<td>Generation update mechanism.</td>
<td>131</td>
</tr>
<tr>
<td>6.1</td>
<td>Design Space.</td>
<td>136</td>
</tr>
<tr>
<td>6.2</td>
<td>Target geometry.</td>
<td>137</td>
</tr>
<tr>
<td>6.3</td>
<td>Formulation of Target Matching Problem 1 with Non-conflicting Objectives.</td>
<td>137</td>
</tr>
<tr>
<td>6.4</td>
<td>Other optimal solutions of the multimodal Target Matching Problem 1.</td>
<td>139</td>
</tr>
<tr>
<td>6.5</td>
<td>The solution space for Target Matching Problem 1.</td>
<td>140</td>
</tr>
<tr>
<td>6.6</td>
<td>Two solutions at 500th generation.</td>
<td>141</td>
</tr>
<tr>
<td>6.7</td>
<td>Chromosome code of the results of Figure 6.6.</td>
<td>142</td>
</tr>
<tr>
<td>6.8</td>
<td>Input/output/control points and Bezier curves of Figure 6.6.</td>
<td>143</td>
</tr>
<tr>
<td>6.9</td>
<td>Sample solutions from the initial (randomly generated) population.</td>
<td>144</td>
</tr>
<tr>
<td>6.10</td>
<td>Best feasible solutions from sample intermediate generations.</td>
<td>144</td>
</tr>
<tr>
<td>6.11</td>
<td>History of the best distance objective.</td>
<td>145</td>
</tr>
<tr>
<td>6.12</td>
<td>History of the best material objective.</td>
<td>146</td>
</tr>
<tr>
<td>Figure Number</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6.13</td>
<td>Plot of cumulative non-dominated front up to some sample generations.</td>
<td>146</td>
</tr>
<tr>
<td>6.14</td>
<td>Two solutions at 300th generation.</td>
<td>147</td>
</tr>
<tr>
<td>6.15</td>
<td>Chromosome code of the results of Figure 6.14.</td>
<td>148</td>
</tr>
<tr>
<td>6.16</td>
<td>Input/output/control points and Bezier curves of Figure 6.14.</td>
<td>149</td>
</tr>
<tr>
<td>6.17</td>
<td>Sample solutions from the initial (randomly generated) population.</td>
<td>149</td>
</tr>
<tr>
<td>6.18</td>
<td>Best feasible solutions from sample intermediate generations.</td>
<td>150</td>
</tr>
<tr>
<td>6.19</td>
<td>History of the best distance objective.</td>
<td>151</td>
</tr>
<tr>
<td>6.20</td>
<td>History of the best material objective.</td>
<td>151</td>
</tr>
<tr>
<td>6.21</td>
<td>Plot of cumulative non-dominated front up to some sample generations.</td>
<td>152</td>
</tr>
<tr>
<td>6.22</td>
<td>Target geometry.</td>
<td>157</td>
</tr>
<tr>
<td>6.23</td>
<td>Formulation of Target Matching Problem 2 with Conflicting Objectives.</td>
<td>157</td>
</tr>
<tr>
<td>6.24</td>
<td>The solution space for Target Matching Problem 2.</td>
<td>158</td>
</tr>
<tr>
<td>6.25</td>
<td>Non-dominated solutions from 300 generations.</td>
<td>160</td>
</tr>
<tr>
<td>6.26</td>
<td>Chromosome code of the results of Figure 6.25 (a) and (b) respectively.</td>
<td>161</td>
</tr>
<tr>
<td>6.27</td>
<td>Input/output/control points and Bezier curves of Figure 6.25.</td>
<td>162</td>
</tr>
<tr>
<td>6.28</td>
<td>Sample solutions from the initial (randomly generated) population.</td>
<td>162</td>
</tr>
<tr>
<td>6.29</td>
<td>Best feasible solutions from sample intermediate generations.</td>
<td>163</td>
</tr>
<tr>
<td>6.30</td>
<td>History of the best void objective.</td>
<td>164</td>
</tr>
<tr>
<td>6.31</td>
<td>History of the best material objective.</td>
<td>164</td>
</tr>
<tr>
<td>6.32</td>
<td>Plot of non-dominated solutions and elites at some sample generations.</td>
<td>165</td>
</tr>
<tr>
<td>6.33</td>
<td>Plot of cumulative non-dominated front up to some sample generations.</td>
<td>166</td>
</tr>
<tr>
<td>6.34</td>
<td>Design space.</td>
<td>167</td>
</tr>
<tr>
<td>6.35</td>
<td>Target geometry.</td>
<td>168</td>
</tr>
<tr>
<td>6.36</td>
<td>Formulation of Target Matching Problem 3 with Conflicting Objectives.</td>
<td>168</td>
</tr>
<tr>
<td>6.37</td>
<td>The solution space for Target Matching Problem 3.</td>
<td>169</td>
</tr>
<tr>
<td>6.38</td>
<td>Non-dominated solutions from 300 generations.</td>
<td>171</td>
</tr>
<tr>
<td>6.39</td>
<td>Chromosome code of the results of Figure 6.38 (a) and (b) respectively.</td>
<td>172</td>
</tr>
<tr>
<td>6.40</td>
<td>Input/output/control points and Bezier curves of Figure 6.38 (a) and (b) respectively.</td>
<td>173</td>
</tr>
<tr>
<td>6.41</td>
<td>Sample solutions from the initial (randomly generated) population.</td>
<td>173</td>
</tr>
<tr>
<td>6.42</td>
<td>Best feasible solutions from sample intermediate generations.</td>
<td>174</td>
</tr>
<tr>
<td>6.43</td>
<td>History of the best void objective.</td>
<td>175</td>
</tr>
<tr>
<td>6.44</td>
<td>History of the best material objective.</td>
<td>175</td>
</tr>
<tr>
<td>6.45</td>
<td>Plot of non-dominated solutions and elites at some sample generations.</td>
<td>176</td>
</tr>
<tr>
<td>6.46</td>
<td>Plot of cumulative non-dominated front up to some sample generations.</td>
<td>176</td>
</tr>
<tr>
<td>6.47</td>
<td>Target geometry.</td>
<td>178</td>
</tr>
<tr>
<td>6.48</td>
<td>Formulation of Target Matching Problem 4 with Conflicting Objectives.</td>
<td>178</td>
</tr>
<tr>
<td>6.49</td>
<td>The solution space for Target Matching Problem 4.</td>
<td>179</td>
</tr>
<tr>
<td>6.50</td>
<td>Non-dominated solutions from 300 generations.</td>
<td>181</td>
</tr>
</tbody>
</table>
List of Figures

6.51 Chromosome code of the results of Figure 6.50 (a) and (b) respectively. 182
6.52 Input/output/control points and Bezier curves of Figure 6.50 (a) and (b) respectively. 183
6.53 Sample solutions from the initial (randomly generated) population. 183
6.54 Best feasible solutions from sample intermediate generations. 184
6.55 History of the best void objective. 185
6.56 History of the best material objective. 185
6.57 Plot of non-dominated solutions and elites at some sample generations. 186
6.58 Plot of cumulative non-dominated front up to some sample generations. 186

7.1 Sketch of a manipulator. 188
7.2 Design space. 189
7.3 Output area calculation. 190
7.4 Unfavorable output area. 190
7.5 Geometric Advantage calculation. 192
7.6 Three non-dominated solutions at 500th generation. 195
7.7 Chromosome code of the optimal result of Figure 7.6 (a) and (b) respectively. 196
7.8 Input/output/control points and Bezier curves of Figure 7.6 (a) and (b) respectively. 197
7.9 Compliant grip-and-move manipulator – design with best area objective (Run 1). 199
7.10 View of compliant grip-and-move manipulator (long distance output). 200
7.11 View of compliant grip-and-move manipulator (big overlapped area). 200
7.12 Compliant grip-and-move manipulator – design with median area and distance objective (Run 1). 201
7.13 View of compliant grip-and-move manipulator. 202
7.14 Sample solutions from the initial (randomly generated) population. 203
7.15 Best feasible solutions from sample intermediate generations. 204
7.16 History of the best area objective (f_{area}). 205
7.17 History of the best distance objective (f_d). 205
7.18 Plot of non-dominated solutions and elites at some sample generations. 206
7.19 Plot of cumulative non-dominated front up to some sample generations. 206
7.20 Three non-dominated solutions at 500th generation. 207
7.21 Chromosome code of the optimal result of Figure 7.20 (a) and (b) respectively. 209
7.22 Input/output/control points and Bezier curves of Figure 7.20 (a) and (b) respectively. 210
7.23 Compliant grip-and-move manipulator – design with best area objective (Run 2). 211
7.24 View of compliant grip-and-move manipulator. ... 212
7.25 Compliant grip-and-move manipulator – design with the median area and distance objective (Run 2). ... 214
7.26 View of compliant grip-and-move manipulator (long distance output). 215
7.27 View of compliant grip-and-move manipulator (big overlapped area). 215
7.28 Sample solutions from the initial (randomly generated) population. 216
7.29 Best feasible solutions from sample intermediate generations. 217
7.30 History of the best area objective (f_{area}). ... 218
7.31 History of the best distance objective (f_d). ... 218
7.32 Plot of non-dominated solutions and elites at some sample generations. 219
7.33 Plot of cumulative non-dominated front up to some sample generations. 219
7.34 Three non-dominated solutions at 500th generation. 220
7.35 Chromosome code of the optimal result of Figure 7.34 (a). 221
7.36 Input/output/control points and Bezier curves of Figure 7.34 221
7.37 Compliant grip-and-move manipulator – design with best area objective (Run 3). 223
7.38 View of compliant grip-and-move manipulator. ... 224
7.39 Sample solutions from the initial (randomly generated) population. 224
7.40 Best feasible solutions from sample intermediate generations. 225
7.41 History of the best area objective (f_{area}). ... 226
7.42 History of the best distance objective (f_d). ... 226
7.43 Plot of non-dominated solutions and elites at some sample generations. 227
7.44 Plot of cumulative non-dominated front up to some sample generations. 227
List of Tables

2.1 Benchmarked Flexible Translational Joints .. 28
2.2 Benchmarked Flexible revolute Joints ... 28

3.1 Elastic Moduli Transformation Relations for Conversion Between Plane
 Stress and Plane Strain Problems .. 56
3.2 Comparison Result ... 59

6.1 Simulation Results of 8 Trials of Each Strategy 154
List of Abbreviation and Symbols

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMS</td>
<td>Micro Electro Mechanical Systems</td>
</tr>
<tr>
<td>DOF</td>
<td>Degree of Freedom</td>
</tr>
<tr>
<td>CCM</td>
<td>Contact-aided Compliant Mechanism</td>
</tr>
<tr>
<td>ESO</td>
<td>evolutionary structural optimization</td>
</tr>
<tr>
<td>EA</td>
<td>evolutionary algorithm</td>
</tr>
<tr>
<td>GA</td>
<td>Geometric Advantage</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Method</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Young’s modulus</td>
</tr>
<tr>
<td>ν</td>
<td>Poisson’s ratio</td>
</tr>
<tr>
<td>B</td>
<td>strain-displacement matrix</td>
</tr>
<tr>
<td>D</td>
<td>elasticity matrix</td>
</tr>
<tr>
<td>a</td>
<td>displacement vector</td>
</tr>
<tr>
<td>N</td>
<td>shape function matrix</td>
</tr>
<tr>
<td>S</td>
<td>the second Piola-Kirchhoff stress tensor</td>
</tr>
<tr>
<td>E</td>
<td>Green-Lagrange strain tensor</td>
</tr>
<tr>
<td>b_0</td>
<td>body force vector</td>
</tr>
<tr>
<td>q_0</td>
<td>traction force vector</td>
</tr>
<tr>
<td>F</td>
<td>deformation gradient matrix</td>
</tr>
<tr>
<td>σ_y</td>
<td>Yield stress</td>
</tr>
</tbody>
</table>
Chapter 1

INTRODUCTION

In this chapter, the title of the thesis is explained. Compliant mechanisms are introduced and compared with conventional mechanisms. The chapter also explains objectives and scope of the present work. At the end, organization of the thesis is given.

1.1 BACKGROUND

1.1.1 Introduction to Compliant Mechanisms

Compliant mechanisms are flexible structures that deliver a desired motion by undergoing elastic deformation, as opposed to the rigid body motions of conventional mechanisms. Like a rigid-body mechanism, a compliant mechanism also transfers force and/or energy from a source to an output. Unlike rigid-link mechanisms, compliant mechanisms gain at least some of their mobility through the deflection of flexible members instead of through rigid links and movable joints. A comparison of simple gripping mechanisms is shown in Figure 1.1. The rigid-body gripper consists of rigid links and permits relative motion between its rigid links, while a compliant gripper gains its mobility through a flexural pivot. The input force is transferred to the output port and some energy is stored in the form of strain energy in the flexible members. Note that if the entire device was rigid, it would have no mobility and it would be a structure.

In the natural world, flexibility provides a multidimensional world of opportunities for designing structures that change shape in highly useful ways. The natural world is full of “compliant mechanisms”. Look at the ears of cattle, which in some cases can be used to
drive away flies for them. Muscles pull on cartilage, and then twist the ears to flap as they want. However, the engineering world has traditionally limited itself to rigid structures and mechanisms. Even in cases where the compliance or adaptability of a structure is needed, rigid elements and actuators are employed to simulate compliance.

1.1.2 Advantages and Disadvantages of Compliant Mechanisms

When compliance is included as a preferred effect, they offer distinct advantages over conventional rigid-link mechanisms. The following is a list of some of the advantages and disadvantages of compliant mechanisms [1–3].

Advantages of compliant systems:

- **i** Reduction in number of parts: unlike their rigid-link mechanism counterparts, compliant mechanisms can be designed as single-piece entities without joints.
- **ii** Easier to manufacture because little or no assembly is required.
Chapter 1. INTRODUCTION

iii Elimination of joint friction, need for lubrication, and backlash due to joint clearances

iv Can efficiently take advantage of modern actuators, such as piezoelectric, shape-memory alloy, electro-thermal, electrostatic, fluid pressure, and electromagnetic actuators

v Can create motions for shape changing structures not possible with conventional ‘rigid’ devices

vi Scalable: successful compliant systems have been implemented in the micro, meso, and macro scales

vii Materials friendly: can be used with virtually any highly resilient material, including steel, aluminum, high-strain nickel-titanium alloys, polysilicon, delrin, ABS, polypropylene etc.

viii No need for restoring springs or pin-clevis hinges - potential for weight reduction

Disadvantages of compliant systems:

i Limited to applications with finite (often small) rotations and displacements

ii Functionality can be affected by external loads

iii Fatigue, hysteresis, and creep can limit performance and/or durability

iv Difficult to design because the relationship between their geometry and their elastic behavior is highly complex and non-linear.

1.1.3 Application of Compliant Mechanisms

As such, compliant mechanisms have many advantages compared to conventional rigid-link mechanisms and so can be created as a replacement for their rigid-link counterparts. Although engineered compliant mechanisms/systems have been used for over a century
in specialized applications, recent advances in synthesis and modelling tools have enabled the practical use of this technology beyond academic research and specialized applications.

The applications of compliant mechanisms are varied and practically unlimited. Any device that uses springs, joints or pins can be a potential benefactor of compliant mechanisms. A variety of devices could be made cheaper or easier with flexible parts. Things like grippers, pliers, clamp, crimper, displacement inverters/amplifiers, logic gates, switches, clutches and robot arms can be designed and manufactured.

Compliant mechanisms are useful in applications both in the macro domain and in the micro domain, for instance, for high precision manipulation stages, instruments for minimally invasive surgery, and Micro-Electro-Mechanical Systems (MEMS). The combination of structural stiffness and flexibility allows compliant mechanisms to replace rigid connections effectively in a number of applications [4–9], including:

i Medical devices: As compliant mechanisms are closer to the natural world, they can be used to mimic a lot of natural things. For example, compliant mechanisms offer a low-cost alternative for joints in prosthetic and physical therapy devices. In addition, compliant mechanisms can duplicate the rotational movement and flexibility of a natural joint by providing resistance that is similar to human limbs. Good shock absorption also helps to provide a more natural feel. Compliant mechanisms with differing degree-of-freedom (DOF) can be developed to simulate several physical joints including the knee, hip, and ankle.

ii Robotics: Robots perform an array of tasks in numerous industry applications. Compliant mechanisms can provide robotic arms and end-of-arm tooling with sufficient flexibility to move in any direction and rotate about any axis while compressing and absorbing any misalignment. This enables robots to mimic human capabilities used in manipulating objects and can help prevent damage to precision components during assembly operations.

iii Bumper systems: Manufacturers and insurers alike recognize that energy
absorption is a key design criterion for vehicle bumper systems. The shock absorption properties provided by compliant mechanisms facilitate safe and cost-effective bumper system designs. With shock absorption properties, compliant mechanisms are an effective, low-cost replacement for the polypropylene foams and plastic honeycombs frequently used for energy absorption.

iv Commercial and industrial equipment: windshield wiper, aerosol can and sporting goods and recreational equipment like training shoes, skates and bindings, etc.

v MEMS/NEMS: Compliant mechanisms show great potential especially in MEMS/NEMS applications because MEMS/NEMS devices are manufactured on the sub-millimeter scale and therefore cannot contain any complex joints. MEMS are small, compliant devices for mechanical and electrical applications. BioMEMS is an enabling MEMS technology for ever-greater functionality and cost reduction in smaller devices for biomedical applications, such as improved medical diagnostics and therapies.

1.1.4 Current Need for Compliant Mechanisms Development

Now, compliant mechanisms thrive with introduction of materials with superior properties and development of micro-mechanisms such as MEMS, bio-MEMS, NEMS. In particular, compliant micro-grippers can be used for manipulation and assembly of electronic and optical micro-components, as well as for biological samples as in single cell manipulation, positioning and isolation. The use of mechanical micro-grippers that securely grip and transport objects to the desired location is also advantageous because it avoids optical or electrical interference with the object which may be a problem with other technologies such as optical tweezers, etc.

Compliant mechanisms have been designed at Brigham Young University, University of Michigan, Technical University of Denmark, Compliant Mechanisms Design and Optimization Laboratory - George Washington University, University of Pennsylvania, Optimal Design of Adaptive Compliant Structures Lab - Penn State University, the
National Creative Research Initiatives Center for Multi-scale Design and Computational Modelling and Design Laboratory of the Chinese University of Hong Kong. In NTU (Nanyang Technology University), much work is being done to realize the strong potential of optimization technology by applying it in compliant mechanism design.

Most of the mechanisms developed so far are one DOF mechanisms and the output displacements are small. They can only do simple work such as gripping. In that case, the compliant mechanisms are more like compliant structures than mechanisms. The simplicity of the output and the range of the output limits the application. Some multi-DOF compliant mechanisms, such as Nanomanipulator and MEMS Nanopositioner, are developed by heuristic approaches. To realize the full potential of compliant mechanisms, more complicated multi-DOF mechanisms can be designed, but only by using systematic design synthesis methods.

1.1.5 Introduction to Design Methods

Compliant mechanical devices can provide distinct advantages over conventional rigid-link devices, but including compliance complicates the design process. Engineers have not yet fully utilized this concept of intentional compliance in design, partly due to a lack of systematic design methods. In order to design a compliant mechanism for a particular task, it is necessary to determine a suitable structural form, i.e., topology, shape, and size of the material using a systematic synthesis method. Two main approaches have been developed for systematic synthesis and design of compliant mechanisms, a kinematic approach and a topology optimization approach. The kinematic approach is useful for modelling and analysis of lumped or partially compliant mechanisms. The topology optimization approach predicts a compliant mechanism form based on the input-output force deflection requirements. Optimization methods based on genetic algorithms have recently been applied to various structural problems, and have demonstrated the potential to overcome many of the problems associated with gradient based methods. Genetic algorithm is a powerful technique for search and optimization problems, and are
particularly useful in the optimization of compliant mechanisms.

1.2 OBJECTIVES OF THIS RESEARCH

Gripping and moving objects are the important functions in assembly and manipulating tasks typically accomplished by robots. But these conventional mechanisms are expensive and complicated. Also, compliant manipulators are necessary if small/micro size desired. Realizing these two functions within a single compliant mechanism will be attractive and promising. The objective of this research is to formulate the design problem of designing compliant mechanisms exhibiting both gripping and moving behavior (i.e. grip-and-move manipulators), and to design these mechanisms through a process of structural optimization.

The specific research objectives include:

i To develop enhanced morphological geometry representation representing the structural geometry of a compliant mechanism.

ii To incorporate into the genetic algorithm an optimization-level decision-making technique to integrate the user’s preference and hybridize it with a local search (LS) strategy to improve its efficiency.

iii To develop suitable test problems to test and tune genetic algorithm.

iv To design two conceptually different types of grip-and-move manipulators by structure topology optimization, one can grip a work piece and convey it to anywhere on the desired line path while the other can grip a workpiece and convey it to anywhere within its two-dimensional working area.

1.3 SCOPE

This work will look into various aspects in the development of a methodology to automate the process of designing grip-and-move manipulators. The scope of the work involves the
Chapter 1. INTRODUCTION

following:

i In this work, the performance characteristics of every design would be computed by a large-displacement non-linear finite element analysis of the designed structure, and the finite element method and the overall optimization procedure would be implemented on a C++ program.

ii The structural geometry of a compliant mechanism would be represented by using a morphological representation scheme which encodes the geometry as a graph having design variables at its vertices. This graph would be used as a chromosome for the reproduction operations. Enhanced geometry representation schemes for defining the geometry of the design structures would increase the representation variability.

iii As for the optimization process, a novel approach would be incorporated into the genetic algorithm to treat the relatively more challenging objectives as constraints whose ideal values will be adaptively changed (improved) during the evolutionary procedure. This helps to direct and focus the genetic search towards regions of interest in the objective space, thus is a useful and intuitive way for specifying the user’s preference and/or for tackling the harder objectives since the mechanism design problem is a computationally challenging problem.

iv A test problem emulating structural topology optimization that does not need finite element structural analysis is to be formulated. Such test problems referred to as ‘Target Matching Problems’ with conflicting/non-conflicting objectives would be constructed to test and tune the genetic algorithm for solving the actual mechanism design problem.

v Two conceptually different types of grip and move compliant mechanisms are to be designed by developing the appropriate design problem formulation for them. New optimization criteria for designing compliant grip-and-move manipulators would be formulated. Two identical symmetric path-generating mechanisms can
be arranged to construct a grip-and-move manipulator which can grip a work piece and convey it to anywhere on the desired line path. And a second type of compliant grip-and-move manipulators by the employment of two identical path generating mechanisms with two degrees-of-freedom can grip a workpiece and convey it to anywhere within its two-dimensional working area. Prototypes made from the designs optimized in a 100 by 100mm square design space would be fabricated. The prototypes would be actuated to effect the deformation, and the displacements of the output point would be measured and plotted for comparison with the displacement path obtained via the FE analysis.

1.4 ORGANIZATION OF THESIS

The thesis starts with the present chapter, which introduces compliant mechanism and compares it with conventional (rigid-body) mechanisms. Topology optimization as a design approach has also been introduced in this chapter. In Chapter 2, the previous literature pertaining to compliant mechanism and optimization method is presented. Nonlinear formulations of the geometrically nonlinear finite element analysis are documented in Chapter 3. Chapter 4 demonstrates the automatic design of a compliant grip-and-move manipulator using a previously proposed genetic algorithm coupled with a morphological representation for defining and encoding the structural geometry variables. It presents a novel idea to integrate grip and move behavior in one simple mechanism. The enhanced morphological representation of structural design geometry is explained in Chapter 5. It also explains a new developed genetic algorithm. Chapter 6 focuses on testing and tuning of the optimization methodology using “Target Matching Problems”. Chapter 7 is an attempt to design compliant grip-and-move manipulators with two path generating mechanisms of 2-DOF each. A list of recommended topics for future investigations is provided in Chapter 8 and it concludes the work presented.
Chapter 2

LITERATURE REVIEW

Compliant mechanisms and methods used to design compliant mechanisms are reviewed in this chapter. Different types of compliant mechanisms are classified according to their output. Recent advances in compliant mechanisms are briefly described. Methods used to design compliant mechanisms, kinematic method and topology optimization method, are investigated. The chapter also provides an extensive discussion on application of genetic algorithm to topology optimization and on the principles of constrained multiobjective optimization.

2.1 DIFFERENT TYPES OF COMPLIANT MECHANISMS

Compliant mechanisms are single-piece jointless structures that use compliance (i.e. elastic deformation) as a means to achieve motion. As mentioned in Chapter 1, compliant mechanisms are scalable, so the mechanisms listed below are suitable for micro, meso, and macro scales. And here they are classified according to their output.

2.1.1 Smooth Output Mechanisms

2.1.1.1 Grippers/Clamps/Crimpers/Pliers

Grippers, pliers, crimping and clamping mechanisms are mostly one input one output mechanisms. Their difference lies in the direction of Input/Output (I/O). Their output, force or displacement, is smooth. Among them, grippers are the most studied because of their highly successful application. Figure 2.1 shows the design domain of a gripper.
where specifications are as indicated.

\[P_1
\]
\[F_1
\]
\[F_2
\]

Figure 2.1: Design domain of a gripper.

Based on the kinematic method, Tsai at al. [10] designed a planar compliant microgripper as shown in Figure 2.2. Flexure-based grippers are also found in [11–14] for different applications. A novel compliant robotic gripper constructed using polymer-based shape deposition manufacturing was created in [14]. Joints are formed by elastomeric flexures and actuator and sensor components are embedded in tough rigid polymers. The result is a robot gripper with the functionality of conventional metal prototypes for grasping in unstructured environments but with robustness properties that allow for large forces occurring due to inadvertent contact. Shih and Lin [15] integrated the analytic single-axis flexure hinge with topology optimization as a second-stage design process to obtain optimum flexure configuration and location for promoting the overall performance of a compliant microgripper.

Figure 2.2: A planar compliant gripper and and its corresponding kinematic sketch [10].
Based on topology optimization method, grippers have been created in [16–22]. A sparse, hinge-free, aluminium designs of grippers designed by Rahmatalla and Swan [21] is shown in Figure 2.3. Microgripper [23–30] is of great interest when manipulating small objects such as electronic devices or small cells for biological applications and minimally invasive surgery. Such grippers must have high accuracy in micropositioning, a large stroke to grasp different objects, and be able to exploit electrostatic forces in order to avoid high power consumption. Figure 2.4 shows a microgripper optimized by the building block method [30] and its rigid body counterpart. One of the major problems in the left microgripper is the use of pin joints. A single-piece, compliant structure shown on the right could avoid such problems.

![Figure 2.3](image1.png)

Figure 2.3: (a) Aluminium design of compliant gripper and (b) its deformed configuration [21].

![Figure 2.4](image2.png)

Figure 2.4: Microgripper [30].

Compliant clamps, crimpers, and pliers are reported in [2, 31–35]. The design domain
Chapter 2. LITERATURE REVIEW

of a push-clamp is sketched in Figure 2.5 where the mechanism is subject to a vertical squeezing load at the upper and lower right corners. The output port is shown where an output force is desired. Pull-clamp is similar to push-clamp, except that the input force is a pulling force. Figure 2.6 shows the clamp developed by Wang et al. [31].

![Design domain of a compliant push-clamp.](image)

Figure 2.5: Design domain of a compliant push-clamp.

![Compliant push-clamp and pull-clamp.](image)

Figure 2.6: (a) Compliant push-clamp; (b) Compliant pull-clamp [31].

2.1.1.2 Displacement Inverters/Amplifiers

An important design problem in compliant mechanisms is the design of displacement amplifier/inverter. A displacement amplifier can convert the small input displacement of a actuator to a larger output displacement. A displacement inverter is a mechanism used to change the direction of actuating displacement. Inverter mechanisms have been created in [2, 16–18, 20–22, 31, 32, 34, 36–38]. Figure 2.7 shows the design domain where specifications are as indicated. When the input load P_1 is applied, it is required
to produce the input displacement along a direction specified by input load and an output displacement in the opposite direction indicated by P_2. Mechanisms shown in Figure 2.8 [20] have different functionality depending on the geometric advantage (GA); for example, displacement magnification if GA > 1 and reduction if GA < 1. Saxena and Ananthasuresh [34] designed the inverter by ground structure approach using geometrically nonlinear finite element models that appropriately account for large displacements. Frame elements were chosen because of ease of implementation of the general approach and their ability to capture bending deformations to design a micro displacement amplifier. Tai and Chee [36] designed an amplifier/inverter as a continuous structure shown in the Figure 2.9 using a genetic algorithm. Kota et al. [38] designed, fabricated, and demonstrated a new class of compliant stroke amplification mechanisms that are exceptionally well suited for MEMS applications.

![Figure 2.7: Design domain of a displacement inverter.](image)

2.1.1.3 Path Generating Compliant Mechanisms

A path generating compliant mechanism is a structure which deforms, when some part of it is given a prescribed displacement, such that another part is displaced along some desired path. Some other part of such structure requires to be fixed in order to facilitate elastic deformation. The fixed part of the structure may be referred to as the support. In addition, a practicable path-generating mechanism should be capable of withstanding a prescribed resistive force at the path-generating port if some work
Figure 2.8: Optimal solution and deformation of displacement inverter with GA=0.5, GA=1.0, and GA=1.5 [20].

Figure 2.9: Displacement amplifier mechanism [36].
is meant to be done. Figure 2.10 shows an illustrative example of a compliant path-generating mechanism. Using rigid-body synthesis techniques on pseudo-rigid body approximations of flexural structures, Howell and Midha [39] designed three-precision-point path generating mechanisms. Path-generating mechanisms made of continuum structures with distributed compliance were designed by Tai et al. [40] using a genetic algorithm. Figure 2.11 shows the final optimum design. Specifically, Swan and Rahmatalla [41] presented control algorithms in which sequences of actuation forces to the mechanisms’ input port are found so that the output port follows the desired trajectory in an optimum sense.

![Sketch of path generating mechanism](image1)

Figure 2.10: Sketch of path generating mechanism.

![Optimum design of path generating mechanism](image2)

(a) (b)

Figure 2.11: Optimum design of path generating mechanism (a) result from structural topology optimization (b) prototype [40].
2.1.1.4 Multiple Output Ports Mechanisms

Most of the mechanisms cited above are limited to single output port mechanisms. Single output port is regarded as a prespecified point in the design region where the displacement along a prescribed direction is desired. With multiple output ports in compliant mechanisms, additional freedom in force, motion, or energy transduction is acquired. Figure 2.12 shows the design domain of a compliant mechanism with multiple outputs. Using a combined virtual load or a weighted sum of objectives in a multicriteria formulation, Frecker et al. [42] presented a procedure for the topology design of compliant mechanisms with multiple output requirements. Saxena [43] formulated and developed compliant mechanisms with multiple output ports and multiple materials using genetic algorithms.

![Design domain of multiple output-port compliant mechanism.](image)

Figure 2.12: Design domain of multiple output-port compliant mechanism.

Shape morphing compliant mechanisms, one important member of the multiple output ports mechanism family, have attracted attention because of their novel applications, such as in aircraft wings. The geometric shapes of most aircraft wings are optimized to produce minimum drag under one particular flying speed, but the flying speed actually varies continuously throughout flight. Although conventional hinged mechanisms can change the wing shape in response to the change in flying speed, the connecting hinges create discontinuities over the wing surface, leading to earlier airflow separation. The shape morphing compliant mechanism developed in [44–48] can solve the problem. The
synthesis of shape morphing compliant mechanism is inherently different from the typical single output design problems, due to the multiple output ports along the morphing boundary. For situations emphasizing the shape difference, Lu and Kota [49] use a modified Fourier Transformation instead of least square error to characterize and compare the curves. Incorporating a binary ground structure representation, they developed a genetic algorithm-based synthesis approach [50] and ‘load path representation’ method [51] to systematically design shape morphing compliant mechanisms. Figure 2.13 shows an illustrative example of a shape morphing compliant mechanism.

![Figure 2.13: Optimum design of shape morphing compliant mechanisms [50].](image)

2.1.2 Non-smooth Output Mechanisms

Mostly available single-body compliant mechanisms can only generate smooth output paths and smooth force-deflection curves with continuous input forces if buckling and sudden changes in the constitutive properties of the material are not permitted. This is a direct consequence of the continuous nature of the displacements in the elastic continuum. In contrast, the vast variety of nonsmooth motions possible with rigid-body jointed mechanisms is well known. In order to endow compliant mechanisms with similar capabilities, bistable mechanisms and contact-aided compliant mechanisms are introduced.
2.1.2.1 Bistable Mechanisms

Bistable mechanisms make up a class of mechanisms which have two stable equilibrium states within their range of motion. They require no power input to remain stable at each equilibrium state. Because of their unique behavior, compliant members seem a particularly efficient way to design bistable mechanisms. The structures in Figure 2.14 experience large configuration changes due to elevated load levels. It holds a workpiece (denoted by the circle) then releases/places the workpiece (at the position denoted by the square) after experiencing snap-through behavior. Design of bistable mechanisms require more computational effort, demand more attention to their formulation, and are more prone to computational difficulties than compliant mechanisms previously encountered. Structures that exhibit snap-through behavior and behave like mechanisms were designed in [52–57]. Such bistable structures are particularly attractive for actuation and sensing applications, such as optical switches.

![Figure 2.14: Gripper mechanism that (a) holds and (b) releases/places workpiece and exhibits snap-through behavior [53].](image)

2.1.2.2 Contact-aided Mechanisms

A contact-aided compliant mechanism (CCM), which is a single-body elastic continuum, uses intermittent contacts in addition to elastic deformation to transmit forces and motion. It was done through intermittent contact between different parts of the elastic body or with a rigid surface. Mankame and Ananthasuresh [58–60] designed such
compliant mechanisms. Figure 2.15 presents a grasp and pull gripper realized with CCM. Mechanical implementations of logic gates, which are the basic building blocks of digital computation, have attracted renewed interest in the wake of increasing sophistication achieved by microfabrication processes and the need for radiation-resistant secure computing resources. Ananthasuresh et al. [35, 59] designed the AND and OR logic gates with the concept of CCM.

![Figure 2.15: A polypropylene prototype of the grasp and pull gripper design in its original (left) and deformed (right) configurations [59].](image)

2.1.3 Recent Advances in Compliant Mechanisms

Continuum topology optimization methods for compliant mechanisms have more recently been extended to include geometrical non-linearity, multi materials, multi-physics, and multi-degrees of freedom.

2.1.3.1 Geometrical Nonlinear Analysis

Optimal design methods that use continuum mechanics models are capable of generating suitable topology, shape, and dimensions of compliant mechanisms for desired specifications. A linear elastic response is assumed in most structural topology optimization problems. While this assumption is valid for a wide variety of problems, synthesis procedures that use linear elastic finite element models are not quantitatively...
accurate for large displacement situations and structures using nonlinear materials. Also, design specifications involving nonlinear force-deflection characteristics and generation of a curved path for the output port cannot be realized with linear models. Buhl et al. [61] used nonlinear analysis for stiffness optimization of a snap-through mechanism, a compliant force inverter and path-generation mechanisms. Gea and his coworkers [62,63] studied the stiffness optimization of geometrically nonlinear structure. Bruns and Tortorelli [64] optimized the nonlinear elastic structures and compliant mechanisms with MMA optimization algorithm. The benefits of using nonlinear methods for large deformation problems have been illustrated by using some design examples and comparing results from a nonlinear implementation of the optimization procedure with a linear scheme [19, 65–68]. A significant improvement is reported in the optimal design obtained using the non-linear analysis. Figure 2.16 plots the optimal topologies of a mechanical gripper in their initial and deformed configurations that are obtained from linear and non-linear analysis.

Figure 2.16: Optimal topology: (a) optimal mechanism based on linear theory; (b) complete gripper design and elements under compression and tension; (c) optimal mechanism based on nonlinear theory; (d) complete gripper design and elements under compression and tension. [19]
2.1.3.2 Multi-materials

Only few papers have appeared on topology optimization of structures composed of more than one material. But design of such structures is a good option to design compliant mechanisms to be flexible and strong. The first motivation is that, using two or more materials, it is possible to obtain large deformations without exceeding the strengths of the materials. The second motivation for pursuing two-material compliant mechanism design is the emergence of manufacturing methods that are capable of producing heterogeneous parts without assembly and with strong inter-material interfaces. The third motivation is to mimic Nature’s compliant designs that are usually made up of rigid and flexible materials.

Yin and Ananthasuresh [69, 70] proposed a new material interpolation model, called the peak function model, using a linear combination of normal distribution functions. This model makes it easy to include multiple materials in the design without increasing the design variables. The numerical examples are the two-phase, three-phase, and four-phase materials where void is treated as one material. Sigmund [71, 72] reported an automated method for the synthesis of multi-material, multi-degree-of-freedom micro actuators. Buehler et al. [73] used a homogenization approach to find and use effective material properties for the limiting case of an infinitely small microstructure. Wang et al. [31, 74] proposed a level-set method for designing monolithic compliant mechanisms made of multiple materials as an optimization of continuum heterogeneous structures.

2.1.3.3 Multi-physics

The phrase ‘multiple physics’ is here used to cover topology design where several physical phenomena are involved in the problem statement, thus covering situations where, for example, elastic, thermal and electromagnetic analyses are involved. When modelling such situations, the basic concept of topology design provides a general framework for computations, but here the initial obstacle is the need for interpolation of not only stiffness but also other physical properties. Examples of thermo-elastic problems can
be found in [71, 72, 75–77]. Unconventional actuation schemes, such as piezoelectric, electrostatic, and shape-memory alloys (SMAs), seem to exhibit certain limitations in terms of power density, stroke length, bandwidth, etc., when one attempts to employ them directly to an application. Integrating them with mechanical transmission elements so that the integrated actuator-transmission system matches the load characteristics of the application can enhance the utility of such unconventional actuators. Kota et al. [78] presented a systematic method of designing such unconventional mechanisms.

2.1.3.4 Multi DOF

Compliant mechanisms gain some or all their motion from the deflections of flexible members. The concept of DOF is used to help obtain a preliminary design which may then be optimized, and characterizes flexible-link mechanism. Reyes Rodriguez [79] studied the evolution of well-known degrees of freedom equations. By degrees of freedom is meant the number of independent inputs required to determinate the position of the mechanism with respect to the ground. Compared to one-DOF compliant mechanisms, the multi-DOF compliant mechanisms are much more complicated not only because of the coupling of the output freedom and the control part but the formulation. Few papers studied topology optimization of compliant mechanisms which have more than one degree of freedom.

In order to design compliant mechanisms with multiple DOF, the optimization of one-DOF compliant mechanism must be extended. The selection of additional constraints and objective functions may vary from problem to problem. Figure 2.17 shows the design domain of 2-DOF mechanism where specifications are as indicated. Larsen et al. [16] first designed a 2-DOF compliant mechanism. Figure 2.18 (a) shows the design where a horizontal input force (mid left edge) results in a horizontal movement of the output point and a vertical input force (mid lower side) results in a vertical movement of the output point. Figure 2.18 (b) has the opposite output behavior compared to Figure 2.18 (a). Figure 2.18 (c) is the manufacturing model of Figure 2.18 (b). Sigmund [71, 72, 75]
reported an automated method for the synthesis of multi-material, multi-DOF micro actuators. Electrical driven actuators were designed as shown in Figure 2.19.

![Design domain of 2-DOF mechanism](image)

Figure 2.17: Design domain of 2-DOF mechanism.

![Two-input two-output compliant mechanism](image)

Figure 2.18: Two-input two-output compliant mechanism [16].

![Design domain for a 2-DOF micro-scanner](image)

Figure 2.19: (a) Design domain for a 2-DOF micro-scanner, (b) Topology optimized actuator composed of Nickel, and (c) topology optimized 2-DOF actuator composed of Nickel and a material with half the Young’s modulus and half the thermal conductivity of Nickel. [71].

Bernardoni et al. [80] designed a two-output DOF compliant mechanism based on
the building blocks method using genetic algorithm. The conceptual design is shown in Figure 2.20.

Figure 2.20: Conceptual design of a 2-DOF compliant mechanism [80].

Awtar [81] presented a group of flexural mechanisms that are based on parallel elasto-kinematics. Figure 2.21 illustrates the two-DOF planar mechanism. The design presented here makes unique use of known flexural units and novel geometric symmetry to minimize or even completely eliminate actuator cross-sensitivity, and parasitic coupling between the two axes. Furthermore, these mechanisms are enhanced to produce out-of-plane motion, in addition to the in-plane translations. Thus, the resulting flexural mechanisms are compact, error-free and can provide multiple decoupled DOF.

Figure 2.21: Two-axis planar compliant mechanism design [81].
Chapter 2. LITERATURE REVIEW

2.2 METHODS USED TO DESIGN COMPLIANT MECHANISMS

There are two major systematic approaches in compliant mechanism synthesis: kinematics approach, and structural optimization approach. In the first approach, the initial design is inspired by traditional kinematic synthesis of rigid-body mechanisms. A known compliant topology is represented and synthesized using a rigid-body linkage with joint springs and is called the pseudo-rigid-body model. In the second approach, structural topology optimization methods have been extended to the synthesis of compliant mechanisms. It focuses on the determination of the topology, shape and size of the mechanisms.

2.2.1 Kinematics Approach

In this method, a compliant mechanism is first simplified as a Pseudo-Rigid-Body-Model. The model thus unifies compliant mechanism and rigid-body mechanism theory by providing a method of modelling the nonlinear deflection of flexible beams. This method of modelling allows well-established rigid-body analysis methods to be used in the analysis of compliant mechanisms [1]. Typically, analytical models were used for displacement and stiffness calculations of compliant mechanisms [82]. Finite element analysis of compliant mechanisms can also be utilized [83–85] to determine the mechanical properties.

Elastic deformations of materials have been utilized to generate useful motions in numerous mechanisms for certain special advantages, but until mid-1960s such flexure generated mobility was largely confined to small angular rotations between stiff members by means of a flexure hinge – a short and thin metallic strip or a small “necked” down region of a thick blank of material – that provides a rotational DOF similar to that at a conventional pin joint. As opposed to such flexure at joints, generating mobility through elastic deformations of links by replacing one or more links in a conventional kinematic
Chapter 2. LITERATURE REVIEW

chain with slender flexible members was first suggested by Burns and Crossley [86], and this resulted in a special class of mechanisms called flexible link mechanisms. Early work on flexible link mechanisms consisted of four-bar chains made up of one or two flexible members. Since the late 1980s the scope of mechanisms utilizing flexure has broadened tremendously embracing mechanisms with a variety of complex topologies. Today, this method has been widely applied to design grippers [10], bistable mechanisms [87], smart wing [88], compliant mechanisms for commercial products [89], microleverage mechanisms [90], and dynamic model of compliant mechanisms [91]. Kota et al. [92–96] used tape springs, newly designed flexible joints and torsion springs modelling to design compliant mechanisms and presented an instant center approach.

The flexible joints design is the crucial part of design based on kinematic approach. In the last 50 years, many flexible joints have been researched and developed, most of which are considered one of two varieties: notch-type joints (see Table 2.1(b-d) and Table 2.2(a)) and leaf springs (see Table 2.1(a) and Table 2.2(b-i)) [97]. Notch-type flexible joints were first analyzed by Paros and Weisbord [98] and have since become well understood by many researchers and designers. These joints have been applied by Howell and Midha [39] to develop the field of pseudo-rigid-body compliant mechanisms. Leaf springs can be used in a variety of ways to create revolute joints, as shown in Table 2.2(b-e). Leaf springs can also provide the most generic flexible translational joint, composed of sets of parallel flexible beams. Kota at al. [94,97] proposed a new compliant translational joint shown in Table 2.1(e) and a new compliant revolute joint shown in Table 2.2(j), and used them to design compliant parallel kinematic machines.
Table 2.1: Benchmarked Flexible Translational Joints [97]

(a) ![Image](image1)
(b) ![Image](image2)
(c) ![Image](image3)
(d) ![Image](image4)
(e) ![Image](image5)

Table 2.2: Benchmarked Flexible revolute Joints [97]

(a) ![Image](image6)
(b) ![Image](image7)
(c) ![Image](image8)
(d) ![Image](image9)
(e) ![Image](image10)
(f) ![Image](image11)
(g) ![Image](image12)
(h) ![Image](image13)
(i) ![Image](image14)
(j) ![Image](image15)
2.2.2 Topology Optimization Method

However, flexural pivot-based compliant designs obtained by kinematic approach are not useful in most applications when large displacements and/or high strength are desired. Ideally, compliant designs should distribute flexibility uniformly throughout the structure rather than limiting it to a few pivots [99]. To guarantee distributed compliant topologies instead of lumped compliant designs, topology optimization can be used in the compliant designs. Bringing the application of structural optimization to the field of mechanism synthesis, Ananthasuresh [3] approached compliant mechanism design from a structural viewpoint, using topology optimization methods. Topology optimization refers to optimal design problems where the performance of a structure or component is optimized through a variation of its topology. For discrete structures, the topology design variables can be the number of bars or trusses and the arrangement of these bars or trusses. For continuum structures the topology design variables can be the number of holes in the structure or the connectivity of the domain such that the structure may be simply or multiply connected. Topology optimization is viewed as a material distribution or arrangement problem. A topology optimization approach is advantageous because it does not require a rigid-link mechanism configuration as a starting point, and can be used to design single-piece fully compliant mechanisms. Bendsoe and Sigmund [100] provided a comprehensive review of the current state of the art regarding structural and mechanism design by topology optimization.

Topology optimization has been widely studied over the last three decades due to the natural desire of engineers to build artifacts and structures that not just satisfy their functional requirements, but also perform those functions in an optimal way. Soto [4] presented a review of the application of topology optimization: minimizing compliance, maximizing eigenvalues of free vibration problems, forced vibration problems, optimum damped systems [101], stiffest structure including thermal loads, structural topology for heat conductivity, optimum composite structures [102], material microstructure design, compliant mechanisms, design for damage, contact problems, topology optimization
with nonlinear material, topology optimization with geometric nonlinearity, topology
optimization for kinetic optimization for kinetic energy absorption. Chen et al. [5]
highlighted the current research which employs topology optimization to find the
optimal configuration of various smart structures and microstructures, specifically,
pressure actuated compliant mechanisms, flextensional transducers, and porous material
microstructures with unusual thermoelastic properties. Focusing on piezoelectric ceramic
actuators, Frecker [7] reviewed the current work in development of design methodologies
and application of formal optimization methods to the design of smart structures and
actuators. Bendsoe [6] gave a brief introduction to some of the methods used in
topology design of continuum structures and to their use for the design of materials and
mechanisms.

The main algorithms implemented for structural topology optimization include:

- ground structure approach
- homogenization method
- evolutionary structure optimization method
- level set method
- genetic algorithm

2.2.2.1 Ground Structure Approach

Among the most popular techniques of topology and shape design optimization for
discrete structures is the ground structure approach. In this method, structure is described
as one where a ground structure using truss- or frame-like representation scheme defines
the discrete version of structural universe, and from which an optimal structure is
derived. The typical domain is shown in Figure 2.22. Starting from highly connected
structures, the uneconomical links (whose cross-sectional area are below the threshold
value) are eliminated during optimization. The ground structure approach was first
proposed by Dorn et al. [103], where duality was used to formulate the optimal topology
Chapter 2. LITERATURE REVIEW

problem (minimal weight subject to stress constraints) as a linear programming problem. Optimization of truss-structures for finding optimal cross-sectional size, topology, and configuration of 2-D and 3-D trusses to achieve minimum weight is carried out using real-coded genetic algorithms [104]. As the ground structure approach is essentially a sizing optimization procedure for discrete structures, the resulting designs obtained are frame-like structures. There are two difficulties with the ground structure approach: (1) overlapped bars and (2) computation is formidable when the number of truss bars is large.

Figure 2.22: Truss ground structure.

2.2.2.2 Homogenization Method

As an approach to topology optimization in structural design, the homogenization method was introduced by Bendsoe and Kikuchi [105]. Nishiwaki et al. [106, 107] applied this method to the design of compliant mechanisms. In this method, the optimization problem consists of finding the optimum design through the optimum distribution of porosity. Consider the unit cell of a microstructure shown in Figure 2.23. For simplicity, a two-dimensional problem is considered. It is assumed that this microstructure is formed inside an empty rectangle in a unit cell, where α, β, and θ are regarded as the design variables. In order to develop a complete void, both α and β should be 1, whereas α and β should be 0 for solid material. The variable θ represents the rotation of the unit cell. If porosity is below some threshold value, porous medium is generated. In this sense, “solid” material that will make up the structure is optimally distributed in a specified region.
Chapter 2. LITERATURE REVIEW

Both in ground structure approach and in the homogenization method, structure geometry is parameterized by continuous variables. The usage of continuous design variables is meant to convert the topology optimization from a discrete optimization problem into a continuous optimization problem. This continuous optimization problem can then be handled by classical optimization techniques which are employed to relate these design variables to the material property so that FE method can be used to analyze the structure. However, as continuity in the variables results in a ‘fuzzy’ representation of material distribution with intermediate zones somewhere in between solid and void, the final useful optimal geometry is usually obtained through imposing some filtering schemes or built-in penalizations, or with some interpretation via threshold values.

2.2.2.3 Evolutionary Structural Optimization Method

Based on a different approach, the Evolutionary Structural Optimization (ESO) method [108–112] starts by creating an initial design and performing an FE analysis on it. ESO methods include (a) hard-kill [113] and (b) soft-kill [114] methods. The original concept of ESO method is to gradually remove lowly stressed elements not needed from the structure after each finite element analysis. Hence starting from a dense ground mesh, the topology of the resulting design is gradually improved to achieve the optimal design based on the removal of elements through a lengthy solution procedure. Another analysis is performed and the whole procedure is repeated iteratively until some
Chapter 2. LITERATURE REVIEW

terminating criteria are met. A fundamental potential drawback of this method is the strong dependence of the solution on the ground mesh from which it is evolved and on the sequence of the element removal. The approach is thus not guaranteed to arrive at anywhere close to the actual optimum, and different rules will have to be developed for different optimization objective functions. Zhou and Rozvany [115] showed on a simple test example that ESO’s rejection criteria may result in a highly nonoptimal design. For example, the existence of a certain element, say EA, may render another element EB to be inefficient, thus EB is removed. When EA is also removed in a later iteration after proving to be inefficient in the new situation, this may make the presence of element EB desirable. However, the basic ESO method has no mechanism by which to reintroduce EB to the structure. Although the capability to add or reinstate elements has recently been added to the ESO method through the Bidirectional Evolutionary Structural Optimization (BESO) method [116, 117], this addition is still restricted to previous element positions or to the area/volume predefined by the ground mesh.

2.2.2.4 Level Set Method

Level-set based methods for structural design define another class of methods. In these methods the level set model which was originally devised by Osher and Sethian [118] is introduced for an implicit representation of the structural boundary [31, 119–124]. The boundary is evolved by moving the level-set interfaces with a velocity given by optimization conditions and thereafter changes the topology. The models eliminate the conventional use of discrete elements and provides efficient and stable computation schemes. The concept of domain partition is illustrated in Figure 2.24.

It has been shown that the level-set method offers several benefits which are well suited to structural optimization. First, it allows simple treatment of complex topological changes, as the boundaries can freely break apart or merge together. Second, a level-set model is a region-based representation with explicit boundary description. This is in contrast to the “raster” geometric models of the homogenization-based methods.
Boundary representations are always essential for design description and are directly useful for design automation with CAD and CAE systems. Third, structural optimization can be formulated as the solution to a Hamilton-Jacobi equation with a direct relationship to the shape derivative of the structural boundary. This relationship yields a regularizing effect for the otherwise ill-posed topology optimization problem. The level-set model has been demonstrated with outstanding results as a suitable technique for general structural optimization although it may be criticized for its high computation cost.

2.2.3 Genetic Algorithm

Genetic algorithms are optimization strategies where points in the design space are analogous to organisms involved in a process of natural selection. The main advantage of genetic algorithms is that they are zeroth order methods. The only prerequisite is to be able to compute values of the objective and constraint functions. Furthermore no regularity is required either on the functions or on the search space. Genetic algorithms can hence be used for continuous parameter optimization or totally discrete problems as well as for mixed integer-continuous optimization, provided genetic operators are defined on the search space. Genetic algorithms have been used in structural optimization [125–139], synthesis of compound 2D kinematic mechanisms [140, 141], structural truss optimization problems [142–144], and configuration design [145, 146]. They are particularly useful in the optimization of compliant mechanisms [36, 40, 51, 147–153].
2.2.3.1 Representation Schemes

For success in solving topology optimization problems, genetic algorithms rely greatly on the structural geometry representation scheme used. Quite a few representation schemes coupled with genetic algorithms have been proposed. The genetic algorithm approach for structural optimization illustrated by Jakiela and his coworkers [154, 155] directly addressed the discrete nature of the problem by treating it with a discrete optimization method. The strategy of discretizing the design space is used, with all the finite elements forming a one-dimensional binary-coded bit-string chromosome denoting 0 for an element if it is to be empty space and 1 if it is part of the structure, as shown by an example in Figure 2.25. The states of the individual elements define the distribution of material and void within the design space and therefore establish the topology. The genetic algorithm is applied over many generations, and each generation is a population of many individual designs, to attain the optimum chromosome string and hence structure.

![Figure 2.25: Mapping from chromosome into topology: (a) corresponding binary values and (b) resulting topology.](image)

In Schoenauer and his coworkers’ genetic algorithm [131, 132, 156, 157], the structure design domain is represented by a two-dimensional bit-array chromosome. However, the resulting chromosome may lead to structures with checkerboard patterns (alternating elements of material and void) and ‘floating’ elements (elements ‘floating’ in space and not connected to the main structural body). Such designs may be invalid or impractical, but the chromosome representation allows for them. It is not efficient because expensive computing resources have to be spent analyzing these undesirable
designs in the genetic algorithm. Alternatively a “repair” scheme [158] is needed to
detect and alter those checkerboard and ‘floating’ patterns as and when they arise out
of the crossover and mutation operations. This may, however, corrupt the transmission of
genetic characteristics across the generations.

To address the above shortcomings, Akin and Arjona-Baez [159] converted
checkerboard pattern elements to truss members and merged single node connected pairs
to a single truss member. Jang et al. [160] solved the numerical instability characterized
by checkerboard patterns when non-conforming four-node finite elements are employed.
Li et al. [161] presented an effective smoothing algorithm in terms of the surrounding
element’s reference factors. Luh and Chueh [162] used immune algorithm to tackle this
problem.

Tai and Chee [163] developed a morphological geometric representation scheme and
the corresponding chromosome encoding. This scheme is based on the study of the
structure of living organisms (morphology), and specifically it simulates the anatomical
description of vertebrates. This scheme has been successfully applied to obtain the
optimum topology/shape design of some structures and compliant mechanisms (Tai et
al. [36, 150, 164, 165]). In this morphological representation scheme, a structure is
characterized by a set of I/O regions. For a valid structural design, all I/O regions must be
connected to one another in order to form one single connected load-bearing structure.

Zhou and Ting [166] introduced the spanning tree theory to the topological synthesis
of compliant mechanisms, in which spanning trees connect all the vertices together using
a minimum number of edges. A valid topology is regarded as a network connecting input,
output, support, and intermediate nodes, which contains at least one spanning tree among
the introduced nodes. Yang and Soh [167] established a mapping scheme between the
kind of point-labelled parse trees and the node-element-labelled diagrams employed in
the analysis of structures. Cervera and Trevelyan [168, 169] used non-uniform rational
B-splines (NURBS) to define the geometry of the component. NURBS-based internal
cavities was created to accomplish topology changes. The optimum topologies evolve
allowing cavities to merge between each other and to their closest outer boundary.

2.2.3.2 Exploration/Exploitation

Genetic algorithm efficacy is determined by the exploration/exploitation balance kept throughout the run. When this balance is disproportionate, the premature convergence problem will probably appear. A way to deal with the exploration/exploitation equilibrium in genetic algorithms is by means of two main factors that control the evolution: selection pressure and population diversity. A high selection pressure implies a quick loss of population diversity, because of the excessive focus of the evolutionary search on the best members of the population. On the contrary, the maintenance of population diversity can neutralize the effects of an excessive selection pressure. Most parameters that are used to adjust the strategies of an evolutionary search are indeed indirect terms of tuning selection pressure, population diversity and elite strategy.

Due to its independence of the actual search space and its impact on the exploration/exploitation tradeoff, selection is an important operator in any kind of genetic algorithm. Back [170] quantitatively compared important selection operators with respect to their selective pressure. The comparison clarifies that only a few really different and useful selection operators exist: roulette wheel selection (in combination with a scaling method), linear ranking, tournament selection, and \((\mu, \lambda)\)-selection (respectively \((\mu+\lambda)\)-selection). In order to determine the possibility of being selected, genetic algorithms consider the fitness of an individual compared to the fitness of the total population. Affenzeller and Wagner [171] introduced a new generic selection strategy where an offspring is compared not only to the total population. Additionally, in a second selection step, it is compared to its own parents.

Population size influences the population diversity a lot. In the exploratory task of the algorithm, larger population sizes are associated with not just lower convergence speed of the algorithm, but also with lesser premature stagnation of the population. Small population sizes can lead to premature stagnation, and their lack of population diversity
have to be corrected with other operators that increase it, such as higher mutation rates or the reinitialization operator. The reinitialization operator suggested in [172] created a new starting population after the stagnation of the genetic algorithm in which the best individual of the prior population is inserted. Thus, this individual provides the knowledge obtained with the initial run and simultaneously the new randomly created individuals contribute to the population diversity; in this way, a further continuation in the evolution is allowed.

Elitism has always been a major influence on the population diversity. Elitism is especially beneficial in the presence of multiple objectives and the use of elitism speeds up convergence to the Pareto set [173]. The danger of premature convergence caused by elitism can be suppressed when the elite set contains a number of diverse solutions. As opposed to single-objective optimization, the question of elitism becomes even more complicated with multiobjective optimization genetic algorithm. Elitism ensures the best feasible solution is always carried forward to the next generation. This also eliminates the need of searching back through history to locate the best feasible solutions. Regardless whether a genetic algorithm uses elitism or not, it is common practice in the single objective case to keep track of the best solution found during the run off-line. This solution can be seen as the best approximation of the (unknown) optimum in reach, given the information produced by the algorithm. The multi-objective analogue is to store all solutions that are not dominated by any other solution found during the run. This archive then represents the best approximation of the true Pareto set available. Thus, to supply an archive of nondominated solutions is a sensible extension that helps to exploit the produced information. Of course, if the archive is only used as a store, the behavior of the genetic algorithm will not change.

2.2.3.3 Objective Handling

Genetic algorithm is a robust optimization tool that can be used to solve a wide range of problems in engineering design inherently involve optimizing multiple non-
Chapter 2. LITERATURE REVIEW

commensurable and often conflicting objectives and criteria that reflect various design specifications and constraints. A considerable amount of research on objective handing techniques that incorporate objective functions into the fitness function of design candidates have been carried out (good summaries are given in [174–177]). Deb [178] provided an extensive discussion on the principles of multi-objective optimization and on a number of classical approaches. And Coello and Lamont [179] presented an extensive variety of multi-objective problems across diverse disciplines, along with statistical solutions using multi-objective evolutionary algorithms.

The approach of combining objectives into a single function is normally denominated aggregating functions and it has many formulations based on different utility functions. Weighted sum method, weighted min-max method, exponential weighted criterion and weighted product method can be tailored to solve multiobjective problems directly. Hajela and Lin [180] used a variable set of weights to arrive at a set of solutions. Ishibuchi and Murata [181] introduced a combination of weighted-sum-based evolutionary algorithm (EA) by the use of random weights. In these methods, additional parameters are required for sharing, mating restrictions and weights.

Schaffer [182] came up with the concept of a Vector Evaluated Genetic Algorithm (VEGA) for multiobjective problems. VEGA is based on evaluation of objectives separately in different subpopulations followed by a migration scheme. Each objective is improved separately in different subpopulations and hence a large number of subpopulations are necessary in the presence of many objectives. The main strength of this approach is its simplicity. But a fitness evaluation mechanism that is based on a linear combination of the objectives will fail to generate Pareto optimal solutions for non-convex search spaces regardless of weights used. Fourman [183] ranked the objectives in order of importance and used a selection scheme based on lexicographic ordering. This approach is able to search the non-convex search spaces. Its main problem is that it will tend to favor certain objectives when many are present in the problem and this will make the population converge to a particular part of the Pareto front rather than to
Chapter 2. LITERATURE REVIEW
delineate it completely. Lis and Eiben [184] proposed a multisexual genetic algorithm
that is based on multiparent crossover to arrive at a set of Pareto optimal solutions.
However the main weakness of this approach is that as the number of objectives increases,
many subpopulations and panmictic crossover will become more inefficient, because more
parents are needed to generate a child. Mimicking the process of natural selection, the
proposed genetic algorithm [185–187] realizes the situation of habitat segregation, i.e., a
principle of coexistence. A set of solutions spread across the Pareto set in the objective
space are obtained.

Goldberg [172] proposed the idea of using Pareto-based fitness assignment to solve
the problems of Schaffer’s VEGA approach. Equal probabilities of reproduction are
assigned to all non-dominated individuals in the population. Fonseca and Flemming [188]
describes a rank-based fitness assignment method for Multiple Objective Genetic
Algorithms (MOGA). At the end of the ranking process there are a number of solutions
with the same rank. To distribute the points evenly over the Pareto optimal region, they
used a niche-formulation. Horn et al. [189] introduced a Niched Pareto Genetic Algorithm
(NPGA) based on tournament selection and Pareto dominance. Instead of limiting the
comparison to two individuals, a number of other individuals in the population was used
to help determine dominance. The success of the algorithm is largely dependent on the
number as a small size will result in a few non-dominated points in the population whereas
a large size will result in premature convergence. Srinivas and Deb [190] proposed Non-
dominated Sorting Genetic Algorithm (NSGA) based on several layers of classifications
of individuals. A dummy fitness function using a non-dominated sorting procedure makes
it computationally inferior. It also requires the sharing parameter as an additional input.
Deb et al. [191] proposed NSGAII, a revised version of the NSGA, to eliminate the
drawbacks of NSGA by the use of elitism and a crowded comparison operator that keep
diversity without specifying any additional parameters. Zitzler et al. [192] introduced the
Strength Pareto EA (SPEA) that combines several features of previous multiobjective
EAs in a unique manner. It stores non-dominated solutions externally in a second,
continuously updated population and evaluates an individual’s fitness dependent on the number of external non-dominated points that dominate it. A clustering technique is used to control the size of the elite set. Knowles and Corne [193] introduced an evolution scheme for multiobjective optimization problems, called the Pareto Archived Evolution Strategy (PAES). This algorithm uses evolution strategy (ES) as the baseline algorithm. A crowding procedure to maintain diversity is proposed that divides objective space in a recursive manner and restricts the maximum number of occupants in each grid. The ‘plus’ strategy and continuous update of an elite population with better solutions ensures elitism. The common weakness of NSGAII, SPEA and PAES is that they perform niching on the objective value space instead of on the parameter values. Deb [194, 195] illustrated omni-optimizer which is an extension of NSGAII, in which both decision-variable space and objective niching are performed.

The ϵ-constraint method is a mathematical programming technique, which transforms a multiobjective optimization problem into several constrained single-objective problems. This method has not been used too often in evolutionary computation, due to the fact that it does not generate a set of non-dominated solutions in a single run, as most genetic algorithms do. Ranjithan et al. [196, 197] proposed the constraint method-based evolutionary algorithm (CMEA). The algorithm is based upon underlying concepts in the the ϵ-constraint method. Pareto optimality is achieved implicitly via a constraint approach, and convergence is enhanced by using beneficial seeding of the initial population. Becerra and Coello Coello [198] explored the use of the ϵ-constraint method hybridized with an efficient single-objective optimizer.

2.2.3.4 Constraint Handling

Many optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using genetic algorithms or classical optimization methods, Meseguer et al. [199] reviewed existing approaches to model and solve overconstrained problems.
Michalewicz and Schoenauer [200] provided a comprehensive review on constraints handling EAs, while Lagaros et al. [201] investigated the efficiency of various EAs when applied to large-scale constrained structural sizing optimization problems.

Based on intuition, Coello Coello and Christiansen [202] proposed a way that discarded any solutions that violates any of the constraints. This naive approach may have difficulty in finding a feasible solution. Another simple way of solving a constrained optimization problem is restricting or repairing the search to the feasible region [203,204]. Penalty functions using static [190], dynamic or adaptive concepts [200] have been widely used and are quite popular. Deb [205] proposed a constraint handling method which is also based on the penalty function approach but does not require the prescription of any penalty parameter. The idea of using the Pareto dominance relation to handle constraints was originally suggested by Fonseca and Fleming [206, 207] back in 1995. Based on Pareto ranking and VEGA, Surry and Radcliffe [208] proposed Constrained Optimization by Multiple Objective Genetic Algorithm (COMOGA). This method takes a dual perspective, considering a constrained optimization problem sometimes as a constraint satisfaction problem, and sometimes as an unconstrained optimization problem. Coello Coello et al. proposed some constraints handling methodology by treating them as objectives [209], and using a dominance-based selection scheme [210]. Summanwar et al. [211] treated the constraints as objective functions and handles them using the concept of Pareto dominance. Ray et al. [212] suggested a more elaborate constraint handling technique referred to as the Ray-Tai-Seow’s Method in [178]. A non-dominated check of the constraint violations is made instead of simply adding them together. Venkatraman and Yen [213] introduced a two-phase framework to handle constraints. In the first phase, the objective function is completely disregarded and the constrained optimization problem is treated as a constraint satisfaction problem. After that, the simultaneous optimization of the objective function and the satisfaction of the constraint function are treated as a biobjective optimization.
Chapter 2. LITERATURE REVIEW

2.2.3.5 Decision Making Technique

Very often real-world applications involve several (multiple) objectives. In principle, multiobjective optimization is very different from the single-objective optimization. In single objective optimization, one attempts to obtain the best design or decision, which is usually the global minimum or the global maximum depending on the optimization problem. In the case of multiple objectives, there may not exist one solution which is best (global minimum or maximum) with respect to all objectives. Typically there exists a set of solutions which are superior to the rest of solutions in the search space when all the objectives are considered but are inferior to other solutions in the space in one or more objectives. But how to obtain a particular solution which meets the user’s needs from these individuals in multiobjective problem is a tricky issue especially when the objectives are conflicting with one another. Therefore, at some stage of the problem solving process, the decision maker (DM) has to articulate his/her preferences about the objectives. Following a classification by Deb [178], the decision-making techniques are categorized into two types: post-optimal techniques and optimization-level techniques.

A post-optimal technique may use a genetic algorithm to produce as many different Pareto optimal solutions as possible, and then some higher-level decision-making considerations are used to choose a solution. In general, post-optimal techniques are most convenient, since they do not require the user to interact with the process, and the DM can delay any choice until the alternatives are known. Unfortunately, searching for all Pareto optimal solutions is a difficult and time-consuming process. Besides, in some cases only some interesting regions in the Pareto front are desired. Generally the DM has some intuition about it, and this information should be used during the search.

Recently, some optimization-level approaches have been published aimed at focusing the search towards interesting regions as defined by the DM. Deb [214] uses goal programming techniques and allows the DM to define a goal (a single desired combination of characteristics) towards which the search is directed. Although this seems very appealing to a DM, the effect of such a goal on the search process is difficult to assess.
when the Pareto optimal front is not known. The goal of the problem is not easy to specify. If a goal is set that lies within the feasible region, it hinders search to even better solutions; if it lies too far away from the feasible region, it has basically no effect at all. Parmee et al. [215] suggested a weighted dominance principle. The weighted vector could be either specified directly by user, or it can be calculated from personal preferences that help the user to work in more qualitative terms. Branke et al. [216] proposed the Guided Multiobjective Evolutionary Algorithm (G-MOEA). The DM specifies maximal and minimal acceptable weightings for one criterion over the other, and use these to guide the EA towards pareto-optimal solutions within these boundaries. Coelho and Bouillard [217] tackled preferences in EAs by integrating an inference engine within the EA to repair the individuals violating the user-defined rules. Shimizu [218] proposed an intelligence supported approach using neural networks that extends the hybrid genetic algorithm to derive the best-compromise solution. Fuzzy logic integrated genetic algorithms incorporating expert knowledge and experience [219–221] are also proposed to increase the performance of genetic algorithm.

Recently, Deb et al. [222, 223] and Thiele et al. [224] suggested reference point based evolutionary multi-objective optimization (EMO) procedures which require the decision-maker to specify one or more reference points and the task of an EMO is, not to find the entire Pareto-optimal frontier, but to find a portion of the Pareto-optimal front which solves an achievement scalarizing function. Deb and Kumar embedded in a NSGAII procedure the light beam search strategy for finding a preferred set of Pareto-optimal solutions [225], and reference direction method for finding a single preferred efficient solution [226].

2.2.3.6 Local Search

Genetic algorithms have amply demonstrated their success to arrive at optimal solutions for design optimization problems in engineering. However, the performance of genetic algorithms on some multiobjective optimization problems was overshadowed by that of
neighborhood search algorithms (e.g., evolution strategy, simulated annealing (SA), tabu search (TS), and hybrid algorithms of genetic algorithms and local search).

Evolution strategies use real-vectors as coding representation, and primarily mutation and selection as search operators. Knowles and Corne [227] proposed the Pareto Archived Evolution Strategy (PAES), a local search algorithm for multi-objective evolutionary problems. A $1+1$ evolution strategy is applied, using only mutation on a single parent to create a single offspring. PAES is intended as a baseline approach and may serve well in some real-world applications when local search seems superior to or competitive with population-based methods. Combining the local search method of $(1+1)$-PAES with the use of a population and crossover, the memetic algorithm, M-PAES [193], was suggested. The performance of M-PAES is reported to be superior to $(1+1)$-PAES for all test problems and to the strength Pareto evolutionary algorithm (SPEA) for some problems.

SA is a generic probabilistic meta-algorithm for the global optimization problem. Serafini [228] proposed and investigated modifications to simulated annealing in order to tackle the multiobjective case. Several alternative criteria for the probability of accepting are considered. Following Serafini, Ulungu et al. [229] developed the so-called MOSA (Multiobjective Simulated Annealing) method which used a different approach to building up the approximation to the Pareto set. MOSA method works by executing separate runs of SA and archiving all of the non-dominated solutions found. The method uses a number of predefined weight vectors defining a set of weighted linear utility functions. Czyzak and Jaszkiewicz [230] proposed a population-based version of Serafini’s SA, Pareto Simulated Annealing algorithm (PSA). The algorithm uses a population of solutions and tries to improve them all in parallel, at the same time encourage them to spread out in the objective space. William Begg and Liu [231, 232] proposed a novel hybrid method combining sequential linear programming with simulated annealing and demonstrated its effectiveness.

Tabu Search as a local search technique which is closest to the intuitive idea of ‘tabu’
and mainly implemented in the so-called ‘tabu lists’ is guided by the use of adaptive or flexible memory structures. The variety of the tools and search principles introduced and described by Glover et al. [233, 234] is such that TS can be considered as a general framework for heuristic search. Hansen [235] suggested Multiple Objective Tabu Search method (MOTS) with the idea of adaptively setting the weight vectors of individuals in a population, as used in PSA. MOTS works with a set of current solutions which are optimized towards the non-dominated frontier while at the same time seek to disperse over the frontier. It uses an adaptive population size based on the current nondominance rank of each member of the population. A tabu-enhanced genetic algorithm approach proposed in [236] combined the strengths of genetic algorithms and TS to realize a hybrid approach for optimal assembly process planning and success was reported.

In recent years, hybrid genetic algorithms have become more homogeneous and some great successes have been reported in the optimization of a variety of classical hard optimization problems. Hybrid algorithms of genetic algorithms and those neighborhood search algorithms were proposed to improve the search ability of genetic algorithms. Ishibuchi and Murata [237] proposed a Multiple Objective Genetic Local Search (MOGLS) algorithm. The algorithm uses a weighted sum of multiple objectives as a fitness function. A local search procedure is applied to the new solution produced by crossover and mutation operations to maximize its fitness value. Addressing the high computation time spent by local search, the local search part is modified, and combined with SPEA algorithms [238] and NSGAII [239]. The balance between genetic search and local search through computer simulations were examined. Jaszkiewicz [240, 241] suggested an algorithm called Random Directions Multiple Objective Local Search (RD-MOGLS), and compared a slight variant called the Pareto Memetic Algorithm (PMA) with other well-known algorithms. In all of these algorithms, the basic idea is simple: a local search is applied to new offsprings generated (by crossover or mutation), and the improved offspring then competes with the population for survival to the next generation. In some hybrid algorithms, local search is used only when the execution of genetic
algorithms is terminated. Deb and Goel [242] applied local search to final solutions obtained by genetic algorithms for decreasing the number of non-dominated solutions (i.e., for decreasing the variety of final solutions).
Chapter 3
NONLINEAR FINITE ELEMENT ANALYSIS

3.1 INTRODUCTION

Compliant mechanisms are generally operating in large deformation ranges. For large displacements/rotation, non-linear analysis is necessary whereas linear analysis will be inaccurate and lead the topology optimization procedure towards spurious resulting designs (Pedersen et al. [17], and Gea and Luo [62]). In this chapter, general large deformation problems are formulated. The virtual work principle based nonlinear formulation is constructed in a total Lagrangian description. Effective stress and strain are expressed in terms of 2nd Piola-Kirchhoff stress tensor and Green-Lagrange strain tensor, and constitutive equation is derived from the relation between the effective stress and strain. More details can be found in [243, 244].

3.2 CONSTITUTIVE EQUATION

The virtual work principle is constructed in a total Lagrangian description. The equations presented here are based on [243,244]. The virtual work form of the equilibrium equation with respect to time $t + \Delta t$ can be written as

$$
\int_{V^0} \delta \bar{E}^T \bar{S} dV = \int_{V^0} \delta \bar{a}^T \bar{b}_0 dV + \int_{A^0} \delta \bar{a}^T \bar{q}_0 dA \tag{3.1}
$$

where \bar{E} is Green-Lagrange strain tensor, \bar{S} is the second Piola-Kirchhoff stress tensor, $\delta \bar{a}$ is the virtual displacement imposed on the configuration, \bar{b}_0 and \bar{q}_0 are the body force on
Chapter 3. NONLINEAR FINITE ELEMENT ANALYSIS

the whole domain V^0 and the traction on the natural boundary A^0, respectively. All the variables in Equation 3.1 are with reference to the initial configuration at time $t + \Delta t$.

$$\bar{E} = E + \Delta E$$

$$\bar{S} = S + \Delta S$$

$$\bar{a} = a + \Delta a$$

At times t and $t + \Delta t$, the Green-Lagrange strain tensors are respectively

$$E_{ij} = \frac{1}{2} \left(\frac{\partial a_j}{\partial X_i} + \frac{\partial a_i}{\partial X_j} + \frac{\partial a_k}{\partial X_i} \frac{\partial a_k}{\partial X_j} \right)$$

and

$$\bar{E}_{ij} = \frac{1}{2} \left(\frac{\partial \bar{a}_j}{\partial X_i} + \frac{\partial \bar{a}_i}{\partial X_j} + \frac{\partial \bar{a}_k}{\partial X_i} \frac{\partial \bar{a}_k}{\partial X_j} \right)$$

where X_i, X_j are the space coordinates.

Substituting 3.4 into 3.6 leads to

$$\bar{E}_{ij} = \frac{1}{2} \left[\frac{\partial}{\partial X_i} (a_j + \Delta a_j) + \frac{\partial}{\partial X_j} (a_i + \Delta a_i) + \frac{\partial}{\partial X_i} (a_k + \Delta a_k) \frac{\partial}{\partial X_j} (a_k + \Delta a_k) \right]$$

$$= \frac{1}{2} \left(\frac{\partial a_j}{\partial X_i} + \frac{\partial a_i}{\partial X_j} + \frac{\partial a_k}{\partial X_i} \frac{\partial a_k}{\partial X_j} \right) + \frac{1}{2} \left(\frac{\partial a_i}{\partial X_i} + \frac{\partial a_i}{\partial X_j} + \frac{\partial a_k}{\partial X_i} \frac{\partial a_k}{\partial X_j} \right) + \frac{1}{2} \left(\frac{\partial a_i}{\partial X_i} + \frac{\partial a_i}{\partial X_j} \right)$$

$$= E_{ij} + \Delta E_{ij}^L + \Delta E_{ij}^N$$

Subtracting 3.5 from 3.7, the increment of the Green-Lagrange strain tensor can be decomposed into linear and nonlinear parts as

$$\Delta E_{ij} = \Delta E_{ij}^L + \Delta E_{ij}^N = \Delta E_{ij}^L + \Delta E_{ij}^L + \Delta E_{ij}^N$$

where

$$\Delta E_{ij}^L = \frac{1}{2} \left(\frac{\partial \Delta a_i}{\partial X_j} + \frac{\partial \Delta a_j}{\partial X_i} \right)$$

49
\[
\Delta E_{ij}^{L_1} = \frac{1}{2} \left(\frac{\partial a_k}{\partial X_i} \frac{\partial \Delta a_k}{\partial X_j} + \frac{\partial \Delta a_k}{\partial X_i} \frac{\partial a_k}{\partial X_j} \right) \tag{3.10}
\]
\[
\Delta E_{ij}^N = \frac{1}{2} \frac{\partial \Delta a_k}{\partial X_i} \frac{\partial \Delta a_k}{\partial X_j} \tag{3.11}
\]

All the above equations are of continuous form, and so they have to be transformed into a finite element formulation.

3.3 Finite Element Formulation

Before further formulation work is expressed, some of the definitions are given below. For 2-D space, \(X_1, X_2 \) are the \(x, y \) coordinates respectively. The displacement can be written as \(\mathbf{a} = [u \ v]^T \). \(\mathbf{N} \) is the shape function matrix. For 4-noded quadrilateral element, \(\mathbf{N} \) is given as

\[
\mathbf{N} = \begin{bmatrix}
N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4 & 0 \\
0 & N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4
\end{bmatrix} \tag{3.12}
\]

The deformation gradient matrix \(\mathbf{F} \) is written as

\[
\mathbf{F} = \begin{bmatrix}
\frac{\partial u}{\partial x} + 1 & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} + 1
\end{bmatrix} = \begin{bmatrix}
\sum_{i=1}^{NP} \frac{\partial N_i}{\partial x} u_i + 1 & \sum_{i=1}^{NP} \frac{\partial N_i}{\partial y} u_i \\
\sum_{i=1}^{NP} \frac{\partial N_i}{\partial x} v_i & \sum_{i=1}^{NP} \frac{\partial N_i}{\partial y} v_i + 1
\end{bmatrix} \tag{3.13}
\]

where \(NP \) is the number of nodes in the element, and for the 4-noded quadrilateral element, \(NP = 4 \).

Substituting \(\Delta \mathbf{a} = \mathbf{N} \Delta \mathbf{a}^{(e)} \) into equation 3.9, 3.10 and 3.11, these equations can be rewritten in the matrix and scalar format as

\[
\Delta E_{ij}^{L_0} = \mathbf{L} \Delta \mathbf{a} = \mathbf{L} \mathbf{N} \Delta \mathbf{a}^{(e)} = \mathbf{B}^{L_0} \Delta \mathbf{a}^{(e)} \tag{3.14}
\]
\[
\Delta E_{ij}^{L_1} = \frac{1}{2} \Delta \Delta \mathbf{\theta} + \frac{1}{2} \Delta \mathbf{A} \Delta \mathbf{\theta} = \mathbf{A} \Delta \mathbf{a}^{(e)} = \mathbf{B}^{L_1} \Delta \mathbf{a}^{(e)} \tag{3.15}
\]
\[\Delta E^N = \frac{1}{2} \Delta A \Delta \theta = \frac{1}{2} \Delta A \Delta \theta = \hat{B}^N \Delta \theta \] (3.16)

where

\[L = \begin{bmatrix} \frac{\partial}{\partial x} & 0 \\ 0 & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{bmatrix} \] (3.17)

\[A = \begin{bmatrix} \frac{\partial a^T}{\partial x} & 0 \\ 0 & \frac{\partial a^T}{\partial y} \\ \frac{\partial a^T}{\partial y} & \frac{\partial a^T}{\partial x} \end{bmatrix} = \begin{bmatrix} F_{11} - 1 & F_{12} & 0 & 0 \\ 0 & 0 & F_{21} & F_{22} - 1 \\ F_{21} & F_{22} - 1 & F_{11} - 1 & F_{12} \end{bmatrix} \] (3.18)

\[\Delta A = \begin{bmatrix} \frac{\partial \Delta a^T}{\partial x} & 0 \\ 0 & \frac{\partial \Delta a^T}{\partial y} \\ \frac{\partial \Delta a^T}{\partial y} & \frac{\partial \Delta a^T}{\partial x} \end{bmatrix} \] (3.19)

\[\theta = \begin{bmatrix} \frac{\partial a}{\partial x} \\ \frac{\partial a}{\partial y} \end{bmatrix} \] (3.20)

\[\Delta \theta = \begin{bmatrix} \frac{\partial \Delta a}{\partial x} \\ \frac{\partial \Delta a}{\partial y} \end{bmatrix} = H \Delta a = H N \Delta a^{(e)} = G \Delta a^{(e)} \] (3.21)

In Equation 3.21,

\[H = \begin{bmatrix} I & 0 \\ 0 & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial x} & 0 \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x} \\ 0 \\ \frac{\partial}{\partial y} \\ 0 \end{bmatrix} \] (3.22)

For quadrilateral elements, substituting Equation 3.22 and the shape functions into
Equation 3.21 leads to

\[G = \begin{bmatrix} \frac{\partial N_1}{\partial x} & 0 & \frac{\partial N_2}{\partial x} & 0 & \frac{\partial N_3}{\partial x} & 0 & \frac{\partial N_4}{\partial x} & 0 \\ 0 & \frac{\partial N_1}{\partial x} & 0 & \frac{\partial N_2}{\partial x} & 0 & \frac{\partial N_3}{\partial x} & 0 & \frac{\partial N_4}{\partial x} \\ \frac{\partial N_1}{\partial y} & 0 & \frac{\partial N_2}{\partial y} & 0 & \frac{\partial N_3}{\partial y} & 0 & \frac{\partial N_4}{\partial y} & 0 \\ 0 & \frac{\partial N_1}{\partial y} & 0 & \frac{\partial N_2}{\partial y} & 0 & \frac{\partial N_3}{\partial y} & 0 & \frac{\partial N_4}{\partial y} \end{bmatrix} \]

(3.23)

Because \(B^L_0 \) and \(B^L_1 \) have no relationship with \(\Delta a^{(e)} \),

\[\delta \Delta E^{L_0} = B^L_0 \delta \Delta a^{(e)} \]

(3.24)

\[\delta \Delta E^{L_1} = B^L_1 \delta \Delta a^{(e)} \]

(3.25)

\[\delta \Delta E^N = \frac{1}{2} \delta \Delta A \Delta \theta + \frac{1}{2} \Delta A \delta \Delta \theta = \Delta A \delta \Delta \theta = \Delta A G \delta \Delta a^{(e)} = B^N \delta \Delta a^{(e)} \]

(3.26)

Then

\[\Delta E = \tilde{B} \Delta a^{(e)} \]

(3.27)

\[\delta(\Delta E) = B \delta \Delta a^{(e)} \]

(3.28)

where

\[\tilde{B} = B^L_0 + B^L_1 + \tilde{B}^N = B^L_0 + B^L_1 + \frac{1}{2} \Delta A G \]

(3.29)

\[B = B^L_0 + B^L_1 + B^N = B^L_0 + B^L_1 + \Delta A G \]

(3.30)

From Equation 3.15, 3.18, and 3.23,

\[B^{L_1}_I = \begin{bmatrix} \frac{\partial N_i}{\partial x} (F_{11} - 1) & \frac{\partial N_i}{\partial x} F_{21} \\ \frac{\partial N_i}{\partial y} F_{12} & \frac{\partial N_i}{\partial y} (F_{22} - 1) \\ \frac{\partial N_i}{\partial y} (F_{11} - 1) + \frac{\partial N_i}{\partial x} F_{12} & \frac{\partial N_i}{\partial x} (F_{22} - 1) + \frac{\partial N_i}{\partial y} F_{21} \end{bmatrix} \]

(3.31)
Chapter 3. NONLINEAR FINITE ELEMENT ANALYSIS

and

\[
B_i^{L0} = \begin{bmatrix}
\frac{\partial N_i}{\partial x} & 0 \\
0 & \frac{\partial N_i}{\partial y} \\
\frac{\partial N_i}{\partial y} & \frac{\partial N_i}{\partial x}
\end{bmatrix}
\] (3.32)

where \(I=1, 2, 3\) and \(4\).

Substituting

\[
\delta \tilde{a} = \delta (\Delta a) = N \delta \Delta a^{(e)}
\]

\[
\delta \tilde{E} = \delta (\Delta E) = B \delta \Delta a^{(e)}
\]

into equation 3.1, the following is obtained

\[
\int_{V^0} B^T \tilde{S} dV = \int_{V^0} N^T \tilde{b}_0 dV + \int_{A^0} N^T \tilde{q}_0 dA
\] (3.34)

In this work the body force \(\tilde{b}_0\) is set to 0. So with the Equation 3.3 and 3.30, the balance equation in incremental form can be written as

\[
\psi(\Delta a^{(e)}) = \int_{V^0} B^T \Delta S dV + \int_{V^0} (B^N)^T S dV + \int_{V^0} (B^{L0} + B^{L1})^T S dV - \int_{A^0} N^T \tilde{q}_0 dA
\] (3.35)

With the equation

\[(B^N)^T S = G^T \Delta \Theta^T S = G^T M \Delta \Theta = G^T M \Delta a^{(e)} = \tilde{G}^T \tilde{M} \tilde{G} \Delta a^{(e)} \] (3.36)

where

\[
M = \begin{bmatrix}
S_{11} & 0 & S_{12} & 0 \\
0 & S_{11} & 0 & S_{12} \\
S_{12} & 0 & S_{22} & 0 \\
0 & S_{12} & 0 & S_{22}
\end{bmatrix}
\] (3.37)
\[\tilde{M} = \begin{bmatrix} S_{11} & S_{12} & 0 & 0 \\ S_{21} & S_{22} & 0 & 0 \\ 0 & 0 & S_{11} & S_{12} \\ 0 & 0 & S_{21} & S_{22} \end{bmatrix} \] (3.38)

\[\tilde{G} = \begin{bmatrix} \frac{\partial N_1}{\partial x} & 0 & \frac{\partial N_2}{\partial x} & 0 & \frac{\partial N_1}{\partial y} & 0 \\ \frac{\partial N_1}{\partial y} & 0 & \frac{\partial N_2}{\partial y} & 0 & \frac{\partial N_1}{\partial x} & 0 \\ 0 & \frac{\partial N_1}{\partial x} & 0 & \frac{\partial N_2}{\partial x} & 0 & \frac{\partial N_1}{\partial y} \\ 0 & \frac{\partial N_1}{\partial y} & 0 & \frac{\partial N_2}{\partial y} & 0 & \frac{\partial N_1}{\partial x} \end{bmatrix} \] (3.39)

the following equation can be obtained

\[\int_{V_0} (B^S)^T S \, dV = \left(\int_{V_0} G^T M G \, dV \right) \Delta a^{(e)} = \left(\int_{V_0} \tilde{G}^T \tilde{M} \tilde{G} \, dV \right) \Delta a^{(e)} \] (3.40)

Then the system balance equation 3.35 can be rewritten as

\[\psi(\Delta a^{(e)}) = \int_{V_0} B^T \Delta S \, dV + K^S \Delta a^{(e)} + R^S - \int_{A_0} N^T \bar{q}_0 \, dA = 0 \] (3.41)

where

\[K^S = \int_{V_0} G^T M G \, dV = \int_{V_0} \tilde{G}^T \tilde{M} \tilde{G} \, dV \] (3.42)

\[R^S = \int_{V_0} (B^{L_0} + B^{L_1})^T S \, dV \] (3.43)

3.4 PROCEDURES FOR EQUILIBRIUM SOLUTION

When the nonlinear Equation 3.41 is to be solved, the linearization of it is the first step. And it includes geometric and physical aspects. In this work, the material is linear, so the focus is on the geometric non-linearity. The strain-displacement matrix \(B \) can be linearized with \(B^{L_0} + B^{L_1} \).
Chapter 3. NONLINEAR FINITE ELEMENT ANALYSIS

Then

\[
\int_{V_0} B^T \Delta S dV = \int_{V_0} (B^{L_0} + B^{L_1})^T \Delta S dV = \int_{V_0} (B^{L_0} + B^{L_1})^T D \Delta E dV \\
= \int_{V_0} (B^{L_0} + B^{L_1})^T D (B^{L_0} + B^{L_1}) \Delta a^{(e)} dV \\
= \left(\int_{V_0} (B^{L_0} + B^{L_1})^T D (B^{L_0} + B^{L_1}) dV \right) \Delta a^{(e)} = K^L \Delta a^{(e)}
\]

(3.44)

where \(D\) is the elasticity matrix.

For plane stress, the elasticity matrix for isotropic materials is

\[
D = \begin{bmatrix}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & (1 - \nu)/2
\end{bmatrix}
\]

(3.45)

where \(E\) is the Young’s modulus and \(\nu\) is the Poisson’s ratio.

Although the plane stress and plan strain theories do not have identical governing equations, many relations are quite similar. A simple change in elastic moduli would bring one set of relations into an exact match with the corresponding result from the other plane theory. This in fact is the case, and it is easily shown that through transformation of the elastic moduli \(E\) and \(\nu\) as specified in Table 3.1 all plane stress problems can be transformed into the corresponding plane strain model, and vice versa. Thus, solving one type of plane problem automatically gives the other solution through a simple transformation of elastic moduli in the final answer.
Chapter 3. NONLINEAR FINITE ELEMENT ANALYSIS

Table 3.1: Elastic Moduli Transformation Relations for Conversion Between Plane Stress and Plane Strain Problems [245]

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane stress to plane strain</td>
<td>$E \frac{1}{1-v^2}$</td>
<td>$v \frac{1}{1-v}$</td>
</tr>
<tr>
<td>Plane strain to plane stress</td>
<td>$E(1+2v) \frac{1}{(1+v)^2}$</td>
<td>$v \frac{1}{1+v}$</td>
</tr>
</tbody>
</table>

For plane strain, the elasticity matrix for isotropic materials is

\[
D = \frac{E(1-v)}{(1+v)(1-2v)} \begin{bmatrix}
1 & v/(1-v) & 0 \\
(1-v)/(1-v) & 1 & 0 \\
0 & 0 & (1-2v)/2(1-v)
\end{bmatrix} \tag{3.46}
\]

Substituting Equation 3.44 into Equation 3.41, the linearized equation can be written as

\[
(K^S + K^L)\Delta \mathbf{a}^{(e)} = \int A^0 \mathbf{N}^T \bar{q}_0 dA - \mathbf{R}^S = \bar{\mathbf{R}} - \mathbf{R}^S \tag{3.47}
\]

The finite element shape functions of nonlinear system are also constructed in the same form as the linear system. And the trial solution and weight functions can be written as

\[
\mathbf{a} = \sum_{i \in NP} \mathbf{N}_i \mathbf{a}_i \tag{3.48}
\]

\[
\Delta \mathbf{a} = \sum_{i \in NP} \mathbf{N}_i \Delta \mathbf{a}_i \tag{3.49}
\]

\[
\delta \mathbf{a}_{n+1} = \delta(\Delta \mathbf{a}) = \sum_{i \in NP} \mathbf{N}_i \delta \Delta \mathbf{a}_i \tag{3.50}
\]

For each load increment, the same equilibrium iteration method is applied. The steps
Chapter 3. NONLINEAR FINITE ELEMENT ANALYSIS

involved are given as follows:

1. Initial conditions: incremental loading step \(n = 0 \). Calculate \(a_0 \) using the linear solution method.

2. Newton iterations for loading increment \(n + 1 \).

 (a) Iteration \(i = 1 \);

 (b) Calculate the deformation gradient matrix \(F \);

 (c) Calculate variables \(S_{\text{new}} \), \(E_{\text{new}} \);

 (d) Compute the out-of-balance \(\bar{R} - R^S \) load, \(K = K^L + K^S \) and using \(F \), \(S_{\text{new}} \);

 (e) Solve the incremental solution \(\Delta a \) by enforcing essential boundary conditions;

 (f) \(a_{n+1} = a_{\text{new}} + \Delta a \)

 (g) Check for convergence; if it is not converged, \(i = i + 1 \), go to step (b).

3. Check incremental step; if the end of the analysis is not reached, remesh, and let \(n = n + 1 \), go to step 2.

 For the present incremental-iterative solution technique, a convergence criterion based on the incremental displacement is used. This criterion requires the calculation of a norm

 \[
 \| \| \varepsilon \| _2 = \sqrt{\frac{1}{ND} \sum_{k=1}^{ND} \left(\frac{\Delta \delta_k}{\delta_{k}} \right)^2} < \tau_c \tag{3.51}
 \]

 where \(ND \) is the total number of degrees of freedom, \(\Delta \delta_k \) is the change in the nodal variable component \(k \) during the current iteration cycle, \(\delta_{k}^{\text{max}} \) is the largest displacement component of the corresponding component, and \(\tau_c \) is the convergence tolerance which is in the range of \((0, 10^{-6}) \) in this work.

 In actual computations, it is found that convergence can be achieved usually within six iterations.
3.5 TEST PROBLEM

A program that implements both the linear and non-linear finite element method was developed in C++. The large displacement (geometric nonlinear) plane stress static finite element analysis can be performed using the program. The type of finite elements developed is 4-noded plane stress element. To demonstrate the performance of this program in the analyses of solid mechanics problems, a simple example problem is presented here. This problem is from the previous work done by Prasad [246]. It is for testing the accuracy and the speed of the newly developed program for solving the nonlinear systems. The verification of the proposed computational strategy is performed by comparison with results obtained from the commercial FE software ABAQUS.

3.5.1 Problem Description

For comparison of speed and accuracy in nonlinear analysis, a compliant mechanism shown in Figure 3.1 was tested. The material assumed is polypropylene with Young’s modulus of 1150MPa and Poisson’s ratio of 0.4. The boundary conditions are as follows:

i Support: Nodes that lie in the bottom of the mechanism are fixed as shown in Figure 3.1.

ii Loading: The input displacement is 18.205mm and the loading node lies in the left boundary as shown in Figure 3.1.

3.5.2 Results

The newly developed program was run in the Windows XP sp2 environment of a PC (hp workstation xw4200). ABAQUS was run in that PC as well as in the IRIX 6.5 environment of SGI Origin 2000 Server. The time spent on nonlinear analysis by the newly developed program, ABAQUS in the same enviroment and ABAQUS in the IRIX of SGI Origin 2000 is 27, 6.7 and 43.8 seconds. The deformed shapes of the mechanism are shown in Figure 3.2.
In Figure 3.2(a) and Figure 3.2(b), the undeformed geometries are shown by their mesh while the deformed shapes in their final positions are shown by their the boundary outlines only. The paths of the output point obtained by ABAQUS and newly developed program are drawn in Figure 3.2(c). As can be seen, the difference in the results is small. Further analysis is given in Table 3.2, where u_{loading} is the displacement of loading node in x direction, v_{loading} is the displacement of loading node in y direction, u_{output} is the displacement of output point in x direction, v_{output} is the displacement of output point in y direction, and $\sigma_{\text{peak-von-Mises}}$ is the peak von Mises stress (which occurs in the support element). Good agreement between them is observed.

Table 3.2: Comparison Result

<table>
<thead>
<tr>
<th></th>
<th>ABAQUS</th>
<th>newly developed program</th>
<th>percentage difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_{loading}</td>
<td>18.205</td>
<td>18.205</td>
<td>–</td>
</tr>
<tr>
<td>v_{loading}</td>
<td>26.766</td>
<td>28.445</td>
<td>6.27%</td>
</tr>
<tr>
<td>u_{output}</td>
<td>32.377</td>
<td>34.399</td>
<td>6.25%</td>
</tr>
<tr>
<td>v_{output}</td>
<td>-14.465</td>
<td>-14.936</td>
<td>3.26%</td>
</tr>
<tr>
<td>$\sigma_{\text{peak-von-Mises}}$</td>
<td>30827938</td>
<td>31562900</td>
<td>2.38%</td>
</tr>
</tbody>
</table>
Figure 3.2: Comparison between ABAQUS and newly developed program.
Chapter 4

DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

This chapter demonstrates the automatic design of compliant grip-and-move manipulators by topology and shape optimization using genetic algorithms. It presents a novel idea to integrate grip and move behavior in one simple mechanism. The manipulator is composed of two identical symmetric path generating compliant mechanisms so that it can grip an object and convey it from one point to another. The synthesis of such a mechanism is accomplished by formulating the problem as a structural optimization problem with multiple objectives and a constraint to achieve the desired behavior of the manipulator.

4.1 SYMMETRIC PATH GENERATING MECHANISM

In this work, a symmetric path generating mechanism refers to a mechanism that generates an output path that is symmetric about some line of symmetry [247]. Both the path and the location of the line of symmetry are not predefined. In other words, the shape of the path itself is not fixed in advance, so the desire is basically for the path to be symmetric. The path is also desired to be as long as possible in order to extend its working range. An illustration of a grip-and-move manipulator consisting of two identical symmetric path generating mechanisms is given in Figure 4.1. The two mechanisms are placed at
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

either side of a line of symmetry such that each is a ‘mirror image’ of the other across that line. That line is also the same line of symmetry for the symmetric path, so that the output point of one mechanism will be able to touch the output point of the other mechanism anywhere along the path when some amount of input displacement is applied to one or both mechanisms. Each shape in solid lines is the undeformed shape of one of the mechanisms. The dashed lines show the possible deformed shape of the structure after some large displacement due to the input load. The two compliant mechanisms work like two fingers of a manipulator. It can grip a workpiece and, because the path is symmetric, the grip can be maintained anywhere along the path and so the workpiece can be conveyed to any point along the path.

![Figure 4.1: Sketch of a grip-and-move manipulator.](image)

The path generating mechanism has to be able to produce a symmetric path, and be flexible enough to describe approximately the desired path that is relatively long, and at the same time keep input displacement and stresses within allowable limits. In other words, the best path generating mechanism would (i) be able to describe a path as close to symmetric as possible, (ii) have GA (Geometric Advantage) as large as possible, i.e.
output displacement as large as possible while input displacement (which is a design variable) is as small as possible, and (iii) have stresses within allowable limits.

4.2 FORMULATION

The design problem can be defined with the help of Figure 4.2. The design space is a 100 by 100mm square. The dashed lines mark the design space which is the allowable space within which the structural design must lie and cannot exceed. The support point is the part of the structure that is supported (restrained, with zero displacement) while the loading point is where some specified load (input displacement) is applied to deform the structure. The output point is the point on the structure where the desired output behavior is attained. The positions of these I/O points are variable but confined to the boundaries (the support point is positioned anywhere along the bottom boundary while the loading point is positioned anywhere along the four boundaries, and the output point is positioned anywhere along the bottom, right, or top boundary). This arrangement will allow the design to take on all possible configurations of the relative positions of the I/O points.

![Figure 4.2: Design space for symmetric path mechanism.](image)

The synthesis of such a path generating compliant mechanism is accomplished by
formulating the problem as a structural optimization problem with three objectives and a constraint to achieve the desired behavior of the manipulator.

4.2.1 Symmetric Path Objective

The aim here is to produce a mechanism which generates a path that is symmetric. Symmetry can be measured by dividing the mechanism’s path into two halves by a line of symmetry, and then evaluating the difference between the two halves separated by the line. As shown in Figure 4.3, the y' axis is the line of symmetry. To evaluate how similar the left half and the right half of the path are, the average deviation (error) between the two parts is evaluated. In Figure 4.3, the left half can be assumed as the desired path, and then the right half is assumed as the actual path. The actual path is divided into n segments (where n is the number of analysis steps for the left half of the output displacement, i.e. the displacement steps as computed via the finite element analysis of the structure).

![Figure 4.3: Deviation between the left and right halves of path.](image)

The average deviation $d_{s,ave}$ weighted according to the analysis step sizes is given by

$$d_{s,ave} = \sum_{i=1}^{n+1} \left(\frac{d_{i-1} + d_i}{2} \right) \left(\frac{d_{i-1} + d_i}{2} \right) = \frac{1}{2} \sum_{j=0}^{n} x_j \sum_{i=1}^{n+1} (d_{i-1} + d_i)x_{i-1} \quad (4.1)$$
where \(d_i \) (with \(d_{n+1} = 0 \)) are the distances between corresponding points of the desired path and actual path. \(x_i \) are the \(x \) distances between two consecutive points on the actual path as shown in Figure 4.3.

To have a fair comparison between different length scales, the deviation should be weighted according to the length of the paths. Hence the objective function is formulated as:

\[
\text{Minimize} \quad f_{\text{path}} = \frac{d_{\text{ave}}}{l_0} = \frac{1}{2} \sum_{i=1}^{n+1} (d_{i-1} + d_i)x_{i-1}
\]

where \(l_0 \) is the actual \(x \) distance of the right half.

4.2.2 Geometric Advantage Objective

The aim here is to maximize flexibility or compliance of the structure. Maximum flexibility can be posed as maximization of the deflection at a specified point along a specified direction. The intent here is to maximize deflection of the output point. However, when the input displacement is a variable, maximization of the ratio of the output deflection (in a specified direction) to the input displacement is more useful as it improves the efficiency of the mechanism. This ratio can be called Geometric Advantage (GA). The GA objective \((f_{GA}) \) depends only on the initial state and the final state of the structure. Here, the initial state is the undeformed shape while the final state is the deformed shape when load is applied. The finite element analysis gives the position of each node of deformed shape with respect to its position in the undeformed shape. If \(\mathbf{r}_{\text{in}} = x_{\text{in}} \mathbf{i} + y_{\text{in}} \mathbf{j} \) is the position vector of the loading point and \(\mathbf{r}_{\text{out}} = x_{\text{out}} \mathbf{i} + y_{\text{out}} \mathbf{j} \) is the position vector of the output point’s final position with respect to its initial position, then the GA objective is given by

\[
\text{Minimize} \quad f_{GA} = -\frac{\mathbf{r}_{\text{out}} \cdot \mathbf{u}_{\text{out}}}{\mathbf{r}_{\text{in}} \cdot \mathbf{u}_{\text{in}}} = -\frac{(x_{\text{out}} \mathbf{i} + y_{\text{out}} \mathbf{j}) \cdot \mathbf{u}_{\text{out}}}{(x_{\text{in}} \mathbf{i} + y_{\text{in}} \mathbf{j}) \cdot \mathbf{u}_{\text{in}}}
\]
where \mathbf{u}_{in} is the unit inward normal vector orthogonal to the loading boundary, and \mathbf{u}_{out} is the unit outward normal vector orthogonal to the output boundary. For instance, $\mathbf{u}_{\text{in}} = \mathbf{i}$ and $\mathbf{u}_{\text{out}} = -\mathbf{j}$ will be used in equation 4.3 if the loading point is positioned at the left boundary of the design space, and the output point is positioned at the bottom boundary.

4.2.3 Combined Objective

As investigated in Section 2.2.3.5, following a classification by Deb [178], the decision-making techniques are categorized into two types: post-optimal techniques and optimization-level techniques. Recently, some optimization-level approaches have been published aimed at focusing the search towards interesting regions as defined by the Decision Maker. Here a post-optimal technique is suggested. In order to constitute a grip-and-move manipulator, the symmetric path generating mechanisms should have good path and GA objective at the same time. Some initial trials which only use two conflicting objectives show that it is harder to obtain solutions with both good path and GA objective. The solutions obtained separated into two parts, one part with good path objective but bad GA objective, and the other part vice versa. Based on these useful experiences, a third (combined) objective is added to the problem formulation to direct the search towards mechanisms good in both objectives. The combined objective has two parts, one part to improve the path objective and the other part to improve GA objective. These two parts are combined together by scaling them with the ideal objective values, 0.0001 for path objective (f_{path}) and -5 for the GA objective (f_{GA}), respectively. The weighted vector can help the user to work in more qualitative terms. The combined objective function is given by:

$$\text{Minimize } f_{\text{com}} = \frac{f_{\text{path}}}{0.0001} - \frac{5}{f_{\text{GA}}}$$

4.2.4 Stress Constraint

A constraint on the maximum stress in the mechanism (to hinder fatigue or failure) is important in the synthesis of compliant mechanisms. In [32,248], local failure conditions
relating to stress constraints are incorporated in topology optimization algorithms to obtain compliant and strong designs and deal with the so-called ‘singularity’ phenomenon of stress constraints in topology design.

The constraint on the peak von Mises stress may be expressed as

\[\sigma_{\text{peak-von-Mises}} - \sigma_y \leq 0 \] (4.4)

where \(\sigma_{\text{peak-von-Mises}} \) is the peak von Mises stress and \(\sigma_y \) is the tensile yield strength of the material. A dimensionless expression for the stress constraint may be written as

\[g_{\text{stress}} = \frac{\sigma_{\text{peak-von-Mises}} - \sigma_y}{\sigma_y} \leq 0 \] (4.5)

Hence the multicriterion genetic algorithm is run with three objectives (the two actual objectives and one combined objective), and one constraint i.e. the stress constraint.

4.3 MORPHOLOGICAL REPRESENTATION OF STRUCTURE GEOMETRY

For the design optimization, the geometry of any structure is defined by the morphological representation scheme developed by Tai et al. [40, 151]. The scheme uses arrangements of skeleton and surrounding material to define structural geometry in a way that facilitates the transmission of topological/shape characteristics across generations in the evolutionary process, and will not render any undesirable design features such as disconnected segments, checkerboard patterns or single-node hinge connections. And any chromosome-encoded design generated by the evolutionary procedure can be translated into an FE model of the structure according to the morphological representation.

In this morphological representation scheme, a structure is characterized by a set of I/O points (the support and loading points are considered as input points). While it is still unknown how the rest of the design space will be occupied by the structure, the I/O
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC
PATH GENERATING MECHANISMS

points must exist somewhere because any structure must have parts which interact with its
surroundings by way of at least one support and one loading point. Figure 4.4(a) shows
an example problem defined with three I/O locations: one support, one loading and one
output location, each made up of one element in black. For a valid structural design, all
I/O points must be connected to one another (either directly or indirectly) in order to form
one single connected load bearing structure. Three connecting curves in the illustration
of Figure 4.4(b) are used such that there is one connecting curve between any two points
(i.e. every I/O point is directly connected to the other two), with each curve defined by
three control points. Hence this representation scheme is based on specifying connecting
curves joining one point to another. Each curve is a Bezier curve defined by its start and
end points plus a number of control points in between. The primary criterion for choosing
a Bezier curve is that the design variables of it cause smooth variations in the shape of
a compliant segment. The number of variables is small enough but able to cover a large
design space of shapes. By moving the control points, a wide variety of curves that span a
large design space of shapes can be obtained. Another interesting property of the Bezier
curves is that the curve always lies inside the convex hull of the control polygon. This is
attractive from the viewpoint of applying constraints to restrict the curves to prescribed
gEometric domain. It is also simpler to use when compared to more sophisticated B-
splines [33,164]. The position vector \(\mathbf{r} \) of any given point on the Bezier curve is given by
the following general equation:

\[
\mathbf{r} = \mathbf{r}(u) = \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} u^k (1-u)^{n-k} \mathbf{r}_k
\]

(4.6)

where \(u \) is the intrinsic parameter (one-dimensional coordinate) that varies from 0 to 1
along the curve, \(n - 1 \) is the number of control points, \(\mathbf{r}_0 \) is the position vector of the
start point, \(\mathbf{r}_n \) is the position vector of the end point and \(\mathbf{r}_k \) for \(k = 1 \) to \(n - 1 \) are the
control points. The benefit of Bezier curves is the ease of computation, stability at the
lower degrees of control points. Generally, use as few control points as possible. Too
many points make it hard to get a smooth, flowing line on a long curve. Too few points
restrict the possible path the curve can follow. The curve may be assumed to be made of \(n \) parametrically equal segments. For example, if there are only two control points, the first of the three segments of the curve would be the part of the curve where \(0 \leq u \leq \frac{1}{3} \), the second segment would be where \(\frac{1}{3} \leq u \leq \frac{2}{3} \) and the third segment would be where \(\frac{2}{3} \leq u \leq 1 \).

![Figure 4.4](image)

(a) FE discretization of design space (I/O element marked in black)
(b) Connecting I/O elements with Bezier curves
(c) Skeleton made up of elements along curves
(d) Surrounding elements added to skeleton to form final structure

Figure 4.4: Definition of structural geometry by morphological scheme.

The set of elements through which each curve passes form the ‘skeleton’ connecting
the two points (Figure 4.4(c)). Some of the elements surrounding the skeleton are then included to fill up the structure to its final form (Figure 4.4(d)). These additional elements represent the ‘flesh’ around the skeleton. And the union of all skeleton, flesh and I/O elements constitute the structure while all other elements remain as the surrounding empty space. The number of flesh elements to be added is determined by a thickness value, which is a variable tied to every parametric segment of a curve. This is done by considering each skeleton element in turn and adding an all-round layer of elements to it (Figure 4.5), with the layer thickness according to the thickness value which can range from zero to some prescribed (integer) maximum which is 3 in Figure 4.4(d).

![Figure 4.5: Thickness of ‘Flesh’ added to skeleton elements.](image)

In order to use a genetic algorithm for the optimization, the topological/shape representation variables have to be configured as a chromosome code. Hence the structural geometry in Figure 4.4(d) can be encoded as a chromosome in the form of a graph as shown in Figure 4.6. Each vertex of the graph holds a design variable, and the vertices are connected by edges depicted by the line segments in Figure 4.6. The vertices and edges here are the terminology as used in graph theory. Each start, control or end point of a Bezier curve is at the centre of the element containing it, therefore its location is actually referenced by the element number. This necessitates a numbering scheme for uniquely labelling each element in the mesh, and in this work, the elements are simply numbered in order from left to right along each row, and row by row from bottom to top. It can be seen from the vertices of the graph that each curve is defined by control
points alternating with thickness values. As shown in Figure 4.6, for every curve defined by three control points, there will be four thickness values. With four thickness values, the curve will correspondingly be divided parametrically into four segments with each segment having its thickness determined by the respective thickness value.

The variables are cast into the chromosome code which is in the form of a connected graph with the same configuration/connectivity as the Bezier curves. The topology/shape emerges from the interaction among the curves and their respective thicknesses. Slight changes in some thickness values or small shifts in control point positions can lead to topological changes with entire openings (holes) created or destroyed. It is a versatile geometric representation which can define a wide variety of topological and shape configurations, using only a fairly small number of variables. In fact, the geometric complexity achievable in the design can be controlled by the designer by choosing the number of control points to be used for each curve (the larger the number of points the higher the order of the curve). However, it is clear that the greater the complexity, the larger the number of design variables and so the larger the optimization problem.

The most important operation in a genetic algorithm procedure is the crossover operation and in this work, a crossover operator is devised to work by randomly
sectioning a single connected subgraph of a parent chromosome and swapping with a corresponding subgraph from another parent. The procedure adopted for sectioning and forming a crossover loop is illustrated in Figure 4.7 through three example graphs (chromosomes) with different topologies. The dashed closed loop cutting across portions of the chromosome represent the sectioning or crossover loop. An example illustrating crossover operation is shown in Figure 4.8.

One simple mutation operator is implemented. It works by selecting, at random, any
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

vertex on the graph and altering its value to another randomly generated value within the allowable range. Figures 4.9 shows examples of mutation of the structure from Figure 4.9(a) where one I/O point (Figures 4.9(b)), one control point (Figures 4.9(c)), and one thickness value (Figures 4.9(d)) is randomly changed, respectively.

(a) Before mutation

(b) Mutation of I/O point

(c) Mutation of control point

(d) Mutation of thickness value

Figure 4.9: Mutation operation.
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

4.4 MULTICRITERION GENETIC ALGORITHM

The genetic algorithm used for the multiobjective optimization in the present work is fundamentally based on Ray et al. [212]. This is a multiobjective algorithm with constraint handling, based on maintaining separate non-domination (Pareto) rankings for objectives and constraints satisfaction, thus enabling an intelligent selection of solutions for cooperative mating which eliminates the need to prescribe penalty function parameters usually required for constraint handling. Pareto ranking, selection probability, adaptive niche count and non-overlapping constraint satisfaction given in the following sections are based on the algorithms and implementations from [212] and Prasad’s thesis [246].

A general constrained multiobjective optimization problem (in the minimization sense) is formulated as:

\[
\text{Minimize} \quad \mathbf{f}(\mathbf{x}) = [f_1(\mathbf{x}) \ f_2(\mathbf{x}) \ \cdots \ f_m(\mathbf{x})] \\
\text{subject to} \quad g_j(\mathbf{x}) \leq 0, \quad j = 1, 2, \cdots, q \\
\quad \quad \quad h_k(\mathbf{x}) = 0, \quad k = 1, 2, \cdots, r
\]

(4.7)

where \(\mathbf{f} \) is a vector of \(m \) objectives and \(\mathbf{x} = [x_1 \ x_2 \ \cdots \ x_n] \) is the vector of \(n \) design variables.

The objective matrix \(\mathbf{O} \) for a population of \(M \) solutions is presented as:

\[
\mathbf{O} = \begin{bmatrix}
 f_{11} & f_{12} & \cdots & f_{1m} \\
 f_{21} & f_{22} & \cdots & f_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 f_{M1} & f_{M2} & \cdots & f_{Mm}
\end{bmatrix}
\]

(4.8)

where \(f_{ij} \) is the \(j \)-th objective value of the \(i \)-th solution.
The constraint matrix C for a population of M solutions is presented as:

$$
C = \begin{bmatrix}
C_{11} & C_{12} & \cdots & C_{1s} \\
C_{21} & C_{22} & \cdots & C_{2s} \\
\vdots & \vdots & \ddots & \vdots \\
C_{M1} & C_{M2} & \cdots & C_{Ms}
\end{bmatrix}
$$ (4.9)

where $s = q + r$ and C_{ij} is the j-th constraint value of the i-th solution.

A combined matrix COM is a combination of the objective and constraint matrices:

$$
\text{COM} = [O \ C]
$$ (4.10)

4.4.1 Pareto Ranking

From a population of M solutions, all non-dominated solutions are assigned a rank of 1. The rank 1 individuals are removed from the population and the new set of non-dominated solutions is assigned a rank of 2. The process is continued until every solution in the population is assigned a rank. A rank of 1 based on objective or constraint indicates that the solution is non-dominated. The Pareto rank of each solution in the population computed based on the objective matrix O is stored in a vector RankObj. Similarly, the Pareto rank of each solution in the population computed based on the constraint matrix C or the combined matrix COM is stored in the vector RankCon or RankCom, respectively.

Solutions with same Pareto ranking belong to the same front. The front having rank k individuals may be called the k-th front of the solution space, e.g., the front having rank 1 individuals may be called the 1st front.

4.4.2 Selection Probability

An individual is selected using the roulette wheel selection scheme. The probability of selection of an individual is based on the vectors RankObj or RankCon and denoted as
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

ProbObj or **ProbCon**, respectively. As an example, the vector **ProbObj** is computed as follows:

The vector **RankObj** with element values varying from 1 to \(P_{\text{max}} \) is transformed to a fitness vector **FitObj** with elements varying from \(P_{\text{max}} \) to 1 using a linear scaling (\(P_{\text{max}} \) denotes the rank of the worst solution). The probability of selection **ProbObj** of an individual is then computed based on this fitness vector **FitObj**. Thus, the areas of the individual sectors on the roulette wheel correspond to the fitness vector **FitObj**.

4.4.3 Adaptive Niche Count

Adaptive niche count of a given solution is the number of solutions in the given population (with a population size of \(M \)) which are within the average distance metric in the design-parameter-space. It is computed as follows:

Step 1: Set \(i = 1 \)

Step 2: If \(i \) is more than \(M \), then go to **Step 8**

Step 3: In the normalized design-parameter-space, compute the the Euclidean distance between \(i \)-th solution and all the other \(M - 1 \) solutions

Step 4: Compute the average Euclidean distance

Step 5: Count the number of solutions that are within the average distance

Step 6: \(i = i + 1 \)

Step 7: Go to **Step 2**

Step 8: Stop

Out of two given solutions, a solution with a smaller niche count physically means that there are fewer number of solutions in its neighborhood. Such a solution is preferred over the other in order to maintain diversity in the population.

4.4.4 Non-overlapping Constraint Satisfaction

The concept of non-overlapping constraint satisfaction is based on the philosophy that a solution is allowed to mate with another solution if one complements the other
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC
PATH GENERATING MECHANISMS

towards constraint satisfaction. With a hope of generating solutions with better constraint
satisfaction, such a mating between the ‘beauty and the brains’ is incorporated as follows:

If sets \(\{ S_a \} \), \(\{ S_b \} \) and \(\{ S_c \} \) denote the set of constraints satisfied by solution \(a \), \(b \) and \(c \) respectively, then the selection of either \(b \) or \(c \) as the partner of \(a \) is based on the following
condition:

If \(\left(\{ S_a \} \cap \{ S_b \} \right) > \left(\{ S_a \} \cap \{ S_c \} \right) \) then the partner is \(c \).

If \(\left(\{ S_a \} \cap \{ S_b \} \right) < \left(\{ S_a \} \cap \{ S_c \} \right) \) then the partner is \(b \).

If \(\left(\{ S_a \} \cap \{ S_b \} \right) = \left(\{ S_a \} \cap \{ S_c \} \right) \) then the partner is randomly chosen between \(b \) and \(c \).

4.4.5 Prescribed Number of Well-spread Solutions on a Front

To get an estimate of the density of solutions surrounding a particular solution (point)
in the population, Deb et al. [191] used the concept of crowding distance, which is the
average distance of the two points on either side of this point along each of the objectives.
The same concept has been used in the present work for finding out a pre-specified number
of well-spread solutions out of numerous solutions on a given front.

In Figure 4.10, the crowding distance of the \(i \)-th solution in its front (marked with
hollow circles) is the average side-length of the cuboid (shown with a dashed box).

![Figure 4.10: Crowding distance calculation.](image)

The following algorithm is used to calculate the crowding distance of each point
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

(solution) in the set I:

Step 1: Determine $M_I = \text{number of solutions in } I$

Step 2: Initialize crowding distance for every solution, i.e. for each l, set $I[l]_{distance} = 0$

Step 3: Set $i = 1$

Step 4: Sort I with respect to the i-th objective, i.e. $I = \text{Sort}(I, i)$

Step 5: Set

- $I[1]_{distance} = I[M_I]_{distance} = \infty$ (infinity), so that boundary points are always selected

Step 6: Calculate

- $I[l]_{distance} = I[l]_{distance} + \frac{I[l]-I[l-1]}{I[M_I]-I[l]}$ for $l = 2$ to $(M_I - 1)$, where $I[l]_i$ refers to the i-th objective function value of the l-th individual in the set I.

Step 7: $i = i + 1$

Step 8: If i is less than or equal to total number of objective functions m, then go to **Step 4**

Step 9: Stop

This concept has also been used for selecting the best set of a prescribed number of solutions on a given front.

4.4.6 Best Set of Prescribed Number of Solutions in a Population

If there are N_f fronts in the solution space; M_1, M_2, M_3, . . . , M_{N_f} are the number of solutions on the 1st, 2nd, 3rd, . . . , N_f-th front, respectively; I_1, I_2, I_3, . . . , I_{N_f} are the corresponding sets of solutions on the 1st, 2nd, 3rd, . . . , N_f-th front, respectively; $M_0 = 0$ and $I_0 = \phi$ (null set), then the best set I_{best} of $M_{\text{prescribed}}$ number of solutions can be determined as follows:

Step 1: Determine k such that $\sum_{i=0}^{k} M_i < M_{\text{prescribed}} \leq \sum_{i=0}^{k+1} M_i$

Step 2: $I_{\text{best}} = \bigcup_{i=0}^{k} I_i$

Step 3: $M_{\text{remaining}} = M_{\text{prescribed}} - \sum_{i=0}^{k} M_i$

Step 4: $I_{\text{remaining}} = \text{set of } M_{\text{remaining}}$ number of well-spread solutions on $(k + 1)$-th front based on method described in Section 4.4.5

Step 5: $I_{\text{best}} = I_{\text{best}} \cup I_{\text{remaining}}$
4.4.7 Overall Algorithm

The overall algorithm for getting a set of Pareto optimal solutions is given below:

Step 1: Generate random initial population P of size M.

Step 2: Evaluate objective as well as constraint functions for each individual in P.

Step 3: Compute Pareto Ranking based on objective space, constraint space, and the combined objectives and constraints space respectively to yield RankObj, RankCon and RankCom.

Step 4: Select elite individuals. If the individuals with rank 1 (based on RankObj) are less than $n_{\text{carryover}}$ in number, then put all of them into the new population P'. Else select $n_{\text{carryover}}$ number of well-spread solutions out of all the rank 1 individuals (as explained in Section 4.4.5) and put them into the new population P'. Elite individuals carried from the previous generation preserve the values of their objective and constraint functions.

Step 5: If n is the number of decision variables, the best n number of solutions in the population (based on RankCon) is selected according to the method described in Section 4.4.6 and mutated and then put into new population P'.

Step 6: Crossover.

Step 7: If a prescribed stopping condition is satisfied, end the algorithm. Otherwise, return to Step 2.

4.5 RESULTS

The multiobjective genetic algorithm procedure was implemented through a C++ program running in the Windows XP SP2 environment of a PC (hp workstation xw4200). The material assumed for the structure is polypropylene because of its ductility and high strength-to-modulus ratio – properties which are advantageous to applications in compliant mechanisms. The Young’s modulus assumed is 1150MPa with Poisson’s ratio
of 0.4 and the yield strength of polypropylene is about 33MPa.

Wherever the loading point is located, an input displacement of any magnitude between 10mm and 25mm is to be applied in the direction perpendicular to the boundary (with displacement parallel to the boundary unrestrained). The lower bound of input displacement (viz. 10mm) is based on past experience that (i) achieving a long symmetric path with 10mm of input displacement is difficult, and (ii) meeting the stress constraint with an input displacement less than 10mm is easy, and as a result initial generations (having high number of infeasible solutions) favor such small input displacements to the extent that it becomes difficult to maintain diversity in the population with respect to the input displacement. The upper bound of input displacement (viz. 25mm) is based on past experience that (i) achieving a long symmetric path with 25mm of input displacement is easy, and (ii) meeting the stress constraint with an input displacement more than 25mm is difficult.

4.5.1 Run 1

In this run, three Bezier curves are used such that there is one connecting curve between any two points, with each curve defined by three control points. All thickness values are allowed to vary between the minimum value 0 and maximum value 3.

The optimization was run for 500 generations (with a population size of 100 per generation), by the end of which 45,007 objective function evaluations (finite element analyses) have been performed. The total (wall-clock) time consumed for 500 generations is 598,809s. Three of the solutions at the end of 500 generations are shown in Figure 4.11. Figure 4.11(a) shows the solution with the best path objective, whereas Figure 4.11(c) shows the solution with the best GA objective. The solution with the best combined objective is shown in Figure 4.11(b); it has path objective better than the solution in (c) and GA objective better than the solution in (a).

The design variable values for the solution with the best combined objective, which corresponds to Figure 4.11(b), is given in Figure 4.12. The input/output/control points
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

Figure 4.11: Three non-dominated solutions at 500th generation.

and the corresponding Bezier curves of the solution with the best combined objective, are shown in Figure 4.13. The best combined objective was attained at the 343rd generation, with a path objective function f_{path} value of 0.01671mm and f_{GA} value of -3.66733. Thus, the combined objective f_{com} has a value of 1.53056. The input displacement is 10.003mm and the required input force is 4.536984N. The peak von Mises stress is 31.0334MPa which occurs at the support element. Thus, the stress constraint function g_{stress} has a value of -0.059593.

Figure 4.14(a) shows how the grip-and-move manipulator can be made from the optimum design with the best combined objective by arranging two of the same mechanisms symmetrically about the line of symmetry. The undeformed geometry of the mechanism is shown by its mesh while the deformed shape in its final position is shown by its boundary outline only. A drawing software was applied to fit smooth boundary curves manually to the optimum design. The geometry data with smoothed boundary edges of the design was then sent to a laser cutting machine to cut an actual-sized prototype (Figure 4.14(b)) of the mechanism from a polypropylene sheet. The mechanism was then hand actuated to effect the deformation, and the displacements of the output point were measured and plotted for comparison with the displacement path obtained via the FE
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

Figure 4.12: Chromosome code of the optimal result with best combined objective.

Figure 4.13: Input/output/control points and Bezier curves of the optimal result with best combined objective.
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

analysis (from the optimization run) shown on the plot of Figure 4.14(c).

Figure 4.15 and Figure 4.16 provide a glimpse of the evolution history by a sampling of the solutions obtained at the respectively indicated generations. Figure 4.15 shows three solutions in the initial population with their corresponding objective/constraint function values. Figure 4.16 (a)-(i) show the best feasible solutions (with their corresponding objective/constraint values) achieved up to the respectively indicated generations 50, 100, and 300. At every indicated generation, one solution with best path objective, one with best GA objective, and one with best combined objective are given.

Figure 4.17 shows plots of the best path objective (f_{path}), the corresponding solution’s GA objective (f_{GA}) and the corresponding solution’s combined objective (f_{com}) versus generation number. f_{path}, f_{GA} and f_{com} values on the plot corresponding to any particular generation number belong to that generation’s non-dominated feasible solution having the best path objective.

Figure 4.18 shows plots of the best combined objective (f_{com}), the corresponding solution’s path objective (f_{path}) and the corresponding solution’s GA objective (f_{GA}) versus generation number. f_{path}, f_{GA} and f_{com} values on the plot corresponding to any particular generation number belong to that generation’s non-dominated feasible solution having the best combined objective.

Figure 4.19 shows plots of the best GA objective (f_{GA}), the corresponding solution’s path objective (f_{path}) and the corresponding solution’s combined objective (f_{com}) versus generation number. f_{path}, f_{GA} and f_{com} values on the plot corresponding to any particular generation number belong to that generation’s non-dominated feasible solution having the best GA objective.

Figure 4.20 shows a plot in objective space, where solid shape markers have been used to denote the feasible non-dominated solutions at any particular sample generation. Hollow shape markers of the corresponding same shape have been used for showing any elites at that generation. At any particular generation, the elites are a subset of the feasible non-dominated solutions (as the elites are basically the feasible non-dominated solutions
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

Figure 4.14: Compliant grip-and-move manipulator (a) arrangement (b) prototype (c) symmetric paths from the FE analysis and prototype (Run 1).
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

Figure 4.15: Sample solutions from the initial (randomly generated) population.

which have been selected to be carried forward to the next generation) and therefore, every elite (hollow marker) coincides with one of the feasible non-dominated solutions (solid markers) in the plot.

Figure 4.21 shows a plot of the cumulative non-dominated front up to some sample generations. The solutions shown in Figure 4.20 are non-dominated among all the solutions in the population at the indicated generation, whereas solutions shown in Figure 4.21 are non-dominated among all the solutions accumulated from past generations up till the indicated generation. Thus, the plot in Figure 4.20 is with respect to a single particular generation, whereas the plot in Figure 4.21 is with respect to all the generations up to the particular generation (inclusive). As not all of the feasible non-dominated solutions are carried forward to the next generation, it is possible that a solution which has appeared in Figure 4.20 is missing from Figure 4.21.
Figure 4.16: Best feasible solutions from sample intermediate generations.
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

Figure 4.17: History of the best path objective \((f_{\text{path}}) \).

Figure 4.18: History of the best combined objective \((f_{\text{com}}) \).
Figure 4.19: History of the best GA objective (f_{GA}).
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

(a) three dimensional plot

(b) GA objective versus path objective

(c) combined objective versus path

(d) combined objective versus GA objective objective

Figure 4.20: Plot of non-dominated solutions and elites at some sample generations.
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

![Diagram](image_url)

(a) three dimensional plot
(b) GA objective versus path objective

![Diagram](image_url)

(c) combined objective versus path
(d) combined objective versus GA objective

Figure 4.21: Plot of cumulative non-dominated front up to some sample generations.
4.5.2 Run 2

The algorithm has been rerun for the problem while keeping all the parameters exactly same as those used in Run1 (Section 4.5.1) except that the thickness values are allowed to vary between the minimum value 0 and maximum value 1.

The optimization was run for 500 generations (with a population size of 100 per generation), by the end of which 45,732 objective function evaluations (finite element analyses) have been performed. The total (wall-clock) time consumed for 500 generations is 600,972s. Three of the solutions at the end of 500 generations are shown in Figure 4.22. Figure 4.22(a) shows the solution with the best path objective, whereas Figure 4.22(c) shows the solution with the best GA objective. The solution with the best combined objective is shown in Figure 4.22(b); it has path objective better than the solution in (c) and GA objective better than the solution in (a).

![Figure 4.22: Three non-dominated solutions at 500th generation.](image)

The design variable values for the solution with the best combined objective, which corresponds to Figure 4.22(b), is given in Figure 4.23. The input/output/control points and the corresponding Bezier curves of the solution with the best combined objective, are shown in Figure 4.24. The best combined objective was attained at the 327th generation,
with a path objective function f_{path} value of 0.069004mm and f_{GA} value of -3.582873. Thus, the combined objective f_{com} has a value of 2.085569. The input displacement is 10.323mm and the required input force is 3.815800N. The peak von Mises stress is 29.4739MPa which occurs at the support element. Thus, the stress constraint function g_{stress} has a value of -0.011275.

Figure 4.23: Chromosome code of the optimal result with best combined objective.

Figure 4.24: Input/output/control points and Bezier curves of the optimal result with best combined objective.
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

Following the same sequence and format of results/plots shown in Run 1, the rest of the corresponding set of results from Run 2 are shown in Figures 4.25 to 4.32.

Figure 4.25: Compliant grip-and-move manipulator (a) arrangement (b) prototype (c) symmetric paths from the FE analysis and prototype (Run 2).

(a) (b) (c)

Figure 4.26: Sample solutions from the initial (randomly generated) population.

(a) $f_{path} = 36.31704\text{mm}$
$f_{GA} = -1.725885$
$f_{com} = 366.0675$
$g_{stress} = 2.006973$

(b) $f_{path} = 6.842308\text{mm}$
$f_{GA} = -1.000000$
$f_{com} = 73.42308$
$g_{stress} = 4.661424$

(c) $f_{path} = 21.04265\text{mm}$
$f_{GA} = -1.000000$
$f_{com} = 215.4265$
$g_{stress} = -0.7087606$
Figure 4.27: Best feasible solutions from sample intermediate generations.
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

Figure 4.28: History of the best path objective (f_{path}).

Figure 4.29: History of the best combined objective (f_{com}).
Figure 4.30: History of the best GA objective (f_{GA}).
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

Figure 4.31: Plot of non-dominated solutions and elites at some sample generations.
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

Figure 4.32: Comparison of non-dominated fronts between Run 3 and Run 2.
4.5.3 Run 3

The algorithm has been rerun for the problem while keeping all the parameters exactly same as those used in Run 2 (Section 4.5.2) except that only two connecting Bezier curves are used such that there is one connecting curve joining support point to loading point, and one curve joining output point to loading point. The output point is therefore not connected to the support point directly.

The optimization was run for 500 generations (with a population size of 100 per generation), by the end of which 44,310 objective function evaluations (finite element analyses) have been performed. The total (wall-clock) time consumed for 500 generations is 314,380s. Three of the solutions at the end of 500 generations are shown in Figure 4.33. Figure 4.33(a) shows the solution with the best path objective, whereas Figure 4.33(c) shows the solution with the best GA objective. The solution with the best combined objective is shown in Figure 4.33(b); it has path objective better than the solution in (c) and GA objective better than the solution in (a).

![Figure 4.33: Three non-dominated solutions at 500th generation.](image)

The design variable values for the solution with the best combined objective, which corresponds to Figure 4.33(b), is given in Figure 4.34. The input/output/control points
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

and the corresponding Bezier curves of the solution with the best combined objective, are shown in Figure 4.35. The best combined objective was attained at the 476th generation, with a path objective function f_{path} value of 0.066679mm and f_{GA} value of -3.705614. Thus, the combined objective f_{com} has a value of 2.016093. The input displacement is 10.206mm and the required input force is 10.154098N. The peak von Mises stress is 30.7286MPa which occurs at the support element. Thus, the stress constraint function g_{stress} has a value of -0.073918.

Figure 4.34: Chromosome code of the optimal result with best combined objective.

Figure 4.35: Input/output/control points and Bezier curves of the optimal result with best combined objective.
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

Following the same sequence and format of results/plots shown in Run 2, the rest of the corresponding set of results from Run 3 are shown in Figures 4.36 to 4.43.

Figure 4.36: Compliant grip-and-move manipulator (a) arrangement (b) prototype (c) symmetric paths from the FE analysis and prototype (Run 3).

Figure 4.37: Sample solutions from the initial (randomly generated) population.
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC
PATH GENERATING MECHANISMS

Figure 4.38: Best feasible solutions from sample intermediate generations.

(a) generation 50 (best f_{path})
- $f_{path} = 0.080278\text{mm}$
- $f_{GA} = -1.779921$
- $f_{com} = 3.611895$
- $g_{stress} = -0.548130$

(b) generation 50 (best f_{com})
- $f_{path} = 0.080278\text{mm}$
- $f_{GA} = -1.779921$
- $f_{com} = 3.611895$
- $g_{stress} = -0.548130$

(c) generation 50 (best f_{GA})
- $f_{path} = 8.040815\text{mm}$
- $f_{GA} = -5.721136$
- $f_{com} = 81.28210$
- $g_{stress} = -0.054500$

(d) generation 100 (best f_{path})
- $f_{path} = 0.080278\text{mm}$
- $f_{GA} = -1.779921$
- $f_{com} = 3.611895$
- $g_{stress} = -0.548130$

(e) generation 100 (best f_{com})
- $f_{path} = 0.188723\text{mm}$
- $f_{GA} = -3.581011$
- $f_{com} = 3.283481$
- $g_{stress} = -0.051782$

(f) generation 100 (best f_{GA})
- $f_{path} = 9.418611\text{mm}$
- $f_{GA} = -7.100627$
- $f_{com} = 94.89027$
- $g_{stress} = -0.137679$

(g) generation 300 (best f_{path})
- $f_{path} = 0.035877\text{mm}$
- $f_{GA} = -1.497864$
- $f_{com} = 3.696858$
- $g_{stress} = -0.866052$

(h) generation 300 (best f_{com})
- $f_{path} = 0.066679\text{mm}$
- $f_{GA} = -3.705614$
- $f_{com} = 2.016093$
- $g_{stress} = -0.739182$

(i) generation 300 (best f_{GA})
- $f_{path} = 8.247529\text{mm}$
- $f_{GA} = -8.062355$
- $f_{com} = 83.09545$
- $g_{stress} = -0.073085$
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

![Graph](image)

Figure 4.39: History of the best path objective (f_{path}).

![Graph](image)

Figure 4.40: History of the best combined objective (f_{com}).
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

Figure 4.41: History of the best GA objective (f_{GA}).
Figure 4.42: Plot of non-dominated solutions and elites at some sample generations.
Chapter 4. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING SYMMETRIC PATH GENERATING MECHANISMS

![Plot of cumulative non-dominated front up to some sample generations.](image)

(a) three dimensional plot
(b) GA objective versus path objective
(c) combined objective versus path objective
(d) combined objective versus GA objective objective

Figure 4.43: Plot of cumulative non-dominated front up to some sample generations.
Unlike compliant mechanisms such as grippers, crimping/clamping mechanisms and displacement inverters/amplifiers, the most important objective of a symmetric path generating compliant mechanism is to minimize the path objective function which quantifies the error between the actual and the desired paths. Although generating a path correctly is of utmost importance for a symmetric path generating compliant mechanism, improvement in the flexibility of the mechanism without deteriorating the path objective is also desirable. Keeping this in mind, a second objective, the GA objective, has been devised and used so that the flexibility of the mechanism is also maximized simultaneously.

As can be seen from the result, the path produced by the optimum design (with the best combined objective) is very close to being symmetric. The GA attained in the best combined objective result is also fairly good while the mechanism with the best path objective or the best GA objective are not so good because of their other objective values. However, the absolute length of the path generated by the optimum design is relatively short compared to the size of the structure. Future work needs to be done to improve the length of the path with respect to the size of the structure in order to extend the working range of the manipulator.

As shown in the plots, the (experimental) measured paths are not as close to the desired symmetric curves as suggested by the FE results. Results from Run 1 are fairly close, while Run 3 prototype result is quite far from FE analysis. However the (experiment) path of the Run 3 prototype can simply be re-oriented to make it more symmetric, and hence the orientation/position of the two mechanisms of Run 3 can be adjusted and the line of symmetry rearranged to construct a grip-and-move manipulator. Unlike results from Run 1 and Run 3, the experimental path produced by the prototype of Run 2 is not very symmetric. The first possible reason for the difference between design and its corresponding prototype is the shape change after smoothening the jagged-edge structure. The second possible reason is inaccuracies in the experimental measurement. And the
third possible reason is that although numerical simulation results can predict mechanism properties, they may not be expected to be very accurate.
Chapter 5

IMPROVED METHODOLOGY

5.1 ENHANCED GEOMETRIC REPRESENTATION SCHEME FOR STRUCTURAL TOPOLOGY OPTIMIZATION

The enhanced geometry representation scheme is the same as that described in Chapter 4 except that, in the enhanced scheme, the connectivities and the number of curves used are made variable and to be optimized in the evolutionary procedure. In the original scheme described in Chapter 4, the connectivity and number of curves used are defined by the designer in advance and thereafter remain fixed throughout the optimization. As the symmetric path mechanism described in Chapter 4 is one-DOF mechanism, it has only one input point which together with the support point and output point forms a total of three I/O points. With three I/O points, it is not difficult for the designer to prescribe an intuitively suitable connectivity and number of curves since there are only a total of four possible valid connectivities (assuming only one connecting curve between any two points). However, for creating the second type of grip-and-move manipulator to be described later in Chapter 7, 2-DOF mechanisms are to be designed with two input points and hence a total of four I/O points. This means that a minimum number of three curves are needed for a valid connectivity of the four I/O points, and a maximum of six curves will give full connectivity. Hence there is a large number of permutation (a total of 38 possible valid connectivities) and it becomes difficult for the designer to intuitively prescribe one that is likely the best connectivity. This is thus the motivation behind the development of the enhanced morphological scheme which maintains full connectivities.
(6 curves) in the chromosome code but whichever of the curves are actually used will be selected (optimized) through the evolutionary procedure.

5.1.1 Enhanced Morphological Representation of Geometry

The structural geometry representation scheme developed here is an enhancement of the morphological representation scheme introduced in Section 4.3 which is referred to here as the old method [249]. Figure 5.1(a) shows an example problem defined with four I/O locations, each made up of one element in black. The positions of these are variable but sometimes may be confined to only the boundary (as in this example illustration) depending on the problem requirements. Six connecting curves in the illustration of Figure 5.1(b), three of which are active and three of which are inactive, are used such that there is one connecting curve between any two points (i.e. every I/O point is directly connected to the other three). Before continuing, it is important to make a clear distinction between the active and inactive curves. The active curves are the curves which are in the ‘on’ state. The structure is generated based only on the active curves. Although the inactive curves, which are in the ‘off’ state, temporarily contribute nothing to the current structure, they are still very important in subsequent generations because they may be turned ‘on’ later through the crossover or mutation operations. In Figure 5.1(b), the active curves are marked with thick lines and the inactive with thin dotted lines. The connectivity of the I/O points is based on all connecting active curves joining one point to another. And this connectivity can be varied by altering the states of curves. In this example, a total of 38 distinct and valid connectivities of the 4 I/O points can be defined while the old method which specifies a fixed connectivity can only define 1 connectivity. Each curve is a Bezier curve defined by the position vector \mathbf{r}:

$$\mathbf{r} = \mathbf{r}(u) = s \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} u^k (1 - u)^{n-k} \mathbf{r}_k$$

where s is the state of current curve whose value is 0 when inactive or 1 when active while all the other parameters are defined exactly the same as those used in the old method.
Figure 5.1: Definition of structural geometry by morphological scheme.
Chapter 5. IMPROVED METHODOLOGY

5.1.2 Chromosome Encoding

As in the old method, the structural geometry in Figure 5.1(d) can be encoded as a chromosome in the form of a graph as shown in Figure 5.2. For identification purpose, the active curves are shown by solid lines and the inactive curves are represented by dotted lines. The design variables (the element numbers of those elements in which the I/O points and the Bezier curve control points are located, and the thickness values) are defined in exactly the same way as in the old method. However, a new design variable, the curve states, is introduced. Altering the curve states can vary the connectivity of the I/O regions, and therefore the representation scheme can automatically decide the connectivity. The resulting scheme therefore increases the variability of the connectivity of the curves and hence the variability of the structure topology.

![Figure 5.2: Chromosome code.](image)
5.1.3 Genetic Operators

5.1.3.1 Crossover

An example illustrating the crossover operation is shown in Figure 5.3. The closed loop, which is shown in both Figure 5.3(a) and Figure 5.3(b), cutting across portions of the chromosomes represent the sectioning or crossover loop. Applying the same crossover loop to any given pair of parent chromosomes and swapping the subgraph contained within the loop will produce two children. After such a crossover operation, it is possible that part of a curve in the child chromosome is inherited from an active curve of one parent, while the other part is inherited from an inactive curve of the other parent. In such a situation, it is necessary to determine whether that curve in the child chromosome should be considered active or inactive. This is decided by whether the ‘on’ or ‘off’ variables dominate the curve, i.e. if the number of ‘on’ variables is more than the ‘off’ variables, then the curve is active; otherwise it is inactive. This always works and there will never be a tie because the total number of variables in a curve (the control point variables and the thickness variables) is always an odd number. As a result, the connectivities of the two child chromosomes generated can be different from their parents, as shown in Figure 5.3(c) and (d).

The outcome of this crossover operation is demonstrated in an example (Figure 5.4) through the crossover of two parents, and it can be seen that geometric characteristics from both parents are recombined in each child. In other words, each resulting child inherits geometric characteristics and connectivity from both parents. And the advantages of the representation (such as no checkerboard patterns and single-node hinge connections) are maintained in the offspring.

Furthermore, the child chromosome may become invalid after the crossover if the active curves do not form a connected graph, which in turn may not define a single connected structure. In other words, for this crossover operator, the preservation of connectivity is not guaranteed. The way this problem is overcome is by simply discarding any child chromosome that is invalid. Determining whether a chromosome (graph) is
Chapter 5. IMPROVED METHODOLOGY

(a) Parent A

(b) Parent B
Figure 5.3: Chromosome codes of crossover operation between parents.
Figure 5.4: Outcome of crossover operation between parents.
5.1.3.2 Mutation

The mutation operator devised for this chromosome encoding works by applying a mutation probability to every vertex of the graph to determine whether that vertex is to be mutated, and if it is to be mutated, then alter the value in that vertex to a randomly generated value (within the allowable range) or changing the on/off states of the selected curves. This means that under the mutation operation, the positions of selected input/output/control points, thickness values or on/off states of curves in a chromosome are changed randomly. Mutation of the state is simple, which is altering the state of curves. When the selected curve is active, it will be inactive after mutation. If the selected curve is inactive, it will be active after mutation. An example illustrating this operation is shown in Figure 5.5.

As in the crossover operation, the child chromosome may become invalid after mutation because the active curves may no longer define a connected graph. The way to overcome this problem is again to discard the child chromosome if it is invalid.
Chapter 5. IMPROVED METHODOLOGY

(a) Before mutation

(b) After mutation
Chapter 5. IMPROVED METHODOLOGY

Figure 5.5: Mutation operation of on/off state.

5.2 MULTIOBJECTIVE OPTIMIZATION BY A GENETIC ALGORITHM

The newly proposed multiobjective genetic algorithm is the same as described in Chapter 4 but modified to incorporate a optimization-level decision-making technique to integrate the user’s preference [251] and hybridize with a local search (LS) strategy to improve its efficiency [252]. The novel approach (adaptive constraint) treats the relatively more important and/or challenging objectives as constraints whose ideal values will be adaptively changed (improved) during the evolutionary procedure. This helps to direct and focus the genetic search towards regions of interest in the objective space, thus is a useful and intuitive way for specifying the user’s preference and/or for tackling the harder objectives.
5.2.1 Adaptive Constraint

Very often design optimization problems involve multiple objectives. Although it is difficult to evaluate the importance of the various objectives quantitatively during the conceptual/preliminary stages of the design process, usually qualitative statements about the locations of interesting regions in the objective space can be made. This section presents a novel, simple and intuitive way to integrate the user’s preference into the genetic algorithm. This approach treats relatively more important objectives as adaptive constraints whose ideal values will be adaptively changed (improved) during the evolutionary procedure. Such changes will affect the region feasibility of the objective space which results in the variation of problem type (unconstrained problem, moderately constrained problem or highly constrained problem). As the selection criteria for mating partner depends on the type of problem in the algorithm used here, more selection pressure is put on adaptive constraints. The proposed algorithm efficiently guides the population towards the (preferred) region of interest, allowing a faster convergence and a better coverage of the preferred area of the Pareto optimal front based on the relative importance of the objectives. Furthermore, by defining the harder or more challenging objectives as adaptive constraints, this approach will also be helpful for guiding and focusing the population and search towards improving those objectives.

As shown in Figure 5.6, if the region nearer the f_1 axis (with lower values of f_2) is of interest (preferred), i.e. the left portion as demarcated by the boundary line, it is obvious that the non-dominated set 2 marked with circles is better than the non-dominated set 1 marked with triangles. And non-dominated set 2 is almost similar to non-dominated set 3 in the region of interest. If non-dominated set 2 can be obtained faster than non-dominated set 3, then it is preferred over non-dominated set 3 because of its lower computational cost.

The optimization technique presented here will direct the solutions towards a preferred Pareto-optimal region. Hence the approach presented will be useful for solving the type of problems represented in Figure 5.7 where it may be easy to obtain a non-dominated set far from the preferred region of interest especially when some of the objectives can easily
Chapter 5. IMPROVED METHODOLOGY

reach their optimal values while others cannot. A straightforward evolutionary procedure will not have the ability to escape from this easy part and the true Pareto front cannot be obtained. But the method proposed in this work can help overcome such difficulties.

The formulation of the algorithm is similar to the ε-Constraint method proposed in [253]. Following from the multiobjective problem shown in Equation 4.7, the problem here is reformulated by keeping some of the objectives and constraining the rest of the objectives within prescribed values which are adaptively improved over the generations.
Chapter 5. IMPROVED METHODOLOGY

The modified problem is as follows:

Minimize \[f(x) = [f_1(x) \, f_2(x) \, \cdots \, f_p(x)] \]

subject to \[f_i(x) - F_i \leq 0, \quad i = p + 1, p + 2, \ldots, m \tag{5.2} \]
\[g_j(x) \leq 0, \quad j = 1, 2, \ldots, q \]
\[h_k(x) = 0, \quad k = 1, 2, \ldots, r \]

where \(p \) is the number of the original objectives which are kept as objectives.

In the above formulation, the parameter \(F_i \) represents a tentative ideal value of the corresponding \(i \)-th objective. It will be automatically updated in the evolution process according to the mechanism described in Section 5.2.1.2. \(f_i(x) - F_i \) will be treated as a constraint which is called an adaptive constraint in this work. Then the objective matrix (shown in Equation 4.8) will be reduced to:

\[
O' = \begin{bmatrix}
 f_{11} & f_{12} & \cdots & f_{1p} \\
 f_{21} & f_{22} & \cdots & f_{2p} \\
 \vdots & \vdots & \ddots & \vdots \\
 f_{M1} & f_{M2} & \cdots & f_{Mp}
\end{bmatrix} \tag{5.3}
\]

And the constraint matrix (shown in Equation 4.9) and combined matrix (shown in Equation 4.10) are rewritten as:

\[
C' = \begin{bmatrix} C_a & C \end{bmatrix} \tag{5.4}
\]
\[
COM' = \begin{bmatrix} O' & C' \end{bmatrix} = \begin{bmatrix} O' & C_a & C \end{bmatrix} \tag{5.5}
\]

where

\[
C_a = \begin{bmatrix}
 f_{1(p+1)} - F_{(p+1)} & f_{1(p+2)} - F_{(p+2)} & \cdots & f_{1m} - F_m \\
 f_{2(p+1)} - F_{(p+1)} & f_{2(p+2)} - F_{(p+2)} & \cdots & f_{2m} - F_m \\
 \vdots & \vdots & \ddots & \vdots \\
 f_{M(p+1)} - F_{(p+1)} & f_{M(p+2)} - F_{(p+2)} & \cdots & f_{Mm} - F_m
\end{bmatrix} \tag{5.6}
\]

Figure 5.8 shows some scenarios with different \(F_2 \) values for a problem with two
conflicting objectives f_1 and f_2 where f_1 is converted into an adaptive constraint. Initially, a large value $F_2^{(1)}$ is used which make almost the whole objective space feasible. No pressure is put in the selection process. After some generations, when the number of feasible solutions reaches a prescribed number, the value of F_2 is updated to $F_2^{(2)}$. The resulting problem with this constraint value divides the original feasible objective space into two portions. The right portion, $f_2(x) - F_2^{(2)} > 0$, becomes the infeasible region. Then the elitist and selection strategy will put some pressure on the subsequent evolution. In this way, the F_2 value will be updated (reduced) in steps until it reaches its ideal minimum value. Figure 5.8 also gives a glimpse of the progress of the non-dominated set towards the real Pareto front.

![Figure 5.8: The adaptive constraint method for conflicting objectives.](image)

For problem with non-conflicting objectives as shown in Figure 5.9, the process is similar to the previous one. The difference between them is that the Pareto front will converge to an optimal point at last. Figure 5.9 also gives a glimpse of the non-dominated set progressing towards the optimal point.

5.2.1.1 Elitism

At every generation, all the feasible individuals are separated from the rest in the population. Pareto ranking of these feasible individuals is separately computed among
themselves based only on objectives and the resulting rank 1 individuals (non-dominated front) are carried forward to next generation. This ensures the best feasible solution is always carried forward to the next generation. This also eliminates the need of searching back through history to locate the best feasible solutions. In this algorithm, another non-dominated front obtained from individuals which are partially feasible is also considered as elite solutions. Partially feasible individuals are those that satisfy the normal constraints but do not satisfy the adaptive constraints.

Two limits have been imposed on the number of elite feasible solutions (denoted as $n_{\text{carryover}}$) and elite partially feasible solutions (denoted as $np_{\text{carryover}}$) being carried forward to the next generation. If the number of elite feasible solutions or partially feasible solutions exceeds a prescribed number, then only the prescribed number of well-spread solutions are carried forward.

5.2.1.2 Updating of Ideal Values

Let any solution that satisfies all the normal constraints as well as the i-th adaptive constraint be referred to as an i-th feasible solution. If the number of such solutions is more than M_i in number, select only M_i number of well-spread solutions, and update the
tentative ideal value of the corresponding adaptive constraint according to the following:

\[F_i^{(k+1)} = F_i^{(k)} + \frac{1}{M_i} \sum_{j=1}^{M_i} (f_{ji} - F_i^{(k)}) = \frac{1}{M_i} \sum_{j=1}^{M_i} f_{ji} \]

(5.7)

where \(F_i^{(k+1)} \) is the new value after update, and \(F_i^{(k)} \) is the current one. The process can be controlled with \(M_i \). When a small value is used, the evolutionary process will put more selection pressure to the corresponding adaptive constraint.

5.2.1.3 Proposed Algorithm

The algorithm for getting a set of Pareto optimal solutions is given below:

- **Step 1**: Generate random initial population \(P \) of size \(M \).

- **Step 2**: Evaluate objective as well as constraint functions for each individual in \(P \). (Individuals carried forward without any change from the previous generation to the current generation preserve the values of their objective and constraint functions.)

- **Step 3**: Set \(i \) equal to \(p + 1 \).

- **Step 4**: If the number of \(i \)-th feasible individuals in the population \(P \) is less than \(M_i \), then go to step 5. Else compute new \(F_i \) value, and update the corresponding adaptive constraint.

- **Step 5**: Set \(i = i + 1 \). If \(i \) is less than \(m \), then go to **Step 4**.

- **Step 6**: Compute \(FeasRatio = (\text{Number of feasible solutions in the population } P) / M \).

- **Step 7**: Compute Pareto Ranking based on \(O' \) matrix to yield a vector \(\text{RankObj}' \).

- **Step 8**: Compute Pareto Ranking based on \([O' \ C_a] \) matrix to yield a vector \(\text{RankObj}' \).

- **Step 9**: Compute Pareto Ranking based on \(C' \) matrix to yield a vector \(\text{RankCon}' \).

- **Step 10**: Compute Pareto Ranking based on \(\text{COM}' \) matrix to yield a vector \(\text{RankCom}' \).

- **Step 11**: Calculate the selection probability based on \(O' \) matrix to yield a vector \(\text{ProbObj}' \). Calculate the selection probability based on \(C' \) matrix to yield a vector \(\text{ProbCon}' \).
Chapter 5. IMPROVED METHODOLOGY

Step 12: If the individuals with rank 1 (based on \textbf{RankObj}N') are less than \(n_{\text{carryover}}\) in number, then put all of them into the new population \(P'\). Else select \(n_{\text{carryover}}\) number of well-spread solutions out of all the rank 1 individuals and put them into the new population \(P'\).

Step 13: If the individuals with rank 1 (based on \textbf{RankObj'}) are less than \(np_{\text{carryover}}\) in number, then put all of them into the new population \(P'\). Else select \(np_{\text{carryover}}\) number of well-spread solutions out of all the rank 1 individuals and put them into the new population \(P'\).

Step 14: If \(n\) is the number of decision variables, the best \(n\) number of solutions in the population (based on \textbf{RankCom'}) is selected. This is so that a mutation operation (without crossover) can be applied to a single different decision variable in each of the \(n\) different solutions, such that each of the variables will be mutated exactly once among those \(n\) number of solutions. These \(n\) number of mutated solutions are then put into the new population \(P'\).

Step 15: If the new population \(P'\) is not full, then do Step 16 to Step 24, else go to Step 25.

Step 16: Generate a random number \(\text{RandomNo}_A\). If \(\text{RandomNo}_A < \text{FeasRatio}\) then select an individual \(a\) based on \textbf{ProbObj'}; else select an individual \(a\) based on \textbf{ProbCon'}.

Step 17: Generate a random number \(\text{RandomNo}_B\). If \(\text{RandomNo}_B < \text{FeasRatio}\) then select an individual \(b\) based on \textbf{ProbObj'}; else select an individual \(b\) based on \textbf{ProbCon'}.

Step 18: Generate a random number \(\text{RandomNo}_C\). If \(\text{RandomNo}_C < \text{FeasRatio}\) then select an individual \(c\) based on \textbf{ProbObj'}; else select an individual \(c\) based on \textbf{ProbCon'}.

Step 19: If \(b\) and \(c\) are both feasible, then if \(\text{RankObj'}_b < \text{RankObj'}_c\), then \(d = b\) else \(d = c\).

Step 20: If \(b\) and \(c\) are both infeasible, then if \(\text{RankCon'}_b < \text{RankCon'}_c\), then \(d = b\) else \(d = c\).

Step 21: If \(b\) is feasible and \(c\) is infeasible, \(d = b\).

Step 22: If \(c\) is feasible and \(b\) is infeasible, \(d = c\).
Chapter 5. IMPROVED METHODOLOGY

Step 23: Mate \(a \) with \(d \). Mutate the children depending on the mutation probability. Put the children into the new population \(P' \).

Step 24: Go to Step 15.

Step 25: To eliminate duplication of solution within \(P' \), remove solutions which are identical to any other member of \(P' \). After this, if number of individuals in \(P' \) is less than \(M \), then go to Step 15.

Step 26: If number of individuals in \(P' \) is more than \(M \), then drop the newest individual(s) from \(P' \) so that number of individuals in \(P' \) become \(M \).

Step 27: If maximum number of generations is reached, then stop; else set \(P = P' \) and go to Step 2.

5.2.2 Local Search

The Genetic Algorithm is a potent multiobjective optimization method, and the effectiveness of hybridizing it with local search (LS) has recently been reported in the literature (as discussed in Chapter 2). In this work, the proposed hybrid algorithm integrates a simple local search strategy with the algorithm presented in Section 5.2.1. A novel constrained tournament selection is used as a single objective function in the local search strategy. The selection is utilized to determine whether a new solution generated in the local search process will survive. The Hooke and Jeeves method is applied to decide the search path. Good initial solutions, the solutions to be mutated, are chosen for local search.

5.2.2.1 Tournament Selection for Local Search

Since a local search strategy requires a tournament selection between an initial solution and its neighboring solution, a comparison strategy is needed. For multi-objective optimization without constraints, a single objective function converted from multiple objectives can be used. For constrained optimization, constraint handling mechanisms should be given first. In most applications, penalty functions using static [190], dynamic
or adaptive concepts [200] have been widely used and are quite popular. The major problem is the need for specifying the right value for penalty parameters in advance. The method from Ray et al. [212] incorporates a Pareto ranking of the constraint violations and so does not involve any aggregation of objectives or constraints and thus the problem of scaling does not arise. Note that Pareto ranking is not well suited for hybridization with local search. When Pareto ranking is used, the current solution x is replaced with its neighboring solution y (i.e., the local search move from x to y is accepted) only when y dominates x (i.e., y is better than x). That is, the local search move is rejected when x and y are non-dominated with respect to each other. However, change of the rank of a given solution may require significant changes of the objective/constraint values, and so, many local moves will not improve the rank. The main difficulty with using the Pareto ranking approach is that the movable area of the current solution by local search is very small.

Deb [205] proposed a constraint handling method which is also based on the penalty function approach but does not require the prescription of any penalty parameter. The main idea of this method is to use a tournament selection operator and to apply a set of criteria in the selection process:

1. Any feasible solution is preferred to any infeasible solution.
2. Between two feasible solutions, the one having better objective function value is preferred.
3. Between two infeasible solutions, the one having smaller constraint violation is preferred.

According to these criteria, the constrained optimization can be constructed as

$$
\tilde{f}(x) = \begin{cases}
 f(x) & \text{if } x \in F \\
 f_{\text{max}} + \text{vio}(x) & \text{otherwise}
\end{cases}
$$

(5.8)

where $\tilde{f}(x)$ is the artificial unconstrained objective function, F the feasible region of the design domain, f_{max} the objective function value of the worst feasible solution in
the population, and $vio(x)$ the summation of all the violated constraint function values. However, this approach is only suitable for single-objective constrained optimization problem if no further handling mechanisms for multiple objectives are given. And $vio(x)$ as summation of constraint values cannot reflect the real relative comparison between them because of different orders of magnitude among the constraints.

Extending the basic idea of Deb’s method, a technique combining Pareto ranking and weighted sum is suggested for the local search selection process. There are only 3 combinations for the two solutions: both feasible, both infeasible, and one feasible and the other infeasible. The main idea of the technique is to use a tournament selection operator and to apply a set of criteria in the selection process. Any feasible solution is preferred to any infeasible solution. When both solutions are feasible, Pareto ranking based on objectives is calculated. The one with smaller rank value is preferred. If the situation still ties, a more sophisticated acceptance rule is used for handling the situation. The fitness function of the solution x is calculated by the following weighted sum of the m objectives:

$$f(x) = w_1 f_1(x) + w_2 f_2(x) + \cdots + w_m f_m(x)$$ \hspace{1cm} (5.9)

where $f(x)$ is a combined objective and w_1, w_2, \cdots, w_m are nonnegative weights for the objectives set according to different orders of magnitude among them. Constant weight values are used in this work to fix the search direction based on user’s preference. The solution with a smaller $f(x)$ will survive. When both solutions are infeasible, Pareto ranking based on constraints is calculated. The one with smaller rank value is preferred. If the rank is same, the one with better fitness value survives. The selection criteria can be described as below to decide whether a current solution x should be replaced by a neighboring solution y:

1. If x is infeasible and y is feasible, replace the current solution x with y (i.e., let $x = y$).

2. If both x and y are feasible, then if $RankObj_y < RankObj_x$, then $x = y$, else if
Chapter 5. IMPROVED METHODOLOGY

\[\text{RankObj}_y = \text{RankObj}_x \text{ and } f(y) < f(x), \text{ then } x = y. \]

3. If both \(x \) and \(y \) are infeasible, then if \(\text{RankCon}_y < \text{RankCon}_x \), then \(x = y \), else if \(\text{RankObj}_y = \text{RankObj}_x \) and \(f(y) < f(x) \), then \(x = y \).

To obtain dominance rank value, such as \(\text{RankObj}_y \), \(\text{RankObj}_x \), \(\text{RankCon}_y \), or \(\text{RankCon}_x \), there is a procedure for maintaining a finite sized archive of solutions. The solutions in the archive are representative of solutions found by the algorithm as it searches the space. The solutions in the archive serve as a comparison set to aid in estimating the dominance rank of new candidate solutions. For the constrained optimization, two archives are required. One is used for Pareto ranking of objectives, consisting of a prescribed number of well-spread best objective solutions, and the other for Pareto ranking of constraints, consisting of a prescribed number of well-spread best constraint solutions. In this work, the comparison set is the whole solution space of the last generation. This makes the local search phase partially independent of the global search performed by the algorithm as a whole.

5.2.2.2 Selection of Initial Solutions

Local search applied to all solutions in the current population in the algorithm is inefficient, as is shown in [238]. In the proposed algorithm, the computation time spent by local search can be decreased by applying local search to only selected solutions. If \(n \) is the number of decision variables, the best \(n \) number of solutions from the current population (based on Pareto ranking) is selected. This is so that a mutation operation (without crossover) and local search can be applied to a single different decision variable in each of the \(n \) different solutions, such that each of the variables will be mutated and locally searched exactly once among those \(n \) number of solutions. These \(n \) number of mutated solutions after local search are then put into the next population \(P' \). It is also possible to probabilistically apply local search to offspring solutions obtained from crossover. This may somewhat degrade the inherent advantage of local search: simplicity. Thus the local search procedure in crossover offspring is not implemented. The generation
update mechanism in the proposed algorithm is shown in Figure 5.10.

![Generation update mechanism.](image-url)

Figure 5.10: Generation update mechanism.

5.2.2.3 Local Search Procedure

As is explained in the above, a local search procedure is applied to each new solution generated by the mutation. Generally, a local search procedure can be written as follows:

Step 1: Specify an initial solution and its corresponding design variable.

Step 2: Apply Hooke and Jeeves Method to determine the search path using the tournament selections criteria stated above as the function values.

Step 3: If the prescribed condition is satisfied, terminate the local search.

5.2.2.4 Main Algorithm

The overall algorithm uses a framework which combines the method stated in the Section 5.2.1 and local search. The algorithm is given below:

Step 1: Generate random initial population P of size M.

Step 2: Evaluate objective as well as constraint functions for each individual in P.

Step 3: Compute Pareto Ranking based on objective space, constraint space, and the combined objectives and constraints space respectively to yield $\text{RankObj}'$, $\text{RankCon}'$ and $\text{RankCom}'$.
Chapter 5. IMPROVED METHODOLOGY

Step 4: Select elite individuals. Elite individuals carried from the previous generation preserve the values of their objective and constraint functions.

Step 5: Select \(n \) good individuals from \(P \), mutate and apply local search procedure, then put them into new population \(P' \).

Step 6: Crossover.

Step 7: If a prescribed stopping condition is satisfied, end the algorithm. Otherwise, return to Step 2.
Chapter 6
TEST PROBLEMS

6.1 INTRODUCTION

Before a genetic algorithm is relied upon for solving a problem with unknown solutions, it is important that the performance of the genetic algorithm be tested and tuned by using it to solve a problem with known solutions. Various kinds of test problems [178, 254–256] had been found for testing multi-objective genetic algorithms. They were created with different characteristics, including the dimensionality of the problem, number of local optima, number of active constraints at the optimum, topology of the feasible search space, etc. However, all of these test problems have well-defined objectives/constraints expressed as mathematical functions of decision variables and therefore may not be ideal for evaluating the performance of a genetic algorithm intended to solve problems where the objectives/constraints cannot be expressed explicitly in terms of the decision variables. In essence, a genetic algorithm is typically customized to tackle a certain type of problem and therefore ‘general-purpose’ test problems may not correctly evaluate the performance of the customized genetic algorithm. The test problem should, therefore, ideally suit (or be customized to) the genetic algorithm being used.

In numerous real-life problems, objectives/constraints cannot be expressed mathematically in terms of decision variables. One of such real-life problems is structural topology optimization, where a procedure (structure geometry representation scheme) first transforms decision variables into the true geometry of the designed structure and then finite element analysis of the designed structure is carried out for evaluating the objectives/constraints. The genetic algorithm solving such problems may have special chromosome encoding to suit the structure geometry representation used and there
may also be specially devised reproduction operators to suit the chromosome encoding used. As such, the structure geometry representation scheme, the chromosome encoding and the reproduction operators introduce additional characteristics to the search space and, therefore, they are very critical to the performance of the genetic algorithm. The test problem for such genetic algorithms, therefore, must use the same structure geometry representation scheme, chromosome encoding and reproduction operators. The conventional test problems found in literature cannot make use of the genetic algorithm’s integral procedures such as structure geometry representation scheme and therefore they are not suitable for testing such genetic algorithms.

Ideally, the test problem should emulate the main problem to be solved. The test problem should be computationally inexpensive so that it can be run many times for the genetic algorithm parameters to be changed or experimented with and the effect thereof can be studied for the purpose of fine-tuning the genetic algorithm. However, the main problem in the present work, being a structural topology optimization problem, requires structural analysis which consumes a great deal of time. Taking the running time into consideration, the test problem needs to be designed without any need for structural analysis. A test problem emulating structural topology optimization does not necessarily need structural analysis as the main aim of topology optimization is to arrive at an optimal structural geometry. Without using structural analysis, if a genetic algorithm is successfully tested to be capable of converging the solutions to any arbitrary but predefined and valid ‘target’ structural geometry, then it may be inferred that the genetic algorithm would be able to converge design solutions to the optimal structural topology when solving an actual topology optimization problem. Based on this inference, a test problem can be designed such that simple geometry-based (rather than structural analysis based) objectives/constraints help design solutions converge towards the predefined target geometry. This type of test problem may be termed as “Target Matching Problem”, which is capable of using exactly the same genetic algorithm (including structural geometry representation scheme, chromosome encoding and reproduction operators) as
Chapter 6. TEST PROBLEMS

that intended for solving the actual topology optimization problem.

6.2 TARGET MATCHING PROBLEM 1 (WITH NON-CONFLICTING OBJECTIVES)

6.2.1 Formulation

The test problem used here was first developed in [151]. It is a simple and useful test problem for verifying the performance of the representation scheme and proposed methodology.

The test problem makes use of the original design space shown in Figure 6.1, and has one support point, two loading points and one output point. The problem does not represent a structural analysis problem, but the original terms ‘support’, ‘loading’ and ‘output’ have still been used for ease of reference. The positions of these I/O points are variable but confined to the boundary (the support point is positioned anywhere along the bottom boundary while the loading point 1 is positioned anywhere along the left boundary, loading point 2 and the output point are positioned anywhere along the right boundary). Six Bezier curves are used such that there is one connecting curve between any two points in accordance with the morphological geometry representation scheme proposed in Chapter 5. In this problem, the target geometry is as shown in Figure 6.2. The aim is therefore to evolve structures that match as closely as possible this target geometry. The problem presented here is more difficult than the original problem described in [151], since there is one additional loading point that may introduce unwanted segments/elements in the geometry. Any unwanted segments/elements will make the geometry more complex and not easy to converge to the target. To form the target geometry, this loading point needs to coincide with the output point as shown in Figure 6.2.

This ‘target’ shape can be achieved with the following two objectives and two constraints: distance objective, material objective, forbidden area constraint and
Chapter 6. TEST PROBLEMS

prescribed area constraint. Such a problem is defined with the help of Figure 6.3. The distance objective to be minimized is given by

\[f_{\text{distance}} = d_l + d_s \] \hspace{1cm} (6.1)

where \(d_l \) is the centroid-to-centroid Euclidean distance between the actual loading point 1 and the desired support point; \(d_s \) is the centroid-to-centroid Euclidean distance between the desired support point and the actual support point.

The material objective to be minimized is given by

\[f_{\text{material}} = \sum_{i=1}^{n} x_i \] \hspace{1cm} (6.2)

where \(x_i \) is the material density of the \(i \)-th element in the design space, with a value of either 0 or 1 to represent that the element is either void or material (solid), respectively. \(n \) is the total number of elements in the discretized design space. In other words, this objective function is defined as the summation of the material density of all elements in the current geometry. As this problem is solved using the adaptive constraint method, this objective is set as the adaptive constraint because initial trials show that it is harder to converge to the true optimum for this objective than for the distance objective.
Chapter 6. TEST PROBLEMS

Figure 6.2: Target geometry.

Figure 6.3: Formulation of Target Matching Problem 1 with Non-conflicting Objectives.
Chapter 6. TEST PROBLEMS

The forbidden area constraint can be written as

\[g_{\text{forbidden}} = \sum_{i=1}^{n_f} y_i \leq 0 \] \hspace{1cm} (6.3)

where \(y_i \) is the material density of the \(i \)-th element in the forbidden area, with a value of either 0 or 1 to represent that the element is either void or material (solid), respectively. \(n_f \) is the total number of elements in the forbidden area. In other words, the summation of the material density of elements in the forbidden area is required to be less than or equal to zero.

The prescribed area constraint can be written as

\[g_{\text{prescribed}} = n_p - \sum_{i=1}^{n_p} z_i \leq 0 \] \hspace{1cm} (6.4)

where \(z_i \) is the material density of the \(i \)-th element in the prescribed area, with a value of either 0 or 1 to represent that the element is either void or material (solid), respectively. \(n_p \) is the total number of elements in the prescribed area. In other words, the summation of the material density of elements in the prescribed area is required to be more than or equal to the total number of elements in that area.

There are 5 equally optimal locations for the output point and each of them results in a slightly different geometry. These five (slightly) distinct shapes have the same values of objective/constraint functions (viz. \(f_{\text{distance}} = 49.5; f_{\text{material}} = 142; g_{\text{forbidden}} = 0; g_{\text{prescribed}} = 0 \)) and therefore this test problem has multi-modal solutions. The test problem was intentionally designed as multi-modal so that the capability of the genetic algorithm in maintaining diversity could also be tested. One of the 5 target geometry shapes is shown in Figure 6.2. The other four target geometry shapes are shown in Figure 6.4.

Figure 6.5 shows the objective space, in some part of which solutions are definitely infeasible and the other part in which solutions may be feasible or infeasible. The solid dot represents the Pareto optimal point. Note that although Figure 6.5 shows the objective space and feasible/infeasible region as continuous region, the objective space is in actual
Figure 6.4: Other optimal solutions of the multimodal Target Matching Problem 1.
fact discrete because the objective functions are discrete-valued.

![Figure 6.5: The solution space for Target Matching Problem 1.](image)

6.2.2 Results

6.2.2.1 Run 1

In this target matching problem, six Bezier curves are used such that there is one connecting curve between any two I/O points, with each curve defined by three control points. All thickness values are allowed to vary between the minimum value 0 and maximum value 3. There are a total of 52 design variables.

The genetic algorithm was run to solve the test problem with the following set of evolutionary parameters:

(a) Population size: 200

(b) Normal mutation rate: 10% of those children formed by crossover

(c) Maximum number of feasible elites: 5% of population size

(d) Maximum number of partially feasible elites: 5% of population size

The optimization was run for 500 generations, by the end of which 95,007 objective function evaluations have been performed. The total (wall-clock) time consumed for running the genetic algorithm for 500 generations was 33580 seconds.
Two of the solutions at the end of 500 generations are shown in Figure 6.6. Figure 6.6(a) shows the solution with best material objective but not best distance objective. Figure 6.6(b) shows the solution with both the best distance objective and best material objective. Its geometry exactly matches one of the optimal solutions as shown in Figure 6.4(a). This optimal result was attained at the 482nd generation, with a distance objective ($f_{distance}$) value of 49.5 and material objective ($f_{material}$) value of 142. The corresponding value of either of the constraint functions (i.e. $g_{forbidden}$ and $g_{prescribed}$) is 0, as $g_{forbidden}$ and $g_{prescribed}$ are exactly 0 for all feasible solutions.

Figure 6.6: Two solutions at 500th generation.

The design variable values of the Figure 6.6(a) and (b) are shown in Figure 6.7(a) and (b), respectively. The input/output/control points and the corresponding Bezier curves of the Figure 6.6(a) and (b) are shown in Figure 6.8(a) and (b), respectively. Only curves 2, 3 and 5 are active and connected together to generate the target shape.
Figure 6.7: Chromosome code of the results of Figure 6.6.
Figure 6.8: Input/output/control points and Bezier curves of Figure 6.6.

Figure 6.9 and Figure 6.10 provide a glimpse of the evolution history by a sampling of the solutions obtained at the respectively indicated generations. Figure 6.9 shows three solutions in the initial population with their corresponding objective/constraint function values. Figure 6.10 (a)-(e) show the best feasible solutions (with their corresponding objective values) achieved up to the respectively indicated generations. The corresponding value of either of the constraint functions (i.e. $g_{forbidden}$ and $g_{prescribed}$) is 0. Two solutions at generation 50 are given, one with best distance objective and the other with best material objective.

Figure 6.11 shows plots of the best distance objective ($f_{distance}$) and the corresponding solution’s material objective ($f_{material}$) versus generation number. $f_{distance}$ and $f_{material}$ values on the plot corresponding to any particular generation number belong to that generation’s non-dominated feasible solution having the best distance objective. The corresponding value of either of the constraint functions (i.e. $g_{forbidden}$ and $g_{prescribed}$) is 0. The plot starts at generation number 9, as until this generation there is no feasible
Chapter 6. TEST PROBLEMS

(a) $f_{\text{distance}} = 77.4$
$f_{\text{material}} = 552$
$g_{\text{forbidden}} = 365$
$g_{\text{prescribed}} = 64$

(b) $f_{\text{distance}} = 78.6$
$f_{\text{material}} = 688$
$g_{\text{forbidden}} = 310$
$g_{\text{prescribed}} = 75$

(c) $f_{\text{distance}} = 57.3$
$f_{\text{material}} = 585$
$g_{\text{forbidden}} = 190$
$g_{\text{prescribed}} = 31$

Figure 6.9: Sample solutions from the initial (randomly generated) population.

(a) generation 20
$f_{\text{distance}} = 56.6$
$f_{\text{material}} = 243$

(b) generation 50 (best f_{distance})
$f_{\text{distance}} = 51.5$
$f_{\text{material}} = 186$

(c) generation 50 (best f_{material})
$f_{\text{distance}} = 52.2$
$f_{\text{material}} = 173$

(d) generation 100

(e) generation 300
$f_{\text{distance}} = 51.5$
$f_{\text{material}} = 163$

Figure 6.10: Best feasible solutions from sample intermediate generations.
solution in the population.

Figure 6.11: History of the best distance objective.

Figure 6.12 shows plots of the best material objective (f_{material}) and the corresponding solution’s distance objective (f_{distance}) versus generation number. f_{material} and f_{distance} values on the plot corresponding to any particular generation number belong to that generation’s non-dominated feasible solution having the best material objective. The corresponding value of either of the constraint functions (i.e. $g_{\text{forbidden}}$ and $g_{\text{prescribed}}$) is 0.

Figure 6.13 shows the plot of the non-dominated solutions positioned in the objective space at some sample generations, viz. the 20th, 50th, 100th, 300th and 500th generation. Although Figure 6.13 shows all the non-dominated solutions at any particular generation shown, only one or two distinct points (in the objective space) can be seen for that generation. However, a few distinct solutions in the design variable space may have the same objective function values and therefore, such solutions would coincide in the objective space. The three numbers separated by commas and shown in parenthesis next to every point marker, respectively, indicate (i) the total number of such coincident solutions which are elites and so, would be carried forward to the next generation, (ii) the
Figure 6.12: History of the best material objective.

number of such coincident solutions which are non-dominated among all the solutions in the population at the indicated generation, and (iii) the number of such coincident solutions which are non-dominated among all the solutions accumulated from the past generations up till the indicated generation (inclusive).

Figure 6.13: Plot of cumulative non-dominated front up to some sample generations.
6.2.2.2 Run 2

The algorithm has been rerun for the problem while keeping all the parameters exactly the same as those used in Run 1 (Section 6.2.2.1) except that in this run the population size is 300.

The optimization was run for 300 generations, by the end of which 85,732 objective function evaluations have been performed. The total (wall-clock) time consumed for 300 generations was 8998 seconds.

Two of the solutions at the end of 300 generations are shown in Figure 6.14. Figure 6.14(a) shows the solution with best material objective but not best distance objective. Figure 6.14(b) shows the optimal solution with both the best distance objective and best material objective. It is the same as one of the optimal solution as shown in Figure 6.4(a). This optimal result was attained at the 250th generation.

![Figure 6.14: Two solutions at 300th generation.](image)

(a) \(f_{\text{distance}} = 52.5 \) \(f_{\text{material}} = 142 \)
(b) \(f_{\text{distance}} = 49.5 \) \(f_{\text{material}} = 142 \)

The design variable values of the Figure 6.14(a) and (b) are shown in Figure 6.15(a) and (b) respectively. The input/output/control points and the corresponding Bezier curves
of the Figure 6.14(a) and (b) are shown in Figure 6.16(a) and (b) respectively. Only curves 3, 5 and 6 are active and connected together to generate the target shape.

Figure 6.15: Chromosome code of the results of Figure 6.14.
Chapter 6. TEST PROBLEMS

Figure 6.16: Input/output/control points and Bezier curves of Figure 6.14.

Following the same sequence and format of results/plots shown in Run 1, the rest of the corresponding set of results from Run 2 are shown in Figures 6.17 to 6.21. Note that in Figure 6.19, the plot starts at generation number 5.

Figure 6.17: Sample solutions from the initial (randomly generated) population.

\[
\begin{align*}
 f_{\text{distance}} &= 70.1 \\
 f_{\text{material}} &= 756 \\
 g_{\text{forbidden}} &= 353 \\
 g_{\text{prescribed}} &= 40 \\
 f_{\text{distance}} &= 54.8 \\
 f_{\text{material}} &= 719 \\
 g_{\text{forbidden}} &= 326 \\
 g_{\text{prescribed}} &= 6 \\
 f_{\text{distance}} &= 46.7 \\
 f_{\text{material}} &= 765 \\
 g_{\text{forbidden}} &= 268 \\
 g_{\text{prescribed}} &= 48
\end{align*}
\]
Chapter 6. TEST PROBLEMS

Figure 6.18: Best feasible solutions from sample intermediate generations.
Figure 6.19: History of the best distance objective.

Figure 6.20: History of the best material objective.
Figure 6.21: Plot of cumulative non-dominated front up to some sample generations.
6.2.3 Results of Variants of Local Search Methodology

A few variants of the local search methodology can be implemented. They are tested in computational experiments using this target matching problem. The results from these variants are then compared to results obtained from the proposed local search methodology. In this section, these variants of the hybrid algorithm are briefly described as follows:

6.2.3.1 Local Search Applied Only on Final Generation

In this case, local search is used only after the genetic algorithm is terminated, i.e. after the final generation is obtained. Local search is applied to every variable of the final elite solutions (and not just the mutation variable as in the proposed local search). It is referred to as the “final elites method” in this experiment.

6.2.3.2 Initializing Local Search When a Better Solution is Generated by Mutation

When a solution with better performance is obtained from the mutation, local search is initialized with the new solution. The basic idea of this variant is simply that the mutation has found a local search direction in which a high probability for improvement has been demonstrated. More exploitation in this direction is therefore worthwhile. It is referred to as the “search better method” in this experiment.

6.2.3.3 Local Search Only in the Start Stage

In the start stage, there is more scope for the individuals to be improved and so better results are expected to appear easily. In this experiment, the local search will be executed in the first 100 of 1000 generations. It is referred to as the “start stage method” in this experiment.
Chapter 6. TEST PROBLEMS

6.2.3.4 Comparison of performance

A comparison of the performance of the variants in target matching problem 1 with nonconflicting objectives is shown in Table 6.1.

Table 6.1: Simulation Results of 8 Trials of Each Strategy

<table>
<thead>
<tr>
<th>method</th>
<th>generation expended</th>
<th>number of evaluations</th>
<th>number of trials in which optimal solution obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>proposed method</td>
<td>289</td>
<td>11,206</td>
<td>3</td>
</tr>
<tr>
<td>final elites method</td>
<td>1000</td>
<td>19,032</td>
<td>0</td>
</tr>
<tr>
<td>search better method</td>
<td>1000</td>
<td>20,418</td>
<td>0</td>
</tr>
<tr>
<td>start stage method</td>
<td>690</td>
<td>15,807</td>
<td>1</td>
</tr>
<tr>
<td>without local search</td>
<td>1000</td>
<td>18,530</td>
<td>0</td>
</tr>
</tbody>
</table>

In the table, “generation expended” means the average number of generations expended to obtain the optimal solution. If the method used can not arrive at the optimal solution, the number will be 1000 in this experiment. “number of evaluations” refers to the average number of function evaluations executed before obtaining the optimal solution. If the method used can not arrive at the optimal solution, then it refers to the total number of all the evaluations performed up to the final generation.

6.2.4 Discussion

An efficient morphological geometry representation that includes variable connectivity has been presented in Chapter 4. The multicriterion target matching problem with nonconflicting objectives has been formulated and solved to demonstrate the validity of the morphological geometry representation method and proposed algorithm. Two runs can both arrive at the optimal point, so the performance here is better than that of [246] in which the exact optimal point was not reached. And the two optimal individuals shown in Section 6.2.2 have different design variables and connectivity. It shows that the representation scheme facilitates the transmission of topological and shape characteristics across generations in the evolutionary process and amplify the representation variability.
As can be seen in Table 6.1, the proposed methodology gives the best result. It can produce the optimal results and require fewer function evaluations. Local search in the start stage also outperforms that without local search. When local search is applied to the elite solutions of the final generation, no better results can be obtained. This may be because the number of variables is too large in the target matching problem. The Hooke-Jeeves method is not very suitable for defining neighborhood solutions for a problem with many variables. Another possible reason is that local search applied to the final elite solutions will have little effect because they are already the local or global optimal and hence cannot be easily improved by local search. Local search initialized only when a better solution is obtained by mutation almost does not have any contribution to the search. This may be because function evaluations performed by the local search are a very small fraction of all the evaluations executed. Simulation results of the target matching problem indicate that the hybrid algorithm outperforms the multi-objective method without genetic local search when the implementation of local search is appropriate. The proposed tournament constrained selection method works well. It is also shown that the hybridization can improve the convergence speed.

6.3 TARGET MATCHING PROBLEM 2 (WITH CONFLICTING OBJECTIVES)

6.3.1 Formulation

The present problem is similar to Target Matching Problem 1 solved in Section 6.2, except that the prescribed area constraint is now turned into an objective, which means that the prescribed area is no longer strictly enforced but can instead be any shape depending on how well the objective is optimized.

In this problem, the target geometry is as shown in Figure 6.22. This ‘Target Matching Problem’ is defined with the following two objectives and four constraints: minimization of the number of void elements in the prescribed area (referred to as the void objective),
material objective, forbidden area constraint and three distance constraints. Such a problem is defined with the help of Figure 6.23.

The void objective to be minimized is given by

$$f_{\text{void}} = n_p - \sum_{i=1}^{n_p} v_i$$ \hspace{1cm} (6.5)

where v_i is the material density of the i-th element in the prescribed area. n_p is the total number of elements in the prescribed area. In other words, this objective function is defined to maximize the number of solid elements in the prescribed area.

The material objective f_{material} is exactly the same as that in Target Matching Problem 1, and here it is also set as the adaptive constraint. Note that this objective is conflicting with the void objective which is intended to maximize the number of solid elements within the prescribed area. Abbass and Deb [257] suggested such procedures to introduce diversity.

The forbidden area constraint $g_{\text{forbidden}}$ is also exactly the same as that in Target Matching Problem 1.

The distance constraints are given by

$$g_l = d_l \leq 0$$
$$g_s = d_s \leq 0$$
$$g_o = d_o \leq 0$$ \hspace{1cm} (6.6)

where d_l is the distance between the actual loading point 1 and the desired loading point 1; d_s is the distance between the desired support point and the actual support point; d_o is the distance between the desired output point and the actual output point. These distances are computed by simply taking the difference between the corresponding element numbers because the element number difference is directly proportional to the distance along the design space boundaries.

Figure 6.24 shows the feasible region of the objective space. The points on the line segment from point (58, 84) to (0, 142) represent the Pareto optimal solutions.
Figure 6.22: Target geometry.

Figure 6.23: Formulation of Target Matching Problem 2 with Conflicting Objectives.
6.3.2 Results

In this target matching problem, six Bezier curves are used such that there is one connecting curve between any two I/O points, with each curve defined by three control points. All thickness values are allowed to vary between the minimum value 0 and maximum value 3. The genetic algorithm was run to solve the test problem with the following set of evolutionary parameters:

(a) Population size: 200

(b) Normal mutation rate: 10% of those children formed by crossover

(c) Maximum number of feasible elites: 5% of population size

(d) Maximum number of partially feasible elites: 5% of population size

The optimization was run for 300 generations, by the end of which 87,367 objective function evaluations have been performed. The total (wall-clock) time consumed for 300 generations was 9032 seconds.

Nine of the non-dominated solutions (with their corresponding objective values) at the end of 300 generations are shown in Figure 6.25. The corresponding values of all of the constraint functions (i.e. $g_{forbidden}$, g_I, g_S, and g_o) are 0, as $g_{forbidden}$, g_I, g_S, and g_o are exactly 0 for all feasible solutions. Figures 6.25(a) and (b) show the two optimal extreme point solutions. Figure 6.25(a) has the best material objective but the worst void
objective while Figure 6.25(b) has the best void objective but the worst material objective. Figures 6.25 (d), (e) and (i) are non-dominated solutions but not the true Pareto optimal solutions.

The design variable values of Figures 6.25(a) and (b) are shown in Figure 6.26(a) and (b), respectively. The input/output/control points and the corresponding Bezier curves of Figure 6.25(a) and (b) are shown in Figure 6.27(a) and (b), respectively. Only curves 2, 3 and 4 are active and connected together to generate the target shape.

Figure 6.28 and Figure 6.29 provide a glimpse of the evolution history by a sampling of the solutions obtained at the respectively indicated generations. Figure 6.28 shows three solutions in the initial population with their corresponding objective/constraint function values. Figure 6.29 (a)-(i) show the best feasible solutions (with their corresponding objective values) achieved up to the respectively indicated generations 20, 50, 100, and 200. The corresponding values of all of the constraint functions (i.e. $g_{forbidden}$, g_l, g_s, and g_o) are 0. At every indicated generation, one solution with best material objective and one with best void objective are given. One solution in the 200th generation with median material and void objective is given in Figure 6.29(h). The term ‘median’ is used here to simply refer to an intermediate solution between the two extreme point solutions of the best void and best material objectives, and does not refer to a precise median solution among the non-dominated solutions.

Figure 6.30 shows plots of the best void objective (f_{void}) and the corresponding solution’s material objective ($f_{material}$) versus generation number. The plot starts at generation number 10, as until this generation there is no feasible solution in the population. Figure 6.31 shows plots of the best material objective ($f_{material}$) and the corresponding solution’s distance objective (f_{void}) versus generation number.

Figure 6.32 shows a plot in objective space, where solid shape markers have been used to denote the feasible non-dominated solutions at any particular sample generation, viz. the 20th, 50th, 100th, 200th and 300th generation. Hollow shape markers of the corresponding same shape have been used for showing any elites at that generation. At
Figure 6.25: Non-dominated solutions from 300 generations.
Figure 6.26: Chromosome code of the results of Figure 6.25 (a) and (b) respectively.
Figure 6.27: Input/output/control points and Bezier curves of Figure 6.25.

Figure 6.28: Sample solutions from the initial (randomly generated) population.
Chapter 6. TEST PROBLEMS

Figure 6.29: Best feasible solutions from sample intermediate generations.
Chapter 6. TEST PROBLEMS

Figure 6.30: History of the best void objective.

Figure 6.31: History of the best material objective.
any particular generation, the elites are a subset of the feasible non-dominated solutions (as the elites are basically the feasible non-dominated solutions which have been selected to be carried forward to the next generation) and therefore, every elite (hollow marker) coincides with one of the feasible non-dominated solutions (solid markers) in the plot.

Figure 6.32: Plot of non-dominated solutions and elites at some sample generations.

Figure 6.33 shows a plot of the cumulative non-dominated front up to some sample generations. The solutions shown in Figure 6.32 are non-dominated among all the solutions in the population at the indicated generation, whereas solutions shown in Figure 6.33 are non-dominated among all the solutions accumulated from past generations up till the indicated generation. Thus, the plot in Figure 6.32 is with respect to a single particular generation, whereas the plot in Figure 6.33 is with respect to all the generations up to the particular generation (inclusive). As not all of the feasible non-dominated solutions are carried forward to the next generation, it is possible that a solution which has appeared in Figure 6.32 is missing from Figure 6.33.
6.4 TARGET MATCHING PROBLEM 3 (WITH CONFLICTING OBJECTIVES)

6.4.1 Formulation

The formulation in this present problem is quite similar to Target Matching Problem 2 solved in Section 6.3, but the target geometry is configured differently. The problem to be solved here is defined by the design space as shown in Figure 6.34. There is one support, two loading points and one output point. The position of the output point is variable but confined to the right boundary as shown in Figure 6.34 while the support point is confined to the bottom left quadrant (shaded area) of the design space. The loading point 1 can be anywhere along the left boundary while the loading point 2 can be anywhere along the bottom or top boundary. In this problem, the target geometry is as shown in Figure 6.35. As in Target Matching Problem 2, the prescribed area can be any shape depending on how well the f_{void} objective is optimized. This problem is formulated to test and tune the parameters of the proposed algorithm that eventually will be used for solving...
the 2-DOF compliant mechanism design problem, by configuring the design space (the arrangements of the output, support and loading points) and number of objective and constraint functions to match that of the actual mechanism problem.

![Design space diagram](image)

Figure 6.34: Design space.

This problem is defined with the following two objectives and four constraints: the void objective, material objective, forbidden area constraint and three distance constraints. Such a problem is defined with the help of Figure 6.36. The void objective, material objective and forbidden area constraint are all defined exactly the same as that in Target Matching Problem 2 (except that the location of the prescribed and forbidden area are now different). Note that, again, the material objective is conflicting with the void objective which is intended to maximize the number of solid elements within the prescribed area. And the material objective is, again, set as the adaptive constraint.

The distance constraints are given by

\[
\begin{align*}
g_{l1} &= d_{l1} \leq 0 \\
g_{l2} &= d_{l2} \leq 0 \\
g_o &= d_o \leq 0
\end{align*}
\]

(6.7)

where \(d_{l1} \) is the distance between the actual loading point 1 and the desired loading point
Chapter 6. TEST PROBLEMS

Figure 6.35: Target geometry.

Figure 6.36: Formulation of Target Matching Problem 3 with Conflicting Objectives.
1; \(d_{l2} \) is the distance between the actual loading point 2 and the desired loading point 2;
\(d_o \) is the distance between the desired output point and the actual output point.

Figure 6.37 shows the feasible region of objective space. The points on the line segment from point (70, 80) to (0, 150) represent the Pareto optimal solutions.

![Graph showing objective space with feasible region and Pareto optimal solutions](image)

Figure 6.37: The solution space for Target Matching Problem 3.

6.4.2 Results

In this target matching problem, six Bezier curves are used such that there is one connecting curve between any two I/O points, with each curve defined by three control points. All thickness values are allowed to vary between the minimum value 0 and maximum value 3.

The genetic algorithm was run to solve the test problem with the following set of evolutionary parameters:

(a) Population size: 200

(b) Normal mutation rate: 10\% of those children formed by crossover

(c) Maximum number of feasible elites: 5\% of population size

(d) Maximum number of partially feasible elites: 5\% of population size

The optimization was run for 300 generations, by the end of which 86,396 objective function evaluations have been performed. The total (wall-clock) time consumed for 300
generations was 8790 seconds.

Nine of the non-dominated solutions (with their corresponding objective values) at the end of 300 generations are shown in Figure 6.38. The corresponding values of all of the constraint functions (i.e. $g_{forbidden}$, g_{l1}, g_{l2}, and g_o) are 0, as $g_{forbidden}$, g_{l1}, g_{l2}, and g_o are exactly 0 for all feasible solutions. Figures 6.38(a) and (b) show the two non-dominated extreme point solutions. Figure 6.38(a) (Pareto extreme point solution) has the best material objective but the worst void objective while Figure 6.38(b) has the best void objective but the worst material objective. Figures 6.38 (b) and (c) are non-dominated solutions but not true Pareto optimal solutions.

Following the same sequence and format of results/plots shown in Target Matching Problem 2, the rest of the corresponding set of results from Target Matching Problem 3 are shown in Figures 6.39 to 6.46. Note that in Figure 6.42, only one feasible solution has been obtained in generation 20, and that in Figure 6.43, the plot starts at generation number 20.
Figure 6.38: Non-dominated solutions from 300 generations.
Figure 6.39: Chromosome code of the results of Figure 6.38 (a) and (b) respectively.
Chapter 6. TEST PROBLEMS

Figure 6.40: Input/output/control points and Bezier curves of Figure 6.38 (a) and (b) respectively.

(a)

(b)

Figure 6.41: Sample solutions from the initial (randomly generated) population.

(a) $f_{\text{void}} = 43$, $f_{\text{material}} = 693$, $g_{\text{forbidden}} = 409$, $g_l = 1050$, $g_s = 5$, $g_o = 1500$

(b) $f_{\text{void}} = 73$, $f_{\text{material}} = 637$, $g_{\text{forbidden}} = 168$, $g_l = 5$, $g_s = 60$, $g_o = 1500$

(c) $f_{\text{void}} = 80$, $f_{\text{material}} = 620$, $g_{\text{forbidden}} = 224$, $g_l = 1500$, $g_s = 2416$, $g_o = 450$

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library
Figure 6.42: Best feasible solutions from sample intermediate generations.
Figure 6.43: History of the best void objective.

Figure 6.44: History of the best material objective.
Figure 6.45: Plot of non-dominated solutions and elites at some sample generations.

Figure 6.46: Plot of cumulative non-dominated front up to some sample generations.
6.5 TARGET MATCHING PROBLEM 4 (WITH CONFLICTING OBJECTIVES)

6.5.1 Formulation

The formulation in the present problem is partly similar to Target Matching Problem 3 solved in Section 6.4, but the target geometry is configured differently. The problem to be solved is defined by the same design space as shown in Figure 6.34, with one support, two loading points and one output point. In this problem, the target geometry is as shown in Figure 6.47. As with Target Matching Problem 3, this problem is formulated to test and tune the parameters of the proposed algorithm for solving the 2-DOF compliant mechanism design problem.

This problem is defined with the following two objectives and four constraints: the void objective, the material objective, and four forbidden area constraints. Such a problem is defined with the help of Figure 6.48.

The void objective and material objective are defined exactly the same way as in Target Matching Problem 3, and hence they are again in conflict with each other. The material objective is also set as the adaptive constraint.

However, unlike Target Matching Problem 3 where there is one forbidden area constraint and three distance constraints, here all four constraints are forbidden area constraints. The four forbidden area constraints are given by

\[g_1 = \sum_{i=1}^{n_1} y_i \leq 0 \]
\[g_2 = \sum_{i=1}^{n_2} y_i \leq 0 \]
\[g_3 = \sum_{i=1}^{n_3} y_i \leq 0 \]
\[g_4 = \sum_{i=1}^{n_4} y_i \leq 0 \]

(6.8)

where \(y_i \) is the material density of the \(i \)-th element in the respective forbidden area. \(n_1, n_2, n_3, n_4 \) are the total number of elements in forbidden area 1, 2, 3, and 4, respectively. In
Chapter 6. TEST PROBLEMS

Figure 6.47: Target geometry.

Figure 6.48: Formulation of Target Matching Problem 4 with Conflicting Objectives.
other words, the summation of the material density of elements in every forbidden area is required to be less than or equal to zero. It can be seen from Figure 6.48 that forbidden area 1, 2, and 3 are meant to influence the location of the I/O points along the boundary (whereas distance objectives were used for this purpose in Target Matching Problem 3).

Furthermore, there is overlapping (the shaded grey area) between forbidden area 4 and the prescribed area. This is meant to cause a direct conflict between forbidden area constraint \(g_4 \) and void objective \(f_{\text{void}} \), thus making the problem more challenging.

Figure 6.49 shows the feasible region of the objective space. The points on the line segment from point \((71, 71)\) to \((15, 127)\) represent the Pareto optimal solutions.

![Figure 6.49: The solution space for Target Matching Problem 4.](image)

6.5.2 Results

Six Bezier curves are used such that there is one connecting curve between any two I/O points, with each curve defined by three control points. All thickness values are allowed to vary between the minimum value 0 and maximum value 3. The genetic algorithm was run to solve the test problem with the following set of evolutionary parameters:

- (a) Population size: 200
- (b) Normal mutation rate: 10% of those children formed by crossover
- (c) Maximum number of feasible elites: 5% of population size
(d) Maximum number of partially feasible elites: 5% of population size

The optimization was run for 300 generations, by the end of which 85,673 objective function evaluations have been performed. The total (wall-clock) time consumed for running the genetic algorithm for 300 generations was 10099 seconds.

Nine of the non-dominated solutions (with their corresponding objective values) at the end of 300 generations are shown in Figure 6.50. The corresponding values of all of the constraint functions (i.e. g_1, g_2, g_3, and g_4) are 0, as g_1, g_2, g_3, and g_4 are exactly 0 for all feasible solutions. Figures 6.50(a) and (b) show the two non-dominated extreme point solutions. Figure 6.50(a) has the best material objective but the worst void objective while Figure 6.50(b) (Pareto extreme point solution) has the best void objective but the worst material objective. Figures 6.50 (d) is a non-dominated solution but not a true Pareto optimal solution.

Following the same sequence and format of results/plots shown in Target Matching Problem 3, the rest of the corresponding set of results from Target Matching Problem 4 are shown in Figures 6.51 to 6.58. Note that in Figure 6.55, the plot starts at generation number 13.
Figure 6.50: Non-dominated solutions from 300 generations.
Figure 6.51: Chromosome code of the results of Figure 6.50 (a) and (b) respectively.
Figure 6.52: Input/output/control points and Bezier curves of Figure 6.50 (a) and (b) respectively.

Figure 6.53: Sample solutions from the initial (randomly generated) population.
Figure 6.54: Best feasible solutions from sample intermediate generations.
Chapter 6. TEST PROBLEMS

Figure 6.55: History of the best void objective.

Figure 6.56: History of the best material objective.
Figure 6.57: Plot of non-dominated solutions and elites at some sample generations

Figure 6.58: Plot of cumulative non-dominated front up to some sample generations.
Chapter 7

DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

This chapter demonstrates the design of compliant grip-and-move manipulators with two identical path generating mechanisms of 2-DOF each. These two 2-DOF path generating compliant mechanisms work like two fingers so that they can grip an object and convey it from one point to another within the working area.

7.1 2-DOF PATH GENERATING MECHANISM

In this work, a 2-DOF path generating mechanism which has two loading points refers to a mechanism that generates an output area within which the mechanism can reach anywhere. But the output area is not predefined. In other words, the shape and size of the output area itself is not specified in advance, so the desire is basically for a big output area. The path is also desired to be as long as possible in order to extend its working range in one direction. An illustration of a manipulator consisting of two identical 2-DOF path generating mechanisms is given in Figure 7.1. Each shape in solid lines is the undeformed shape of one of the mechanisms. The dashed lines show the possible deformed shape of the structure after some large displacement due to the input load. The two compliant mechanisms work like two fingers of a manipulator. It can grip a workpiece and the grip can be maintained anywhere within its working area. The working area is the overlapped area of the two compliant mechanisms’ output areas. The workpiece can be conveyed to any point within the working area.

Hence the path generating mechanism has to be flexible enough to describe
approximately an area that is relatively large and a path that is relatively long and at the same time keep input displacement and stresses within allowable limits. In other words, the best path generating mechanism would (i) be able to generate an appropriate output area as large as possible, (ii) have output distance in some direction as long as possible, and (iii) have stresses within allowable limits.

7.2 FORMULATION

The synthesis of such a compliant mechanism is accomplished by formulating the problem as a structural optimization problem with multiple objectives and constraints to achieve the desired behavior of the manipulator. The problem to be solved is defined by the design space shown in Figure 7.2. The design space is exactly the same as that used in design of symmetric path generating mechanisms (Section 4.2) except that configurations of the I/O points are different.
7.2.1 Output Area Objective

The aim here is to produce a mechanism which generates an output area as large as possible. There are two ways to apply the loads. And correspondingly, there are two approaches to calculate the output area approximately. One area calculation approach is illustrated in Figure 7.3(a). Three loading cases are applied in total: input load1 and input load2 are applied separately and respectively on loading point 1 and loading point 2 of the undeformed shape of the mechanism, and input load12 is applied on the loading point 2 of the deformed shape under input load1. As shown in Figure 7.3(a), P_i^1, where $i = 0, 1, \cdots n$, marks the output path when input load1 is applied. n is the number of analysis steps in the nonlinear finite element analysis, which is 5 in this illustration figure. Similarly, P_i^{12}, where $i = 0, 1, \cdots n$, marks the output path when input load12 is applied. P_0^i and P_0^{12}, the start point when input load1 and input load2 are applied respectively, is the output point of the mechanism when it is undeformed. P_0^{12}, the start point when input load12 is applied, is the end point of the path generated by input load1. The areas of the 10 small triangles shown in the figure are summed up to evaluate the total output area.

The other area calculation method is illustrated in Figure 7.3(b). Similarly, three load
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

Figure 7.3: Output area calculation.

Figure 7.4: Unfavorable output area.
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

cases are applied separately: input load1, input load2 and input load12. The difference lies in the input load12. Unlike the previous case, as shown in this figure, input load12 is applied on loading point 1 as well as loading point 2 of the undeformed structure simultaneously. The areas of 10 small triangles shown in the figure are summed up to evaluate the total output area.

If two paths generated by the three loading applications intersect each other as shown in Figure 7.4, the area objective is set to a small value such as 0. This situation is not desirable because it becomes harder for the two mechanisms to be coordinated to produce a large working area. The area objective for maximization of area may be given by:

$$f_{area} = - \sum_{i=1}^{N} A_i$$ (7.1)

where N is the number of small triangles and A_i is the area of i-th triangle.

7.2.2 Distance Objective

To ease the arrangement of the two compliant mechanisms and to maximize flexibility, maximizing the deflection of the output point in the x direction is desirable. If $\mathbf{r}_{out} = x_{out}\mathbf{i} + y_{out}\mathbf{j}$ is the position vector of the output point’s final position with respect to its initial position, then distance d_x can be given by

$$d_x = \mathbf{r}_{out} \cdot \mathbf{u}_{out} = (x_{out}\mathbf{i} + y_{out}\mathbf{j}) \cdot \mathbf{i} = x_{out}$$ (7.2)

where $\mathbf{u}_{out} = \mathbf{i}$ has been used in Equation 7.2 because deflection of output point in the x direction is of main interest.

In the design of the grip-and-move manipulators, a large ratio of output range to size of the mechanism is desired. The size of the mechanism is estimated by the rectangular area enveloping the mechanism, which is represented by $Area$. Accounting for this $Area$,
the distance objective for maximization of distance may be given by:

\[
\text{Minimize } f_d = -\frac{d_x}{\text{Area}} \tag{7.3}
\]

This objective is set as the adaptive constraint because distance in \(x\)-direction is desirable and harder to achieve than the output area objective.

7.2.3 GA Constraints

To avoid unfavorable characteristics of the output area and to improve the chance of obtaining a big working area, constraints are put on the geometric advantages (GA) for all loading cases. The input and output displacements for the three loading cases are shown in Figure 7.5. The GA depends only on the initial and the final states of the structure. If \(\mathbf{r}_{\text{in}}\) is the position vector of the loading point and \(\mathbf{r}_{\text{out}}\) is the position vector of the output point’s final position with respect to its initial position, then GA is given by

\[
GA = \frac{|\mathbf{r}_{\text{out}}|}{|\mathbf{r}_{\text{in}}|} \text{sgn}(\mathbf{r}_{\text{out}} \cdot \mathbf{u}_{\text{in}}) \tag{7.4}
\]
where \(\mathbf{u}_{in} \) is the unit inward vector orthogonal to the loading boundary and function \(\text{sgn} \) defines the sign of the dot product of the two vectors, \(\mathbf{r}_{out} \) and \(\mathbf{u}_{in} \). In this application, there are three GAs pertaining to the three load cases, \(GA^1 \), \(GA^2 \) and \(GA^{12} \) corresponding to input load\(^1\), input load\(^2\), and input load\(^{12}\), respectively. Using Equation 7.4,

\[
GA^1 = \frac{|\mathbf{r}_{out}^1|}{|\mathbf{r}_{in}^1|} \text{sgn}(\mathbf{r}_{out}^1 \cdot \mathbf{u}_{in}^1) \\
GA^2 = \frac{|\mathbf{r}_{out}^2|}{|\mathbf{r}_{in}^2|} \text{sgn}(\mathbf{r}_{out}^2 \cdot \mathbf{u}_{in}^2) \\
GA^{12} = \frac{|\mathbf{r}_{out}^{12}|}{|\mathbf{r}_{in}^{12}|} \text{sgn}(\mathbf{r}_{out}^{12} \cdot \mathbf{u}_{in}^{12})
\]

(7.5)

Inequality constraints are imposed on the GAs as follows:

\[
\begin{align*}
G_{GA^1} &= GA^1_l - GA^1 \leq 0 \\
G_{GA^2} &= GA^2_l - GA^2 \leq 0 \\
G_{GA^{12}} &= GA^{12}_l - GA^{12} \leq 0
\end{align*}
\]

(7.6)

where \(GA^1_l \), \(GA^2_l \) and \(GA^{12}_l \) are the prescribed lower bounds of the corresponding GA values and are all set to 1 in this application.

Hence the multicriterion genetic algorithm is run with two objectives (the area objective and distance objective) and four constraints, i.e. the three GA constraints and the same stress constraint as that defined for the symmetric path generating mechanism problem (Section 4.2.4).

7.3 RESULTS

The newly developed program runs in the windows XP sp2 environment of a PC (hp workstation xw4200). The material assumed for the structure is polypropylene with the same material properties as that in the symmetric path mechanism (Section 4.5).

Wherever the two loading points are located, an input displacement of a fixed value 10mm is to be applied in the direction perpendicular to the boundary (with displacement parallel to the boundary unrestrained). The displacement value is fixed to facilitate the
comparison between results. The input displacement (viz. 10mm) is based on past experience that (i) achieving a long path with input displacement less than 10mm is difficult, and (ii) meeting the stress constraint with an input displacement less than 10mm is easy. There is a increase in computational complexity due to multiple FEM applications for each individual compared to symmetric path generating mechanism solved in Chapter 4.

7.3.1 Run 1

In this problem, six Bezier curves are used such that there is one connecting curve between any two I/O points, with each curve defined by three control points. All thickness values are 0 in this run. And the displacement inputs (i.e. the three loading cases) are applied as shown in Figure 7.3(a).

The optimization was run for 500 generations (with a population size of 200 per generation), by the end of which 92,178 objective function evaluations (finite element analyses) have been performed. The total (wall-clock) time consumed for 500 generations is 1,524,519 seconds. Three of the solutions at the end of 500 generations are shown in Figure 7.6. Figure 7.6(a) shows the solution with the best area objective (f_{area}), whereas Figure 7.6(c) shows the solution with the best distance objective (f_d). The solution with a median area and distance objective is shown in Figure 7.6(b); it has distance objective better than the solution in (a) and area objective better than the solution in (c).

The design variable values for the solution with the best area objective, which corresponds to Figure 7.6(a), is given in Figure 7.7(a). The input/output/control points and the corresponding Bezier curves of the solution are shown in Figure 7.8(a). This solution was attained at the 419th generation, with an area objective function f_{area} value of 0.809527 and a distance objective f_d value of -0.428200. The required input forces for the three loading cases are 6.587444N, 8.058245N, and 6.083709N, respectively. The peak von Mises stress which occurs at the support element is 29.1514MPa under input load. Thus, the stress constraint function g_{stress} has a value of -0.116624.
The design variable values for the solution with the median area and distance objective, which corresponds to Figure 7.6(b), is given in Figure 7.7(b). The input/output/control points and the corresponding Bezier curves of the solution are shown in Figure 7.8(b). This solution was attained at the 479th generation, with an area objective function f_{area} value of 1.289689 and a distance objective f_d value of -3.01400. The required input forces for the three loading cases are 6.408932N, 8.215698N, and 3.098382N, respectively. The peak von Mises stress is 30.3956MPa which occurs at support element. Thus, the stress constraint function g_{stress} has a value of -0.078921.

In Figure 7.9(a), the undeformed geometry of the optimum design with the best area objective is shown by its mesh while the deformed shapes in their final positions are shown by their boundary outlines only. The output paths from the FE analysis and prototype are specified in Figure 7.9(b). Figure 7.9(c) and (g) show two possible ways in which a grip-and-move manipulator can be made by arranging two of the identical mechanisms symmetrically, based on the paths determined from the FE analysis. The arrangement shown in Figure 7.9(c) can achieve a long distance output while that shown in
Figure 7.7: Chromosome code of the optimal result of Figure 7.6 (a) and (b) respectively.
Figure 7.8: Input/output/control points and Bezier curves of Figure 7.6 (a) and (b) respectively.

Figure 7.9(e) can achieve a big working area. The prototypes fabricated of the structures shown in Figure 7.9(c) and (e) are presented in Figure 7.9(d) and (f), respectively. The grip-and-move manipulators shown in Figure 7.9(d) and (f) can grip an object and move it anywhere within the overlapped area as presented in Figure 7.10 and Figure 7.11, respectively. The output path (area) is drew on black paper and the two mechanisms are manually push toward each other at three or four positions.

In Figure 7.12(a), the undeformed geometry of the optimum design with the median area and distance objective is shown by its mesh while the deformed shapes in their final positions are shown by their boundary outlines only. The output paths from the FE analysis and prototype are specified in Figure 7.12(b). Figure 7.12(c) shows one possible way in which the grip-and-move manipulator can be made by arranging two of the same mechanisms symmetrically. The prototype is presented in Figure 7.12(d). The grip-and-move manipulator can grip an object and move it anywhere within the overlapped area as shown in Figure 7.13.
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

(a) undeformed shape and deformed (b) output path (area) shapes

(c) arrangement of compliant grip-and-move manipulator (long distance output)

(d) prototype of compliant grip-and-move manipulator (long distance output)
Figure 7.9: Compliant grip-and-move manipulator – design with best area objective (Run 1).
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

Figure 7.10: View of compliant grip-and-move manipulator (long distance output).

Figure 7.11: View of compliant grip-and-move manipulator (big overlapped area).
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

Figure 7.12: Compliant grip-and-move manipulator – design with median area and distance objective (Run 1).

(a) undeformed shape and deformed (b) output path (area) shapes

(c) arrangement of compliant grip-and-move manipulator

(d) prototype of compliant grip-and-move manipulator
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

Figure 7.13: View of compliant grip-and-move manipulator.

(a) gripping position 1
(b) gripping position 2
(c) gripping position 3

Figure 7.14 and Figure 7.15 provide a glimpse of the evolution history by a sampling of the solutions obtained at the respectively indicated generations. Figure 7.14 shows three solutions in the initial population with their corresponding objective/constraint function values. Figure 7.15 (a)-(i) show the best feasible solutions (with their corresponding objective/constraint values) achieved up to the respectively indicated generations 50, 100, and 300. At every indicated generation, one solution with best area objective, one with best distance objective, and one with median area and distance objective are given.

Figure 7.16 shows a plot of the best area objective (f_{area}) and the corresponding solution’s distance objective (f_d) versus generation number. f_{area} and f_d values on the plot corresponding to any particular generation number belong to that generation’s non-dominated feasible solution having the best area objective. The plot starts at generation number 3, as until this generation there is no feasible solution in the population.

Figure 7.17 shows plots of the best distance objective (f_d) and the corresponding solution’s area objective (f_{area}) versus generation number. f_{area} and f_d values on the plot corresponding to any particular generation number belong to that generation’s non-
Figure 7.14: Sample solutions from the initial (randomly generated) population.

dominated feasible solution having the best distance objective.

Figure 7.18 shows a plot in objective space, where solid shape markers have been used to denote the feasible non-dominated solutions at any particular sample generation, viz. the 50th, 100th, 300th and 500th generation. Hollow shape markers of the corresponding same shape have been used for showing any elites at that generation. At any particular generation, the elites are a subset of the feasible non-dominated solutions (as the elites are basically the feasible non-dominated solutions which have been selected to be carried forward to the next generation) and therefore, every elite (hollow marker) coincides with one of the feasible non-dominated solutions (solid markers) in the plot.

Figure 7.19 shows a plot of the cumulative non-dominated front up to some sample generations. The solutions shown in Figure 7.18 are non-dominated among all the solutions in the population at the indicated generation, whereas solutions shown in Figure 7.19 are non-dominated among all the solutions accumulated from past generations up till the indicated generation. Thus, the plot in Figure 7.18 is with respect to a single particular generation, whereas the plot in Figure 7.19 is with respect to all the generations.

\[
\begin{align*}
\text{Figure 7.14: Sample solutions from the initial (randomly generated) population.}
\end{align*}
\]

\[f_{area} = 20.19919, \quad f_d = -1.423714, \quad g_{GA1} = -0.507896, \quad g_{GA2} = -0.207947, \quad g_{GA12} = 0.674944, \quad g_{stress} = -0.604797 \]

\[f_{area} = 10.07677, \quad f_d = -0.715200, \quad g_{GA1} = -0.398349, \quad g_{GA2} = -0.336454, \quad g_{GA12} = 0.519912, \quad g_{stress} = -0.423976 \]

\[f_{area} = 185.9337, \quad f_d = 0.031200, \quad g_{GA1} = -0.275389, \quad g_{GA2} = -0.399726, \quad g_{GA12} = 1.448412, \quad g_{stress} = -0.477915 \]
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

![Image of diagrams showing best feasible solutions from sample intermediate generations.](image)

Figure 7.15: Best feasible solutions from sample intermediate generations.

<table>
<thead>
<tr>
<th>Generation</th>
<th>Area (f_area)</th>
<th>Df (f_d)</th>
<th>GA1</th>
<th>GA2</th>
<th>GA12</th>
<th>Stress (g_stress)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Best</td>
<td>1.783480</td>
<td>-2.009300</td>
<td>-0.539096</td>
<td>-0.56577</td>
<td>-1.198448</td>
<td>-0.275946</td>
</tr>
<tr>
<td>50 Median</td>
<td>2.420505</td>
<td>-2.272500</td>
<td>-0.365676</td>
<td>-0.176200</td>
<td>-0.546244</td>
<td>-0.574933</td>
</tr>
<tr>
<td>50 Best</td>
<td>2.634967</td>
<td>-5.165658</td>
<td>-1.604748</td>
<td>-2.196263</td>
<td>-0.141070</td>
<td>-0.041539</td>
</tr>
<tr>
<td>100 Best</td>
<td>1.118655</td>
<td>-1.297600</td>
<td>-1.360331</td>
<td>-0.291034</td>
<td>-2.229377</td>
<td>-0.236191</td>
</tr>
<tr>
<td>100 Median</td>
<td>1.782687</td>
<td>-2.880800</td>
<td>-0.075161</td>
<td>-0.369890</td>
<td>-0.944367</td>
<td>-0.466273</td>
</tr>
<tr>
<td>100 Best</td>
<td>2.439652</td>
<td>-5.530526</td>
<td>-1.626112</td>
<td>-2.293025</td>
<td>-0.134420</td>
<td>-0.055139</td>
</tr>
<tr>
<td>300 Best</td>
<td>0.809527</td>
<td>-0.428200</td>
<td>-2.018913</td>
<td>-0.396774</td>
<td>-3.237189</td>
<td>-0.116624</td>
</tr>
<tr>
<td>300 Median</td>
<td>1.427160</td>
<td>-3.092800</td>
<td>-0.006160</td>
<td>-0.385054</td>
<td>-1.738061</td>
<td>-0.176549</td>
</tr>
<tr>
<td>300 Best</td>
<td>1.867675</td>
<td>-6.916666</td>
<td>-1.704472</td>
<td>-3.015117</td>
<td>-0.103375</td>
<td>-0.002967</td>
</tr>
</tbody>
</table>

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

Figure 7.16: History of the best area objective (f_{area}).

Figure 7.17: History of the best distance objective (f_d).
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

up to the particular generation (inclusive). As not all of the feasible non-dominated solutions are carried forward to the next generation, it is possible that a solution which has appeared in Figure 7.18 is missing from Figure 7.19.

Figure 7.18: Plot of non-dominated solutions and elites at some sample generations.

Figure 7.19: Plot of cumulative non-dominated front up to some sample generations.
7.3.2 Run 2

The algorithm has been rerun for the problem while keeping all the parameters exactly the same as those used in Run 1 (Section 7.3.1). This section presents the results of the rerun.

The optimization was run for 500 generations (with a population size of 200 per generation), by the end of which 90,669 objective function evaluations (finite element analyses) have been performed. The total (wall-clock) time consumed for 500 generations is 1,436,987 seconds. Three of the solutions at the end of 500 generations are shown in Figure 7.20. Figure 7.20(a) shows the solution with the best area objective \(f_{\text{area}} \), whereas Figure 7.20(c) shows the solution with the best distance objective \(f_d \). The solution with a median area and distance objective is shown in Figure 7.20(b); it has distance objective better than the solution in (a) and area objective better than the solution in (c).

![Figure 7.20: Three non-dominated solutions at 500th generation.](image)

The design variable values for the solution with the best area objective, which corresponds to Figure 7.20(a), is given in Figure 7.21(a). The input/output/control points and the corresponding Bezier curves of the solution are shown in Figure 7.22(a). This
solution was attained at the 466th generation, with an area objective function f_{area} value of 0.709173 and a distance objective f_d value of -1.747301. The required input forces for the three loading cases are 5.301489N, 0.927159N, and 17.341749N, respectively. The peak von Mises stress which occurs at the support element is 32.6690MPa under input load12. Thus, the stress constraint function g_{stress} has a value of -0.010133.

The design variable values for the solution with the median area and distance objective, which corresponds to Figure 7.20(b), is given in Figure 7.21(b). The input/output/control points and the corresponding Bezier curves of the solution are shown in Figure 7.22(b). This solution was attained at the 500th generation, with an area objective function f_{area} value of 0.884842 and a distance objective f_d value of -2.691700. The required input forces for the three loading cases are 5.523874N, 0.963566N, and 15.049452N, respectively. The peak von Mises stress is 30.7662MPa which occurs at the support element under input load12. Thus, the stress constraint function g_{stress} has a value of -0.072606.

Following the same sequence and format of results/plots shown in Run 1, the rest of the corresponding set of results from Run 2 are shown in Figures 7.23 to 7.33. However, for this run, only one possible arrangement of the manipulator is created for the best area objective result while two arrangements are created for the median objectives result.
Figure 7.21: Chromosome code of the optimal result of Figure 7.20 (a) and (b) respectively.
Figure 7.22: Input/output/control points and Bezier curves of Figure 7.20 (a) and (b) respectively.
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

(a) undeformed shape and deformed shapes
(b) output path (area)
(c) arrangement of compliant grip-and-move manipulator
(d) prototype of compliant grip-and-move manipulator

Figure 7.23: Compliant grip-and-move manipulator – design with best area objective (Run 2).
(a) gripping position 1
(b) gripping position 2
(c) gripping position 3

Figure 7.24: View of compliant grip-and-move manipulator.
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

(a) undeformed shape and deformed shapes
(b) output path (area)
(c) arrangement of compliant grip-and-move manipulator (long distance output)
(d) prototype of compliant grip-and-move manipulator (long distance output)
Figure 7.25: Compliant grip-and-move manipulator – design with the median area and distance objective (Run 2).
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

Figure 7.26: View of compliant grip-and-move manipulator (long distance output).

(a) gripping position 1 (b) gripping position 2 (c) gripping position 3

Figure 7.27: View of compliant grip-and-move manipulator (big overlapped area).

(a) gripping position 1 (b) gripping position 2 (c) gripping position 3
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

Figure 7.28: Sample solutions from the initial (randomly generated) population.

(a) $f_{area} = 14.08525$\hspace{1cm} (b) $f_{area} = 65.16273$\hspace{1cm} (c) $f_{area} = 11.62424$

\begin{align*}
&f_d = -1.326364\hspace{1cm} f_d = 1.435100\hspace{1cm} f_d = -1.353056 \\
g_{GA^1} = -0.242827\hspace{1cm} g_{GA^1} = -1.401060\hspace{1cm} g_{GA^1} = -0.300062 \\
g_{GA^2} = -0.124217\hspace{1cm} g_{GA^2} = 2.478260\hspace{1cm} g_{GA^2} = -0.443128 \\
g_{GA^{12}} = 0.344452\hspace{1cm} g_{GA^{12}} = 0.578202\hspace{1cm} g_{GA^{12}} = 0.139648 \\
g_{stress} = -0.479606\hspace{1cm} g_{stress} = -0.557364\hspace{1cm} g_{stress} = -0.779652
\end{align*}
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

Figure 7.29: Best feasible solutions from sample intermediate generations.

(a) generation 50 (best \(f_{area} \))
\[
\begin{align*}
 f_{area} &= 1.488175 \\
 f_d &= -2.276200 \\
 g_{GA1} &= -0.390179 \\
 g_{GA2} &= -0.313614 \\
 g_{GA12} &= -1.189272 \\
 g_{stress} &= -0.036182
\end{align*}
\]

(b) generation 50 (median)
\[
\begin{align*}
 f_{area} &= 2.662622 \\
 f_d &= -2.364592 \\
 g_{GA1} &= -0.178472 \\
 g_{GA2} &= -0.114970 \\
 g_{GA12} &= -0.345744 \\
 g_{stress} &= -0.743022
\end{align*}
\]

(c) generation 50 (best \(f_d \))
\[
\begin{align*}
 f_{area} &= 2.672736 \\
 f_d &= -2.368571 \\
 g_{GA1} &= -0.174810 \\
 g_{GA2} &= -0.115435 \\
 g_{GA12} &= -0.342068 \\
 g_{stress} &= -0.743043
\end{align*}
\]

(d) generation 100 (best \(f_{area} \))
\[
\begin{align*}
 f_{area} &= 1.114645 \\
 f_d &= -1.539400 \\
 g_{GA1} &= -0.984020 \\
 g_{GA2} &= -0.075372 \\
 g_{GA12} &= -0.895971 \\
 g_{stress} &= -0.378776
\end{align*}
\]

(e) generation 100 (median)
\[
\begin{align*}
 f_{area} &= 1.605988 \\
 f_d &= -2.589299 \\
 g_{GA1} &= -0.239462 \\
 g_{GA2} &= -0.094377 \\
 g_{GA12} &= -0.578268 \\
 g_{stress} &= -0.504597
\end{align*}
\]

(f) generation 100 (best \(f_d \))
\[
\begin{align*}
 f_{area} &= 2.030747 \\
 f_d &= -2.850300 \\
 g_{GA1} &= -0.012316 \\
 g_{GA2} &= -0.098599 \\
 g_{GA12} &= -0.445527 \\
 g_{stress} &= -0.581997
\end{align*}
\]

(g) generation 300 (best \(f_{area} \))
\[
\begin{align*}
 f_{area} &= 0.785424 \\
 f_d &= -2.309400 \\
 g_{GA1} &= -0.601450 \\
 g_{GA2} &= -0.537047 \\
 g_{GA12} &= -0.699508 \\
 g_{stress} &= -0.075388
\end{align*}
\]

(h) generation 300 (median)
\[
\begin{align*}
 f_{area} &= 0.997397 \\
 f_d &= -2.879400 \\
 g_{GA1} &= -0.135998 \\
 g_{GA2} &= -0.546193 \\
 g_{GA12} &= -0.609645 \\
 g_{stress} &= -0.174155
\end{align*}
\]

(i) generation 300 (best \(f_d \))
\[
\begin{align*}
 f_{area} &= 1.357274 \\
 f_d &= -3.024600 \\
 g_{GA1} &= -0.040572 \\
 g_{GA2} &= -0.219923 \\
 g_{GA12} &= -0.118218 \\
 g_{stress} &= -0.127942
\end{align*}
\]
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

Figure 7.30: History of the best area objective (f_{area}).

Figure 7.31: History of the best distance objective (f_d).
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

Figure 7.32: Plot of non-dominated solutions and elites at some sample generations.

Figure 7.33: Plot of cumulative non-dominated front up to some sample generations.
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

7.3.3 Run 3

The algorithm has been rerun for the problem while keeping all the parameters exactly the same as those used in Run 1 (Section 7.3.1) except that the displacement inputs (the three loading cases) are applied as shown in Figure 7.3(b) instead of that shown in Figure 7.3(a). This section presents the results of the rerun.

The optimization was run for 500 generations (with a population size of 200 per generation), by the end of which 85,975 objective function evaluations (finite element analyses) have been performed. The total (wall-clock) time consumed for 500 generations is 1,334,176 seconds. Three of the solutions at the end of 500 generations are shown in Figure 7.34. Figure 7.34(a) shows the solution with the best area objective \(f_{\text{area}} \), whereas Figure 7.34(c) shows the solution with the best distance objective \(f_d \). The solution with a median area and distance objective is shown in Figure 7.34(b); it has distance objective better than the solution in (a) and area objective better than the solution in (c).

![Figure 7.34: Three non-dominated solutions at 500th generation.](image)

The design variable values for the solution with the best area objective, which corresponds to Figure 7.34(a), is given in Figure 7.35(a). The input/output/control points and the corresponding Bezier curves of the solution are shown in Figure 7.36(a). This
solution was attained at the 497th generation, with an area objective function f_{area} value of 0.705716 and a distance objective f_d value of -3.568600. The required input forces for the three loading cases are 4.106882N, 0.646396N, and 2.065481N, respectively. The peak von Mises stress which occurs at the support element is 30.7387MPa under input load12. Thus, the stress constraint function g_{stress} has a value of -0.073570.

Figure 7.35: Chromosome code of the optimal result of Figure 7.34 (a).

Figure 7.36: Input/output/control points and Bezier curves of Figure 7.34
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

Following the same sequence and format of results/plots shown in Run 1, the rest of the corresponding set of results from Run 3 are shown in Figures 7.37 to 7.44. However, for this run, only the best area objective result is used to create a possible arrangement of the manipulator because the shape and size of the output areas of the other results are not suitable for constructing the manipulator.
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

(a) undeformed shape and deformed shapes

(b) output path (area)

(c) arrangement of compliant grip-and-move manipulator

(d) prototype of compliant grip-and-move manipulator

Figure 7.37: Compliant grip-and-move manipulator – design with best area objective (Run 3).

223
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

Figure 7.38: View of compliant grip-and-move manipulator.

(a) gripping position 1
(b) gripping position 2
(c) gripping position 3
(d) gripping position 4

Figure 7.39: Sample solutions from the initial (randomly generated) population.
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

(a) generation 50 (best f_{area})
\[
\begin{align*}
 f_{area} &= 1.090379 \\
 f_d &= -1.921334 \\
 g_{GA1} &= -0.605131 \\
 g_{GA2} &= -4.152685 \\
 g_{GA12} &= -0.237501 \\
 g_{stress} &= -0.130370
\end{align*}
\]

(b) generation 50 (median)
\[
\begin{align*}
 f_{area} &= 2.307479 \\
 f_d &= -4.499605 \\
 g_{GA1} &= -0.790043 \\
 g_{GA2} &= -0.964206 \\
 g_{GA12} &= -0.486028 \\
 g_{stress} &= -0.167782
\end{align*}
\]

(c) generation 50 (best f_d)
\[
\begin{align*}
 f_{area} &= 2.754752 \\
 f_d &= -5.033625 \\
 g_{GA1} &= -0.665001 \\
 g_{GA2} &= -1.953728 \\
 g_{GA12} &= -0.279748 \\
 g_{stress} &= -0.298879
\end{align*}
\]

(d) generation 100 (best f_{area})
\[
\begin{align*}
 f_{area} &= 0.851900 \\
 f_d &= -2.493000 \\
 g_{GA1} &= -0.359589 \\
 g_{GA2} &= -4.957378 \\
 g_{GA12} &= -0.228789 \\
 g_{stress} &= -0.002867
\end{align*}
\]

(e) generation 100 (median)
\[
\begin{align*}
 f_{area} &= 1.476534 \\
 f_d &= -3.722838 \\
 g_{GA1} &= -0.150653 \\
 g_{GA2} &= -2.709665 \\
 g_{GA12} &= -0.071715 \\
 g_{stress} &= -0.029970
\end{align*}
\]

(f) generation 100 (best f_d)
\[
\begin{align*}
 f_{area} &= 2.368123 \\
 f_d &= -5.534375 \\
 g_{GA1} &= -0.614004 \\
 g_{GA2} &= -2.235676 \\
 g_{GA12} &= -0.262166 \\
 g_{stress} &= -0.141706
\end{align*}
\]

(g) generation 300 (best f_{area})
\[
\begin{align*}
 f_{area} &= 0.851890 \\
 f_d &= -2.323951 \\
 g_{GA1} &= -0.359589 \\
 g_{GA2} &= -4.959738 \\
 g_{GA12} &= -0.228789 \\
 g_{stress} &= -0.002867
\end{align*}
\]

(h) generation 300 (median)
\[
\begin{align*}
 f_{area} &= 1.385728 \\
 f_d &= -3.810513 \\
 g_{GA1} &= -0.795321 \\
 g_{GA2} &= -1.214299 \\
 g_{GA12} &= -0.367803 \\
 g_{stress} &= -0.019012
\end{align*}
\]

(i) generation 300 (best f_d)
\[
\begin{align*}
 f_{area} &= 1.923389 \\
 f_d &= -6.395732 \\
 g_{GA1} &= -0.624682 \\
 g_{GA2} &= -3.661673 \\
 g_{GA12} &= -0.293524 \\
 g_{stress} &= -0.193418
\end{align*}
\]

Figure 7.40: Best feasible solutions from sample intermediate generations.
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

Figure 7.41: History of the best area objective (f_{area}).

Figure 7.42: History of the best distance objective (f_{d}).
Chapter 7. DESIGN OF GRIP-AND-MOVE MANIPULATORS USING 2-DOF MECHANISMS

Figure 7.43: Plot of non-dominated solutions and elites at some sample generations.

Figure 7.44: Plot of cumulative non-dominated front up to some sample generations.
7.4 DISCUSSIONS AND CONCLUDING REMARKS

A formulation of compliant mechanism design is presented and seven grip-and-move manipulators composed of the design mechanisms have been created. The synthesis of such a compliant mechanism is done by solving the problem as a structural optimization problem with multiple objectives and constraints to achieve the desired behaviour of the manipulator. The most important objective of a two d-o-f mechanism design is to maximize the output area. Generating an area itself requires great compliance or flexibility and therefore, minimizing only area objective automatically leads to considerable compliance or thinning of the structure. Although generating a big output area is of utmost importance for a two d-o-f mechanism, a big working area is the final target based on the arrangement of two identical mechanisms. Keeping this in mind, a secondary objective, viz. the distance objective, and three GA constraints have been devised and used. Such mechanisms can be seen as a flexure-hinged displacement amplifier. As can be seen in Section 7.3, gripping movement is essentially performed by loading point pulling on mechanism that articulate at support point, which defines a functioning lever system. The manipulator is provided with a two lever system mounted on the support point which is a pivotal member. The support point is in a corner position in response to actuation of the two loading points to assist the grip-and-move behavior of the manipulator. A first flexure arm has a longitudinal axis and connects to the support point, a second flexure arm has a vertical axis, and the support point defines a virtual pivot point. The loading points are near the support point. With such an arrangement, displacements of loading points are amplified and then hopefully, the output area will be amplified also.

From the results shown above, the working area is the overlapped area instead of the output area formulated above. But the output area is being used as an estimate of the potential working area. The working area can be large only if the output area is large, and a large output area value gives the grip-and-move manipulator a bigger chance of generating a big working area.
As can be seen from the result, the working area produced by the optimum design is relatively large considering the small displacement input. However, large portions of the output area are wasted because they do not contribute to the working area. Future work needs to be done to improve the working area with respect to the size of output area of the structure in order to extend the working range of the manipulator.

As shown in the plots, the (experimental) measured paths (areas) of the prototypes are not very close to those of their corresponding optimum designs. Results from Run 1 with best area objective and results from Run 3 are fairly close, while Run 1 with best median area and distance objective and Run 2 prototype results are quite far from FE analysis. However the experimental areas of the Run 1 prototype (with best median area and distance objective) can simply be re-oriented, and hence the position of the two mechanisms can be adjusted to construct a grip-and-move manipulator. Unlike results from Run 1 and Run 3, the prototypes of Run 2 are not easy to be arranged to produce a large working area. For the difference between designs and their corresponding prototypes, some accumulative errors will contribute a lot to the simulation and measurement inaccuracies besides the factors listed in Section 4.6 for symmetric path generating mechanisms. The paths (areas) for 2-DOF mechanisms are more complex especially when the displacement inputs (the three loading cases) are applied as shown in Figure 7.3(a). For this loading case, input load\(^{12}\) is applied on the loading point 2 of the deformed shape under input load\(^{1}\), hence some accumulative errors will occur. The matching of deflections between experiment and computation has been shown in Figure 7.9(b), 7.12(b), 7.23(b), 7.25(b), 7.37(b). Stress has been, and still is, a difficult thing to measure, and the measure result is appropriate and inaccurate. At the same time, in this thesis, a constraint on the maximum stress in the mechanism is to hinder fatigue or failure. Major concern about it, however, is qualitative. So the exact value of stress is not as useful as the deflections.
Chapter 8

CONCLUSION AND FUTURE WORK

This chapter concludes the work presented in this thesis. Conclusions are drawn from the previous chapters. It also states the intended future work.

8.1 CONCLUSION

8.1.1 Formulation and Development of the Nonlinear FEM Program

A nonlinear formulation is presented for large deformation problems. The virtual work principle-based nonlinear formulation is constructed in a total Lagrangian description. In order to consider large deformation, effective stress and strain are expressed in terms of the 2nd Piola-Kirchhoff stress tensor and Green-Lagrange strain tensor, and the constitutive equation is derived from the relation between the effective stress and strain. 4-noded quadrilateral isoparametric plane stress element is used for modelling and development of the FEA program. The newly developed program produces fairly similar results as the ABAQUS software when doing non-linear analysis. It is then integrated with the genetic algorithm to perform the structural optimization. This makes the whole program more portable as it does not have to depend on the time-sharing of the system and availability of any license for a commercial FE software. Moreover, it is possible to run the optimization on a personal computer. Comparing with the solution speed of the previous work [246] solved by ABAQUS on a SGI server, a lot of time can be saved when the same genetic algorithm problem is solved.
Chapter 8. CONCLUSION AND FUTURE WORK

8.1.2 Enhanced Morphological Geometry Representation

An enhanced morphological geometry representation that includes variable connectivity has been presented in this thesis. It uses arrangements of ‘skeleton’ and ‘flesh’ to define structural geometry in a way that facilitates the transmission of topological/shape characteristics across generations in the evolutionary process and will not render any geometrically undesirable features such as disconnected ‘floating’ segments of material, ‘checkerboard’ patterns or single-node hinge connections between elements. As the number of I/O points increases, there is a large number of possible valid connectivities and it becomes difficult for the designer to intuitively prescribe one that is likely the best connectivity. In the enhanced scheme, the connectivities and the number of curves used are made variable and to be optimized in the evolutionary procedure. Full connectivities are maintained in the chromosome code but whichever of the curves are actually used will be selected through the evolutionary procedure and hence the connectivity of the curves used for defining the skeleton can be varied. The resulting scheme therefore increases the variability of the connectivity of the curves and hence the variability of the structure topology. But the resulting designs obtained are jagged-edge structures due to the finite element discretization/grid. Future work needs to be done to smoothen the boundaries.

8.1.3 Handling Objectives as Adaptive Constraints for Multiobjective Structural Optimization

This thesis presents a novel, simple and intuitive way to integrate the user’s preference into the genetic algorithm. This approach treats relatively more important objectives as adaptive constraints whose ideal values will be adaptively changed (improved) during the optimization procedure. Such changes can help direct and focus the search towards preferred regions of the objective space by a variation of the problem type (unconstrained problem, moderately constrained problem or highly constrained problem). As the selection criteria for mating partner depends on the type of problem in the algorithm used here, more selection pressure is put on adaptive constraints. The proposed algorithm
efficiently guides the population towards the (preferred) region of interest, allowing a faster convergence and a better coverage of the preferred area of the Pareto optimal front based on the relative importance of the objectives.

8.1.4 Use of a Hybrid Strategy to Improve Search for the True Optimal Solution

Use of a genetic algorithm alone may be effective in approximately locating the global optimum but it is usually not efficient in trying to reach the exact optimum accurately. It is therefore more efficient to incorporate a form of local search to ensure finding the true-optimal solutions. For this purpose, a hybrid strategy can be used in which each solution obtained from the genetic algorithm procedure can be further improved (modified) by using a secondary (local) optimization/search process. A novel constrained tournament selection is used as a single objective function in the local search strategy. This selection is utilized to determine whether a new solution generated in the local search process will survive. Hooke and Jeeves method is applied to decide on the search path. However the major problem of approach used in local search is the need for specifying the right value for weight parameters in advance. And the values usually can not reflect the real relative comparison between them.

8.1.5 Design of Test Problems with Conflicting/Non-conflicting Objectives

The genetic algorithm has been tested and tuned by running it on one old and three newly-devised multiobjective and constrained test problems called “Target-Matching Problems”. These test problems with conflicting objectives or non-conflicting objectives are most suitable for the genetic algorithm being employed in this work as it makes use of the genetic algorithm’s integral procedures such as the morphological geometry representation scheme, associated chromosome encoding and reproduction operators,
etc. The genetic algorithm was run for the test problem and the solutions successfully converged to the ‘target geometry’. The best set of the genetic algorithm parameters, which was deduced from the various runs of the algorithm for solving the test problems, was then used for solving the actual mechanism problem.

8.1.6 Design of Grip-and-move manipulators Using Symmetric Path-generating Mechanisms

A compliant grip-and-move manipulator design problem has been conceptualized and formulated by the employment of two identical symmetric path generating mechanisms. These two symmetric path generating mechanisms work like two fingers so that they can grip an object and convey it from one point to another. The topology/shape design optimization methodology has been applied to automatically synthesize a symmetric path generating compliant mechanism which produces a desired symmetric output path. The genetic algorithm treats the problem as a discrete multiobjective constrained optimization problem. The most important objective of a symmetric path generating compliant mechanism is to minimize the path objective function which quantifies the error between the actual and the desired paths. Although generating a path correctly is of utmost importance for such a mechanism, improvement in the flexibility of the mechanism without deteriorating the path objective is also desirable. Keeping this in mind, a second objective, the geometric advantage objective, has been devised and used so that the flexibility of the mechanism is also maximized simultaneously. As can be seen from the results, the path produced by the selected optimum designs are very close to being symmetric. The geometric advantage attained in the symmetric path problem is also fairly good. However, the absolute length of the path generated by the mechanism is relatively short compared to the mechanism’s size. And the (experimental) measured paths are not as close to the desired symmetric curves as suggested by the FE results.
8.1.7 Design of Grip-and-move manipulators Using 2-DOF Compliant Mechanisms

Another compliant grip-and-move manipulator problem has been conceptualized and formulated by the employment of two identical 2-DOF path generating mechanisms. As described in Chapter 4, two identical symmetric path-generating mechanisms can be combined as a grip-and-move manipulator which can grip something and travel over some distance, but it can only travel along a specific path. For a more general mechanism, it will likely require two DOF with two inputs. In this work, a formulation for such a compliant mechanism design has been created. The synthesis of such a compliant mechanism is achieved by solving the problem as a structural optimization problem with multiple objectives and constraints to achieve the desired behaviour of the manipulator. From the results shown, the working area is the overlapped area between the two mechanisms instead of the output area of each mechanism. But the output area can be used to estimate the working area. The working area can be large only if the output area is large. And a large output area gives the grip-and-move manipulator more likelihood of achieving a large working area. As can be seen from the result, the working area produced by the optimum design is large considering the small displacement input, although it is relatively small compared to the output area of each mechanism as much of the output area is not usable and hence wasted. Future work needs to be done to improve the working area with respect to the size of output area of the structure in order to extend the working range of the manipulator.

8.2 ORIGINAL CONTRIBUTIONS ARISING FROM THIS WORK

To the best of the author’s knowledge, a compliant mechanism that can grip and move an object from one point to some other desired point (within its working range) has not been designed/created before. The applications of this mechanism will be significant in
the fields of MEMS, robotics and various automation tasks. In this work, the development of the methodology to design such a mechanism has given rise to various contributions including:

i New formulation of optimization criteria for designing grip-and-move manipulators by the employment of two identical symmetric path generating mechanisms.

ii Enhanced geometry representation schemes for defining the geometry of the design structures to increase the representation variability.

iii Implementation of a hybrid genetic algorithm incorporating an adaptive constraint concept to improve its performance and efficiency.

iv Construction of test problems with conflicting/non-conflicting objectives to test and tune the genetic algorithm for solving the actual mechanism design problem.

v New formulations of optimization criteria for designing compliant grip-and-move manipulators by the employment of two path generating mechanisms with two degrees-of-freedom, two input points and multiple objectives/criteria.

8.3 RECOMMENDATIONS FOR FUTURE WORK

8.3.1 Control of Mechanisms

To be able to grip and convey an object from one point to another, the resultant compliant mechanism must be paired up with another identical mechanism. To ensure the output ports from the two mechanisms can meet and grip, the control of the inputs for each of the two mechanisms must be coordinated. This is probably best accomplished after fabricating the mechanism such that the input-output behavior is more accurately determined and then the orientation of the two mechanisms can be adjusted accordingly.
8.3.2 Edge Smoothening and Reanalysis of Structure

The resulting designs obtained are jagged-edge structures due to the finite element discretization/grid. Therefore future work that needs to be done include the implementation of some form of curve-fitting or smoothing techniques to parameterize the structural boundaries. After smoothening of the boundaries, finite element analysis of the smoothed structure may be carried out so that the final values (closer to the actual fabricated mechanism) of the objective and constraint functions can be computed.

Alternatively, the need for smoothening of the boundaries can be avoided by developing the morphological representation scheme to directly generate smooth boundary structures and then have the geometry discretized by some automatic FE meshing facility. This will result in another advantage and that is the morphological geometry representation scheme or the design variables will not be mesh dependant. However, this approach is feasible only if reliable and efficient automatic meshing can always be achieved.

8.3.3 Guidelines to Selecting Parameters and Setting Their Limits

In the present methodology, the number of I/O points and their allowable positions, lower and upper bounds of the thickness variables, and the number of control points are required to be prescribed. The shape of the optimal design depends on these parameters and, therefore, a wrong choice of parameters (for example, the number and positioning of the support points) may result in poor convergence of the problem. As an alternative, a method can be developed to determine the number of I/O points, the position of the support points, etc.
References

References

References

References

References

References

