STUDIES ON COPPER-CATALYZED AEROBIC REACTIONS OF N-H IMINES

ANG GIM YEAN

SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES

2012
STUDIES ON COPPER-CATALYZED

AEROBIC REACTIONS OF N-H IMINES

ANG GIM YEAN

School of Physical and Mathematical Sciences

A thesis submitted to the Nanyang Technological University
in partial fulfillment of the requirement for the degree of
Master of Science

2012
Acknowledgements

To have completed my Masters of Science program in Chemistry, I am grateful to the many people I met throughout my days in the laboratory.

Firstly, I would like to thank my supervisor, Assoc. Prof. Shunsuke Chiba, for his guidance, advice and help in the course of this program. His passion and enthusiasm for chemistry is matched only by very few people I know.

I am also deeply indebted to Dr. Li Yongxin for helping me with x-ray crystallographic analysis and the laboratory staff who trained me in the essential skills required to operate the instruments (NMR, IR, LCMS, HRMS) central to my research work. They are Ms. Goh Ee Ling, Ms. Zhu Wen Wei and Ms. Seow Ai Hua.

To my graduate mentor, Dr. Zhang Line, it was most encouraging working with him as we exchange pointers on experimental techniques and project discussions. He is most of the most hardworking and resilient individuals I have ever met and to see him work is a humbling experience.

To the undergraduate student, Miss See Jing Jing, who worked with me on the carbonitrile synthesis project, I thank her for the helpful discussions and thought provoking questions. She is thoughtful and meticulous and it was always a pleasure hearing her “radio broadcasts”.

To the other graduate and undergraduate students whom I have worked with and helped me with my queries throughout the course of this project, I sincerely thank you. The times we laughed at celebrations, frowned at problems and helped one another, will always be remembered.
Table of Contents

Acknowledgements...i
Table of Contents...ii
List of Abbreviations..v
Abstract...viii

Chapter 1 Introduction

1.1 Background of the iminyl metal species...1
 1.1.1 The iminyl metal species in C-C bond cleavages.................................2
 1.1.2 The iminyl metal species in reactions with unsaturated C-C bonds...............5
 1.1.3 The iminyl metal species in reactions with C=O bonds......................10
 1.1.4 The iminyl metal species in cross-coupling reactions with C-C bond formation ...13
 1.2 Summary..15

Chapter 2 Copper-Catalyzed Benzylic C-H Oxygenation under an Oxygen Atmosphere via N-H Imines as an Intramolecular Directing Group

2.1 Introduction..17
 2.1.1 Overview...17
 2.1.2 Transition metal-catalyzed C-H oxidation using peroxides..............19
 2.1.3 Transition metal-catalyzed C-H oxidation using molecular oxygen ...21
 2.1.4 Immediate concerns..24
 2.2 Preparation of starting materials..25
 2.3 Synthesis of 1,2-diacylbenzenes...28
 2.3.1 Optimization of reaction conditions...28
 2.3.2 Scope and limitations...30
 2.3.3 Discussion on the reaction mechanism..37
 2.4 Synthesis of phthalazines and isoindolines...40
2.4.1 Existing methodologies for phthalazine synthesis..........................40
2.4.2 Synthesis of phthalazines..43
2.4.3 Synthesis of isoindolines...46
2.5 Conclusion..48

Chapter 3 Electrophilic Cyanation of Grignard Reagents with Pivalonitrile via Copper-Catalyzed Aerobic β-Carbon Elimination of N-H Imine Intermediates

3.1 Introduction..49
3.1.1 Overview...49
3.1.2 Classical methods for the synthesis of carbonitriles.......................51
3.1.3 Recent methods for the synthesis of carbonitriles..........................52
 3.1.3.1 Metal-catalyzed methods for the synthesis of carbonitriles...........52
 3.1.3.2 Use of organic precursors for the synthesis of carbonitriles...........54
 3.1.3.3 Electrophilic cyanation for carbonitrile synthesis.......................57
3.2 Electrophilic cyanation of Grignard reagents with pivalonitrile............61
 3.2.1 Optimization of reaction conditions..61
 3.2.2 Scope and limitations..63
 3.2.3 Discussion on the reaction mechanism...65
3.3 Conclusion..67

Chapter 4 Summary..68

Chapter 5 Experimental

5.1 General considerations..69
5.2 Copper-Catalyzed Benzylic C-H Oxygenation under an Oxygen Atmosphere via N-H Imines as an Intramolecular Directing Group......70
 5.2.1 Preparation of starting material...70
 5.2.1.1 Method 1: Benzylic bromination of 2-methylbenzonitriles 9
followed by the Friedel–Crafts reaction.................................70
5.2.1.2 Method 2: Pd-catalyzed Suzuki-coupling of 2-
bromomethylbenzonitrile with arylboronic acid............77
5.2.1.3 Method 3: Mn(II)-catalyzed coupling of 2-
chlorobenzonitrile with alkyl Grignard reagents..........84
5.2.1.4 Method 4: Synthesis of 2,2-dimethyl-4-
phenylbutanenitrile...85
5.2.2 Cu(OAc)$_2$–catalyzed methylene oxygenation.................................86
5.2.2.1 A typical procedure for synthesis of
1,2-diacylbenzenes 3...86
5.2.2.2 Synthesis of phthalazines...100
5.2.2.3 Synthesis of isoindolines...109
5.2.2.4 Labelling experiments...114
5.3 Electrophilic Cyanation of Grignard Reagents with Pivalonitrile via
Copper-Catalyzed Aerobic β-Carbon Elimination of N-H Imine
Intermediates..119
5.3.1 Unexpected finding of carbonitrile.................................119
5.3.2 Electrophilic cyanation of Grignard reagents with pivalonitrile...120
5.3.3 Mechanistic studies...122

References and Notes...125
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>chemical shift (ppm)</td>
</tr>
<tr>
<td>°C</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>Ar</td>
<td>aryl (substituted aromatic ring)</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>Br</td>
<td>broad singlet</td>
</tr>
<tr>
<td>calcd</td>
<td>calculated</td>
</tr>
<tr>
<td>cat.</td>
<td>catalytic</td>
</tr>
<tr>
<td>cm⁻¹</td>
<td>wave number</td>
</tr>
<tr>
<td>Cp</td>
<td>cyclopentadienyl</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>dd</td>
<td>doublet of doublets</td>
</tr>
<tr>
<td>DME</td>
<td>dimethoxyethane</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>EtOAc</td>
<td>ethyl acetate</td>
</tr>
<tr>
<td>equiv.</td>
<td>equivalent</td>
</tr>
<tr>
<td>ESIHRMS</td>
<td>Electrospray Ionization High Resolution Mass Spectrometry</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Et₂O</td>
<td>diethyl ether</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>IR</td>
<td>infrared spectroscopy</td>
</tr>
<tr>
<td>J</td>
<td>coupling constants</td>
</tr>
<tr>
<td>M</td>
<td>concentration (mol/L)</td>
</tr>
<tr>
<td>M⁺</td>
<td>parent ion peak (mass spectrum)</td>
</tr>
<tr>
<td>m</td>
<td>multiplet</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>mmol</td>
<td>millimole</td>
</tr>
<tr>
<td>mp.</td>
<td>melting point</td>
</tr>
<tr>
<td>n-BuLi</td>
<td>n-butyllithium</td>
</tr>
<tr>
<td>NMP</td>
<td>methylpyrrolidone</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>p-Tol</td>
<td>p-toly</td>
</tr>
<tr>
<td>vi</td>
<td></td>
</tr>
</tbody>
</table>
q quartet
rt room temperature
s singlet
sep septet
SO_3 sulfur trioxide
t triplet
THF tetrahydrofuran
TLC thin layer chromatography
Ts p-toluenesulfonyl
Abstract

On investigating copper-catalyzed aerobic reactions of N-H imines, it was discovered that the iminyl copper species formed from reaction of Grignard reactions with carbonitriles, could undergo either C-H oxygenation or C-C bond cleavage depending on the starting material.

The methylene C-H oxidation provides 1,2-diacylbenzenes, which could be further transformed into phthalazines and isoindolines, while a C-C bond cleavage provides carbonitriles using pivalonitrile as a cyanide source.

Both transformations are aided by the oxidation of the iminyl copper species with diradical oxygen to form a peroxycopper intermediate, followed by oxidation or homolytic cleavage to effect oxidation and C-C bond cleavage respectively.

Both reactions could provide a range of desired products in respectable yields.
Chapter 1 Introduction

1.1 Background of the iminyl metal species

Pioneering work on the putative iminyl metal species was performed in 1998, when Pombeiro and Tillac independently reported the reaction of oximes with lower valent rhenium(I) and titanium(II) complexes to form the corresponding iminyl metal intermediates (Scheme 1-1).

\[
\begin{align*}
\text{Me} \equiv \text{Me} \quad & \quad \text{trans-[ReCl(N}_{2}\text{)(dppe)}_{2]} \quad \text{Ti[BF}_{4}]^{-}\text{Ti[HSO}_{4}] \quad \text{THF} \quad [\text{Re(OH)(dppe)}_{2}][\text{BF}_{4}] \quad \text{dppe} = \text{Ph}_{2}\text{PCH}_{2}\text{CH}_{2}\text{PPh}_{2} \\
\text{Me} \equiv \text{Me} \quad & \quad \text{Cp}_{2}\text{Ti(Me}_{3}\text{SiC}≡\text{CSiMe}_{3}) \quad \text{TiCp}_{2}(\text{OSiMe}_{3})
\end{align*}
\]

Scheme 1-1. Generation of iminyl metal species from oxidative addition of N-O bonds to lower valent Re(I) and Ti(II) complexes

Since then, there has been a fair amount of studies documenting research on this intermediate and its involvement in various chemical reactions. In this section, we will highlight chemical transformations with a participating iminyl metal species.

As an overview of examples featured in this chapter, Scheme 1-2 illustrates the generation of iminyl metal species from vinyl azides, N-O oximes, N-H imines, N-alkylated imines, α-azido carbonyl compounds, as well as carbonitriles. Thereafter, the iminyl metal species could undergo reactions of β-carbon eliminations, insertion with unsaturated C-C bonds, nucleophilic attack onto carbonyl compounds and even coupling with boronic acids.
1.1.1 The iminyl metal species in C-C bond cleavages

In classical organometallic chemistry, β-hydrogen eliminations are characteristic of late transition metal complexes. On the other hand, analogous reactions that leads to C-C bond cleavages are not as common.

At the turn of the millennium, following a series of investigations into β-carbon eliminations, Uemura and co-workers reported a palladium-catalyzed formation of nitriles from cyclobutanone oximes via a cyclobutaniminopalladium(II) complex (Scheme 1-3). The authors postulate that the reaction commenced with the oxidative addition of the N-O bond of O-benzoyl oxime to the palladium(0)-BINAP complex to afford an iminyl palladium(II) intermediate I. This highly strained cyclobutane structure then
underwent β-carbon elimination to form an alkylpalladium species II. Successive β-hydrogen elimination and isomerization then proceeded to afford the products, isomeric phenylbutenenitriles 3-phenylbut-3-enenitrile and (E)-3-phenylbut-2-enenitrile in 4% and 84% GLC yield respectively; the latter is the major product because it is the more stable alkene.

While the report intended to demonstrate the mechanistic novelty of β-carbon eliminations, made possible with thoughtful design of the substrates, it also highlighted the existence of the iminyl metal species in this class of reactions.

Similarly, Hartwig and Zhao were successful in observing C-C bond cleavages in β-carbon eliminations from the iminyl ligand of an isolated rhodium(I) iminyl complex, as confirmed by x-ray crystallographic analysis, forming a more stable rhodium(I) aryl complex and an aromatic nitrile (Scheme 1-4).

Recently, our group also reported carbonitrile synthesis with C-C bond cleavages in α-azido carbonyl compounds via iminyl copper species (Scheme 1-
The reaction was accelerated under an oxygen atmosphere and tolerated a wide range of substrates to afford products in moderate to good yields.

In the catalytic cycle, the iminyl copper intermediate could be oxidized under an oxygen atmosphere to give a peroxo copper species which then adds to the intramolecular carbonyl moiety to induce C-C bond cleavage and provide carbonitriles (Scheme 1-6, path a).

Scheme 1-5. Formation of carbonitriles from α-azido carbonyl compounds via β-carbon elimination

<table>
<thead>
<tr>
<th>Atmosphere (1 atm)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>24</td>
<td>11 12</td>
</tr>
<tr>
<td>O₂</td>
<td>7.5</td>
<td>90 0</td>
</tr>
</tbody>
</table>

Scheme 1-6. Proposed pathways for the formation of carbonitriles via iminyl copper intermediate
However, the possibility that the iminyl copper intermediate underwent a \(\beta \)-carbon elimination (Scheme 1-6, path b) to form carbonitriles could not be ruled out since product 2-naphthonitrile 1 could also be formed in the absence of oxygen, albeit in lower yields and longer reaction times.

1.1.2 The iminyl metal species in reactions with unsaturated C-C bonds

In 2002, Kitamura and Narasaka reported the reaction of iminyl palladium(II) species with an intramolecular alkene moiety for the synthesis of aza-heterocycles.\(^6\) This elegant amino-Heck process commenced with the oxidative addition of readily available acyloximes to palladium(0) complexes to generate alkyldiene-aminopalladium(II) species which are key intermediates in the subsequent cyclization and C-N bond formation. The methodology could be expanded to provide pyrroles, pyridines, isoquinolines, spiro imines, azaazulenes and nitriles upon suitable modification of the substrates (Scheme 1-7).

![Scheme 1-7. Synthesis of azaheterocycles via iminyl palladium(II) intermediate](image-url)
Similarly, Zhu and co-workers applied this concept and developed an intermolecular version of this amino-Heck process, trapping the iminyl palladium species with benzyne or alkynes to form phenanthridines and isoquinolines, respectively. The choice of solvent is important in this domino aminopalladation/C-H functionalization sequence (Scheme 1-8). A slow generation of benzyne in butyronitrile due to low solubility and higher reaction temperatures will provide the desired products in higher yields.

\[
\begin{align*}
\text{Pd(0)} & \quad \text{butyronitrile, 120 °C} \\
\text{Path b} & \quad \text{II'}
\end{align*}
\]

\[
\begin{align*}
\text{Path a} & \quad \text{II} \\
\text{III} & \quad \text{xphos} = 2\text{-dicyclohexylphosphino-2',4',6'-trisopropylbiphenyl}
\end{align*}
\]

Scheme 1-8. Annulation of acyloximes with arynes via iminyl Pd(II) intermediate
Our group has been interested in the use of the iminyl metal species for chemical transformations. In 2011, we developed a methodology for the synthesis of isoquinolines from α-aryl vinyl azides and internal alkynes using a Cu(OAc)$_2$-[Cp*RhCl)$_2$]$_2$ bimetallic relay system.8

![Scheme 1-9. Isoquinolines synthesis from vinyl azides and alkynes by Rh-Cu bimetallic cooperation](image)

The mechanism for this novel synthetic route commenced with the reduction of Cu(OAc)$_2$ by DMF to form a Cu(I) species (Scheme 1-10). Then, as shown in Scheme 1-11, thermal denitrogenative decomposition of vinyl azide gave 2H-azirine which could be reduced by the Cu(I) species to afford a radical anion I (path a). Subsequently, C-N bond cleavage of I forms the iminyl copper(II) radical intermediate II which could be further reduced with Cu(I) and protonated to deliver N-H imine. Alternatively, direct reduction of the vinyl azide by a Cu(I) forms the radical intermediate II through a vinyl azide anion radical V (path b).

![Scheme 1-10. Generation of Cu(I) species by reduction of Cu(OAc)$_2$ with DMF](image)

![Scheme 1-11. Reductive formation of N-H imines from vinyl azides and Cu(I) species](image)
Finally, in Scheme 1-12, iminyl rhodium species VI formed from either N-H imine or iminyl copper species IV led to rhodacycle VII which undergoes alkyne insertion and reductive C-N elimination to provide isoquinoline.

![Chemical diagram]

Scheme 1-12. Ortho C-H rhodation, alkyne insertion and C-N reductive elimination

Besides offering an alternative way to generate iminyl metal species from vinyl azides, the reaction offered insights into the use of compatible metal catalysts for domino chemical transformations.

It is noteworthy that other than vinyl azides, aryl ketoxime derivatives could also react with internal alkynes for the synthesis of azaheterocycles using the Cu(OAc)$_2$-[Cp*RhCl$_2$]$_2$ bimetallic relay system (Scheme 1-13). The reaction proceeded with both the anti- and syn-isomers of ketoximes to afford isoquinolines in good yields.

![Chemical diagram]

Scheme 1-13. Isoquinoline synthesis from aryl ketone O-acetyl oximes by Cu-Rh bimetallic relay catalysts

As illustrated in Scheme 1-14, the reaction begins with the reduction of the oxime N-O bond using lower valent Cu(I) to generate an iminyl copper species A,
which should be free to isomerize between anti- and syn-isomer. Since the metal reductant works independently of Rh(III), the resulting iminyl copper metal species undergoes transmetallation with Rh(III) to afford iminyl rhodium(III) intermediates. Ortho C-H rhodation and subsequent annulation with internal alkynes then afford the cyclized isoquinoline.

![Scheme 1-14. Hypothesis for isoquinoline synthesis from aryl ketone O-acetyl oximes](image)

Previously, when using the catalytic redox-neutral \([\text{Cp}^*\text{RhCl}_2]_2-\text{NaOAc}\) system, there is a stereochemical restriction on the oximes; the N-O bond of the oximes should be anti to the aryl moiety. The Cu-Rh bimetallic system removes this requirement and both the anti- and syn-isomers of the ketoximes could be utilized as substrates for this transformation.
1.1.3 The iminyl metal species in reactions with C=O bonds

Another type of chemical transformation involves the iminyl metal species undergoing nucleophilic attack onto the carbonyl moiety.

In 2008, our group reported a synthetic method to prepare pyrroles by a Mn(III)-catalyzed reaction of vinyl azides and 1,3-dicarbonyl compounds via a radical pathway as shown in Scheme 1-15. The proposed mechanism commenced with the addition of Mn(III) enolate I to vinyl azide to give iminyl radical II with the release of dinitrogen and a Mn(II) species. This iminyl radical II then reacts with the Mn(II) species to generate iminyl Mn(III) species III which undergoes nucleophilic addition onto a carbonyl group to yield a cyclized intermediate IV. Protonation of IV with acetic acid followed by dehydration affords product pyrrole and regenerates the catalyst.

Scheme 1-15. Mn(III)-catalyzed synthesis of pyrroles via iminyl Mn(III) species
Further study revealed that cyclopropanols could be used as precursors to β-carbonyl radicals to react with vinyl azides, a three-atom unit including one nitrogen, leading to the formation of various azaheterocycles (Scheme 1-16). This [3+3]-annulation process commenced with the generation of a β-keto radical I by a one-electron oxidation of 1-phenyl-cyclopropanol, which adds to vinyl azide to afford iminyl radical II and releases dinitrogen. Reaction of II with Mn(II) affords iminyl Mn(III) species III which then undergoes nucleophilic attack to the carbonyl moiety to give intermediate IV which is protonated to give tetrahydropyridine V and regenerates Mn(III) catalyst. Dehydration of V followed by oxidation then affords the desired pyridine product.

Scheme 1-16. [3+3]-Annulation of vinyl azides and cyclopropanols for the synthesis of pyridines
In a separate study, our group reported a Pd(II)-catalyzed ring expansion of cyclic 2-azidoalcohols to provide pyridines.13 Under basic conditions, the azidoalcohol reacts with Pd(II) complex to generate a palladium(II) alcoholate I with the release of dinitrogen (Scheme 1-17). \(\beta \)-carbon elimination of I generates a \(\alpha \)-azidocarbometal species II which then undergoes a metal migration from C to N with the release of dinitrogen to form iminyl Pd(II) species III. Intramolecular nucleophilic attack of III to the formyl group forms a cyclized intermediate IV. Protonation followed by dehydration then yields product pyridine along with catalyst regeneration.

\begin{equation}
\text{Scheme 1-17. Synthesis of pyridines via Pd(II)-catalyzed ring-expansion of cyclic 2-azidoalcohols}
\end{equation}
1.1.4 The iminyl metal species in cross-coupling reactions with C-C bond formation

Interestingly, the iminyl metal species has also been reported to participate in cross-coupling reactions for the formation of new C-C bonds.

In 2004, Barluenga and co-workers modified the Buchwald-Hartwig reaction for the preparation of N-substituted aldimines via a iminyl palladium complex. This synthesis is the first of its kind since previous attempts using unstable N-H aldimines were not successful. As shown in Scheme 1-18, N-trialkylsilylimines were coupled with aryl bromides and the amination reaction was completed in three steps: 1) oxidative addition of the aryl halide to a palladium(0) complex to form an aryl-palladium complex I; 2) transformation of I into an imido complex II with the use of a nucleophilic additive to promote N-Si bond cleavage; 3) reductive elimination to form the product and regenerate the palladium catalyst.

Scheme 1-18. Coupling of imines with aryl bromides using N-trimethylsilylimines
In another example, boronic acids were used as coupling partners with \(O \)-acyl ketoximes for the formation of \(N \)-substituted imines.\(^{15} \) Reported by Liebeskind and co-workers in 2007, this copper-catalyzed coupling reaction commenced with the oxidative addition of Cu(I) to the N-O bond of the \(O \)-pentafluorobenzoyl oxime to form an iminyl Cu(III) intermediate \(\text{I} \). Transmetallation of the boronic acid to \(\text{I} \) provides the putative iminyl Cu(III) intermediate \(\text{II} \). Finally, reductive elimination affords the \(N \)-iminated product and regenerates the catalyst (Scheme 1-19).

![Scheme 1-19. Copper-catalyzed \(N \)-imination of boronic acids with \(O \)-acyl ketoximes](image)

The authors went on to adapt the non-basic and non-oxidizing reaction conditions for the synthesis of substituted pyridines.\(^{16} \) This reaction cascade comprises (a) C-N cross-coupling of alkenyl boronic acids at the N-O bond of an oxime \(O \)-carboxylate to generate 3-azatrienes, (b) \(6\pi \)-electrocyclization, and (c) aerobic oxidation (Scheme 1-20). Using catalytic amounts of Cu(OAc)\(_2\), various \(\alpha,\beta \)-unsaturated ketoxime \(O \)-pentafluorobenzoates were reacted with \(\text{trans-1-hexen-1-yl} \)boronic acid to afford a variety of substituted pyridines. The mild,
neutral pH reaction conditions tolerated many functional groups, particularly iodides, providing substrates which could be used for further functional group transformation.

1.2 Summary

The iminyl metal species as an intermediate in four types of reactions has been discussed in this chapter.

In reactions involving C-C bond cleavages, driving forces such as the release of ring strain and the formation of thermodynamically stable products enable lesser-known processes such as β-carbon eliminations to proceed and hence form nitriles from the iminyl metal intermediates. When looking at reactions with unsaturated bonds, beginning with its role in the amino-Heck process described by Narasaka and Kitamura, the iminyl metal species went on to be utilized in oxidative coupling reactions with alkynes or arynes so as to form various nitrogen
heterocycles. The iminyl metal species could also undergo nucleophilic addition to the carbonyl moiety to effect cyclization reactions. Finally, iminyl metal species could undergo coupling reactions to form N-iminated products.

Work documented in this thesis describes the participation of the iminyl copper species in oxidation of methylene C-H bonds as well as C-C bond cleavage reactions. In Chapter 2, the iminyl copper species causes methylene C-H oxygenation via N-H imines as an intramolecular directing group to form 1,2-diacylbenzenes which could be further functionalized into phthalazines and isoquinolines (Scheme 1-21). The N-H imines were generated from nucleophilic attack of Grignard reagents with 2-benzyl benzonitriles.

In Chapter 3, by substituting the carbonitrile substrates with pivalonitriles, it was found that pivalonitriles could become a source of electrophilic cyanides reagents to transfer the cyanide group onto aryl and alkyl Grignard reagents (Scheme 1-22). These two synthetic methodologies contributes towards the C-H functionalization and C-C bond cleavage reactions known to the iminyl metal species.
Chapter 2 Copper-Catalyzed Benzylic C-H Oxygenation under an Oxygen Atmosphere via N-H Imines as an Intramolecular Directing Group

2.1 Introduction

2.1.1 Overview

Aliphatic C-H bonds are prevalent in organic molecules, perhaps only second in occurrence to aliphatic C-C bonds. The ubiquitous nature of aliphatic C-H bonds is in part due to their stability and lack of reactivity to most chemical reagents even under strongly acidic and basic conditions. The only exception being when activation by adjacent functional groups such as carbonyl groups or with the use of organometallic complexes in C-H functionalization.

\[
\text{H}_2\text{C} = \text{C}-\text{H} + \text{Cl}_2 \xrightarrow{\text{hv}} \text{H}-\text{C} = \text{C}-\text{Cl}
\]

Scheme 2-1. Reactions typical of the aliphatic C-H bond

As shown in Scheme 2-1, saturated hydrocarbons containing aliphatic C-H bonds do react in combustion reactions to generate huge amounts of energy. However, such reactions are typically uncontrolled and give unattractive products-- carbon dioxide and water. On the other hand, cracking and dehydrogenation can
convert alkanes to alkenes, which are more useful, but such reactions are energy intensive and require high temperatures. Finally, exposure to highly reactive radicals in photochemical reactions can convert alkanes containing aliphatic C-H bonds to afford alkylhalides. Then again, there is little control over product selectivity.\(^{17}\)

Over the years, various approaches have been developed for the oxidative functionalization of unactivated C-H bonds using transition metal catalysts.\(^ {18}\) Some of these are examples of C-H oxygenation, with varying synthetic strategies depending on the choice of catalysts for C-H bond cleavage and oxygen source for subsequent oxygen atom incorporation.

While the use of oxygen-atom donors such as ozone, oxone, hydrogen peroxide and alkyl hydroperoxides have been reported,\(^ {19}\) the focus of this introduction will be on the use of peroxides and molecular oxygen as oxidants for aliphatic C-H oxidation.
2.1.2 Transition metal-catalyzed C-H oxidation using peroxides

In 2009, Yi and co-workers reported the use of a cationic Ru(III) complex for the C-H oxidation of arylalkanes (Scheme 2-2). Unlike most C-H functionalization reactions, this transformation did not require any directing group and proceeded smoothly via a solvent-caed mechanism in water, with t-butyl hydroperoxide as oxygen source, to afford the ketones and alcohols in good yields. However, the substrate scope was highly limited to benzylic compounds and one cyclic ether.

\[
\begin{align*}
\text{Me} &+ \text{t-BuOOH} \quad \text{H}_2\text{O, } 20 ^\circ \text{C} \\
\text{Me} &+ \text{BF}_4^- \quad (1 \text{ mol } %)
\end{align*}
\]

<table>
<thead>
<tr>
<th>entry</th>
<th>substrate</th>
<th>product (s)</th>
<th>yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{Me})</td>
<td>(\text{Me}) & (\text{Me})</td>
<td>72%</td>
</tr>
<tr>
<td>2</td>
<td>(\text{Me})</td>
<td>(\text{Me})</td>
<td>(\text{Me})</td>
</tr>
<tr>
<td>3</td>
<td>(\text{Me})</td>
<td>(\text{Me}) & (\text{Me}) & (\text{Me})</td>
<td>54% (\text{(15 : 1)})</td>
</tr>
</tbody>
</table>

Scheme 2-2. Selected examples of Ru-catalyzed aqueous phase oxidative C-H functionalization
In 2010, remarkable progress in C-H oxidation was made with the findings of White and Chen with their report on the site-selective oxidation of isolated and unactivated methylene C-H bonds to afford ketones (Scheme 2-3). Here, ketone formation is highly favored at electron-rich methylene sites, farthest from any electron-withdrawing groups. Furthermore, hyperconjugation activates adjacent C-H bonds towards oxidation, thus enabling the formation of lactones from cyclic ethers. It was also demonstrated that oxidation at sites complementary to those obtained using enzymes were possible, thus broadening the application of this methodology for biological studies.

![Scheme 2-3](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>substrate</th>
<th>product(s)</th>
<th>yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeO_\text{Me} \text{MeO} \text{Me}</td>
<td>MeO_\text{Me} \text{MeO} \text{Me}</td>
<td>72% (2.3 : 1)</td>
</tr>
<tr>
<td>2</td>
<td>\text{MeO}_\text{Me} \text{MeO}_\text{Me}</td>
<td>MeO_\text{Me} \text{MeO}</td>
<td>62% (12 : 1.5 : 1)</td>
</tr>
<tr>
<td>3</td>
<td>MeO_\text{Me} \text{MeO}_\text{Me}</td>
<td>MeO_\text{Me} \text{MeO}</td>
<td>64% (2 : 1)</td>
</tr>
</tbody>
</table>

Scheme 2-3. Selected examples of selective Fe-catalyzed methylene oxidation
2.1.3 Transition metal-catalyzed C-H oxidation using molecular oxygen

The development of metal-catalyzed methods for selective oxidative functionalization of aliphatic C-H bonds is a huge challenge in synthetic organic chemistry. Among them, studies on aerobic C-H oxidation using atmospheric oxygenation as an oxygen atom source remains limited. This section illustrates some recent examples of aerobic C-H oxidation.

In 2009, Yu and Zhang reported a highly selective Pd(II)-catalyzed hydroxylation of arenes under an oxygen atmosphere to provide ortho-hydroxyl benzoic acids (Scheme 2-4). While the exact reaction mechanism was not unknown, mechanistic studies using 18O$_2$ and H$_2$18O supports a direct oxygenation of the aryl palladium intermediates rather than an acetoxylation/hydrolysis sequence.

![Scheme 2-4. Pd(II)-catalyzed hydroxylation of arenes under an oxygen atmosphere](image)

In 2010, Ritter and co-workers developed the α-hydroxylation of carbonyl compounds under an oxygen atmosphere, catalyzed by a dinuclear Pd(II) complex (Scheme 2-5). The reaction proceeded in a chemo- and regioselective manner to afford a wide range of products in good yields. The experimental design targeted high-valent Pd oxygen species, accessible by bimetallic synergistic redox participation for oxidation chemistry. While preliminary studies have provided support for this theory, more work has to be done before the mechanism could be confirmed.
Recently, our group has been exploring the intriguing chemical reactivity of the iminyl copper species for aerobic oxidation. In one study, we reported a copper-catalyzed synthesis of azaspirocyclohexadienones from α-azido-N-arylamines under an oxygen atmosphere (Scheme 2-6).25 The reaction commenced with the base-mediated dinitrogenative formation of the iminyl copper species I, which then undergoes oxidation by molecular oxygen to form peroxycopper(III) II. An intramolecular imino-cupration gives intermediate III, followed by isomerization to IV which then eliminates the copper species to afford the desired product.

Scheme 2-5. α-hydroxylation of carbonyl compounds catalyzed by Pd(II)-dinuclear complex

Scheme 2-6. Cu(II)-catalyzed synthesis of azaspirocyclohexadienones
In another study, our group developed a method for oxidation tertiary C-H bonds using amidines as directing group to afford dihydrooxazoles, incorporating an oxygen atom from molecular oxygen. The reaction commenced the generation of Cu(II) catalyst from CuBr•SMe₂ and oxygen. The catalyst then oxidises the amidine starting material to form a 1,3-diazaallyl radical I which then undergoes a 1,5-H radical shift to form radical species II. Further reaction with molecular oxygen provides superoxo radical III followed by a Fenton-type fragmentation to afford Cu(II)-alkoxide IV. A final intramolecular nucleophilic attack of IV onto the amidine moiety then delivers the dihydrooxazole, accompanied by the elimination of ammonia.

Scheme 2-7. Cu-catalyzed aerobic aliphatic C-H oxygenation directed by an amidine moiety
2.1.4 Immediate concerns

Despite the above-mentioned examples of C-H oxidation, the continued development of catalytic reactions to realize selective oxidative C-H functionalization remains a challenge in organic synthesis. This prompted us to develop a copper-catalyzed methylene C-H oxidation under an oxygen atmosphere via a copper iminyl species to provide 1,2-diacylbenzenes 3 (Scheme 2-8). The transformation is a two-step sequence starting with the addition of a Grignard reagent to 2-benzylbenzonitriles to form N-H imines, followed by oxygenation to form C=O bonds.

![Scheme 2-8](image_url)

Scheme 2-8. Formation of 1,2-diacylbenzenes 3 from 2-benzylbenzonitriles 1 via iminyl copper species

Given the importance of 1,2-diketones and the lack of established methods for its formation, development of new and versatile pathways leading to such products remains relevant and will help advance research into their uses in other areas of chemistry.
2.2 Synthesis of starting materials

Four methods were applied for the preparation of starting material carbonitriles used in this chapter.

Method A: The two-step sequence of benzylic bromination followed by the Friedel-Crafts reaction was used to prepare a series of 2-benzylbenzonitriles 1. The 2-methylbenzonitriles 9 were formed from the reaction between 1-bromo-2-methylarenes and copper(I) cyanide in NMP. NBS-mediated bromination of 2-methylbenzonitriles 9 afforded the substituted bromobenzonitriles which were then reacted with AlCl_3 in benzene under reflux conditions. This method was used to prepare 2-benzylbenzonitriles 1a as well as substituted 2-benzylbenzonitriles 1j, 1k, 1m, 1n and 1q.

![Scheme 2-9](image_url)
Method B: The Pd(0)-catalyzed Suzuki-Miyaura cross coupling reaction of 2-(bromomethyl)benzonitrile and aryl boronic acids was utilized to prepare substituted 2-benzylbenzonitriles 1b-1i, 1l, 1o and 1p.

![Scheme 2-10. Preparation of benzylbenzonitriles (Method B)]
Method C: A procedure involving the coupling of 2-chlorobenzonitrile and alkyl Grignard reagents catalyzed by MnCl₂ was employed to synthesize 2-butylbenzonitrile \(1_r\). This method was also applied for the preparation of alkylbenzonitriles \(1_s\) and \(1_t\).

\[
\text{Cl} \quad \text{CN} \quad + \quad \text{R-MgBr} \quad \xrightarrow{\text{MnCl}_2 (10 \text{ mol} \%) \ \text{THF, 0} \ ^\circ \text{C}} \quad \text{Ph} \quad \text{CN} \\
\text{1r (68%)} \\
\]

Scheme 2-11. Preparation of alkylbenzonitriles (Method C)

Method D: To prepare 2,2-dimethyl-4-phenylbutanenitrile, isobutyronitrile deprotonated with LDA was reacted with (2-bromoethyl)benzene in an \(S_N2\) manner.

\[
\text{Me} \quad \text{CN} \quad \xrightarrow{1) \text{LDA (1.1 equiv.)} \ \text{2) PhCH}_2\text{CH}_2\text{Br (1.1 equiv.)} \ \text{THF, -78} \ ^\circ \text{C to rt.}} \quad \text{Ph} \quad \text{CN} \\
\text{1u (55%)} \\
\]

Scheme 2-12. Synthesis of carbobenzonitrile \(1_u\)
2.3 Synthesis of 1,2-diaicylbenzenes

2.3.1 Optimization of reaction conditions

In the benzylic C-H oxygenation of 2-benzylbenzonitrile 1a, when the reaction conditions for phenanthridine synthesis was applied, 1,2-dibenzoylbenzene 3aa was formed in 38% yield, accompanied by the formation of 1H-isooindol-1-ol 4aa in 43% yield (Table 2-1, entry 1).

Table 2-1. Optimization of reaction conditions

<table>
<thead>
<tr>
<th>entry</th>
<th>reaction condition<sup>a</sup></th>
<th>time (h)</th>
<th>yield (%)<sup>b</sup></th>
<th>3aa</th>
<th>4aa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard reaction condition</td>
<td>20</td>
<td>38</td>
<td>38</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>Standard reaction condition</td>
<td>7</td>
<td>34</td>
<td>34</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>Add 4 Å molecular sieves</td>
<td>15</td>
<td>26</td>
<td>26</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>MeOH (0.5 equiv.)</td>
<td>11</td>
<td>28</td>
<td>28</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>MeOH (0.0 equiv.)</td>
<td>19</td>
<td>23</td>
<td>23</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>60 °C under O<sub>2</sub></td>
<td>12</td>
<td>32</td>
<td>32</td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td>100 °C under O<sub>2</sub></td>
<td>19</td>
<td>28</td>
<td>28</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>Cu(OAc) (20 mol%)</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>Addition of additive, 2,2'-bipyridine (20 mol%)</td>
<td>21</td>
<td>27</td>
<td>27</td>
<td>51</td>
</tr>
<tr>
<td>10</td>
<td>Addition of K<sub>2</sub>CO<sub>3</sub> (1.0 equiv.)</td>
<td>21</td>
<td>38</td>
<td>38</td>
<td>51</td>
</tr>
<tr>
<td>11</td>
<td>Quench with 3 M HCl and stirred in O<sub>2</sub> at 80 °C</td>
<td>8.5</td>
<td>82</td>
<td>82</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>CuTC (10 mol%)</td>
<td>19</td>
<td>31</td>
<td>31</td>
<td>59</td>
</tr>
</tbody>
</table>

^aStandard reaction condition: the reaction was carried out using 0.5 mmol of 2-benzylbenzonitrile 1 with 1.3 equiv. of Grignard reagents 2 in Et₂O (1 M) at 60 °C (sealed tube) for 2 h followed by addition of MeOH (3.0 equiv.), DMF (0.1 M) and Cu(OAc)₂ (10 mol %). The mixture was stirred at 80 °C under an O₂ atmosphere. The reaction was quenched with pH 9 ammonium buffer.
^bIsolated yields.
To achieve optimized reaction conditions for the 1,2-diacylbenzene formation, various reactions conditions were screened with 2-benzylbenzonitrile (1a). The results are summarized in Table 2-1.

When the reaction time was decreased from 20 h to 7 h, the yield of the desired product 1,2-dibenzoylbenzene 3aa did not increase (entries 1 and 2). Instead, the yield of by-product 1H-isoindol-1-ol 4aa increased from 43% to 58%. Addition of 4 Å molecular sieves to remove water, as well as the reducing the amount of MeOH used to quench the Grignard reagent did not increase the yield of the desired product (entries 3-5). A lower or higher reaction time was also not beneficial to the reaction (entries 6 and 7). The addition of 2,2’-bipyridine, thought to restrict conformational changes in the intermediate and so puts the reactant in the proper position for oxygenation, did not yield positive results either (entry 9).

Gratifyingly, the yield of product 3aa was significantly raised from 34% to 82% with a change in the quenching method: addition of 3 N HCl and stirring at 80 °C under O₂. The 1H-isoindole 4aa was hydrolyzed by acid and converted to the desired product 3aa (entry 11). Thus, it can be concluded that quenching the reaction with base preserved the 1H-isoindole structure while quenching with acid leads to the hydrolyzed 1,2-diacylbenzene.
2.3.2 Scope and limitations

Having obtained the optimized reaction conditions, the scope and limitations of the copper-catalyzed methylene oxygenation was investigated using a range of substituted 2-benzylbenzonitriles and Grignard reagents.

As illustrated in Scheme 2-13, the starting materials were functionalized at rings A, B and C. Installation of functional groups at ring C was achieved with a variety of Grignard reagents while those at rings A and B were accomplished via different methods of starting material synthesis as described in the previous section.

Firstly, the scope of Grignard reagents was examined using 2-benzylbenzonitrile 1a. Both electron-rich and electron-deficient phenyl as well as thienyl rings can be installed with good yields as shown in Table 2-2.
Table 2-2. Reaction scope of Grignard reagents

![Reaction scheme](image)

<table>
<thead>
<tr>
<th>entry<sup>a</sup></th>
<th>R<sup>1</sup></th>
<th>product</th>
<th>time (h)</th>
<th>yield (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-Me-C<sub>6</sub>H<sub>4</sub></td>
<td>3aa</td>
<td>8.5</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td>4-MeO-C<sub>6</sub>H<sub>4</sub></td>
<td>3ab</td>
<td>4.5</td>
<td>89</td>
</tr>
<tr>
<td>3</td>
<td>2-MeO-C<sub>6</sub>H<sub>4</sub></td>
<td>3ac</td>
<td>6</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>4-Cl-C<sub>6</sub>H<sub>4</sub></td>
<td>3ad</td>
<td>2</td>
<td>91</td>
</tr>
<tr>
<td>5</td>
<td>4-F-C<sub>6</sub>H<sub>4</sub></td>
<td>3ae</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>1-naphthyl</td>
<td>3af</td>
<td>5</td>
<td>71</td>
</tr>
<tr>
<td>7</td>
<td>2-naphthyl</td>
<td>3ag</td>
<td>6</td>
<td>77</td>
</tr>
<tr>
<td>8</td>
<td>2-thienyl</td>
<td>3ah</td>
<td>16</td>
<td>63</td>
</tr>
<tr>
<td>9</td>
<td>3-Cl-C<sub>6</sub>H<sub>4</sub></td>
<td>3ai</td>
<td>22</td>
<td>88</td>
</tr>
<tr>
<td>10</td>
<td>4-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub></td>
<td>3aj</td>
<td>22</td>
<td>71</td>
</tr>
</tbody>
</table>

^aUnless otherwise noted, the reactions were carried out using 0.5 mmol of 2-benzylbenzonitrile 1 with 1.3 equiv. of Grignard reagents 2 in Et₂O (1 M) at 60 °C (sealed tube) for 2 h followed by addition of MeOH (3.0 equiv.), DMF (0.1 M) and Cu(OAc)₂ (10 mol %). The mixture was stirred at 80 °C under an O₂ atmosphere. ^bIsolated yields.

Next, the reactivity of the copper-catalyzed methylene oxygenation was probed for substrates containing substituents on rings A and B (Table 2-3). Various 2-benzylbenzonitriles 1 were reacted with p-tolymagnesium bromide 2a to prepare substituted 1,2-diacylbenzene derivatives. Both electron-donating and electron-withdrawing groups installed to give the desired product in good yields (entries 1 to 6). The reaction also proceeded smoothly for substrates with sterically hindered 2-methylphenyl and 1-naphthyl groups (entries 7 and 8). Substrates bearing substituents such as F, Cl, and alkoxy groups on ring B could also undergo
the oxygenation to provide the desired products in good yields (entries 9-12). Furthermore, 1,2-diacylnaphthalene, 2,3-diacylindole, 2,3-diacylthiophene could also be synthesized using this method (entries 13-15). This method could also be used to prepare 1,2,3-triacylbenzene 3qa from 2,6-dibenzylbenzonitrile, accompanied by a mono-carbonylated product 3qa’ (entry 16).

It is interesting to note that the reaction of 2-cyclohexylbenzonitrile 1t with a tertiary benzylic C-H bond delivered [benzo[d][1,2]dioxin-1-amine 5ta in 70% yield, possibly via formation of the peroxy species followed by its cyclization to the C=N bond (entry 17). When 2,2-dimethyl-4-phenylbutanenitrile 1u was used as starting material, the corresponding 1,4-diketone 6ua was isolated in 68% yield via benzylic methylene oxygenation (entry 18).
Table 2-3. Reaction scope of different substituents on 2-benzylbenzonitrilesa

<table>
<thead>
<tr>
<th>entry</th>
<th>starting material</th>
<th>product</th>
<th>time (h)</th>
<th>yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>1b</td>
<td>3ba</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Cl</td>
<td>1c</td>
<td>3ca</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>F$_3$C</td>
<td>1d</td>
<td>3da</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>MeO</td>
<td>1e</td>
<td>3ea</td>
<td>3.5</td>
</tr>
<tr>
<td>5</td>
<td>Me</td>
<td>1f</td>
<td>3fa</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 2-3. continued...

\[
\begin{array}{cccc}
\text{entry} & \text{starting material} & \text{product} & \text{time (h)} & \text{yield (%)}^p \\
6 & 1g & 3ga & 6 & 64 \\
7 & 1h & 3ha & 5 & 58 \\
8 & 1i & 3ia & 3 & 69 \\
9 & 1j & 3ja & 6.5 & 76 \\
10 & 1k & 3ka & 1.5 & 85 \\
\end{array}
\]

R\(^{1}\) R\(^{2}\)

\[
\begin{array}{cc}
\text{Et}_2\text{O}, 60 \, ^\circ\text{C} & \text{Cu(OAc)}_2 \\
\text{in sealed tube} & \text{(10 mol %)} \\
\text{then MeOH} & \text{DMF, 80 \, ^\circ\text{C}} \\
& \text{under O}_2 \\
\end{array}
\]
<table>
<thead>
<tr>
<th>entry</th>
<th>starting material</th>
<th>product</th>
<th>time (h)</th>
<th>yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1</td>
<td>3la</td>
<td>3</td>
<td>79</td>
</tr>
<tr>
<td>12</td>
<td>1m</td>
<td>3ma</td>
<td>4</td>
<td>57</td>
</tr>
<tr>
<td>13</td>
<td>1n</td>
<td>3na</td>
<td>6</td>
<td>69</td>
</tr>
<tr>
<td>14</td>
<td>1o</td>
<td>3oa</td>
<td>2</td>
<td>65</td>
</tr>
<tr>
<td>15</td>
<td>1p</td>
<td>3pa</td>
<td>3</td>
<td>77</td>
</tr>
</tbody>
</table>
Table 2-3. continued...

<table>
<thead>
<tr>
<th>entry</th>
<th>starting material</th>
<th>product</th>
<th>time (h)</th>
<th>yield (%)(^p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td> </td>
<td>6</td>
<td>56 (19)(^c)</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>2</td>
<td>70</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>3</td>
<td>58</td>
</tr>
</tbody>
</table>

\(^a\)Unless otherwise noted, the reactions were carried out using 0.5 mmol of 2-benzylbenzonitrile 1 with 1.3 equiv. of Grignard reagents 2 in Et\(_2\)O (1 M) at 60 °C (sealed tube) for 2 h followed by addition of MeOH (3.0 equiv.), DMF (0.1 M) and Cu(OAc)\(_2\) (10 mol %). The mixture was stirred at 80 °C under an O\(_2\) atmosphere. \(^b\)Isolated yields. \(^c\)Value in parenthesis denote yield of mono-carbonylated product 3qa'.
2.3.3 Discussion on the reaction mechanism

To probe the reaction mechanism of this reaction, the role of oxygen and importance of the imine intermediate were tested. The results demonstrated that atmospheric oxygen is essential in the reaction, without which only the imine intermediate was formed by reaction of the Grignard reagent with the cyano group (Scheme 2-14).

![Scheme 2-14. Reaction under an argon atmosphere](image)

In addition, if the imine were not formed, oxygenation cannot proceed and the starting material was recovered almost exclusively (Scheme 2-15).

![Scheme 2-15. Reaction in the absence of N-H imine intermediate](image)
Isotope labeling studies using 18O$_2$ confirmed that the both oxygen in the product came from atmospheric oxygen (Scheme 2-16).

Based on these results, a proposed catalytic cycle is shown in Scheme 2-17. Addition of Grignard reagents 2 to benzylnitrobenzenes 1, followed by proper protonation with MeOH affords N-H imines I. The reaction of N-H imines I with copper(II) catalyst leads to the formation of the iminyl copper(II) species II which is then oxidized by atmospheric oxygen to a peroxycopper(III) intermediate III. Intramolecular 1,5-H-shift of III proceeds to afford benzylic radical IV, which is converted into peroxycopper species V. Elimination of [Cu(II)-OH] VI would then furnish the keto imine VII which is then converted into either diketones 3 or 1H-isoindole 4.
Scheme 2-17. A proposed catalytic cycle
2.4 Synthesis of phthalazines and isoindolines

2.4.1 Existing methodologies for phthalazine synthesis

The present methodology could also be applied to the synthesis of phthalazines and isoindolines as described in this section.

In the last decade, diverse biological and medical applications of phthalazine derivatives have been reported. In particular, they were found to possess anti-tumor and anti-inflammatory activities (Scheme 2-18).27 Phthalazine derivatives have also been used in material sciences as ligands in iridium(III) complexes, which has the potential to be used as organic light-emitting diodes (OLEDs).28 Furthermore, phthalazine-based compounds were reported to be the most general ligands in the catalytic asymmetric dihydroxylation of alkenes.29

Scheme 2-18. Phthalazine derivatives tested for anti-inflammatory activities
In 1893, Gabriel and co-workers reported the first synthesis of phthalazine. This reaction involving the ring closing of ortho-carbonylbenzaldehyde with hydrazine remains the standard route for the preparation of phthalazine today. In one example, Tsoungas and Searcey developed a six-step procedure starting from 5-methoxy-2-nitrobenzaldehyde to prepare 6-methoxyphtalazine in an overall yield of 20%. The final step of this synthetic route involved the ring closing reaction of a dialdehyde with hydrazine to afford the product in 82% yield (Scheme 2-19). However, this methodology of phthalazine formation is generally preceded by many steps and the resultant low overall yield overshadows the high single-step yield for phthtlazine synthesis.

Scheme 2-19. Tsoungas and Searcey's multi-step synthesis of phthalazine
Recently, Wegner and Kessler reported a novel one-pot synthesis of phthalazines from aromatic aldehydes.31 Their strategy involved the transformation of an aromatic aldehyde into a directed \textit{ortho}-metalation group by reacting it with lithium amides. The resultant α-aminoalkoxides then underwent \textit{ortho}-lithiation with \textit{n}-BuLi followed by reaction with DMF and finally, hydrolysis with a solution of aqueous ammonium chloride and hydrazine, to provide the product phthalazines in good yields (Scheme 2-20). This procedure can also be used to synthesize other pyridazino-heteroaromatics when heteroaromatic aldehydes were employed as starting materials.

Scheme 2-20. A one-pot method to prepare phthalazines from aromatic aldehydes
2.4.2 Synthesis of phthalazines

Our procedure complements existing methodologies for the synthesis of phthalazine derivatives as it offers an alternative pathway to 1,4-disubstituted phthalazines starting from carbonitriles.

In the present methodology, phthalazine formation proceeded via a one-pot three-step sequence. After the Grignard reaction with carbonitriles and copper-catalyzed oxygenation, aqueous hydrazine was added to the reaction mixture and heated at 80 °C until TLC showed complete consumption of the intermediate formed in the oxygenation step. By varying the Grignard reagents, benzene rings with both electron-donating and electron-withdrawing groups, as well as a thienyl moiety, could be installed at the 4-position to obtain 1,4-disubstituted phthalazines in moderate to good yields (Table 2-4).

Bulky substrates such as 1-napthyl group could also be installed (Table 2-4, entry 5 and 10). However, the reaction did not form phthalazines for the very bulky 1,3,5-trimethylbenzenes despite extended reactions times (Table 2-4, entry 9). Instead, the corresponding 1H-isoindo-1-ol 7al was formed in 80% yield which could then be reduced to form insoindolines (vide infra).
Table 2-4. Reaction scope of different Grignard reagents for phthalazine formation

<table>
<thead>
<tr>
<th>entry</th>
<th>Ar</th>
<th>product</th>
<th>time (h)</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-MeC₆H₄</td>
<td>7aa</td>
<td>3/3/3</td>
<td>79</td>
</tr>
<tr>
<td>2</td>
<td>4-OMEc₆H₄</td>
<td>7ab</td>
<td>4/4/4</td>
<td>73</td>
</tr>
<tr>
<td>3</td>
<td>3-ClC₆H₄</td>
<td>7ad</td>
<td>3/3/3</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>4-FC₆H₄</td>
<td>7ae</td>
<td>2/3/3</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>1-naphthyl</td>
<td>7af</td>
<td>5/12/3</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>2-thienyl</td>
<td>7ah</td>
<td>2/8/1</td>
<td>54</td>
</tr>
<tr>
<td>7</td>
<td>4-CF₃C₆H₄</td>
<td>7aj</td>
<td>4/4/3</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>4-PhOC₆H₄</td>
<td>7ak</td>
<td>2/5/4</td>
<td>55</td>
</tr>
<tr>
<td>9</td>
<td>1,3,5-Me₃C₆H₂</td>
<td>7al</td>
<td>14/5/2</td>
<td>0 (80)</td>
</tr>
<tr>
<td>10</td>
<td>2-MeC₆H₄</td>
<td>7am</td>
<td>2/3/3</td>
<td>50</td>
</tr>
</tbody>
</table>

*Unless otherwise noted, the reactions were carried out using 0.5 mmol of 2-benzylbenzonitrile 1 with 1.3 equiv. of Grignard reagents 2 in Et₂O (1 M) at 60 °C (sealed tube) for 2 h followed by addition of MeOH (3.0 equiv.), DMF (0.1 M) and Cu(OAc)₂ (10 mol %). The mixture was stirred at 80 °C under an O₂ atmosphere. When the reaction was completed, 5.0 equiv. of aq. N₂H₄ was added and the reaction was stirred at 80 °C. **Time-1:** Time-1/ Time-2/ Time-3. †Isolated yields. ‡Value in parenthesis denotes yield of corresponding 1H-isoindol-1-ol.

By varying the starting materials, the scope of the product phthalazine is expanded (Table 2-5). When the ortho benzyl moiety were substituted with both electron-donating and electron-withdrawing groups, the reaction proceeded smoothly (entries 1-3). In addition, indole and thiophene substrates could be converted to the corresponding pyridazines (entries 5 and 6). Carbonitriles modified to include alkyl groups ortho to the cyano moiety, phthalazine products could also be formed in good yields (entries 7 ans 8).
Table 2-5. Reaction scope of different substrates for phthalazine formation

<table>
<thead>
<tr>
<th>entry</th>
<th>starting material</th>
<th>product</th>
<th>time (h)b</th>
<th>yield (%)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R = 4-Cl</td>
<td>1c</td>
<td>7ca</td>
<td>2/8/4</td>
</tr>
<tr>
<td>2</td>
<td>4-OME</td>
<td>1e</td>
<td>7ea</td>
<td>4/4/3</td>
</tr>
<tr>
<td>3</td>
<td>4-Me</td>
<td>1f</td>
<td>7fa</td>
<td>2/8/3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1i</td>
<td>7ia</td>
<td>3/22/7</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1o</td>
<td>7oa</td>
<td>4/2/2</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1p</td>
<td>7pa</td>
<td>3/4/3</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1r</td>
<td>7ra</td>
<td>2/6/3</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1s</td>
<td>7sa</td>
<td>2/7/3</td>
</tr>
</tbody>
</table>

aUnless otherwise noted, the reactions were carried out using 0.5 mmol of 2-benzylbenzonitrile 1 with 1.3 equiv. of Grignard reagents 2 in Et_2O (1 M) at 60 °C (sealed tube) for 2 h followed by addition of MeOH (3.0 equiv.), DMF (0.1 M) and Cu(OAc)_2 (10 mol %). The mixture was stirred at 80 °C under an O_2 atmosphere. When the reaction was completed, 5.0 equiv. of aq. N_2H_4 was added and the reaction was stirred at 80 °C. bTime-1/Time-2/Time-3. cIsolated yields.
2.4.3 Synthesis of isoindolines

In addition, isoindoline derivatives are also attractive targets in medicinal chemistry as studies have revealed their potential in the treatment of Alzheimer’s disease since it inhibits the amyloid protein aggregation. As shown in Scheme 2-21, they could also be antipsychotic agents due to their ability to modulate the dopamine D$_3$ receptor, and as selective antagonism of the ETA receptor, indicating that they may play a pathophysiological role in a large number of heart- and lung-related diseases.

![Chemical structures]

Scheme 2-21. Biologically active compounds containing isoindoline core

The present methodology could be applied for the concise synthesis of isoindolines. Upon completion of the copper-catalyzed oxidation, the crude mixture containing 1,2-diacylbenzenes 3aa and isoindole 4aa were treated with NH$_4$OAc in the presence of a catalytic amount of NaOEt, followed by zinc-copper couple in acetic acid to afford isoindoline 8aa in 57% over three steps (Scheme 2-22). The product is trans-selective as confirmed by X-ray crystallographic analysis of the tosylated product 8aa-Ts.
While investigating the substrate scope for phthalazine formation, the use of bulky 1,3,5-trimethylphenylmagnesium bromide did not provide the corresponding phthalazine product. Instead, the corresponding 1H-isindo-1-ol 4al was formed in 80% yield which could then be reduced to form isoindoline 8lb in 48% yield (Scheme 2-23).

This method was successfully applied to prepare isoindoline 8gb, a precursor of the endothelin receptor antagonists from 2-bromomethylbenzonitrile.
via Suzuki-Miyaura coupling and a subsequent two-pot isoindoline formation (Scheme 2-24).

\[
\begin{align*}
\text{Br-CH-NH} + \text{B(OH)}_2 \text{OPh}_2 & \xrightarrow{\text{Pd(PPh}_3)_4 (4 \text{ mol\%})} \xrightarrow{\text{CsF (2.5 equiv.)}} \text{Ph-CN} \\
\text{MeO-CH-MgBr} & \xrightarrow{\text{Et}_2\text{O, 60 °C in sealed tube then MeOH}} \xrightarrow{\text{Cu(OAc)}_2 (10 \text{ mol\%})} \xrightarrow{\text{DMF, 80 °C under O}_2 \text{ then pH 9 buffer}} \xrightarrow{\text{Zn(Cu)} \text{AcOH, rt.}} \text{8gb, R= H: 54\% (trans-selective) endothelin receptor antagonist, R= CH}_2\text{CO}_2\text{H}}
\end{align*}
\]

Scheme 2-24. A concise synthesis of the endothelin receptor antagonist precursor 8gb

2.5 Conclusion

In summary, copper-catalyzed aerobic benzylic C-H oxygenation was developed using carbonitriles and Grignard reagents. This one-pot two-step sequence provided 1,2-diacylbenzenes in good yields and could be extended for the formation of phthalazines and isoindolines. One major limitation of this reaction would be the indispensable use of Grignard reagents for the generation of N-H imines which prohibits the use of electrophilic substituents and thus limits the substrate scope. To further improve the reaction, it is important to develop alternative N-H imine formation so that substituents such as the carbonyl functionality could be installed.
Chapter 3 Electrophilic cyanation of Grignard Reagents with Pivalonitrile via Copper-Catalyzed Aerobic β-Carbon Elimination of N-H Imine Intermediates

3.1 Introduction

3.1.1 Overview

Carbonitriles are important components in the synthesis of pharmaceuticals, natural products, agricultural chemicals, dyes and materials. Examples of pharmaceutically important drugs containing the cyano moiety include Citalopram hydrobromide® used for the treatment of alcohol dependency, Periciazine® used as an antipsychotic drug, Fadrozole® used as an oncolytic drug and Letrozole® used in breast cancer therapy (Scheme 3-1).
Moreover, the cyano moiety is an important intermediate for the introduction of other functional groups such as carboxylic acids, amides, imines, ketones, aldehydes, and amines (Scheme 3-2). Development of new methodologies for their preparation remains relevant because of their industrial importance and synthetic utility in the fields of biology and chemistry.

Scheme 3-2. Transformations of the C≡N functional group
3.1.2 Classical methods for the synthesis of carbonitriles

There are various ways to achieve cyanation of aromatic nitriles. On the industrial scale, ammoxidation is the choice method. The Sohio process is used for the production of acrylonitrile when propene is reacted with oxygen and ammonia at high temperatures in the presence of a fixed-bed catalyst (Scheme 3-3). Such harsh reaction conditions limit the use of this method for the production of functionalized carbonitriles.

\[\text{Me} + \text{NH}_3 + \text{O}_2 \xrightarrow{\text{catalyst}} \text{CN} + \text{H}_2\text{O} \]

Scheme 3-3. The Sohio process for the production of acrylonitrile

On a micro- as well as macro-scale, the Rosenmund-von Braun reaction for nitrile formation involved heating aryl halides with excess copper(I) cyanide at high temperatures in polar solvents (Scheme 3-4).39

\[\text{X} \xrightarrow{\text{CuCN}} \text{X}^{-} \xrightarrow{- \text{CuX}} \text{CN} \]

Scheme 3-4. Rosenmund-von Braun reaction: synthesis of aryl carbonitriles from aryl halides

Another established method is the diazotization of anilines and subsequent Sandmeyer reaction for the synthesis of aromatic nitriles (Scheme 3-5).40

\[\text{NH}_2 \xrightarrow{\text{NaNO}_3, \text{HCl}} \xrightarrow{\text{CuCN}} \text{CN} \]

Scheme 3-5. Sandmeyer reaction: synthesis of aryl carbonitriles from aryl diazonium salts
Traditionally, both methods depended on the use of stoichiometric amounts of toxic CuCN and drastic reaction conditions but developments in synthetic organic chemistry have since been replace these methods with their transition metal-catalyzed versions (vide infra).41

\subsection*{3.1.3 Recent methods for the synthesis of carbonitriles}

\subsubsection*{3.1.3.1 Metal-catalyzed methods for the synthesis of carbonitriles}

More recently, increasingly benign and useful procedures for the preparation of substituted carbonitriles have been developed as milder alternatives to the traditional methods of preparation. The first palladium-catalyzed cyanation of aryl halides using KCN as cyanating reagents was reported by Takagi and co-workers in 1973 (Scheme 3-6).42 While most known cyanide sources are highly toxic, KCN, however, has the lowest lethal dose of 2.86 mg/ kg for oral consumption in humans.

\begin{equation}
\begin{array}{c}
\text{MeO} \quad \text{I} \\
\quad (1.6 \text{ equiv.})
\end{array} + \begin{array}{c}
\text{KCN} \\
\quad \text{Pd(CN)}_2 (0.5 \text{ mol %})
\end{array} \xrightarrow{\text{DMF, 140 °C}} \begin{array}{c}
\text{MeO} \\
\quad \text{CN}
\end{array} + \text{KI}
\end{equation}

\textbf{Scheme 3-6.} The first Pd(II)-catalyzed synthesis of aryl nitriles from aryl halides

Since then, palladium, nickel and copper complexes have emerged as catalysts for the installation of the cyano moiety onto aromatic compounds using readily available cyanation agents like NaCN and KCN.43

In 2002, Buchwald and co-workers developed the first catalytic variant of the Rosenmund-von Braun reaction, a novel copper- catalyzed domino halogen
exchange-cyanation methodology using stoichiometric \(N,N \)-dimethylethane-1,2-diamine and NaCN (Scheme 3-7).

![Scheme 3-7. Copper-catalyzed domino halide exchange-cyanation of aryl bromides](image)

The success of this \textit{in-situ} copper-catalyzed conversion of aryl bromides into more reaction iodides and subsequent cyanation relied upon matching the relative rates of the halogen exchange and cyanation steps in the domino reaction sequence (Scheme 3-8).

![Scheme 3-8. Matching the relative rates of the halide exchange and cyanation steps](image)

Another remarkable progress in the synthesis of nitriles was made in 2004, when Beller and co-workers discovered catalytic cyanation using potassium hexacyanoferrate (II) \(K_4[Fe(CN)_6] \) (Scheme 3-9),\(^45\) which is non-toxic and has even been used in the food industry for metal precipitation.\(^46\) In this reaction, the amount of catalyst had to be tweaked for optimal yields of different substrates to achieve high turnover numbers for a wide range of aromatic bromides. Following this study, several other reports were published detailing the use of this benign cyanide source in cyanation.\(^47\)
3.1.3.2 Use of organic precursors for the synthesis of carbonitriles

As early as 1967, organic precursors have been found to be utilized for carbonitriles synthesis. In a report by Lohaus, aromatics could react with chlorosulfonyl isocyanate to form \(N \)-chlorosulfonyl amides, which when treated with DMF provided aromatic nitriles, giving \(\text{SO}_3 \) and HCl as by-products (Scheme 3-10).\(^{48}\)

![Scheme 3-9. Pd(II)-catalyzed cyanation of aryl halides using \(K_4[\text{Fe(CN)}_6] \)](image)

With the discovery of various organic cyanide sources, it was not until recently that DMF was again used for the synthesis of carbonitriles. In 2010, Togo and co-workers, reported a metal-free one-pot conversion of electron-rich aromatics into aromatic nitriles.\(^{49}\) The transformation commenced with the Vilsmeier-Haack reaction using DMF and \(\text{POCl}_3 \) to generate intermediate I. Subsequent dehydrohalogenation using molecular iodine in aqueous ammonia then provides the carbonitrile products (Scheme 3-11).
In the same year, Chang and co-workers also reported using DMF and ammonia as a combined source for the cyano unit to achieve regioselective cyanation.50 Interestingly, isotopic labelling experiments indicated that the carbon and nitrogen of the cyano group were derived from the N,N-dimethyl moiety of DMF and ammonia, respectively, allowing an unprecedented formation of doubly labelled benzonitriles (Scheme 3-12).

![Scheme 3-11. Metal-free one-pot formation of aromatic nitriles](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>condition</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15NH$_3$ (aq) with Pd(OAc)_2 (10 mol %) CuBr_2 (1 equiv.) DMF, 130 °C under O$_2$</td>
<td>CN (98% 15N incorporation)</td>
</tr>
<tr>
<td>2</td>
<td>15NH$_3$ (aq) with Pd(OAc)_2 (10 mol %) CuBr_2 (1 equiv.) DMF, 130 °C under O$_2$</td>
<td>CN (96% 13C incorporation)</td>
</tr>
<tr>
<td>3</td>
<td>15NH$_3$ (aq) with Pd(OAc)_2 (10 mol %) CuBr_2 (1 equiv.) DMF, 130 °C under O$_2$</td>
<td>CN (<5% 13C incorporation)</td>
</tr>
</tbody>
</table>

Scheme 3-12. Isotope labelling experiments for the cyanation of aryl C-H bonds
Besides DMF, other organic molecules have also been used as cyanide sources. In 2006, Yu and co-workers reported a copper-catalyzed cyanation of 2-phenylpyridine using nitromethane as the cyanide source (Scheme 3-13).51 This cyanation was among a list of C-H functionalizations carried out under aerobic conditions.

\begin{equation}
\begin{array}{c}
\text{Cu(OAc)}_2 (1 \text{ equiv.}) \\
\text{MeNO}_2, 130 ^\circ \text{C air}
\end{array}
\begin{array}{c}
\text{CN}
\end{array}
\end{equation}

\textbf{Scheme 3-13. Cu(II)-mediated cyanation using nitromethane}

In other examples by Togo and co-workers, iodine reagents in aqueous ammonia have also been used for the oxidative conversion of alcohols, amines and alkyl halides to nitriles (Scheme 3-14).52

\begin{equation}
\begin{array}{c}
\text{X = Cl, Br, I, OH, NH}_2 \\
\text{NH}_3 \rightarrow \text{-HX}
\end{array}
\begin{array}{c}
\text{CN}
\end{array}
\end{equation}

\textbf{Scheme 3-14. Conversion of halides, alcohols and amines to nitriles using iodine reagents in aqueous ammonia}

Recently, Beller and co-workers published a versatile methodology for the copper-catalyzed cyanation of aryl and heteroaryl bromides with acetone cyanohydrin (Scheme 3-15).53 Compared to other catalysts, copper catalysts in
cyanation reactions generally exhibited lower reactivity but are also cheaper and more environmentally friendly. To overcome the problem of catalyst deactivation by coordination to cyanide, acetone cyanohydrin was added using a syringe pump over the course of the reaction to ensure a slow release of cyanide anions for reaction.

![Scheme 3-15. Cu(I)-catalyzed cyanation using acetone cyanohydrin](image)

3.1.3.3 Electrophilic cyanation for carbonitrile synthesis

A complementary but less well-studied approach to the transition metal-catalyzed nucleophilic cyanation reactions would be electrophilic cyanation reactions.⁵⁴

As early as 1970, Leusen and Jagt employed p-toluene sulfonyl cyanide, an electrophilic cyanide source, for cyanide transfer reactions with nucleophilic reagents via an addition-elimination process.⁵⁵ The tosyl group inductively withdraws electron density from the cyano carbon, thereby enhancing its reactivity towards nucleophilic reagent s (Scheme 3-16).
In another example, Ohe and co-workers reported the use of a pseudohalide, cyanogen bromide, in a gallium-catalyzed bromocyanation of alkynes to provide a wide range of α,β-unsaturated nitriles in respectable yields that can undergo further functionalizations (Scheme 3-17). A major drawback of this synthetic method is that cyanogen bromide is highly toxic.

![Scheme 3-16. Addition-elimination process using TsCN as cyanide source](image)

![Scheme 3-17. Ga(III)-catalyzed cyanation and further functionalizations of β-bromo-α,β-unsaturated nitriles](image)

Other than using electrophilic cyanides on their own, they could also be used together with organometallic reagents to achieve cyanation. In one example, Beller and co-workers reported the synthesis of benzonitriles from *in-situ*
generation of functionalized Grignard reagents and their subsequent electrophilic cyanation (Scheme 3-18). The reaction was conducted under mild reaction conditions and both electron-donating and -withdrawing groups can be installed without compromising the efficiency of the cyanation.

![Scheme 3-18. Electrophilic cyanation with N-cyanobenzimidazole](image)

Beller and co-workers went on to design another cyanating reagent, N-cyano-N-phenyl-p-methylbenzenesulfonamide, to be used under similar reaction conditions. The advantage of this improved reagent lies in its preparation from phenyl urea and p-toluenesulfonyl chloride, which avoids the use of toxic cyanogen bromide (Scheme 3-19).

![Scheme 3-19. Preparation of electrophilic cyanide source, N-cyano-N-phenyl-p-methylbenzenesulfonamide](image)

The medley of reagents and synthetic methods is testimony to the advances in the formation of carbonitriles. Nevertheless, catalysts commonly employed for cyanation remains limited by their toxicity, high cost (especially so for palladium catalysts) and deactivation due to their high affinity for cyanide ions. Hence, there continues to be an academic interest in the development of new and more convenient methods for the formation of carbonitriles.
In Chapter 2, the author reported the copper-catalyzed benzylic C-H oxygenation starting from reaction of carbonitriles and Grignard reagents under an oxygen atmosphere via an iminyl copper species (Scheme 3-20).^59

Various carbonitrile substrates were screened to demonstrate the versatility of the reaction conditions. In the course of this study, it was found that the benzonitrile reacts with butylmagnesium bromide under standard reaction conditions to provide the desired product 1,4-diphenylbutane-1,4-dione in moderate yield, with unexpected benzonitrile observed in the crude ^1H NMR (Scheme 3-21). Since the starting material was confirmed to have been completely consumed in the reaction with the Grignard reagent, it was apparent that the carbonitrile was reformed during the copper-catalyzed aerobic reaction of the N-H imine intermediate. Intrigued by this result, we decided to subject a simpler nitrile, pivalonitrile, to the reaction conditions hoping to uncover another organic cyanide source.

![Scheme 3-20. Copper(II)-catalyzed benzylic C-H oxygenation under an oxygen atmosphere via iminyl copper species](image)

![Scheme 3-21. Copper(II)-catalyzed benzylic C-H oxygenation with unexpected nitrile formation](image)
We envisaged a copper-catalyzed cyanation of Grignard reagents using pivalonitrile as a cyanide source under an oxygen atmosphere to afford carbonitriles via a transient iminyl copper species. The transformation is aided by the oxidation of the iminyl copper species with diradical oxygen to form a peroxycopper intermediate, followed by homolytic cleavage to afford product carbonitriles (Scheme 3-22).

![Scheme 3-22. Copper(II)-catalyzed cyanation using pivalonitrile as organic cyanide source](image)

3.2 Electrophilic cyanation of Grignard reagents with pivalonitrile

3.2.1 Optimization of reaction conditions

We commenced our study with the reactions of pivalonitrile and 2-naphthyl magnesium bromide and subsequent protonation with MeOH to give an N-H imine intermediate. The reaction mixture was diluted with DMF (0.1 M) and metal salts (10 mol %) were added. The reaction was then stirred at 80 °C under an oxygen atmosphere until TLC showed completion of the reaction. Due to the difficulty in monitoring the pivalonitrile spot on TLC, step one of the reaction was left for 2 h and 6 h, to confirm that the yields of the carbonitriles were not affected by any unreacted starting material (Table 3-1, entries 1 and 2). Based on the results of the optimization studies, several copper salts were found to catalyze the reaction for the formation of naphthonitrile (Table 3-1, entries 1-9), with CuBr₂ giving the best yield of 85%. Interestingly, both cobalt and iron salts were also able to catalyze the
reaction, albeit with longer reaction times and lower product yields, while palladium salts showed no reactivity at all (Table 3-1, entries 10-15).

Table 3-1. Optimization studies

<table>
<thead>
<tr>
<th>entry</th>
<th>time (h)</th>
<th>catalyst (mol %)</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2/8</td>
<td>Cu(OAc)₂ (10)</td>
<td>73</td>
</tr>
<tr>
<td>2</td>
<td>6/5</td>
<td>CuOAc (10)</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>2/24</td>
<td>Cu₂O (10)</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>2/8</td>
<td>CuBr (10)</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>2/6</td>
<td>CuCl (10)</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>2/24</td>
<td>CuI (10)</td>
<td>66</td>
</tr>
<tr>
<td>7</td>
<td>2/7</td>
<td>CuBr·SMe₂ (10)</td>
<td>74</td>
</tr>
<tr>
<td>8</td>
<td>2/6</td>
<td>CuBr₂ (10)</td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>2/7</td>
<td>CuCl₂ (10)</td>
<td>79</td>
</tr>
<tr>
<td>10</td>
<td>2/24</td>
<td>CoBr₂ (10)</td>
<td>76</td>
</tr>
<tr>
<td>11</td>
<td>2/24</td>
<td>Co(OAc)₂ (10)</td>
<td>59</td>
</tr>
<tr>
<td>12</td>
<td>2/24</td>
<td>Pd(OAc)₂ (10)</td>
<td>68</td>
</tr>
<tr>
<td>13</td>
<td>2/24</td>
<td>FeBr₂ (10)</td>
<td>64</td>
</tr>
<tr>
<td>14</td>
<td>2/24</td>
<td>FeBr₃ (10)</td>
<td>65</td>
</tr>
<tr>
<td>15</td>
<td>2/24</td>
<td>FeCl₃ (10)</td>
<td>74</td>
</tr>
</tbody>
</table>

*aUnless otherwise noted, the reactions were carried out using 1 mmol of pivalonitrile with 1.3 equiv. of naphthyl magnesium bromide in Et₂O (1 M) at 60 °C in a sealed tube for 2 h, followed by addition of anhydrous MeOH (3.0 equiv.), DMF (0.1 M) and metal salts (10 mol %). The reaction was then stirred at 80 °C under an O₂ atmosphere. *Isolated yields. *Time for Grignard reaction/ Time for C-C bond cleavage. *Value in parenthesis denote isolated yield of 2,2-dimethyl-1-(naphthalen-2-yl)propan-1-one 6.
3.2.2 Scope and limitations

Having obtained the optimized reaction conditions, the substrate scope of the electrophilic cyanation was investigated as shown in Table 3-2. The reaction proceeded smoothly to enable cyanide transfer from organic carbonitriles to Grignard reagents. In essence, it transformed aryl halides to aryl carbonitriles in a one-pot two-step reaction.

For the synthesis of aryl nitriles, installation of both electron-donating and electron-withdrawing groups were possible. Substrates bearing electron donating groups (Table 3-2, entries 1-5) were obtained in higher yields compared to those with electron-withdrawing groups; (Table 3-2, entry 6) the latter also required longer reaction times. Moreover, sterically demanding substrates such as 1-naphthyl and 2,4,6-trimethyl Grignard reagents could be used to form the corresponding aromatic nitriles in good yields. Based on the differing stability of primary and tertiary carbon radicals, we were also able to apply the reaction conditions for the formation of primary alkyl carbonitriles (Table 3-2, entry 9).
Table 3-2. Reaction scope using different Grignard reagentsa

![Chemical Reaction Diagram]

<table>
<thead>
<tr>
<th>entry</th>
<th>R-MgBr</th>
<th>product</th>
<th>time (h)c</th>
<th>yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>12/18</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>MgBr</td>
<td></td>
<td>22/10</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>MgBr</td>
<td></td>
<td>50/18</td>
<td>67d</td>
</tr>
<tr>
<td>4</td>
<td>MgBr</td>
<td></td>
<td>48/55</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>MgBr</td>
<td></td>
<td>56/19</td>
<td>81d</td>
</tr>
<tr>
<td>6</td>
<td>MgBr</td>
<td></td>
<td>48/24</td>
<td>63e</td>
</tr>
<tr>
<td>7</td>
<td>MgBr</td>
<td></td>
<td>48/24</td>
<td>81</td>
</tr>
<tr>
<td>8</td>
<td>MgBr</td>
<td></td>
<td>48/24</td>
<td>42e</td>
</tr>
</tbody>
</table>

aUnless otherwise noted, the reactions were carried out using 1 mmol of pivalonitrile with 1.3 equiv. of Grignard reagents 2 in Et$_2$O (1 M) at 60 °C in a sealed tube for 2 h, followed by addition of anhydrous MeOH (3.0 equiv.), DMF (0.1 M) and CuBr$_2$ (10 mol %). The reaction was then stirred at 80 °C under an O$_2$ atmosphere. bIsolated yields. cTime for Grignard reaction/ Time for C-C bond cleavage. dThe reaction was conducted using Cu(OAc)$_2$ as the catalyst. eH NMR yield.
3.2.3 Discussion on the reaction mechanism

To probe the reaction mechanism of this catalytic cycle under an oxygen atmosphere, carbonitriles with a bulky carbon chain was employed as the cyanide source. Under the optimal reaction conditions, the treatment of carbonitrile 4 with Grignard reagent 2c led to the formation of 4-methoxybenzonitrile 3c, along with alkene 5 in 83% and 16% yields, respectively (Scheme 3-23).

![Scheme 3-23. Reaction using 2,2-diphenyloctanenitrile as cyanide source to probe side-products](image)

The reaction performed in the absence of oxygen provided ketone 6 in 83% after acid hydrolysis (Scheme 3-24).

![Scheme 3-24. Reaction in the absence of oxygen](image)
In addition, in the absence of Cu(OAc)$_2$, oxygenation cannot proceed and the corresponding ketone 1b was recovered almost exclusively (Scheme 3-25).

![Scheme 3-25. Reaction in the absence of copper catalyst](image)

Based on these preliminary results, a possible mechanism for the reaction is proposed as shown in Scheme 3-26. Addition of Grignard reagents to carbonitriles followed by protonation with MeOH provides N-H imines. The reaction of N-H imines with the Cu(II) catalyst leads to an iminyl copper species that is oxidized with molecular oxygen to form peroxycopper(III). Homolytic cleavage of the C-C bond afforded product carbonitrile and a tertiary carbon radical with is then oxidized by the peroxycopper(I) to a carbocation. Elimination under the basic reaction conditions would provide the corresponding alkene while the addition of water followed by deprotonation would deliver an alcohol.
In summary, we have found a copper-catalyzed cyanation of Grignard reagents under an oxygen atmosphere to provide carbonitriles via homolytic cleavage of the transient iminyl copper species.

This reaction, using pivalonitrile as an electrophilic cyanation reagent, may be limited in reaction scope due to the use of Grignard reagents in the reaction process. Nevertheless, it provides an interesting scope to the utility of iminyl metal species and pushed the boundaries for carbonitrile formation using organic precursors.
Chapter 4 Summary

The results presented in this thesis contributes towards existing knowledge of the iminyl copper species and its application in synthetic organic chemistry. The reactions allowed the synthesis of useful products from easily prepared starting materials under relatively mild reaction conditions.

Chapter 2 described the oxidative C-H bond functionalization of 2-benzylbenzonitriles to afford a range of 1,2-diacylbenzenes via the iminyl copper species and using N-H imines as an intramolecular directing group to effect oxidation of the benzylic C-H bonds. This methodology could be extended to provide good yields of phthalazines and isoindolines, which constitutes the skeleton of important azaheterocycles with diverse biological applications.

Chapter 3 described the copper-catalyzed reaction of Grignard reagents under an oxygen atmosphere to provide carbonitriles via homolytic cleavage of the transient iminyl copper species. This electrophilic cyanation of Grignard reagents via a radical-mediated process may be limited in substrate scope, but is unique in using pivalonitrile as an organic electrophilic cyanation reagent.
Chapter 5 Experimental

5.1 General considerations

1H NMR (400MHz) spectra were recorded on a Bruker Avance 400 spectrometers in CDCl$_3$ [using (CH$_3$)$_4$Si (for 1H, $\delta = 0.00$) as internal standard]. 13C NMR (75 MHz) spectra on a Bruker Avance 400 spectrometers in CDCl$_3$ [using CDCl$_3$ (for 13C, $\delta = 77.00$) as internal standard]. 13C NMR (100 MHz) spectra on a Bruker Avance 400 spectrometers in CDCl$_3$ [using CDCl$_3$ (for 13C, $\delta = 77.00$) as internal standard]. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad. IR spectra (NaCl) and IR spectra (ATR) were recorded on a Shimadzu IR Prestige-21 FT-IR Spectrometer and a Shimadzu IRAffinity-1 FT-IR Spectrometer respectively and are reported in wavenumbers (cm$^{-1}$). High-resolution mass spectra were obtained with a Finnigan MAT 95 XP mass spectrometer (Thermo Electron Corporation). Melting points were uncorrected and were recorded on a Buchi B-54 melting point apparatus.

Flash column chromatography was performed using Merck silica gel 60 with distilled solvents. Tetrahydrofuran (THF) and diethyl ether (Et$_2$O) were taken from a solvent purification system (PS-400-5, innovative technology Inc.). N,N-Dimethylformamide (DMF) anhydrous, Copper(II) acetate (98%), Copper(II) bromide (98%) was purchased from Sigma-Aldrich Co., Inc. Pivalonitrile was purchased from Sigma-Aldrich Co., Inc. and distilled before use.

All the Grignard reagents were prepared according to the general procedure60 and were used after the titration by following the literature method.61
5.2 Copper-Catalyzed Benzylic C-H Oxygenation under an Oxygen Atmosphere via N-H Imines as an Intramolecular Directing Group

5.2.1 Preparation of starting material
5.2.1.1 Method 1: Benzylic bromination of 2-methylbenzonitriles 9 followed by the Friedel–Crafts reaction

![Chemical Structure](image)

Synthesis of 2-methylbenzonitriles 9: A typical procedure for synthesis of 2-(bromomethyl)-1-naphthonitrile (9n)

To a flask charged with 1-bromo-2-methylnaphthalene (3.84 g, 17.4 mmol) and CuCN (1.86 g, 20.8 mmol) was added N-methyl-2-pyrrolidone (9 mL). The reaction mixture was heated at reflux for 3 h. When all the starting material was consumed, the reaction mixture was cooled and carefully poured into a solution of benzene with 20% NaCN (40 mL) and filtered through a Celite pad. After washing with benzene, the benzene layers were combined and washed with a solution of 10% NaCN then with water, and dried over anhydrous MgSO₄. The solvent was removed in vacuo, and the resulting crude material was subjected to flash column chromatography (hexane : ethyl acetate : CH₂Cl₂ = 90 : 10 : 5) to afford 2-methyl-1-naphthonitrile (1.28 g, 7.66 mmol) in 44% yield.

¹H NMR (400 MHz, CDCl₃) δ 2.75 (3H, s), 7.39 (1H, d, J = 8.4 Hz), 7.55 (1H, dd, J = 7.2, 8.0 Hz), 7.66 (1H, dd, J = 7.2, 8.4 Hz), 7.86 (1H, d, J = 8.0 Hz), 7.94 (1H, d, J = 8.4 Hz), 8.19 (1H, d, J = 8.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 21.3, 109.2, 117.0, 124.8, 126.6, 127.6, 128.3, 128.5, 131.2, 132.5, 132.7, 142.9.
2,6-dimethylbenzonitrile (9q)

\[
\begin{array}{c}
\text{Me} \\
\text{CN} \\
\text{Me}
\end{array}
\]

Prepared from 2-bromo-1,3-dimethylbenzene (CAS. No 576-22-7) in 85% yield; Pink solid; mp. 90.0-91.9 °C; IR (NaCl) 3071, 2220, 1597, 1472 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.53 (6H, s), 7.12 (2H, d, \(J = 7.6\) Hz), 7.34 (1H, t, \(J = 7.6\) Hz); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 20.7, 113.3, 117.2, 127.2, 132.0, 142.1; ESIHRMS: Found: m/z 132.0813. Calcd for C\(_9\)H\(_{10}\)N: (M+H)\(^+\) 132.0813.

Synthesis of 2-bromomethylbenzonitriles 10: A typical procedure for synthesis of 2-(bromomethyl)-1-naphthonitrile (10n)

\[
\begin{array}{c}
\text{Me} \\
\text{CN} \\
\text{Me}
\end{array} \xrightarrow{\text{NBS cat. (PhCO)}_2} \begin{array}{c}
\text{Br} \\
\text{CN}
\end{array}
\]

To a CCl\(_4\) solution (12 mL) of 2-methyl-1-naphthonitrile 9n (0.980 g, 5.86 mmol) was added N-bromosuccinimide (1.25 g, 7.02 mmol) and benzoylperoxide (0.14 g, 0.58 mmol). The reaction mixture was heated at 100 °C for 20 h. When all the starting material was consumed, the reaction mixture was cooled to room temperature, filtered through a Celite pad, and the filtrate was washed with CCl\(_4\). The solvent was removed in vacuo, and the resulting crude material was subjected to flash column chromatography (hexane : EtOAc = 98 : 2) to afford 2-(bromomethyl)-1-naphthonitrile 10n (1.02 g, 4.14 mmol) in 71% yield.

White Solid; mp. 93.8-94.8 °C; IR (NaCl) 3154, 3093, 2253, 1508, 1466 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 4.85 (2H, s), 7.61-7.65 (2H, m), 7.72 (1H, dd, \(J = 8.4, 7.2\) Hz), 7.91 (1H, d, \(J = 8.0\) Hz), 8.06 (1H, d, \(J = 8.4\) Hz), 8.25 (1H, d, \(J = 8.4\) Hz); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 30.0, 109.6, 115.7, 125.6, 126.7, 128.0, 128.5, 129.1, 132.4, 132.5, 133.5, 141.4; ESIHRMS: Found: m/z 245.9892. Calcd for C\(_{12}\)H\(_{10}\)NBr: (M+H)\(^+\) 245.9918.
2-(bromomethyl)-6-chlorobenzonitrile (10j)\(^{63}\)

![Structure of 2-(bromomethyl)-6-chlorobenzonitrile](image)

Prepared from 2-chloro-6-methylbenzonitrile (CAS No 6575-09-3) in 34% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 4.62 (2H, s), 7.45-7.54 (3H m); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 29.0, 113.5, 113.9, 128.5, 129.7, 133.7, 137.8, 143.4.

2-(bromomethyl)-5-fluorobenzonitrile (10k)

![Structure of 2-(bromomethyl)-5-fluorobenzonitrile](image)

Prepared from 5-fluoro-2-methylbenzonitrile (CAS No 77532-79-7) in 59% yield; White Solid; mp. 64.9-65.9 °C; IR (NaCl) 3021, 2980, 2253, 1612, 1587, 1495, 1283, 650 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 4.61 (2H, s), 7.13 (1H, ddd, \(J_{\text{H-F}} = 8.0\) Hz, \(J_{\text{H-H}} = 8.0, 2.0\) Hz), 7.29 (1H, dd, \(J_{\text{H-F}} = 8.8\) Hz, \(J_{\text{H-H}} = 2.0\) Hz), 7.68 (1H, dd, \(J_{\text{H-F}} = 5.6\) Hz, \(J_{\text{H-H}} = 8.0\) Hz); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 28.4, 108.5 (d, \(^4\)J\(_{\text{C-F}} = 3.5\) Hz), 116.1, 116.6 (d, \(^2\)J\(_{\text{C-F}} = 22.5\) Hz), 118.0 (d, \(^2\)J\(_{\text{C-F}} = 23.3\) Hz), 135.5 (d, \(^3\)J\(_{\text{C-F}} = 9.5\) Hz), 144.3 (d, \(^3\)J\(_{\text{C-F}} = 9.0\) Hz), 164.9 (d, \(^1\)J\(_{\text{C-F}} = 256.2\) Hz); ESIHRMS: Found: m/z 213.9693. Calcd for C\(_8\)H\(_6\)NBrF: (M+H)\(^+\) 213.9668.

2-(bromomethyl)-5-methoxybenzonitrile (10l)

![Structure of 2-(bromomethyl)-5-methoxybenzonitrile](image)

Prepared from 5-methoxy-2-methylbenzonitrile (CAS No 53078-70-9) in 85% yield; White solid; mp. 73.9-74.7 °C; IR (NaCl) 3015, 2972, 1972, 1499, 1464, 1251, 650 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.88 (3H, s), 4.59 (2H, s), 6.90 (1H, d, \(J = 8.8\) Hz), 7.03 (1H, s), 7.58 (1H, d, \(J = 8.8\) Hz); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\)
29.4, 55.7, 104.0, 114.7, 116.0, 117.1, 134.8, 143.1, 163.0; ESIHRMS: Found: m/z 225.9849. Calcd for C₉H₉BrNO: (M+H)+ 225.9868.

2,6-bis(bromomethyl)benzonitrile (10q)

\[
\begin{align*}
\text{Br} & \quad \text{CN} \\
\text{Br} & \quad \\
\end{align*}
\]

Prepared from 2,6-dimethylbenzonitrile (9q) in 41% yield;
White solid; mp. 92.6-93.6 °C; IR (NaCl) 3019, 2226, 1470, 1443, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.65 (4H, s), 7.50-7.60 (3H, m); ¹³C NMR (100 MHz, CDCl₃) δ 29.2, 112.4, 114.7, 130.2, 133.3, 142.2; ESIHRMS: Found: m/z 287.9079. Calcd for C₉H₈NBr₂: (M+H)+ 287.9023.

Synthesis of 2-benzylbenzonitriles 1 by the Friedel–Crafts reaction: A typical procedure for synthesis of 2-benzyl-1-naphthonitrile (1n)⁶⁴

To a flask charged with AlCl₃ (0.989 g, 7.42 mmol) in dry benzene (9.3 mL) was added 2-(bromomethyl)-1-naphthonitrile 10n (0.911 g, 3.70 mmol) in an ice bath. The reaction mixture was warmed to room temperature and then heated to reflux for 45 min. When all the starting materials were consumed, as checked by TLC, the reaction mixture was cooled to room temperature, poured into ice and then acidified with 1 N HCl. The organic materials were extracted with CH₂Cl₂. The combined organic extracts were washed with water and then with brine and dried over anhydrous MgSO₄. The solvents were removed in vacuo and the resulting crude material was subjected to flash column chromatography (hexane : EtOAc = 90 : 10) to afford 2-benzyl-1-naphthonitrile 1n (0.711 g, 2.92 mmol) in 79% yield.
1H NMR (400 MHz, CDCl3) δ 4.42 (2H, s), 7.33-7.20 (5H, m), 7.37 (1H, d, J = 8.4 Hz), 7.57 (1H, dd, J = 8.0, 8.4 Hz), 7.68 (1H, dd, J = 8.0, 8.4 Hz), 7.86 (1H, d, J = 8.4 Hz) 7.95 (1H, d, J = 8.4 Hz), 8.25 (1H, d, J = 8.4 Hz); 13C NMR (100 MHz, CDCl3) δ 40.9, 109.2, 117.1, 125.2, 126.7, 126.9, 127.0, 128.3, 128.6, 128.7, 128.9, 131.4, 132.7, 132.9, 138.9, 145.6.

2-benzylbenzonitrile (1a)

80% yield from 2-bromomethylbenzonitrile (CAS No 22115-41-9); 1H NMR (400 MHz, CDCl3) δ 4.21 (2H, s), 7.23-7.33 (7H, m), 7.49 (1H, dd, J = 7.2, 7.6 Hz), 7.64 (1H, d, J = 7.6 Hz); 13C NMR (100 MHz, CDCl3) δ 40.2, 112.6, 118.2, 126.7, 126.8, 128.7, 129.0, 130.0, 132.9, 133.0, 138.8, 145.0.

2-benzyl-6-chlorobenzonitrile (1j)

94% yield from 10j; Yellow solid; mp. 36.0-37.0 °C; IR (NaCl) 3065, 2232, 1589, 1564, 1454, 1439, 669 cm⁻¹; 1H NMR (400 MHz, CDCl3) δ 4.21 (2H, s), 7.16 (1H, d, J = 8.0 Hz), 7.22-7.27 (3H, m), 7.31 (2H, d, J = 7.2 Hz), 7.35 (1H, d, J = 8.4 Hz), 7.41 (1H, dd, J = 7.6, 8.0 Hz); 13C NMR (100 MHz, CDCl3) δ 40.5, 113.6, 115.2, 126.9, 127.6, 128.0, 128.8, 129.0, 133.3, 137.4, 138.0, 147.4; ESIHRMS: Found: m/z 228.0576. Calcd for C14H11NCl: (M+H)+ 228.0580.

2-benzyl-5-fluorobenzonitrile (1k)

75% yield from 10k; Yellow oil; IR (NaCl) 3088, 3065, 3021, 2228, 1609, 1584, 1489, 1454, 1277 cm⁻¹; 1H NMR (400 MHz, CDCl3) δ 4.19 (2H, s), 6.93 (1H, dd,
$J_{HF} = 9.6 \text{ Hz}, J_{H-H} = 2.0 \text{ Hz})$, 7.00 (1H, ddd, $J_{HF} = 8.0 \text{ Hz}, J_{H-H} = 8.4, 2.0 \text{ Hz}$), 7.22-7.35 (5H, m), 7.65 (1H, dd, $J_{HF} = 5.6 \text{ Hz}, J_{H-H} = 8.4 \text{ Hz}$); 1C NMR (100 MHz, CDCl$_3$) δ 40.1 (d, $^5J_{CF} = 1.3 \text{ Hz}$), 108.6 (d, $^4J_{CF} = 3.1 \text{ Hz}$), 114.5 (d, $^2J_{CF} = 22.7 \text{ Hz}$), 117.3 (d, $^3J_{CF} = 22.7 \text{ Hz}$), 117.4, 127.0, 128.9 (d, $^3J_{CF} = 11.3 \text{ Hz}$), 135.1 (d, $^3J_{CF} = 9.6 \text{ Hz}$), 137.8, 148.4, 148.5, 165.0 (d, $^1J_{CF} = 254.9 \text{ Hz}$); ESIHRMS: Found: m/z 212.0869. Calcd for C$_{14}$H$_{11}$NF: (M+H)$^+$ 212.0876.

2-benzyl-5-(benzyloxy)benzonitrile (1m)

2-benzyl-5-hydroxybenzonitrile (1l-OH)

92% yield from 1l-OH (demethylation was concurrently observed under the Friedel-Crafts reaction conditions) which was converted into 1m by further benzylation; Gray soild; mp. 137.2-138.7 °C; IR (NaCl) 3065, 3032, 2932, 2874, 2222, 1603, 1568, 1495, 1454, 1244 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 4.14 (2H, s), 5.43 (1H, br), 6.66 (1H, s), 6.73 (1H, dd, $J = 8.4, 2.0 \text{ Hz}$), 7.22-7.33 (5H, m), 7.52 (1H, d, $J = 8.4 \text{ Hz}$); 13C NMR (100 MHz, CDCl$_3$) δ 40.1, 104.3, 114.3, 117.0, 118.5, 126.8, 128.7, 129.0, 134.9, 138.4, 147.6, 159.5; ESIHRMS: Found: m/z 210.0922. Calcd for C$_{14}$H$_{12}$NO: (M+H)$^+$ 210.0919.

Benzylation of 1l-OH to 1m: To a flask charged with 2-benzyl-5-hydroxybenzonitrile (0.331 g, 1.58 mmol) in MeCN (3.2 mL) was added K$_2$CO$_3$ (0.350 g, 2.53 mmol), benzyl chloride (0.20 ml, 1.74 mmol), and KI (2.6 mg, 0.016 mmol). The reaction mixture was stirred at reflux for 3 h. When all the starting materials were consumed, the reaction mixture was cooled to room temperature, and quenched with water. The organic materials were extracted with
EtOAc. The combined organic extracts were washed with water and then with brine and dried over anhydrous MgSO₄. The solvents were removed in vacuo and the resulting crude material was subjected to flash column chromatography (hexane : EtOAc = 80 : 20) to afford 2-benzyl-5-(benzyloxy)benzonitrile (1m) (0.470 g, 1.57 mmol) in 99% yield.

2-benzyl-5-(benzyloxy)benzonitrile (1m)

![Structure of 2-benzyl-5-(benzyloxy)benzonitrile]

Yellow solid; mp. 48.5-49.9 °C; IR (NaCl) 3065, 3032, 2932, 2874, 2222, 1603, 1568, 1495, 1454, 1244 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.15 (2H, s), 5.03 (2H, s), 6.80 (1H, d, J = 2.4 Hz), 6.86 (1H, dd, J = 8.4, 2.4 Hz), 7.21-7.38 (10H, m), 7.55 (1H, d, J = 8.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 40.3, 70.2, 104.5, 113.2, 116.5, 118.5, 126.7, 127.5, 128.3, 128.7 (overlapped), 129.0, 134.6, 135.6, 138.5, 147.1, 162.0; ESIHRMS: Found: m/z 300.1290. Calcd for C₂₁H₁₈NO: (M+H)⁺ 300.1388.

2,6-dibenzylbenzonitrile (1q)

![Structure of 2,6-dibenzylbenzonitrile]

94% yield from 10q; Pink Solid; mp. 74.3-75.3 °C; IR (NaCl) 3086, 3065, 2926, 2220, 1495, 1466, 1454 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.21 (4H, s), 7.09 (2H, d, J = 8.0 Hz), 7.20-7.25 (6H, m), 7.29-7.34 (4H, m), 7.37 (1H, t, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 40.5, 112.8, 117.3, 126.7, 127.7, 128.7, 129.0, 132.5, 138.8, 125.5; ESIHRMS: Found: m/z 284.1443. Calcd for C₂₁H₁₈N: (M+H)⁺ 284.1439.
A typical procedure for synthesis of 2-(biphenyl-4-ylmethyl)benzonitrile (1b)

A flask was charged with Pd(OAc)$_2$ (11.2 mg, 0.049 mmol), PPh$_3$ (26.2 mg, 0.099 mmol), biphenyl-4-ylboronic acid (1.49 g, 7.52 mmol), and K$_3$PO$_4$ (4.25 g, 20.0 mmol). The flask was evacuated and back filled with argon, and then the 2-(bromomethyl)benzonitrile (0.980 g, 5.00 mmol) in toluene (15 mL) were added. The reaction mixture was stirred at 80 °C for 9 h. When all the starting material has been consumed, the reaction mixture was quenched with water. The organic materials were extracted with Et$_2$O. The combined organic extracts were washed with water, and 1N NaOH solution and then with brine and dried over anhydrous MgSO$_4$. The solvents were removed in vacuo and the resulting crude material was subjected to flash column chromatography (hexane : EtOAc = 80 : 20) to afford 2-(biphenyl-4-ylmethyl)benzonitrile (1.27 g, 4.72 mmol) in 94% yield.

2-(biphenyl-4-ylmethyl)benzonitrile (1b)

White solid; mp. 112.9-113.8 °C; IR (NaCl) 3063, 3019, 2226, 1601, 1520, 1487, 1450 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 4.24 (2H, s), 7.30-7.35 (5H, m), 7.42 (2H, dd, $J = 7.6$, 7.6 Hz), 7.49-7.57 (5H, m), 7.65 (1H, d, $J = 6.8$ Hz); 13C NMR (100 MHz, CDCl$_3$) δ 39.8, 112.6, 118.2, 126.8, 127.0, 127.2, 127.4, 128.7, 129.3, 130.0, 132.9 (overlapped), 137.8, 139.6, 140.7, 144.8; ESIHRMS: Found: m/z 270.1287. Calcd for C$_{20}$H$_{16}$N: (M+H)$^+$ 270.1283.
2-(4-chlorobenzyl)benzonitrile (1c)

75% yield from 2-(bromomethyl)benzonitrile and 4-chlorophenylboronic acid; Colorless oil; IR (NaCl) 3065, 3048, 3028, 2222, 1493, 1483, 1447, 1408, 718 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 4.17 (2H, s), 7.16 (2H, d, \(J = 8.4\) Hz), 7.25-7.29 (3H, m), 7.32 (1H, ddd, \(J = 7.6, 7.6, 1.2\) Hz), 7.51 (1H, ddd, \(J = 7.6, 7.6, 1.2\) Hz), 7.65 (1H, dd, \(J = 7.6, 1.2\) Hz); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 39.4, 112.4, 118.0, 127.0, 128.8, 129.9, 130.2, 132.5, 132.9, 133.0, 137.2, 144.2; ESIHRMS: Found: m/z 228.0588. Calcd for C\(_{14}\)H\(_{11}\)NCl: (M+H)+ 228.0580.

2-(4-(trifluoromethyl)benzyl)benzonitrile (1d)

86% yield from 2-(bromomethyl)benzonitrile and 4-trifluoromethylphenylboronic acid; Colorless oil; IR (NaCl) 3069, 2934, 2224, 1618, 1599, 1487, 1449, 1323 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 4.26 (2H, s), 7.28 (1H, d, \(J = 8.0\) Hz), 7.33-7.36 (3H, m), 7.52-7.58 (3H, m), 7.66 (1H, dd, \(J = 7.6, 1.2\) Hz); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 39.9, 112.6, 117.9, 124.1 (q, \(^1\)J\(_{CF}\) = 270.2 Hz), 125.6 (q, \(^3\)J\(_{CF}\) = 3.7 Hz), 127.2, 129.2 (q, \(^2\)J\(_{CF}\) = 32.4 Hz), 129.2, 130.0, 133.0, 133.1, 142.8, 143.7; ESIHRMS: Found: m/z 262.0844. Calcd for C\(_{15}\)H\(_{11}\)NF\(_3\): (M+H)+ 262.0844.

2-(4-methoxybenzyl)benzonitrile (1e)

78
56% yield from 2-(bromomethyl)benzonitrile and 4-methoxyphenylboronic acid;
1H NMR (400 MHz, CDCl$_3$) δ 3.78 (3H, s), 4.14 (2H, s), 6.84 (2H, d, $J = 8.8$ Hz), 7.15 (2H, d, $J = 8.8$ Hz), 7.25-7.31 (2H, m), 7.48 (1H, ddd, $J = 8.0, 7.6, 1.6$ Hz), 7.62 (1H, dd, $J = 7.6, 1.2$ Hz);
13C NMR (100 MHz, CDCl$_3$) δ 39.3, 55.2, 112.4, 114.1, 118.2, 126.7, 129.8, 129.9, 130.8, 132.8, 132.9, 145.4, 158.3.

2-(4-methylbenzyl)benzonitrile (1f)

81% yield from 2-(bromomethyl)benzonitrile and 4-methylphenylboronic acid;
1H NMR (400 MHz, CDCl$_3$) δ 2.32 (3H, s), 4.16 (2H, s), 7.10-7.14 (4H, m), 7.25-7.30 (2H, m), 7.48 (1H, ddd, $J = 8.0, 7.6, 1.6$ Hz), 7.62 (1H, dd, $J = 7.6, 0.8$ Hz);
13C NMR (100 MHz, CDCl$_3$) δ 21.0, 39.8, 112.5, 118.2, 126.7, 128.9, 129.4 (overlapped), 130.0, 132.9, 135.7, 136.3, 145.3.

2-(benzo[d][1,3]dioxol-5-ylmethyl)benzonitrile (1g)

To a flask including 2-(bromomethyl)benzonitrile (0.199 g, 1.02 mmol) in dimethoxyethane (5 mL) was added benzo[d][1,3]dioxol-5-ylboronic acid (0.182 g, 1.09 mmol), CsF (0.383 g, 2.52 mmol), and Pd(Ph$_3$)$_4$ (46.2 mg, 0.0400 mmol). The mixture was stirred at 110 °C for 2.5 h. When all the starting material was consumed, the reaction was quenched with water at 0 °C. The organic materials were extracted thrice with EtOAc. The combined organic extracts were washed with 5% aqueous NaOH solution, water and brine. After that they were dried over anhydrous MgSO$_4$. The solvents were removed in vacuo and the resulting crude material was subjected to flash column chromatography (hexane : EtOAc = 95 : 5) to afford 2-(benzo[d][1,3]dioxol-5-ylmethyl)benzonitrile (0.19 g, 0.80 mmol) in 78% yield.
Colorless oil; IR (NaCl) 3066, 2895, 2223, 1598, 1502 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.11 (2H, s), 5.92 (2H, s), 6.68-6.76 (3H, m), 7.26-7.32 (2H, m), 7.50 (1H, ddd, J = 8.0, 7.6, 1.2 Hz), 7.63 (1H, dd, J = 8.0, 1.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 39.8, 101.0, 108.4, 109.3, 112.4, 118.1, 122.0, 126.8, 129.9, 132.5, 132.9 (overlapped), 145.0, 146.3, 147.9; ESIHRMS: Found: m/z 238.0861. Calcd for C₁₃H₁₂NO₂: (M+H)⁺ 238.0868.

2-(2-methylbenzyl)benzonitrile (1h)

![chemical structure]

69% yield from 2-(bromomethyl)benzonitrile and 2-methylphenylboronic acid; Colorless oil; IR (NaCl) 3065, 3019, 2947, 2922, 2224, 1599, 1485, 1450 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.24 (3H, s), 4.21 (2H, s), 7.02 (1H, d, J = 8.0 Hz), 7.04 (1H, d, J = 6.4 Hz), 7.16-7.21 (3H, m), 7.30 (1H, dd, J = 7.6, 7.6 Hz), 7.44 (1H, ddd, J = 7.6, 7.6, 1.2 Hz), 7.66 (1H, dd, J = 7.6, 1.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 19.6, 37.5, 112.7, 118.0, 126.2, 126.6, 127.1, 129.4, 129.9, 130.5, 132.7, 132.8, 136.6, 136.7, 144.3; ESIHRMS: Found: m/z 208.1128. Calcd for C₁₅H₁₄N: (M+H)⁺ 208.1126.

2-(naphthalen-1-ylmethyl)benzonitrile (1i)

![chemical structure]

56% yield from 2-(bromomethyl)benzonitrile and 1-naphthylboronic acid; Colorless oil; IR (NaCl) 3063, 3048, 3009, 2972, 2222, 1597, 1508, 1485, 1450 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.66 (2H, s), 6.98 (1H, d, J = 7.6 Hz), 7.26-7.28 (2H, m), 7.35 (1H, ddd, J = 8.0, 7.6, 1.6 Hz), 7.41-7.48 (3H, m), 7.69 (1H, dd, J = 7.6, 1.2 Hz), 7.80 (1H, d, J = 8.4 Hz), 7.86-7.89 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 37.1, 112.4, 118.1, 123.8, 125.5, 125.8, 126.3, 126.7, 127.7, 127.8,
128.8, 129.6, 131.8, 132.8, 132.9, 133.9, 134.2, 144.4; ESIHRMS: Found: m/z 244.1121. Calcd for C_{18}H_{14}N: (M+H)^+ 244.1126.

2-benzyl-5-methoxybenzonitrile (II)

72% yield from 2-(bromomethyl)-5-methoxybenzonitrile (10I) and phenylboronic acid; Brown oil; IR (NaCl) 3061, 3028, 2941, 2218, 1608, 1599, 1568, 1248 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.79 (3H, s), 4.16 (2H, s), 6.74 (1H, d, \(J = 3.2\) Hz), 6.79 (1H, dd, \(J = 11.6, 3.2\) Hz), 7.21-7.34 (5H, m), 7.57 (1H, d, \(J = 11.6\) Hz); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 40.3, 55.4, 104.3, 112.3, 115.8, 118.6, 126.7, 128.7, 128.9, 134.6, 138.6, 147.1, 162.9; ESIHRMS: Found: m/z 224.1083. Calcd for C\(_{15}\)H\(_{14}\)NO: (M+H)^+ 224.1075.

2-benzyl-1-methyl-1H-indole-3-carbonitrile (1o)

Prepared from 2-(bromomethyl)-1-methyl-1H-indole-3-carbonitrile (10o) by the same method with compound 1g.

66% yield; Yellow solid; mp. 58.3-60.6 °C; IR (NaCl) 3010, 2212, 1643, 1473 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.57 (3H, s), 4.33 (2H, s), 7.17 (2H, d, \(J = 7.2\) Hz), 7.22-7.32 (6H, m), 7.71-7.74 (1H, m); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 30.6, 32.3, 86.1, 109.9, 116.5, 119.4, 122.1, 123.4, 127.0, 127.1, 128.2, 129.0, 136.0, 136.6, 147.2; ESIHRMS: Found: m/z 247.1235. Calcd for C\(_{17}\)H\(_{15}\)N\(_2\): (M+H)^+ 247.1235.

1,2-dimethyl-1H-indole-3-carbonitrile (9o)
Prepared by the following procedure in 91% yield.

To a solution of THF (18 mL) of 2-methyl-\(1H\)-indole-3-carbonitrile\(^6\) (0.845 g, 5.41 mmol) was added NaH (60% dispersion in mineral oil, 0.324 g, 8.10 mmol). The reaction mixture was stirred at 0 °C for 15 min, and at room temperature for another 1 h. After that MeI (0.45 mL, 7.2 mmol) was added. The reaction mixture was stirred at room temperature for 30 min. When all the starting material was consumed, as checked by TLC, the reaction mixture was quenched with NH\(_4\)Cl solution. The organic materials were extracted with ether. The combined organic extracts were washed with water and brine, and dried over anhydrous MgSO\(_4\). The solvents were removed in vacuo and the resulting crude material was subjected to flash column chromatography (hexane : EtOAc : CH\(_2\)Cl\(_2\) = 90 : 10 : 5) to afford 1,2-dimethyl-\(1H\)-indole-3-carbonitrile (0.835 g, 4.91 mmol) in 91% yield.

Yellow solid; mp. 104.6-105.7 °C ; IR (NaCl) 3016, 2212, 1639, 1544, 1477, 1215 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.57 (3H, s), 3.70 (3H, s), 7.21-7.33 (3H, m), 7.62-7.68 (1H, m); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 12.0, 30.2, 84.8, 109.7, 116.5, 119.0, 121.9, 123.0, 127.0, 136.3, 145.6; ESIHRMS: Found: m/z 171.0925. Calcd for C\(_{11}\)H\(_{11}\)N\(_2\): (M+H)\(^+\) 171.0922.

\(2-(\text{bromomethyl})\)-1-methyl-\(1H\)-indole-3-carbonitrile (10o)

![2-(bromomethyl)-1-methyl-1H-indole-3-carbonitrile](image)

Prepared from 1,2-dimethyl-\(1H\)-indole-3-carbonitrile (9o) by the reaction with NBS in the presence of a catalytic amount of (PhCO\(_2\))\(_2\) in 64% yield. Yellow solid; mp. 159.0-160.3 °C ; IR (NaCl) 3018, 2218, 1635, 1477, 1215 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.85 (3H, s), 4.74 (2H, s), 7.28-7.33 (1H, m), 7.36-7.41 (2H, m), 7.72 (1H, d, \(J = 8.0\) Hz); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 19.8, 30.6, 87.0, 110.3, 114.9, 120.0, 122.7, 124.8, 126.6, 137.1, 141.8; ESIHRMS: Found: m/z 249.0045. Calcd for C\(_{11}\)H\(_{10}\)N\(_2\)Br: (M+H)\(^+\) 249.0027.
2-benzylthiophene-3-carbonitrile (1p)

Prepared from 2-(bromomethyl)thiophene-3-carbonitrile (10p) with same method with compound 1g.

69% yield; Colorless oil; IR (NaCl) 2252, 1643 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.31 (2H, s), 7.13 (1H, d, J = 5.6 Hz), 7.17 (1H, d, J = 5.6 Hz), 7.27-7.29 (3H, m), 7.32-7.34 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 35.4, 108.5, 115.0, 125.0, 127.2, 128.3, 128.6, 128.9, 138.2, 156.0; ESIHRMS: Found: m/z 200.0507. Calcd for C₁₂H₁₀NS: (M+H)⁺ 200.0534.

2-methylthiophene-3-carbonitrile (9p)

Prepared by the following procedure in 64% yield.

To a flask including with LDA prepared by diisopropylamine (2.3 mL, 16.4 mmol) and BuLi (1.6 M, 9.6 mL, 15.4 mmol) in THF (19 mL), was added thiophene-3-carbonitrile (1.60 g, 14.7 mmol) at –78 °C. The mixture was stirred at the same temperature for 1 h. MeI (1.0 mL, 16.1 mmol) was added at –78 °C. The reaction mixture was stirred at room temperature for 1 h, and then quenched with saturated aqueous NH₄Cl solution. The organic materials were extracted three times with Et₂O. The combined organic extracts were washed with brine and dried over anhydrous MgSO₄. The solvents were removed in vacuo and the resulting crude material was subjected to flash column chromatography (hexane : EtOAc = 95 : 5) to afford 2-methylthiophene-3-carbonitrile (1.16 g, 9.42 mmol) in 64% yield.

Colourless oil; IR (NaCl) 2945, 2227, 1637, 1448 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.66 (3H, s), 7.09 (1H, d, J = 5.2 Hz), 7.13 (1H, d, J = 5.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 14.6, 109.1, 115.0, 124.0, 128.2, 151.4; ESIHRMS: Found: m/z 124.0204. Calcd for C₆H₆NS: (M+H)⁺ 124.0221.
2-(bromomethyl)thiophene-3-carbonitrile (10p)

\[
\begin{array}{c}
\text{CN} \\
\text{S} \\
\text{Br}
\end{array}
\]

Prepared from 2-methylthiophene-3-carbonitrile (9p) by the reaction with NBS in the presence of a catalytic amount of (PhCO₂)₂ in 64% yield.

White solid; mp. 71.7-72.7 °C; IR (NaCl) 2223, 1635 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.79 (2H, s), 7.17 (1H, d, J = 5.6 Hz), 7.38 (1H, d, J = 5.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 22.3, 110.6, 113.7, 127.4, 128.8, 150.7; ESIHRMS: Found: m/z 201.9330. Calcd for C₆H₅NSBr: (M+H)⁺ 201.9326.

5.2.1.3 Method 3: Mn(II)-catalyzed coupling of 2-chlorobenzonitrile with alkyl Grignard reagents

\[
\begin{array}{c}
\text{Cl} \\
\text{CN} \quad + \quad \text{R–MgBr} \quad \xrightarrow{\text{cat. MnCl₂ \ THF, 0 °C}} \quad \text{CN}
\end{array}
\]

A typical procedure for synthesis of 2-butylbenzonitrile (1r)

To a THF solution (38 mL) of 2-chlorobenzonitrile (2.06 g, 15.0 mmol) was added butylmagnesium bromide solution (1.0 M, 30.0 mL, 30.0 mmol) and MnCl₂ (188.7 mg, 1.50 mmol). After stirring at 0 °C for 1 h, the starting materials were consumed, as checked by TLC, and the reaction mixture was quenched with NH₄Cl solution. The organic materials were extracted with ether. The combined organic extracts were washed with water and brine and dried over anhydrous MgSO₄. The solvents were removed in vacuo and the resulting crude material was subjected to flash column chromatography (hexane : EtOAc = 95 : 5) to afford 2-butylbenzonitrile (1p) (1.63 g, 10.2 mmol) in 68% yield.

68% yield; ¹H NMR (400 MHz, CDCl₃) δ 0.95 (3H, t, J = 7.2 Hz), 1.40 (2H, m), 1.63-1.70 (2H, m), 2.84 (2H, t, J = 7.6 Hz), 7.25-7.32 (2H, m), 7.50 (1H, ddd, J = 7.6, 7.6, 1.6 Hz), 7.60 (1H, dd, J = 7.6, 1.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 13.8, 22.3, 33.0, 34.3, 112.3, 118.2, 126.2, 129.4, 132.6, 132.7, 146.8.
2-isobutylbenzonitrile (1s)

\[
\begin{align*}
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me} \\
\text{CN} & \quad \text{CN}
\end{align*}
\]

40% yield from 2-chlorobenzonitrile and isobutylmagnesium bromide; Colorless Oil; IR (NaCl) 2959, 2930, 2901, 2224, 1485, 1466, 1448 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 0.95 (6H, d, \(J = 6.4\) Hz), 1.94-2.04 (1H, m), 2.71 (2H, d, \(J = 7.2\) Hz), 7.27-7.30 (2H, m), 7.50 (1H, ddd, \(J = 7.6, 7.6, 1.2\) Hz), 7.61 (1H, dd, \(J = 8.0, 1.2\) Hz); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 22.2, 30.2, 43.6, 112.7, 118.4, 126.3, 130.2, 132.4, 132.7, 145.6; ESIHRMS: Found: m/z 160.1133. Calcd for C\(_{13}\)H\(_{14}\)N: (M+H)+ 160.1126.

2-cyclohexylbenzonitrile (1t)

\[
\begin{align*}
\text{CN}
\end{align*}
\]

88% yield from 2-chlorobenzonitrile and cyclohexylmagnesium bromide; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.25-1.51 (5H, m), 1.77-1.92 (5H, m), 2.95-3.01 (1H, m), 7.24-7.28 (1H, m), 7.36 (1H, d, \(J = 8.0\) Hz), 7.53 (1H, ddd, \(J = 7.6, 8.0, 1.2\) Hz), 7.60 (1H, dd, \(J = 7.6, 1.2\) Hz); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 25.9, 26.6, 33.7, 42.7, 111.8, 118.2, 126.2, 126.5, 132.8, 132.9, 151.5.

5.2.1.4 Method 4: Synthesis of 2,2-dimethyl-4-phenylbutanenitrile (1u)

\[
\begin{align*}
\text{CN} & \quad \text{1u} \\
\text{Ph} & \quad \text{Ph} \\
\end{align*}
\]

To a flask charged with LDA, which was freshly prepared by diisopropylamine (4.6 mL, 32.8 mmol) and n-BuLi (1.6 M, 19.6 mL, 31.3 mmol) in THF (40 mL), was added isobutyronitrile (2.7 mL, 30.0 mmol) at –78 °C. The mixture was stirred at the same temperature for 1 h. After that (2-bromoethyl)benzene (4.5 mL, 33.3 mmol) was added at –78 °C. The reaction
mixture was stirred at room temperature for overnight, and then quenched with saturated aqueous NH₄Cl. The organic materials were extracted with Et₂O. The combined organic extracts were washed with brine and dried over anhydrous MgSO₄. The solvents were removed in vacuo and the resulting crude material was subjected to flash column chromatography (hexane : EtOAc = 95 : 5) to afford 2,2-dimethyl-4-phenylbutanenitrile (1s) (2.85 g, 16.4 mmol) in 55% yield.

55% yield; ¹H NMR (400 MHz, CDCl₃) δ 1.40 (6H, s), 1.80-1.84 (2H, m), 2.78-2.82 (2H, m), 7.19-7.32 (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ 26.7, 31.8, 32.4, 43.0, 124.8, 126.2, 128.3, 128.5, 140.8.

5.2.2 Cu(OAc)₂-catalyzed methylene oxygenation

5.2.2.1 A typical procedure for synthesis of 1,2-diacylbenzenes 3

To an ice-cooled solution of 2-benzylbenzonitrile (1a) (98.4 mg, 0.509 mmol) in Et₂O (0.5 mL) was added an Et₂O solution of p-tolylmagnesium bromide (2a) (1.0 M, 0.7 mL, 0.7 mmol). The reaction mixture was stirred at 60 °C in a sealed tube for 2 h, and then anhydrous MeOH (62 μL) was added. Cu(OAc)₂ (9.4 mg, 0.051 mmol) and anhydrous DMF (5.1 mL) was then added. The reaction mixture was stirred at 80 °C under an oxygen atmosphere for 8.5 h. The reaction was quenched with 3N aqueous HCl solution, and the reaction mixture was stirred at 80 °C for 2 h. The organic materials were extracted with Et₂O. The combined organic extracts were washed with water, and then with brine and dried over anhydrous MgSO₄. The solvents were removed in vacuo and the resulting crude material was purified by flash column chromatography (hexane : EtOAc = 80 : 20) to afford (2-benzoylphenyl)(p-tolyl)methanone (3aa) (124.6 mg, 0.415 mmol) in 82% yield.
(2-benzoylphenyl)(p-tolyl)methanone (3aa)

![Molecular structure of 3aa]

White granular crystal; mp. 147.0-147.8 °C; IR (ATR) 1670, 1655, 1595, 1568 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.38 (3H, s), 7.17 (2H, d, J = 8.0 Hz), 7.37 (2H, dd, J = 7.6, 7.6 Hz), 7.51 (1H, dd, J = 7.2, 7.6 Hz), 7.59-7.61 (6H, m), 7.70 (2H, d, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 21.7, 128.3, 129.0, 129.5, 129.6, 129.8, 130.0, 130.1, 130.3, 132.9, 134.6, 137.2, 139.9, 140.3, 143.9, 196.2, 196.6; ESIHRMS: Found: m/z 301.1254. Calcd for C₂₁H₁₇O₂: (M+H)+ 301.1229.

By quenching with pH 9 ammonium buffer, 1,2-dibenzoylbenzene 3aa and 1H-isoindol-1-ol 4aa were isolated in 34% and 58% yield, respectively.

1-phenyl-3-p-tolyl-1H-isoindol-1-ol (4aa)

![Molecular structure of 4aa]

58% yield; White granular crystal; mp. 196.8-197.6 °C; IR (NaCl) 3584, 3067, 3019, 1543, 1512, 1190 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.48 (3H, s), 5.20 (1H, br), 7.20-7.22 (3H, m), 7.37-7.51 (7H, m), 7.68-7.70 (1H, m), 7.90 (2H, d, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 100.9, 123.3, 123.6, 125.3, 127.8, 128.3, 128.5, 128.7, 129.5, 129.9, 130.6, 136.4, 140.8, 141.3, 155.0, 171.4; ESIHRMS: Found: m/z 300.1393. Calcd for C₂₁H₁₈NO: (M+H)+ 300.1388.

(2-benzoylphenyl)(4-methoxyphenyl)methanone (3ab)

![Molecular structure of 3ab]

89% yield; Yellow Solid; mp. 118.6-119.1 °C; IR (NaCl) 3019, 1655, 1599, 1578, 1508, 1260 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.84 (3H, s), 6.85 (2H, d, J = 8.8 Hz), 7.36 (2H, dd, J = 8.0, 7.6 Hz), 7.51 (1H, dd, J = 7.6, 7.2 Hz), 7.58-7.62 (4H,
m), 7.67-7.70 (4H, m); 13C NMR (100 MHz, CDCl$_3$) δ 55.5, 113.6, 128.2, 129.3, 129.6, 129.8, 130.0, 130.2, 130.3, 132.2, 132.9, 137.2, 139.7, 140.4, 163.5, 195.2, 196.7; ESIHRMS: Found: m/z 317.1186. Calcd for C$_{21}$H$_{17}$O$_3$: (M+H)$^+$ 317.1178.

(2-benzoylphenyl)(2-methoxyphenyl)methanone (3ac)

\[
\begin{array}{c}
\text{O} \\
\text{O} \\
\text{Me}
\end{array}
\]

49% yield; Yellow solid; mp. 128.4-129.4 °C; IR (NaCl) 3061, 1666, 1597, 1485, 1257 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 3.66 (3H, s), 6.86 (1H, d, J = 8.4 Hz), 6.91 (1H, ddd, J = 7.2, 7.6, 0.8 Hz), 7.230 (1H, dd, J = 7.6, 2.0 Hz), 7.35 (2H, dd, J = 7.6, 7.6 Hz), 7.42 (1H, ddd, J = 8.4, 7.6, 2.0), 7.47-7.55 (3H, m), 7.60-7.63 (2H, m), 7.69-7.72 (2H, m); 13C NMR (100 MHz, CDCl$_3$) δ 55.5, 111.5, 120.5, 127.8, 128.2, 128.6, 129.4, 129.7, 130.2, 131.0, 131.4, 132.7, 133.2, 137.3, 139.7, 140.4, 158.0, 196.4, 197.2; ESIHRMS: Found: m/z 317.1179. Calcd for C$_{21}$H$_{17}$O$_3$: (M+H)$^+$ 317.1178.

(2-benzoylphenyl)(4-chlorophenyl)methanone (3ad)

\[
\begin{array}{c}
\text{O} \\
\text{Cl}
\end{array}
\]

91% yield; White Solid; mp. 196.6-140.2 °C; IR (NaCl) 3065, 3019, 1661, 1589, 669 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.35 (2H, d, J = 8.8 Hz), 7.40 (2H, dd, J = 8.0, 7.6 Hz), 7.54 (1H, dd, J = 7.6, 7.2 Hz), 7.58-7.67 (6H, m), 7.70 (2H, dd, J = 8.4, 6.8 Hz); 13C NMR (100 MHz, CDCl$_3$) δ 128.3, 128.7, 129.3, 129.8 (overlapped), 130.4, 130.5, 131.1, 133.1, 135.6, 137.1, 139.5, 139.7, 139.8, 195.3, 196.3; ESIHRMS: Found: m/z 321.0684. Calcd for C$_{20}$H$_{16}$O$_2$Cl: (M+H)$^+$ 321.0682.
(2-benzoylphenyl)(4-fluorophenyl)methanone (3ae)

\[
\begin{align*}
\text{\text{O}} & \quad \text{O} \\
\text{\text{F}} &
\end{align*}
\]

60% yield; Yellow viscous oil; IR (NaCl) 1660, 1598, 1504, 1278, 1149 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.04 (2H, dd, \(J = 8.8, 8.4\) Hz), 7.39 (2H, dd, \(J = 8.0, 7.6\) Hz), 7.53 (1H, t, \(J = 7.6\) Hz), 7.58-7.66 (4H, m), 7.69-7.75 (4H, m); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 115.5 (d, \(J_{\text{C-F}} = 21.9\) Hz), 128.4, 129.3, 129.8, 129.9, 130.3, 130.5, 132.3 (d, \(J_{\text{C-F}} = 9.3\) Hz), 133.1, 133.6 (d, \(J_{\text{C-F}} = 2.9\) Hz), 137.1, 139.8, 140.0, 165.7 (d, \(J_{\text{C-F}} = 253.6\) Hz), 195.1, 196.4; ESIHRMS: Found: m/z 305.0976. Calcd for C\(_{20}\)H\(_{14}\)O\(_2\)F: (M+H)\(^+\) 305.0978.

(2-(1-naphthoyl)phenyl)(phenyl)methanone (3af)

\[
\begin{align*}
\text{\text{O}} & \quad \text{O} \\
\text{\text{F}} &
\end{align*}
\]

77% yield; Yellow viscous oil; IR (NaCl) 1654, 1595, 1508, 1448, 1280 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.30 (2H, dd, \(J = 8.0, 7.6\) Hz), 7.37-7.50 (4H, m), 7.55-7.70 (3H, m), 7.62-7.70 (4H, m), 7.83 (1H, d, \(J = 7.2\) Hz), 7.94 (1H, d, \(J = 8.0\) Hz), 8.29 (1H, d, \(J = 8.0\) Hz); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 123.9, 125.7, 126.4, 127.7, 128.1, 128.2, 128.9, 129.4, 130.0, 130.4, 130.8, 130.9, 131.3, 132.8, 133.0, 133.5, 135.1, 137.2, 140.5, 141.0, 196.9, 197.4; ESIHRMS: Found: m/z 337.1230. Calcd for C\(_{24}\)H\(_{17}\)O\(_2\): (M+H)\(^+\) 337.1229.

(2-(2-naphthoyl)phenyl)(phenyl)methanone (3ag)

\[
\begin{align*}
\text{\text{O}} & \quad \text{O} \\
\text{\text{F}} &
\end{align*}
\]

71% yield; Yellow solid; mp. 172.3-173.3 °C; IR (NaCl) 3063, 3019, 1659, 1628, 1597, 1522 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.35 (2H, dd, \(J = 7.6, 7.6\) Hz), 7.48
(1H, d, J = 7.6 Hz), 7.51 (1H, d, J = 7.2 Hz), 7.58 (1H, dd, J = 8.4, 7.6 Hz), 7.64-7.72 (6H, m), 7.80-7.86 (4H, m), 8.16 (1H, s); 1H NMR (100 MHz, CDCl$_3$) δ 124.9, 126.7, 127.7, 128.3, 128.4, 128.5, 129.5, 129.7 (overlapped), 129.8, 130.3, 130.4, 132.1, 130.0, 134.6, 135.4, 137.1 (overlapped), 140.0, 140.2, 196.5, 196.6; ESIHRMS: Found: m/z 337.1227. Calcd for C$_{24}$H$_{17}$O$_2$: (M+H)$^+$ 337.1229.

(2-benzoylphenyl)(thiophen-2-yl) methanone (3ah)

63% yield; Pink solid; mp. 132.5-133.3 °C; IR (NaCl) 3065, 3019, 1661, 1643, 1514, 1449, 1412 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.06 (1H, dd, J = 4.0, 5.2 Hz), 7.37 (2H, dd, J = 8.0, 7.6 Hz), 7.48 (1H, dd, J = 4.0, 1.2 Hz), 7.51 (1H, dd, J = 7.6, 7.2 Hz), 7.62-7.75 (3H, m); 13C NMR (100 MHz, CDCl$_3$) δ 127.9, 128.3, 129.0, 129.7, 129.8, 130.4, 133.0, 134.8, 134.9, 137.1, 139.5, 139.7, 144.0, 188.2, 196.5; ESIHRMS: Found: m/z 293.0645. Calcd for C$_{18}$H$_{13}$O$_2$S: (M+H)$^+$ 293.0636.

(2-benzoylphenyl)(3-chlorophenyl) methanone (3ai)

88% yield; Pale yellow oil; IR (NaCl) 1663, 1570, 1449 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.32 (1H, dd, J= 7.8, 7.8 Hz), 7.40 (2H, m), 7.47 (1H, ddd, J= 8.0, 2.1, 1.1 Hz), 7.54 (1H, dd, J= 7.4, 7.4 Hz), 7.58-7.66 (6H, m), 7.70 (2H, dd, J= 8.0, 1.1 Hz); 13C NMR (100 MHz, CDCl$_3$) δ 127.8, 128.9, 129.4, 129.5, 129.7, 129.8, 129.9, 130.5, 130.7, 132.9, 133.1, 134.6, 137.0, 138.8, 139.6, 195.3, 196.3; ESIHRMS: Found: m/z 321.0686. Calcd for C$_{20}$H$_{14}$O$_2$Cl: (M+H)$^+$ 321.0682.
(2-benzoylphenyl)(4-(trifluoromethyl)phenyl)methanone (3aj)

\[
\begin{array}{c}
\text{O} \\
\text{CF}_3 \\
\text{O}
\end{array}
\]

71% yield; Pale yellow oil; IR (NaCl) 3065, 1661, 1595, 1449, 1410, 1173, 1134 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.40 (2H, dd, \(J = 7.9, 7.6\) Hz), 7.54 (1H, dd, \(J = 7.4, 7.4\) Hz), 7.58-7.62 (1H, m), 7.63-7.66 (5H, m), 7.71 (2H, dd, \(J = 7.0, 1.4\) Hz), 7.82 (2H, d, \(J = 8.1\) Hz); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 123.5 (q, \(^1\)J\(_{CF}\) = 271 Hz), 125.6 (q, \(^3\)J\(_{CF}\) = 3.7 Hz), 128.4, 129.5, 129.8, 129.9 (overlapped), 130.0, 130.7, 133.2, 134.1 (d, \(^2\)J\(_{CF}\) = 32.4 Hz),, 136.9, 139.4, 139.8, 139.9 ; ESIHRMS: Found: m/z 355.0946. Calcd for C\(_{21}\)H\(_{14}\)O\(_2\)F\(_3\): (M+H)\(^+\) 355.0946.

biphenyl-4-yl(2-(4-methylbenzoyl)phenyl)methanone (3ba)

\[
\begin{array}{c}
\text{Me} \\
\end{array}
\]

82% yield; Yellow solid; mp. 162.9-164.0 °C; IR (NaCl) 2924, 1651, 1605, 1487, 1449 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.38 (3H, s), 7.17 (2H, d, \(J = 8.0\) Hz), 7.38 (1H, dd, \(J = 7.2, 7.2\) Hz), 7.45 (2H, dd, \(J = 7.2, 7.6\) Hz), 7.58-7.66 (10H, m), 7.78 (2H, d, \(J = 8.0\) Hz); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 21.7, 127.0, 127.3, 128.2, 128.9, 129.0, 129.5, 129.6, 130.0, 130.1, 130.2, 130.4, 134.6, 135.9, 139.9, 140.0, 140.1, 143.9, 145.6, 169.2 (overlapped); ESIHRMS: Found: m/z 377.1531. Calcd for C\(_{27}\)H\(_{21}\)O\(_2\): (M+H)\(^+\) 377.1542.

(2-(4-chlorobenzoyl)phenyl)(p-tolyl)methanone (3ca)

\[
\begin{array}{c}
\text{Cl} \\
\end{array}
\]

91
82% yield; Yellow solid; mp. 164.8-165.8 °C; IR (NaCl) 3063, 3026, 1655, 1587, 1570 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.39 (3H, s), 7.18 (2H, d, \(J = 8.0\) Hz), 7.34 (2H, d, \(J = 8.4\) Hz), 7.57-7.62 (6H, m), 7.64 (2H, d, \(J = 8.4\) Hz); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 21.6, 128.6, 129.1, 129.3, 129.7, 130.0, 130.3, 130.4, 131.1, 134.4, 135.6, 139.4, 139.6, 139.9, 144.0, 195.5, 196.0; ESIHRMS: Found: m/z 335.0842. Calcd for C\(_{21}\)H\(_{16}\)O\(_2\)Cl: (M+H)\(^+\) 335.0839.

(2-(4-methylbenzoyl)phenyl)(4-(trifluoromethyl)phenyl)methanone (3da)

78% yield; Yellow oil; IR (NaCl) 3065, 3030, 1663, 1605, 1593, 1570, 1325, 1312, 1281 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.39 (3H, s), 7.19 (2H, d, \(J = 8.0\) Hz), 7.59-7.64 (8H, m), 7.81 (2H, d, \(J = 8.0\) Hz); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 21.6, 123.5 (q, \(^1J_{CF} = 271.1\) Hz), 125.3 (q, \(^3J_{CF} = 3.6\) Hz), 120.1, 129.4, 129.8, 129.9, 130.0, 130.5, 130.6, 134.1 (q, \(^2J_{CF} = 32.5\) Hz), 134.4, 139.3, 140.0, 144.2, 195.6, 195.9; ESIHRMS: Found: m/z 369.1104. Calcd for C\(_{22}\)H\(_{16}\)O\(_2\)F\(_3\): (M+H)\(^+\) 369.1102.

(2-(4-methoxybenzoyl)phenyl)(p-tolyl)methanone (3ea)

79% yield; Pale yellow solid; mp. 166.9-167.8 °C; IR (NaCl) 2965, 2936, 1655, 1601, 1576, 1508, 1258 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.38 (3H, s), 3.85 (3H, s), 6.85 (2H, d, \(J = 8.8\) Hz), 7.17 (2H, d, \(J = 8.0\) Hz), 7.59-7.61 (6H, m), 7.68 (2H, d, \(J = 8.8\) Hz); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 21.6, 55.4, 113.5, 129.0, 129.3, 129.4, 129.9, 130.1, 130.1, 130.3, 132.2, 134.7, 140.0, 140.3, 143.8, 163.5, 195.3, 196.3; ESIHRMS: Found: m/z 331.1336. Calcd for C\(_{22}\)H\(_{16}\)O\(_3\): (M+H)\(^+\) 331.1334.
1,2-phenylenebis(p-tolylmethanone) (3fa)

\[
\begin{align*}
\text{Me} & \quad \text{O} \\
\text{O} & \quad \text{Me}
\end{align*}
\]

81% yield; Yellow solid; mp. 189.7-191.6 °C; IR (NaCl) 2924, 2872, 1659, 1605, 1570, 1512 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.38 (6H, s), 7.17 (4H, d, \(J = 8.0\) Hz), 7.59-7.62 (8H, m); \(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 21.7, 129.0, 129.5, 130.0, 130.1, 134.7, 140.1, 143.8, 196.3; ESIHRMS: Found: m/z 315.1389. Calcd for C\(_{22}\)H\(_{18}\)O\(_2\): (M+H)\(^+\) 315.1385.

benzo[d][1,3]dioxol-5-yl(2-(4-methylbenzoyl)phenyl)methanone (3ga)

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{Me} & \quad \text{O} \\
\text{O} & \quad \text{Me}
\end{align*}
\]

64% yield; Yellow solid; mp. 172.2-173.4 °C; IR (NaCl) 3018, 1647, 1608, 1444, 1215 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.38 (3H, s), 5.99 (2H, s), 6.73 (IH, d, \(J = 8.0\) Hz), 7.17 (2H, d, \(J = 8.0\) Hz), 7.23-7.26 (2H, m), 7.56-7.59 (4H, m), 7.61 (2H, d, \(J = 8.0\) Hz); \(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 21.6, 101.8, 107.5, 109.0, 126.9, 128.9, 129.1, 129.5, 129.8, 130.0, 130.1, 132.0, 134.6, 139.8, 140.3, 143.8, 147.9, 151.8, 194.9, 196.1; ESIHRMS: Found: m/z 345.1126. Calcd for C\(_{22}\)H\(_{17}\)O\(_4\) : (M+H)\(^+\) 345.1127.

(2-(2-methylbenzoyl)phenyl)(p-tolyl)methanone (3ha)

\[
\begin{align*}
\text{Me} & \quad \text{O} \\
\text{O} & \quad \text{Me}
\end{align*}
\]

58% yield; Yellow oil; IR (NaCl) 3063, 1661, 1607, 1572, 1518 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.28 (3H, s), 2.36 (3H, s), 7.11 (1H, dd, \(J = 7.6, 7.6\) Hz), 7.14-7.18 (3H, m), 7.27-7.31 (2H, m), 7.49-7.61 (6H, m); \(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 20.3, 21.6, 125.0, 128.8, 129.0, 129.7, 129.8, 130.4 (overlapped), 131.1,
131.2, 131.3, 134.7, 137.3, 138.8, 139.9, 140.9, 143.8, 196.6, 197.9; ESIHRMS: Found: m/z 315.1397. Calcd for C\textsubscript{22}H\textsubscript{19}O\textsubscript{2}: (M+H)+ 315.1385.

(2-(1-naphthoyl)phenyl)(p-tolyl)methanone (3ia)

57\% yield; Yellow solid; mp. 139.7-140.4 °C; IR (NaCl) 2924, 2868, 1659, 1607, 1593, 1574 cm-1; 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 2.30 (3H, s), 7.04 (2H, d, \(J = 8.0\) Hz), 7.37 (1H, dd, \(J = 7.6, 7.6\) Hz), 7.41-7.48 (4H, m), 7.52-7.55 (1H, m), 7.57 (2H, d, \(J = 8.0\) Hz), 7.62-7.70 (2H, m), 7.80 (1H, d, \(J = 7.6\) Hz), 7.92 (1H, d, \(J = 8.0\) Hz), 8.27 (1H, d, \(J = 8.4\) Hz); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 21.6, 123.9, 125.7, 126.4, 127.4, 128.1, 129.0 (overlapped), 129.5, 130.0, 130.5, 130.7, 130.9, 131.4, 132.8, 133.5, 134.9, 135.2, 140.4, 141.2, 143.8, 196.6, 197.4; ESIHRMS: Found: m/z 351.1382. Calcd for C\textsubscript{25}H\textsubscript{19}O\textsubscript{2}: (M+H)+ 351.1385.

(2-benzoyl-6-chlorophenyl)(p-tolyl)methanone (3ja)

76\% yield; Yellow oil; IR (NaCl) 3063, 3030, 1662, 1605, 1562, 1449, 1431, 733 cm-1; 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 2.40 (3H, s), 7.23 (2H, d, \(J = 8.0\) Hz), 7.42 (2H, dd, \(J = 7.6, 7.6\) Hz), 7.47 (1H, d, \(J = 8.0\) Hz), 7.52-7.58 (2H, m), 7.62 (1H, dd, \(J = 7.6, 0.8\) Hz), 7.69-7.74 (4H, m); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 21.8, 128.3, 128.7, 129.3, 129.4, 129.5, 130.3, 132.3, 132.6, 133.2, 134.6, 136.6, 139.3, 140.4, 144.4, 194.5, 194.9; ESIHRMS: Found: m/z 335.0841. Calcd for C\textsubscript{21}H\textsubscript{16}O\textsubscript{2}Cl: (M+H)+ 335.0839.
(2-benzyol-5-fluorophenyl)(p-tolyl)methanone (3ka)

85% yield; Green viscous oil; IR (NaCl) 3065, 3032, 2992, 1663, 1605, 1582, 1449, 1408, 1281 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.38 (3H, s), 7.17 (2H, d, J = 8.0 Hz), 7.26-7.30 (2H, m), 7.37 (2H, dd, J = 7.6, 7.6 Hz), 7.51 (1H, t, J = 7.6 Hz), 7.56 (2H, d, J = 8.0 Hz), 7.64 (1H, dd, Jᵤ,F = 5.2 Hz, Jᵤ,H = 8.4 Hz), 7.68 (2H, d, J = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 116.6 (d, ²JC,F = 23.1 Hz), 116.8 (d, ²JC,F = 21.4 Hz), 128.4, 129.0, 129.6, 129.9, 132.1 (d, ³JC,F = 8.4 Hz), 133.2, 134.4, 135.7 (d, ⁴JC,F = 3.3 Hz), 136.6, 142.9 (d, ⁵JC,F = 6.8 Hz), 144.0, 163.3 (d, ¹JC,F = 252.8 Hz), 194.7, 195.2; ESIHRMS: Found: m/z 319.1140. Calcd for C₂₁H₁₆O₂F: (M+H)⁺ 319.1134.

(2-benzyol-5-methoxyphenyl)(p-tolyl)methanone (3la)

79% yield; Colorless viscous oil; IR (NaCl) 2968, 2941, 1663, 1653, 1597, 1566, 1287 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.38 (3H, s), 3.89 (3H, s), 7.03 (1H, dd, J = 8.4, 2.4 Hz), 7.07 (1H, d, J = 2.4 Hz), 7.16 (2H, d, J = 8.0 Hz), 7.34 (2H, dd, J = 8.0, 7.6 Hz), 7.48 (1H, t, J = 7.6 Hz), 7.55 (2H, d, J = 8.4 Hz), 7.62 (1H, d, J = 8.4 Hz), 7.70 (2H, dd, J = 8.4, 1.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 55.7, 144.6, 144.7, 128.3, 128.9, 129.4, 129.9, 131.3, 132.5, 132.9, 135.0, 137.1, 143.2, 143.3, 161.6, 194.8, 196.7; ESIHRMS: Found: m/z 331.1337. Calcd for C₂₂H₁₉O₃: (M+H)⁺ 331.1334.
(2-benzoyl-5-(benzyloxy)phenyl)(p-tolyl)methanone (3ma)

\[
\begin{align*}
\text{IR (NaCl)} & \quad 3065, 1597, 1564, 1449, 1285 \text{ cm}^{-1} \text{; } ^1\text{H} \\
\text{NMR (CDCl}_3) & \quad \delta 2.38 (3\text{H, s}), 5.16 (2\text{H, s}), 7.12 (1\text{H, dd, } J = 8.4, 2.4 \text{ Hz}), 7.16-7.18 (3\text{H, m}), 7.32-7.42 (7\text{H, m}), 7.49 (1\text{H, dd, } J = 7.2, 7.2 \text{ Hz}), 7.56 (2\text{H, d, } J = 8.4 \text{ Hz}), 7.62 (1\text{H, d, } J = 8.8 \text{ Hz}), 7.69 (2\text{H, dd, } J = 1.2, 8.4 \text{ Hz}); \\
\text{C NMR (CDCl}_3) & \quad \delta 21.6, 125.9, 126.9, 127.6, 128.1, 128.2, 128.3, 128.7, 129.3, 129.6, 130.3, 130.6, 132.9, 134.3, 134.5, 135.8, 137.3, 140.3, 144.3, 196.5, 197.8; \\
\text{ESIHRMS: Found: m/z 351.1385. Calcd for } & \quad C_{25}H_{19}O_2: (M+H)^+ 351.1384.
\end{align*}
\]

57% yield; Yellow oil; IR (NaCl) 3065, 1651, 1597, 1564, 1449, 1285 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 2.38 (3\text{H, s}), 5.16 (2\text{H, s}), 7.12 (1\text{H, dd, } J = 8.4, 2.4 \text{ Hz}), 7.16-7.18 (3\text{H, m}), 7.32-7.42 (7\text{H, m}), 7.49 (1\text{H, dd, } J = 7.2, 7.2 \text{ Hz}), 7.56 (2\text{H, d, } J = 8.4 \text{ Hz}), 7.62 (1\text{H, d, } J = 8.8 \text{ Hz}), 7.69 (2\text{H, dd, } J = 1.2, 8.4 \text{ Hz}); ^13C NMR (100 MHz, CDCl\(_3\)) \(\delta 21.6, 70.4, 115.5, 115.6, 127.5, 128.3, 128.4, 128.7, 128.9, 129.5, 129.9, 131.8, 132.4, 132.9, 135.1, 135.9, 137.1, 143.1, 143.4, 160.6, 194.9, 196.6; ESIHRMS: Found: m/z 407.1642. Calcd for C\(_{28}\)H\(_{23}\)O\(_3\): (M+H)+ 407.1647.

(2-benzoylnaphthalen-1-yl)(p-tolyl)methanone (3na)

\[
\begin{align*}
\text{IR (NaCl)} & \quad 3154, 3063, 3030, 1661, 1605, 1466, 1449 \text{ cm}^{-1} \text{; } ^1\text{H} \\
\text{NMR (CDCl}_3) & \quad \delta 2.36 (3\text{H, s}), 7.16 (2\text{H, d, } J = 8.0 \text{ Hz}), 7.41 (2\text{H, dd, } J = 7.6, 7.6 \text{ Hz}), 7.47 (1\text{H, t, } J = 7.6 \text{ Hz}), 7.55 (1\text{H, dd, } J = 7.6, 7.2 \text{ Hz}), 7.60 (1\text{H, dd, } J = 8.0, 7.2 \text{ Hz}), 7.64-7.77 (6\text{H, m}), 7.96 (1\text{H, d, } J = 8.0 \text{ Hz}), 7.99 (1\text{H, d, } J = 8.8 \text{ Hz}); \\
\text{C NMR (CDCl}_3) & \quad \delta 21.7, 125.9, 126.9, 127.6, 128.1, 128.2, 128.3, 128.7, 129.3, 129.6, 130.3, 130.6, 132.9, 134.3, 134.5, 135.8, 137.3, 140.3, 144.3, 196.5, 197.8; \\
\text{ESIHRMS: Found: m/z 351.1384. Calcd for } & \quad C_{25}H_{19}O_2: (M+H)^+ 351.1385.
\end{align*}
\]

63% yield; Colorless viscous oil; IR (NaCl) 3154, 3063, 3030, 1661, 1605, 1466, 1449 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 2.36 (3\text{H, s}), 7.16 (2\text{H, d, } J = 8.0 \text{ Hz}), 7.41 (2\text{H, dd, } J = 7.6, 7.6 \text{ Hz}), 7.47 (1\text{H, t, } J = 7.6 \text{ Hz}), 7.55 (1\text{H, dd, } J = 7.6, 7.2 \text{ Hz}), 7.60 (1\text{H, dd, } J = 8.0, 7.2 \text{ Hz}), 7.64-7.77 (6\text{H, m}), 7.96 (1\text{H, d, } J = 8.0 \text{ Hz}), 7.99 (1\text{H, d, } J = 8.8 \text{ Hz}); ^13C NMR (100 MHz, CDCl\(_3\)) \(\delta 21.7, 125.9, 126.9, 127.6, 128.1, 128.2, 128.3, 128.7, 129.3, 129.6, 130.3, 130.6, 132.9, 134.3, 134.5, 135.8, 137.3, 140.3, 144.3, 196.5, 197.8; ESIHRMS: Found: m/z 351.1384. Calcd for C\(_{25}\)H\(_{19}\)O\(_2\): (M+H)+ 351.1385.
(2-benzoyl-1-methyl-1H-indol-3-yl)(p-tolyl)methanone (3oa)

65% yield; Yellow solid; mp. 153.1-154.1 °C IR (NaCl) 3018, 1645, 1633, 1606, 1496, 1215 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.34 (3H, s), 3.92 (3H, s), 6.98 (2H, d, J = 8.0 Hz), 7.21 (2H, dd, J = 8.4, 7.2 Hz), 7.28-7.33 (3H, m), 7.39-7.51 (5H, m), 7.95 (1H, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 31.6, 110.3, 119.6, 122.5, 122.8, 125.2, 126.0, 128.2, 128.7, 129.0, 129.2, 133.2, 137.9, 138.4, 138.9, 139.0, 142.4, 190.1, 191.7; ESIHRMS: Found: m/z 354.1497. Calcd for C₂₄H₂₀NO₂: (M+H)⁺ 354.1494.

(2-benzoylthiophen-3-yl)(p-tolyl)methanone (3pa)

77% yield; Brown oil; IR (NaCl) 1647, 1604, 1276 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.34 (3H, s), 7.08 (2H, d, J = 8.0 Hz), 7.26 (2H, dd, J = 8.0, 7.6 Hz), 7.34 (1H, d, J = 5.2 Hz), 7.42-7.46 (3H, m), 7.56 (2H, d, J = 8.0 Hz), 7.65 (1H, d, J = 5.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 128.1, 128.9, 129.0, 129.2, 129.4, 130.8, 132.7, 135.3, 138.1, 142.4, 143.9, 144.8, 188.3, 191.7; ESIHRMS: Found: m/z 307.0795. Calcd for C₁₉H₁₅O₂S: (M+H)⁺ 307.0793.
(2-(4-methylbenzoyl)-1,3-phenylene)bis(phenylmethanone) (3qa)

![Chemical structure](image)

56% yield; Yellow oil; IR (NaCl) 3061, 2957, 1663, 1599, 1580, 1449 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.28 (3H, s), 7.03 (2H, d, \(J = 8.0\) Hz), 7.39 (4H, dd, \(J = 7.6, 7.6\) Hz), 7.47 (2H, d, \(J = 8.4\) Hz), 7.54 (2H, t, \(J = 7.6\) Hz), 7.61 (1H, t, \(J = 8.0\) Hz), 7.70-7.74 (6H, m); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 21.6, 128.3, 128.4, 128.9, 129.2, 130.1, 131.6, 133.3, 135.3, 136.6, 139.9, 141.8, 143.8, 195.8, 195.9; ESIHRMS: Found: m/z 405.1496. Calcd for C\(_{28}\)H\(_{21}\)O\(_3\): (M+H)\(^+\) 405.1491.

(2-benzoyl-6-benzylphenyl)(p-tolyl)methanone (3qa’)

![Chemical structure](image)

19% yield; Yellow viscous oil; IR (NaCl) 3018, 1662, 1606, 1209 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.35 (3H, s), 3.91 (2H, s), 7.07 (2H, d, \(J = 7.2\) Hz), 7.12-7.16 (3H, m), 7.20 (2H, dd, \(J = 7.6, 7.2\) Hz), 7.35-7.48 (5H, m), 7.53 (1H, dd, \(J = 7.6, 7.2\) Hz), 7.61 (2H, d, \(J = 8.0\) Hz), 7.69 (2H, d, \(J = 7.2\) Hz); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 21.7, 38.6, 126.3, 128.1, 128.2, 128.4, 128.6, 129.2, 129.3, 129.4, 130.2, 132.8, 133.4, 135.6, 137.2, 137.4, 139.5, 139.8, 140.9, 144.0, 196.2, 197.9; ESIHRMS: Found: m/z 391.1697. Calcd for C\(_{28}\)H\(_{23}\)O\(_2\): (M+H)\(^+\) 391.1698.
4-p-toly1-4H-spiro[benzo[d][1,2]dioxine-1,1'-cyclohexan]-4-amine (5ta)

70% yield by acid quench; White granular crystal (CCDC 806338); mp. 140.8-141.0 °C; IR (NaCl) 3682, 2938, 2860, 1732, 1510, 1447, 1425 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.27-1.40 (1H, m), 1.64-1.83 (7H, m), 1.94-1.98 (2H, m), 2.32 (3H, s), 2.72 (2H, br), 7.09-7.14 (4H, m), 7.17 (1H, d, J = 7.6 Hz), 7.21-7.23 (1H, m), 7.40 (2H, d, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 21.1, 21.5, 21.8, 25.4, 35.0, 35.4, 81.1, 82.2, 123.5, 126.3, 126.9, 127.3, 128.2, 128.8, 137.3, 138.2 (overlapped), 140.9; ESIHRMS: Found: m/z 310.1800. Calcd for C₂₀H₂₄NO₂: (M+H)⁺ 310.1807.

2,2-dimethyl-4-phenyl-1-p-toly1butane-1,4-dione (6ua)

58% yield; Yellow oil; IR (NaCl) 3059, 2972, 2924, 1682, 1609, 1472, 1449 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.47 (6H, s), 2.38 (3H, s), 3.53 (2H, s), 7.20 (2H, d, J = 7.6 Hz), 7.44 (2H, d, J = 8.0. 7.2 Hz), 7.55 (1H, t, J = 7.2 Hz), 7.62 (2H, d, J = 8.0 Hz), 7.93 (2H, d, J = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 26.9, 45.4, 50.4, 127.6, 127.9, 128.4, 128.5, 133.0, 136.7, 136.9, 140.6, 197.7, 209.1; ESIHRMS: Found: m/z 281.1549. Calcd for C₁₉H₂₁O₂: (M+H)⁺ 281.1542.
5.2.2.2 Synthesis of phthalazines

![Chemical Reaction]

To an ice-cooled solution of 2-benzylbenzonitrile (97.6 mg, 0.505 mmol) in Et₂O (0.5 mL) was added an Et₂O solution of p-tolylmagnesium bromide (1.3 M, 0.6 mL, 0.8 mmol). The reaction mixture was stirred at 60 °C in a sealed tube for 2 h, and then anhydrous methanol (61 μL) was added. Copper acetate (9.4 mg, 0.051 mmol) and anhydrous DMF (5.1 mL) was then added. The reaction mixture was stirred at 80 °C under an oxygen atmosphere for 7 h. After that the reaction mixture was cooled to room temperature, and then NH₂NH₂ solution (50 wt. % in H₂O, 157 μL, 2.52 mmol) was added. The mixture was stirred at 80 °C for another 1 h. Then pH 9 ammonium buffer was added to quench the reaction. The organic materials were extracted with Et₂O. The combined organic extracts were washed with water, and then with brine and dried over anhydrous MgSO₄. The solvents were removed in vacuo and the resulting crude material was purified by flash column chromatography (hexane : EtOAc = 80 : 20) to give 1-phenyl-4-p-tolylphthalazine (119.6 mg, 0.404 mmol) in 80% yield.

1-phenyl-4-p-tolylphthalazine (7aa)

![Chemical Structure]

White solid; mp. 172.1-173.4 °C; IR (NaCl) 3018, 1633, 1384, 1215 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.49 (3H, s), 7.40 (2H, d, J = 8.0 Hz), 7.51-7.63 (3H, m), 7.72 (2H, d, J = 8.0 Hz), 7.80-7.85 (4H, m), 8.11-8.19 (2H, m); ¹³C NMR (100
MHz, CDCl$_3$ δ 21.4, 125.8, 125.9, 126.5, 126.6, 128.5, 129.2 (overlapped), 130.1, 130.2 (overlapped), 131.8, 133.5, 136.5, 139.3, 158.9, 159.0; ESIHRMS: Found: m/z 297.1396. Calcd for C$_{21}$H$_{17}$N$_2$: (M+H)$^+$ 297.1392.

1-(4-methoxyphenyl)-4-phenylphthalazine (7ab)

\[\text{Ph} \hspace{1cm} \text{N} \hspace{1cm} \text{N} \hspace{1cm} \text{Me} \]

73% yield; White solid; mp. 156.4, 157.6 °C; IR (NaCl) 3109, 2974, 1611, 1516, 1387 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 3.92 (3H, s), 7.12 (2H, d, J = 11.6 Hz), 7.53-7.62 (3H, m), 7.76-7.87 (6H, m), 8.10-8.14 (1H, m), 8.15-8.20 (1H, m); 13C NMR (100 MHz, CDCl$_3$) δ 55.4, 114.1, 125.9, 126.0, 126.5, 126.6, 126.7, 128.5, 128.8, 129.2, 130.2, 131.6, 131.8 (overlapped), 136.5, 158.6, 158.7, 160.6; ESIHRMS: Found: m/z 313.1331. Calcd for C$_{21}$H$_{17}$N$_2$O: (M+H)$^+$ 313.1341.

1-(3-chlorophenyl)-4-phenylphthalazine (7ad)

\[\text{Ph} \hspace{1cm} \text{N} \hspace{1cm} \text{N} \hspace{1cm} \text{Cl} \]

63% yield; White solid; mp. 167.3-168.0 °C; IR (NaCl) 3017, 2984, 1568, 1418 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.51-7.63 (5H, m), 7.71 (1H, ddd, J= 3.6, 3.9, 6.7 Hz), 7.80-7.82 (3H, m), 7.86-7.91 (2H, m), 8.09-8.12 (1H, m), 8.15-8.18 (1H, m); 13C NMR (100 MHz, CDCl$_3$) δ 125.7, 125.9, 126.1, 126.8, 128.4, 128.6, 129.4, 129.5, 129.8, 130.1, 130.2, 132.2, 134.6, 136.2, 138.2, 157.8, 159.4; ESIHRMS: Found: m/z 317.0841. Calcd for C$_{20}$H$_{14}$N$_2$Cl: (M+H)$^+$ 317.0846.
1-(4-fluorophenyl)-4-phenylphthalazine (7ae)

72% yield; White solid; mp. 185.9-186.5 °C; IR (NaCl) 2988, 1732, 1514, 1385 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (2H, dd, J_H-F = 8.6 Hz, 8.6 Hz), 7.56-7.61 (3H, m), 7.79-7.83 (4H, m), 7.84-7.88 (2H, m), 8.09-8.12 (1H, m), 8.13-8.16 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ 115.7 (d, ³J_C-F = 21.5 Hz), 125.8, 125.9, 126.3, 126.7, 128.6, 129.4, 130.2, 132.01, 132.03, 132.06, 132.09, 132.25 (d, ³J_C-F = 3.2 Hz), 136.3, 158.6 (d, ²J_C-F = 105.3 Hz), 163.6 (d, ³J_C-F = 105.3 Hz); ESIHRMS: Found: m/z 301.1137. Calcd for C₂₀H₁₄N₂F: (M+H)⁺ 301.1141.

1-(naphthalen-1-yl)-4-phenylphthalazine (7af)

41% yield; White solid; mp. 152.2-153.2 °C; IR (NaCl) 2984, 1732, 1385, 1369 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (1H, ddd, J = 7.0, 7.0, 1.2 Hz), 7.50-7.54 (2H, m), 7.59-7.72 (7H, m), 7.84 (1H, ddd, J = 7.6, 7.6, 1.3 Hz), 7.90 (2H, dd, J = 7.9, 1.6 Hz), 7.98 (1H, dd, J = 8.7, 1.1 Hz), 8.06 (1H, d, J = 7.7 Hz), 8.19 (1H, d, J = 8.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 125.2, 125.4, 125.9, 126.1, 126.4, 126.5, 126.8, 127.3, 128.3, 128.5, 129.3, 129.5, 130.2, 131.9, 132.1, 132.3, 133.6, 133.8, 136.3, 159.1, 159.5; ESIHRMS: Found: m/z 333.1400. Calcd for C₂₅H₁₇N₂: (M+H)⁺ 333.1392.
1-phenyl-4-(thiophen-2-yl)phthalazine (7ah)

![Chemical structure of 1-phenyl-4-(thiophen-2-yl)phthalazine (7ah)](image)

41% yield; White solid; mp. 160.2-161.0 °C; IR (NaCl) 2995, 1528, 1437, 1381 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.28 (1H, m), 7.54-7.61 (4H, m), 7.73 (1H, dd, J= 3.6, 1.0 Hz), 7.79 (1H, d, J=); ¹³C NMR (100 MHz, CDCl₃) δ 125.2, 125.7, 125.8, 126.7, 127.6, 128.5, 128.9, 129.2, 129.7, 130.1, 132.0, 132.3, 136.2, 139.0, 152.8, 158.5; ESIHRMS: Found: m/z 289.0792. Calcd for C₁₈H₁₃N₂S: (M+H)⁺ 289.0799.

1-phenyl-4-(4-(trifluoromethyl)phenyl)phthalazine (7aj)

![Chemical structure of 1-phenyl-4-(4-(trifluoromethyl)phenyl)phthalazine (7aj)](image)

50% yield; White solid; mp. 188.4-189.3 °C; IR (NaCl) 2999, 1387, 1325 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.61 (3H, m), 7.82-7.97 (8H, m), 8.07-8.09 (1H, m), 8.18-8.21 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ 124.0 (q, ¹J_C-F = 270.6 Hz), 125.6 (q, ³J_C-F = 3.6 Hz), 125.7, 125.8, 125.9, 126.9, 128.6, 129.5, 130.2, 130.6, 130.9, 131.4 (q, ²J_C-F = 32.4 Hz), 132.2, 132.3, 136.1, 140.0, 157.9, 159.6; ESIHRMS: Found: m/z 351.1102. Calcd for C₂₁H₁₄N₂F₃: (M+H)⁺ 351.1109.
1-(4-phenoxypyphenyl)-4-phenylphthalazine (7ak)

![Structure diagram]

55% yield; White solid; mp. 155.8-156.8 °C; IR (NaCl) 3003, 1587, 1508, 1489 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.13-7.18 (3H, m), 7.19-7.26 (2H, m), 7.40 (2H, dd, \(J = 8.5, 1.0 \) Hz), 7.56-7.61 (3H, m), 7.79-7.89 (6H, m), 7.79-7.81 (4H, m), 7.83-7.87 (2H, m), 8.13-8.15 (2H, m), 8.18-8.20 (2H m); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 118.4, 119.5, 123.8, 125.8, 125.9, 126.4, 126.6, 128.5, 129.2, 129.9, 130.1, 131.7, 131.9 (overlapped), 136.3, 156.5, 158.4, 158.7, 158.9; ESI-MS: Found: m/z 375.1493. Calcd for C\(_{26}\)H\(_{19}\)N\(_2\)O: (M+H)\(^+\) 375.1497.

1-phenyl-4-(o-tolyl)phthalazine (7am)

![Structure diagram]

50% yield; White solid; mp. 120.1-121.1 °C; IR (NaCl) 2984, 1732, 1383 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 2.19 (3H, s), 7.38-7.46 (4H, m), 7.57-7.63 (3H, m), 7.70 (2H, d, \(J = 7.8 \) Hz), 7.78- 7.87 (4H, m), 8.16 (1H, d, \(J = 7.8 \) Hz); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 125.5, 125.8, 126.4, 126.5, 126.6, 128.5, 129.1, 129.3, 130.1, 130.2, 130.5, 131.9, 132.0, 135.8, 136.4, 137.0, 159.2, 159.8; ESI-MS: Found: m/z 297.1389. Calcd for C\(_{21}\)H\(_{17}\)N\(_2\)O: (M+H)\(^+\) 297.1392.
1-(4-chlorophenyl)-4-(p-tolyl)phthalazine (7ca)

50% yield; White solid; mp. 203.3-204.0 °C; IR (NaCl) 3019, 1387, 1215 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.50 (3H, s), 7.40 (2H, d, J = 7.8 Hz), 7.57 (2H, d, J = 6.6 Hz), 7.71 (2H, d, J = 8.0 Hz), 7.77 (2H, 8.52 Hz), 7.85-7.87 (2H, m), 8.08-8.10 (1H, m), 8.17-8.20 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 125.7, 125.9, 126.1, 126.8, 128.8, 129.3, 130.1, 131.5, 131.9, 132.0, 133.3, 134.9, 135.5, 139.4, 157.8, 159.2; ESIHRMS: Found: m/z 331.1001. Calcd for C₂₁H₁₆ClN₂: (M+H)⁺ 331.1002.

1-(4-methoxyphenyl)-4-(p-tolyl)phthalazine (7ea)

78% yield; White solid; mp. 186.8-187.2 °C; IR (NaCl) 3007, 2963, 1609, 1516, 1387 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.49 (3H, s), 3.92 (3H, s), 7.11 (2H, d, J = 8.8 Hz), 7.39 (2H, d, J = 7.8 Hz), 7.71 (2H, d, J = 8.0 Hz), 7.78 (2H, d, J = 8.8 Hz), 7.82-7.84 (2H, m), 8.14-8.19 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 55.4, 114.0, 125.9, 126.0, 126.5, 126.6, 128.9, 129.2, 130.1, 131.6, 131.6, 131.7, 133.6, 139.2, 158.4, 158.7, 160.5; ESIHRMS: Found: m/z 327.1498. Calcd for C₂₂H₁₉N₂O: (M+H)⁺ 327.1497.
1,4-di-p-tolylphthalazine (7fa)

52% yield; White solid; mp. 224.6-225.5 °C; IR (NaCl) 3017, 1389 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.49 (6H, s), 7.39 (4H, d, J= 8.0 Hz), 7.72 (4H, d, J= 8.0 Hz), 7.83 (2H, dd, J= 6.3, 3.3 Hz), 8.16 (2H, dd, J= 6.3, 3.3 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 125.9, 126.6, 129.2, 130.1, 131.7, 133.6, 139.2, 158.8; ESIHRMS: Found: m/z 311.1538. Calcd for C₂₂H₁₉N₂: (M+H)⁺ 311.1538.

1-(naphthalen-1-yl)-4-(p-tolyl)phthalazine (7ia)

52% yield; White solid; mp. 192.5-193.0 °C; IR (NaCl) 3061, 3001, 2967, 1611, 1508, 1383, 1369 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.51 (3H, s), 7.37 (1H, ddd, J= 7.6, 7.6, 1.1 Hz), 7.44 (2H, d, 7.8 Hz), 7.50-7.53 (2H, m), 7.63 (2H, dd, J= 8.1, 8.1 Hz), 7.65-7.72 (2H, m), 7.79-7.85 (3H, m), 7.98 (1H, dd, J= 7.7), 8.1 (1H, d, J= 7.4 Hz), 8.21 (1H, d, J= 8.3 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 125.2, 125.5, 125.9, 126.1, 126.5, 126.8, 127.3, 128.3, 128.4, 129.3, 129.5, 130.2 (overlapped), 131.8, 132.0, 132.3, 133.5, 133.6, 133.9, 139.4, 158.9, 159.5; ESIHRMS: Found: m/z 347.1545. Calcd for C₂₅H₁₈N₂: (M+H)⁺ 347.1548.
5-methyl-4-phenyl-1-(p-tolyl)-5H-pyrazino[4,5-b]indole (7oa)

![Chemical structure](image)

69% yield; White solid; mp. 247.5-248.5 °C; \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.54 (3H, s), 3.62 (3H, s), 7.30 (1H, dd, \(J = 7.6, 7.5\) Hz), 7.47 (2H, d, \(J = 7.8\) Hz), 7.55-7.60 (4H, m), 7.66-7.74 (3H, m), 7.88 (2H, d, \(J = 8.0\) Hz), 7.92 (1H, d, \(J = 8.0\) Hz); \(^1^C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 21.5, 32.8, 110.1, 118.0, 119.7, 121.3, 123.4, 128.4, 128.7, 129.1, 129.3 (overlapped), 129.9, 134.4, 135.6, 136.8, 139.4, 141.9, 147.2, 155.1; ESIHRMS: Found: m/z 350.1656. Calcd for C\(_{24}\)H\(_{20}\)N\(_3\): (M+H)\(^+\) 350.1657.

7-phenyl-4-(p-tolyl)thieno[2,3-d]pyridazine (7pa)

![Chemical structure](image)

84% yield; White solid; mp. 225.3-226.2 °C; \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.49 (3H, s), 7.42 (2H, d, \(J = 7.9\) Hz), 7.55-7.61 (3H, m), 7.75 (1H, d, \(J = 5.5\) Hz), 7.88 (1H, d, \(J = 5.5\) Hz), 7.98 (2H, dd, \(J = 8.0, 1.5\) Hz), 8.12 (2H, d, \(J = 8.2\)); \(^1^C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 21.5, 123.7, 128.3, 128.8, 129.3, 129.5, 129.7, 132.8, 134.0, 135.6, 137.1, 138.5, 140.4, 154.2, 154.8; ESIHRMS: Found: m/z 303.0956. Calcd for C\(_{19}\)H\(_{15}\)N\(_2\)S: (M+H)\(^+\) 303.0956.
1-propyl-4-p-tolylphthalazine (7ra)

70% yield; Yellow solid; mp. 118.9-119.9 °C; IR (NaCl) 2962, 1647, 1614, 1382 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.13 (3H, t, \(J = 7.2\) Hz), 1.96-2.05 (2H, m), 3.38 (2H, t, \(J = 6.8\) Hz), 7.35 (2H, d, \(J = 7.6\) Hz), 7.64 (2H, d, \(J = 7.6\) Hz), 7.80 (1H, dd, \(J = 8.0, 8.0\) Hz), 7.88 (1H, dd, \(J = 8.0, 8.0\) Hz), 8.09 (1H, d, \(J = 8.0\) Hz), 8.16 (1H, d, \(J = 8.0\) Hz); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 14.3, 21.4, 22.6, 35.2, 124.3, 125.4, 126.0, 126.9, 129.1, 130.0, 131.4, 131.6, 133.7, 139.0, 158.8, 159.2; ESIHRMS: Found: m/z 263.1544. Calcd for C\(_{18}\)H\(_{19}\)N\(_2\): (M+H)\(^+\) 263.1548.

1-isopropyl-4-(p-tolyl)phthalazine (7sa)

53% yield; White solid; mp. 92.5-93.3 °C; IR (NaCl) 3069, 2968, 2930, 2872, 1612, 1528, 1458 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.58 (6H, d, \(J = 6.8\) Hz), 3.94 (sep, \(J = 6.8\) Hz), 7.36 (2H, d, \(J = 7.8\) Hz), 7.66 (2H, d, 7.8 Hz), 7.80 (1H, dd, \(J = 7.7, 1.1\) Hz), 7.89 (1H, d, \(J = 7.7, 1.1\) Hz), 8.12 (1H, d, \(J = 8.6\) Hz), 8.23 (1H, d, \(J = 8.6\) Hz); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 21.4, 22.0, 30.4, 123.7, 125.4, 125.5, 127.1, 129.1, 130.1, 131.3, 131.6, 133.8, 139.0, 158.6, 162.8; ESIHRMS: Found: m/z 263.1542. Calcd for C\(_{25}\)H\(_{19}\)N\(_2\): (M+H)\(^+\) 263.1548.
5.2.2.3 Synthesis of isoindolines

To an ice-cooled solution of 2-benzylbenzonitrile (1a) (98.0 mg, 0.507 mmol) in Et₂O (0.5 mL) was added an Et₂O solution of p-tolylmagnesium bromide (2a) (1.3 M, 0.6 mL, 0.8 mmol). The reaction mixture was stirred at 60 °C in a sealed tube for 2 h, and then anhydrous methanol (62 μL) was added. Copper acetate (9.4 mg, 0.051 mmol) and anhydrous DMF (5.1 mL) was then added. The reaction mixture was stirred at 80 °C under an oxygen atmosphere for 7 h. Then pH 9 ammonium buffer was added to quench the reaction. The organic materials were extracted with Et₂O. The combined organic extracts were washed with water, and then with brine and dried over anhydrous MgSO₄. The solvents were removed in vacuo and crude mixture was used for next step without further purification.

To an EtOH solution of crude of last step was added NH₄OAc (117.3 mg, 1.52 mmol) and EtONa (10 mg, 0.15 mmol). The reaction mixture was stirred at reflux for 2 h. After being cooled to room temperature, the solvents were removed in vacuo and crude mixture could be used for next step without further purification.

To an AcOH solution of crude of last step was added coppered zinc dust (0.550 g, 8.41 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 1 h. After that the mixture was diluted with water, filtered through a Celite pad. The filtrate was neutralized with solid sodium hydroxide to pH = 10. The organic materials were extracted thrice with CH₂Cl₂. The combined organic extracts were washed with water, and then with brine and dried over anhydrous MgSO₄. The
solvents were removed in vacuo to give 1-phenyl-3-p-tolylisoindoline (82.3 mg, 0.288 mmol) in 57% yield.

1-phenyl-3-p-tolylisoindoline (8aa)

\[
\begin{array}{c}
N \\
\text{H} \\
C \text{-Me} \\
\text{-Me} \\
\end{array}
\]

57% yield; Yellow solid; mp. 159.0-160.3 °C; IR (NaCl) 2974, 1637, 1454, 1217, 1047 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.34 (3H, s), 5.71 (1H, d, \(J = 2.0\) Hz), 5.73 (1H, d, \(J = 2.0\) Hz), 7.07-7.09 (2H, m), 7.14 (2H, d, \(J = 8.0\) Hz), 7.19-7.23 (4H, m), 7.27-7.34 (5H, m); \(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 21.1, 67.0, 67.2, 123.4 (overlapped), 127.2, 127.3, 127.4, 127.4, 127.5, 128.6, 129.3, 137.0, 142.0, 143.8, 143.9, 145.0; ESIHRMS: Found: m/z 286.1595. Calcd for C\(_{21}\)H\(_{20}\)N: (M+H)\(^+\) 286.1596.

1-phenyl-3-p-tolyl-2-tosylisoindoline (8aa-Ts)

To a flask charged with 1-phenyl-3-p-tolylisoindoline (43.7 mg, 0.153 mmol) and pyridine (1.5 mL) was added 4-methylbenzene-1-sulfonyl chloride (32.1 mg, 0.168 mmol). The reaction mixture was stirred at 70 °C for overnight, and then quenched with water. The organic materials were extracted with Et\(_2\)O. The combined organic extracts were washed with brine and dried over anhydrous MgSO\(_4\). The solvents were removed in vacuo and the resulting crude material was purified by recrystallization with hexane and EtOAc to afford 1-phenyl-3-p-tolyl-2-tosylisoindoline (32.1 g, 0.0730 mmol) in 48% yield.
White rod crystal (CCDC 806339); Decomposed at 220 °C; IR (NaCl) 3018, 1637, 1215 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.30 (3H, s), 2.32 (3H, s), 6.13 (1H, d, J = 2.8 Hz), 6.17 (1H, d, J = 2.8 Hz), 6.89-6.91 (4H, m), 6.97-7.06 (6H, m), 7.12-7.18 (4H, m), 7.19-7.23 (3H, m); ¹³C NMR (100 MHz, CDCl₃) δ 21.2, 21.4, 70.1, 70.3, 122.4, 123.4, 126.9, 127.7, 128.14, 128.18 (overlapped), 128.2, 128.3, 128.6, 129.0, 137.5, 137.8, 138.6, 140.5, 140.7, 141.7, 142.0; ESIHRMS: Found: m/z 440.1680. Calcd for C₂₈H₂₆NO₂S: (M+H)⁺ 440.1684.

1-(benzo[d][1,3]dioxol-5-yl)-3-(4-methoxyphenyl)isoindoline (8gb)

54% yield; Brown oil; IR (NaCl) 3404, 3016, 1610, 1506, 1217 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.80 (3H, s), 5.65 (1H, s), 5.67 (1H, s), 5.92 (2H, d, J = 1.2 Hz), 6.75-6.81 (3H, m), 6.86 (2H, d, J = 8.4 Hz), 7.05-7.09 (2H, m), 7.19-7.24 (4H, m); ¹³C NMR (100 MHz, CDCl₃) δ 55.2, 66.5, 66.8, 100.9, 107.6, 108.0, 114.0, 120.5, 123.3, 123.4, 127.4, 127.5, 128.4, 137.0, 139.1, 143.7, 143.9, 146.8, 147.9, 158.9; ESIHRMS: Found: m/z 364.1444. Calcd for C₂₂H₂₀NO₃: (M+H)⁺ 364.1443.
Synthesis of (1S,3R)-1-mesityl-3-phenylisoindoline (8al)

To an ice-cooled solution of 2-benzylbenzonitrile (1a) (104.3 mg, 0.540 mmol) in Et₂O (0.5 mL) was added an Et₂O solution of mesitylmagnesium bromide (2l) (1.2 M, 0.6 mL, 0.8 mmol). The reaction mixture was stirred at 60 °C in a sealed tube for 14 h, and then anhydrous methanol (66 μL) was added. Copper acetate (10.4 mg, 0.058 mmol) and anhydrous DMF (5.0 mL) was then added. The reaction mixture was stirred at 80 °C under an oxygen atmosphere for 4 h. Then pH 9 ammonium buffer was added to quench the reaction. The organic materials were extracted with Et₂O. The combined organic extracts were washed with water, and then with brine and dried over anhydrous MgSO₄. The solvents were removed in vacuo and crude mixture was used for next step without further purification.

To an AcOH solution of crude of last step was added coppered zinc dust (1.148 g, 8.91 mmol)¹⁸ at 0 °C. The reaction mixture was stirred at room temperature for 4 h. After that the mixture was diluted with water, filtered through a Celite pad. The filtrate was neutralized with solid sodium hydroxide to pH = 10. The organic materials were extracted thrice with CH₂Cl₂. The combined organic extracts were washed with water, and then with brine and dried over anhydrous MgSO₄. The solvents were removed in vacuo to give (1S,3R)-1-mesityl-3-phenylisoindoline (8al) (134 mg, 0.288 mmol) in 79% yield.

Scheme 2-23. A two-pot synthesis of isoindoline 8al from 1H-isoindo-1-ol 7al
1H NMR (400 MHz, CDCl$_3$) δ 1.91 (1H, br), 2.25 (1H, br), 2.50 (1H, br), 5.70 (1H, d, $J = 2.3$ Hz), 6.34 (1H, d, $J = 2.3$ Hz), 6.78-6.91 (2H, m), 6.92-6.93 (1H, m), 7.10-7.18 (3H, m), 7.21-7.27 (1H, m), 7.29-7.32 (4H, m).

3-mesityl-1-phenyl-$1H$-isoindol-1-ol (7ai)

1H NMR (400 MHz, CDCl$_3$) δ 1.83 (3H, s), 2.31 (3H, s), 2.40 (3H, s), 6.94 (1H, s), 7.00-7.02 (2H, m), 7.11-7.28 (5H, m), 7.35-7.38 (3H, m), 7.55 (1H, br); 13C NMR (100 MHz, CDCl$_3$) δ 19.7, 20.4, 21.2, 102.0, 122.5, 123.3, 125.2, 127.6, 128.2, 128.4, 128.5, 128.6, 129.6, 130.1, 135.6, 136.4, 137.6, 138.4, 141.2, 154.1, 174.5.
5.2.2.4.1 Labeling experiments

Utilization of 18O$_2$ for the reaction of 1a with 2a.

3aa-labelling 18O$_2$

37% yield; White solid; mp. 147.0-147.8 °C; IR (ATR) 1641, 1628, 1595, 1568 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 2.38 (3H, s), 7.17 (2H, d, $J = 8.0$ Hz), 7.37 (2H, dd, $J = 7.6, 7.6$ Hz), 7.51 (1H, dd, $J = 7.2, 7.6$ Hz), 7.59-7.61 (6H, m), 7.70 (2H, d, $J = 8.0$ Hz); 13C NMR (100 MHz, CDCl$_3$) δ 21.7, 128.3, 129.0, 129.5, 129.6, 129.8, 130.0, 130.1, 130.3, 132.9, 134.6, 137.2, 139.9, 140.3, 143.9, 196.2, 196.6; ESIHRMS: Found: m/z 305.1313. Calcd for C$_{21}$H$_{17}^{18}$O$_2$: (M+H)$^+$ 305.1313.

4aa-labelling 18O$_2$

49% yield; White solid; mp. 196.8-197.6 °C; IR (NaCl) 3553, 2924, 1663, 1603, 1557, 1512 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 2.50 (3H, s), 6.80 (1H, br), 7.11-7.17 (3H, m), 7.34-7.47 (7H, m), 7.64-7.67 (1H, m), 7.88 (2H, d, $J = 8.0$ Hz); 13C NMR (100 MHz, CDCl$_3$) δ 21.6, 100.9, 123.3, 123.6, 125.3, 127.8, 128.3, 128.5, 128.7, 129.5, 129.9, 130.6, 136.4, 140.8, 141.3, 155.0, 171.4; ESIHRMS: Found: m/z 302.1432. Calcd for C$_{21}$H$_{18}^{18}$O: (M+H)$^+$ 302.1431.
Figure S-1. Spectrum of ESI (LRMS) of $3\text{aa}^{18}\text{O}_2$

Figure S-2. Spectrum of ESIHRMS of $3\text{aa}^{16}\text{O}_2$
Figure S-3. Spectrum of ESI (LRMS) of 4aa-\(^{18}\)O\(_2\)

Figure S-4. Spectrum of ESIHRMS of 4aa-\(^{18}\)O\(_2\)
IR of 3aa

IR 1670 (C=O), 1654 (C=O) cm$^{-1}$
IR of 3aa-labelling 18O$_2$

IR 1641 (C=O), 1627 (C=O) cm$^{-1}$

By the harmonic oscillator calculation as shown below equation, $\Delta \nu$ of the carbonyl group of 3aa and 3aa-labelling 18O$_2$ is about 70 cm$^{-1}$. However, IR spectrum indicated the value ($\Delta \nu$) is about 30 cm$^{-1}$.

$$\nu = \frac{1}{2\pi C} \frac{k}{\mu}^{1/2} = 5.3 \times 10^{-12} (k/\mu)^{-1/2}$$

- k is force constant, about 1×10^6 dynes/cm
- μ is reduced mass

Although IR spectra actually indicated that the value ($\Delta \nu$) is about 30 cm$^{-1}$, it is known that the harmonic oscillator is just approximation and could be affected by molecular complexity.

Judging from IR values shifts of C=O13 in the correct direction as well as mass spectra of 3aa and 4aa, 18O atoms were obviously incorporated into the carbonyl groups in the present process.
5.3 Electrophilic cyanation of Grignard Reagents with Pivalonitrile via Copper-Catalyzed Aerobic β-Carbon Elimination of N-H Imine Intermediates

5.3.1 Unexpected finding of carbonitrile

To an ice-cooled solution of benzonitrile (7) (98.4 mg, 0.509 mmol) in Et₂O (0.5 mL) was added an Et₂O solution of n-butylmagnesium bromide (1.0 M, 0.7 mL, 0.7 mmol). The reaction mixture was stirred at 60 °C in a sealed tube for 2 h, and then anhydrous MeOH (62 μL) was added. Cu(OAc)₂ (9.4 mg, 0.051 mmol) and anhydrous DMF (5.1 mL) was then added. The reaction mixture was stirred at 80 °C under an oxygen atmosphere for 8.5 h. The reaction was quenched with 3N aqueous HCl solution, and the reaction mixture was stirred at 80 °C for 2 h. The organic materials were extracted with Et₂O. The combined organic extracts were washed with water, and then with brine and dried over anhydrous MgSO₄. The solvents were removed in vacuo and the resulting crude material was purified by flash column chromatography (hexane : EtOAc = 80 : 20) to afford 1,4-diphenylbutane-1,4-dione (8) (60.6 mg, 0.255 mmol) in 50% yield.

1,4-diphenylbutane-1,4-dione (8)

50% yield; ¹H NMR (400 MHz, CDCl₃) δ 3.47 (4H, s), 7.49 (4H, dd, J = 7.6, 7.6 Hz), 7.58 (2H, t, J = 7.6 Hz), 8.04 (4H, d, J = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 32.6, 128.1, 128.6, 133.1, 136.7, 198.7.
5.3.2 Electrophilic cyanation of Grignard reagents with pivalonitrile

A typical procedure for synthesis of carbonitriles

\[
\begin{array}{c}
\text{CN} \\
1 \\
\text{Et}_2\text{O}, 60 ^\circ \text{C} \\
\text{in sealed tube then MeOH}
\end{array} \xrightarrow{\text{R-MgBr (1.3 equiv.)}} \begin{array}{c}
\text{R-CN} \\
3
\end{array} \xrightarrow{\text{CuBr}_2 (10 \text{ mol%})} \begin{array}{c}
\text{CuBr}_2, \text{DMF, 80 }^\circ \text{C under O}_2
\end{array}
\]

To an ice-cooled solution of pivalonitrile (1) (120 μL, 1.085 mmol) in Et₂O (1.0 mL) was added an Et₂O solution of \(p \)-tolylmagnesium bromide (2a) (0.75 M, 1.88 mL, 1.410 mmol). The reaction mixture was stirred at 60 °C in a sealed tube for 2 h, and then anhydrous MeOH (132 μL) was added. CuBr₂ (24.3 mg, 0.109 mmol) and anhydrous DMF (10.0 mL) was then added. The reaction mixture was stirred at 80 °C under an oxygen atmosphere for 6 h. The reaction was quenched with pH 9 ammonium buffer and the organic materials were extracted with Et₂O. The combined organic extracts were washed with water, and then with brine and dried over anhydrous MgSO₄. The solvents were removed in vacuo and the resulting crude material was purified by flash column chromatography (hexane : EtOAc = 90 : 10) to afford 2-Naphthonitrile (3a) (124.6 mg, 0.928 mmol) in 85% yield.

2-naphthonitrile (3a)75

85% yield; \(^1\)H NMR (400 MHz, CDCl₃) \(\delta \) 7.58-7.67 (3H, m), 7.87-7.92 (3H, m), 8.21 (1H, s); \(^{13}\)C NMR (100 MHz, CDCl₃) \(\delta \) 109.3, 119.2, 126.3, 127.6, 128.0, 128.3, 129.0, 129.1, 132.2, 134.1, 134.6.

1-naphthonitrile (3b)75

76% yield; \(^1\)H NMR (400 MHz, CDCl₃) \(\delta \) 7.54 (1H, dd, \(J = 7.2, 8.2 \text{ Hz} \)), 7.63 (1H, dt, \(J = 1.2, 7.0 \text{ Hz} \)), 7.71 (1H, dt, \(J = 1.2, 7.0 \text{ Hz} \)), 7.92-7.95 (2H, m), 8.09 (1H, d,
\(J = 8.3 \text{ Hz} \), 8.25 (1H, d, \(J = 8.3 \text{ Hz} \)); \(^{13}\text{C NMR} (100 \text{ MHz, CDCl}_3) \delta 110.1, 117.7, 124.8, 125.0, 127.5, 128.5, 128.6, 132.2, 132.5, 132.8, 133.2.

2,4,6-trimethylbenzonitrile (3c)

\[
\begin{array}{c}
\text{Me} \\
\text{Me} \\
\text{Me} \\
\text{CN}
\end{array}
\]

73% yield; \(^1\text{H NMR} (400 \text{ MHz, CDCl}_3) \delta 2.32 (3\text{H, s}), 2.48 (6\text{H, s}), 6.93 (3\text{H, s}); \ ^{13}\text{C NMR} (100 \text{ MHz, CDCl}_3) \delta 20.6, 21.5, 110.3, 117.6, 128.2, 141.9, 142.8.

4-methoxybenzonitrile (3d)

\[
\begin{array}{c}
\text{MeO} \\
\text{CN}
\end{array}
\]

74% yield; \(^1\text{H NMR} (400 \text{ MHz, CDCl}_3) \delta 3.78 (3\text{H, s}), 6.95 (2\text{H, d, } J = 8.9 \text{ Hz}), 7.59 (2\text{H, d, } J = 8.9 \text{ Hz}); \ ^{13}\text{C NMR} (100 \text{ MHz, CDCl}_3) \delta 55.5, 104.0, 114.7, 119.2, 134.0, 162.8.

2-methoxybenzonitrile (3e)

\[
\begin{array}{c}
\text{MeO} \\
\text{CN}
\end{array}
\]

61% yield; \(^1\text{H NMR} (400 \text{ MHz, CDCl}_3) \delta 3.93 (3\text{H, s}), 6.96- 7.03 (2\text{H, m}), 7.52-7.57 (2\text{H, m}); \ ^{13}\text{C NMR} (100 \text{ MHz, CDCl}_3) \delta 56.0, 101.8, 111.2, 116.5, 120.7, 133.7, 134.3, 161.2.

4-phenoxybenzonitrile (3f)

\[
\begin{array}{c}
\text{PhO} \\
\text{CN}
\end{array}
\]

81% yield; \(^1\text{H NMR} (400 \text{ MHz, CDCl}_3) \delta 7.00 (2\text{H, d, } J = 8.9 \text{ Hz}), 7.06-7.08 (2\text{H, m}), 7.21-7.27 (1\text{H, m}), 7.40-7.44 (2\text{H, m}), 7.60 (2\text{H, d, } J = 8.9 \text{ Hz}); \ ^{13}\text{C NMR} (100 \text{ MHz, CDCl}_3) \delta 105.8, 117.9, 118.2, 120.4, 125.1, 130.2, 134.1, 154.8, 161.3.
4-chlorobenzonitrile (3g): 78%

\[
\text{Cl} \quad CH-CN
\]

70% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.47 \) (2H, d, \(J= 8.4 \) Hz), 7.61 (2H, d, \(J=8.4 \) Hz); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 110.7, 117.9, 129.7, 133.3, 139.5. \)

thiophene-2-carbonitrile (3h): 79%

\[
\text{S} - CH-CN
\]

63% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.13 \) (1H, dd, \(J= 5.0, 3.7 \) Hz); 7.61 (1H, dd, \(J= 5.0, 1.1 \) Hz), 7.64 (1H, dd, \(J= 3.7, 1.1 \) Hz)

3-phenylpropanenitrile (3i): 80%

\[
\text{Ph} - CH-CN
\]

47% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 2.62 \) (2H, t, \(J= 7.4 \) Hz); 2.96 (2H, t, \(J= 7.4\)Hz), 7.22-7.39 (3H, m), 7.33-7.37 (2H, m); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 19.3, 31.6, 119.1, 127.2, 128.2, 128.9, 138.0. \)

5.3.3.1 Mechanistic studies

Starting material synthesis: Synthesis of 2,2-diphenyloctanenitrile (4): 81%

\[
\text{Ph} - CH-CN \\
\text{Ph} - CH-CN \\
\text{Ph} - CH-CN \\
\text{Ph} - CH-CN
\]

1. LDA
2. CH\(_2\)(CH\(_2\))\(_2\)CH\(_2\)Br

THF, -78 °C to rt.

\[
\text{Me} - CH-CN \\
\text{Ph} - CH-CN \\
\text{Ph} - CH-CN \\
\text{Ph} - CH-CN
\] 4

To a flask charged with LDA, which was freshly prepared by diisopropylamine (3.1 mL, 22.0 mmol) and \(n\)-BuLi (1.6 M, 13.1 mL, 21.0 mmol) in THF (26 mL), was added diphenylcetanitrile (3.87 g, 20.0 mmol) at −78 °C.

The mixture was stirred at the same temperature for 1 h. After that 1-bromohexane (3.1 mL, 22.0 mmol) was added at −78 °C. The reaction mixture was stirred at room temperature for overnight, and then quenched with saturated aqueous NH\(_4\)Cl. The organic materials were extracted thrice with Et\(_2\)O. The combined organic extracts were washed with brine and dried over anhydrous MgSO\(_4\). The solvents were removed in vacuo and the resulting crude material
was subjected to flash column chromatography (hexane : EtOAc = 95 : 5) to afford 2,2-diphenylheptanenitrile (4) (3.60 g, 13.0 mmol) in 65% yield.

65% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 0.85 (3H, t, \(J = 6.8\)), 1.25-1.27 (4H, m), 1.31-1.41 (4H, m), 1.54 (1H, s), 2.33-2.37 (2H, m), 7.26-7.30 (2H, m), 7.32-7.39 (8H, m); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 14.0, 22.5, 25.6, 29.1, 31.4, 39.7, 51.8, 122.5, 126.8, 127.7, 128.8, 140.4.

Identification of side-products

To an ice-cooled solution of 2,2-diphenylheptanenitrile (4) (276.7 mg, 0.997 mmol) in Et\(_2\)O (1.0 mL) was added an Et\(_2\)O solution of \(p\)-tolylmagnesium bromide (2d) (0.85 M, 1.5 mL, 1.30 mmol). The reaction mixture was stirred at 60 °C in a sealed tube for 54 h, and then anhydrous MeOH (121 \(\mu\)L) was added. CuBr\(_2\) (22.8 mg, 0.100 mmol) and anhydrous DMF (10.0 mL) was then added. The reaction mixture was stirred at 80 °C under an oxygen atmosphere for 24 h. The reaction was quenched with pH 9 ammonium buffer and the organic materials were extracted thrice with Et\(_2\)O. The combined organic extracts were washed with water, and then with brine and dried over anhydrous MgSO\(_4\). The solvents were removed in vacuo and the resulting crude material was purified by flash column chromatography (hexane : EtOAc = 98 : 2) to afford 4-Methoxybenzonitrile (3d) (110.1 mg, 0.830 mmol) and hept-1-ene-1,1-diyl dibenzene (5) (40.1 mg, 0.160 mmol) in 83% and 16% yield respectively.

hept-1-ene-1,1-diyl dibenzene (5)\(^{82}\)

16% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 0.84-0.88 (3H, m), 1.25-1.29 (4H, m), 1.42-1.45 (2H, m), 2.10 (2H, q, \(J = 7.44\)), 6.08 (2H, t, \(J = 7.48\)), 7.16-7.24 (7H, m), 7.25-7.29 (1H, m), 7.30-7.36 (3H, m); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 14.0, 22.5,
Importance of atmospheric oxygen

To an ice-cooled solution of pivalonitrile (1) (120 μL, 1.085 mmol) in degassed Et₂O (1.0 mL) was added an Et₂O solution of p-tolylmagnesium bromide (2a) (0.74 M, 1.9 mL, 1.30 mmol). The reaction mixture was stirred at 60 °C in a sealed tube for 2 h, and then anhydrous degassed MeOH (132 μL) was added. Cu(OAc)₂ (20.4 mg, 0.100 mmol) and anhydrous degassed DMF (10.0 mL) was then added. The reaction mixture was stirred at 80 °C under an N₂ atmosphere for 6 h. The reaction was quenched with 1 N HCl and the organic materials were extracted thrice with Et₂O. The combined organic extracts were washed with water, and then with brine and dried over anhydrous MgSO₄. The solvents were removed in vacuo and the resulting crude material was purified by flash column chromatography (hexane : Et₂O = 95 : 5) to afford 2,2-dimethyl-1-(naphthalen-2-yl)propan-1-one (7) (190.4 mg, 0.896 mmol) in 83% yield.

2,2-dimethyl-1-(naphthalen-2-yl)propan-1-one (6)³³

83% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.48- 7.57 (2H, m), 7.76- 7.91 (4H, m), 8.22 (1H, s); ¹³C NMR (75 MHz, CDCl₃) δ 28.1, 44.3, 124.8, 126.5, 127.6, 127.7, 128.4, 129.0, 132.3, 134.2, 135.7, 208.9
References and Notes

71 Cahiez, G.; Lepifre, F.; Ramiandrasoa, P. Synthesis 1999, 12, 2138.

