EFFECT OF STRESS MIGRATION ON ELECTROMIGRATION FOR NANO SCALE ADVANCED INTERCONNECTS

ANSON HERYANTO

SCHOOL OF ELECTRICAL AND ELECTRONIC ENGINEERING

2012
EFFECT OF STRESS MIGRATION ON ELECTROMIGRATION FOR NANO SCALE ADVANCED INTERCONNECTS

ANSON HERYANTO

School of Electrical and Electronic Engineering

A thesis submitted to the Nanyang Technological University in partial fulfillment of the requirement for the degree of Doctor of Philosophy

2012
ACKNOWLEDGEMENTS

I would first and foremost like to thank my research advisor, Professor Pey Kin Leong, for giving me this precious opportunity to pursue Ph.D study in the field of advanced interconnects reliability. I thank him for his patience and guidance. He has always been encouraging and inspiring throughout my study.

This work would not have been possible without the collaboration with GLOBALFOUNDRIES Singapore. It is a privilege for University research project to have access to test samples that have been processed using leading edge technologies. In particular, I would like to thank my mentor, Dr. Lim Yeow Kheng, for his guidance, helping me in understanding the stress migration problem at the beginning of this research, and support towards the completion of this work. I am also thankful to Dr. Liu Wei for supplying wafers for my experiments.

I would like to thank Dr. Gan Chee Lip (NTU) for testing support and fruitful discussions. Also, thanks to Dr. Wei Jun (SIMTech) for the packaging support and valuable discussions. I would also like to thank Mr. Nagarajan Raghavan (NTU) for his useful discussions and proofreading the manuscript.

I am grateful to Institute of Microelectronics (IME) for an internship opportunity, working on the through silicon via (TSV) project. I would especially like to thank Dr. Alastair Trigg, my supervisor in IME, for his assistance and advice. I am also thankful for the people of TSV group, including Dr. Gao Shan, Dr. Kwon Woon Seong and Dr. Che Faxing, for their support.

I thank all the members of the Prof. Pey’s research group for a wonderful experience. Thank you to everyone: Shubhakar, Dexter Tan, Ong Chio Yin, Chin
Yoke King, Ong Beng Sheng, Chen Yining, Qin Hailang, Rahmat, Zin Zar Lwin, Liu Wenhu, Lu Wei Jie and Wu Xing.

I would like to thank Dr. Chan Lap, Dr. Leong Kam Chew, Dr. Ng Chee Mang and Dr. Tan Juan Boon (GLOBALFOUNDRIES Singapore), who have given me continuous support throughout this work.

I wish to acknowledge the financial support of Nanyang Technological University - GLOBALFOUNDRIES Singapore graduate research scholarship.

Lastly, I would like to thank my father, mother and sisters, for encouraging me to pursue Ph.D study. All of them have been tremendously supportive over the years.
TABLE OF CONTENTS

Acknowledgement……………………………………………………………………………i
Table of Contents……………………………………………………………………………iii
Summary……………………………………………………………………………………vii
Acronyms………………………………………………………………………………………x
List of Figures………………………………………………………………………………..xiii
List of Tables………………………………………………………………………………….xxii

Chapter 1 – Introduction

1.1 Background………………………………………………………………………………1
 1.1.1 Scaling and its Challenges……………………………………………………1
 1.1.2 Reliability Concerns of Cu Interconnect……………………………………5
1.2 Motivation for Present Research……………………………………………………7
1.3 Objectives………………………………………………………………………………9
1.4 Organization of the Thesis……………………………………………………………10
1.5 Contributions of this Study…………………………………………………………11

Chapter 2 – Literature Review

2.1 Stress Migration………………………………………………………………………..15
 2.1.1 Fundamentals of Stress Migration………………………………………………16
 2.1.2 Stress Migration Failure Modes…………………………………………………18
 2.1.3 *In-situ* Stress Migration…………………………………………………………24
2.2 Electromigration………………………………………………………………………..27
 2.2.1 Fundamentals of Electromigration………………………………………………27
 2.2.2 1D Electromigration Model…………………………………………………….32
 2.2.3 *In-situ* Electromigration…………………………………………………………34
 2.2.4 Electromigration Diffusion Paths in Cu Lines…………………………………36
 2.2.5 Electromigration Failure Modes……………………………………………….38
2.3 Effect of Stress-Induced-Voiding on Electromigration…………………………….42
2.4 Summary…………………………………………………………………………………45
Chapter 3 – Experimental and Simulation Details 47
3.1 Experimental Setup...47
3.2 Testing and Analysis...52
 3.2.1 Electrical Testing...52
 3.2.2 Physical Failure Analysis..55
 3.2.3 Joule Heating Test...57
 3.2.4 Statistical Analysis..60
3.3 Simulation Details...64
 3.3.1 Finite Element Simulation Model Approach.........................65
 3.3.2 Validation of Simulation Model..66
3.4 Summary...71

Chapter 4 – The Effect of Dielectric Slots on Copper Interconnect Reliability 73
4.1 Introduction...73
4.2 Fabrication Scheme of Cu Interconnect with Dielectric Slots...........74
4.3 Design Integration Challenges..76
4.4 Effect of Dielectric Slots on Stress Migration Reliability....................77
4.5 Effect of Dielectric Slots on Electromigration Reliability....................80
4.6 Discussion..85
4.7 Summary..89

Chapter 5 – The Effect of Stress Migration on Electromigration in Dual Damascene Copper Interconnects 91
5.1 Introduction...91
5.2 Mass Transport Equation..93
5.3 Test Structure Design...94
5.4 Testing Methodology...97
5.5 Experimental Results..98
 5.5.1 SM/EM Interaction in the Lower Metal Interconnects.............98
Appendix A - Microstructural Evolution of Copper TSV During Annealing and its
Effect on the Via Protrusion for TSV Wafer Fabrication……………………..………167

Appendix B – Resistance Degradation Trends………………………………………192

Appendix C – Procedure to determine E_a and n……………………………..200
SUMMARY

The interconnect system is a significant part of the integrated circuit because of its function to connect millions of transistors, and routing signals into and out of the chip. Therefore, investigating its reliability is a priority for the industry to ensure that the chip lifetime will meet the requirements. In order to evaluate reliability, tests must be performed under a harsher, but nonetheless representative, environment than those expected under normal use in order to obtain failure statistics in reasonable times.

The most common accelerated reliability test for the Cu interconnects is stress migration (SM) and electromigration (EM) test, where they are typically investigated separately. The objective of SM test is to study the metal failure mechanism due to intrinsic thermomechanical stresses. On the other hand, the purpose of EM test is to study the reliability of copper line with respect to electrical current density. Typical accelerated EM testing conditions are at high temperature, i.e., 300-350°C for Cu interconnects. However, the thermal stress at this temperature will be very low because it is closed to stress free temperature of the metal lines, which is around 300°C. As a result, the effect of intrinsic thermal stress on the reliability and lifetime of metal lines is seldom properly accounted for and current reliability projections based on standard EM test algorithms may be an overestimate.

However at use condition, we might find that SM and EM could actually co-exist concurrently and have non-negligible contributions to the physics of failure. SM might occur all the time when the chip is working, typically at temperatures
around 100-125°C. At the same time, EM might occur due to the electron wind force through the interconnects. Therefore, it is important to understand the interaction of SM and EM since both can play a collective role in causing interconnect failure at chip operating condition. Despite many extensive studies on the stress migration and electromigration reliability, so far there is no study to describe and explain the interaction between these two failure mechanisms. Therefore, there is a great interest to gain some understanding of SM and EM interaction, hence the reliability risk can be more accurately forecasted.

Our study is started with the investigation of individual SM and EM reliability of Cu interconnect with dielectric slot. The purpose of this work is to obtain a good understanding of SM and EM behavior, as the basic to study the interaction between these two failure mechanisms. The possible SM and EM failure mechanisms, design and the process integration challenges are discussed.

Next, we present a study on SM and EM interaction in lower (Mx structure) and upper metal (Mx+1 structure) of dual-damascene Cu/low-κ interconnects. It is found that both mechanisms are dependent; statistical analysis shows that EM failure time is affected by the presence of residual stress induced by SM. This effect was more severe in the lower metal. The reliability implication of the residual stress in copper interconnects on the EM is further investigated with various failure analysis techniques and three-dimensional finite element simulation. A failure mechanism model for stress evolution and void formation is proposed to provide insight into the interaction between these two failure mechanisms.

This study is further expanded to investigate the effect of stress migration on electromigration activation energy and current density exponent. A simple empirical
method to extrapolate the interconnect lifetime accounting for the effect of both SM and EM will be discussed. In addition, we investigated also the influence of SM on other important EM parameters, i.e., permittivity scaling and short length effect, as it is important for the assessment of further technology scaling and interconnect design.

Lastly, we carried out experiments in advanced narrow line copper interconnects to study the influence of SM risk on its EM reliability. As opposed to the current understanding that SM is not a concern for the narrow metal lines due to limited availability of vacancies for voiding, we found that SM does have serious wear-out effects. The high intrinsic tensile stress in the line is suspected to be responsible for this early void nucleation. In addition, we developed a Monte Carlo simulation model to estimate the void nucleation and growth time using the EM-only and SM+EM degradation tests.
<table>
<thead>
<tr>
<th>ACRONYMS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADV</td>
<td>active diffusion volume</td>
</tr>
<tr>
<td>AIC</td>
<td>akaike information criterion</td>
</tr>
<tr>
<td>ALT</td>
<td>accelerated life test</td>
</tr>
<tr>
<td>BEOL</td>
<td>backend of line</td>
</tr>
<tr>
<td>CMOS</td>
<td>complementary metal-oxide-semiconductor</td>
</tr>
<tr>
<td>CMP</td>
<td>chemical mechanical polishing</td>
</tr>
<tr>
<td>CTE</td>
<td>coefficient of thermal expansion</td>
</tr>
<tr>
<td>D.O.F.</td>
<td>degrees of freedom</td>
</tr>
<tr>
<td>DOE</td>
<td>design of experiment</td>
</tr>
<tr>
<td>DRAM</td>
<td>dynamic random access memory</td>
</tr>
<tr>
<td>E&M</td>
<td>expectation and maximization</td>
</tr>
<tr>
<td>E_a</td>
<td>activation energy</td>
</tr>
<tr>
<td>EM</td>
<td>electromigration</td>
</tr>
<tr>
<td>EWF</td>
<td>electron wind force</td>
</tr>
<tr>
<td>FEA</td>
<td>finite element analysis</td>
</tr>
<tr>
<td>FEM</td>
<td>finite element modeling</td>
</tr>
<tr>
<td>FGA</td>
<td>forming gas anneal</td>
</tr>
<tr>
<td>FIB</td>
<td>focused ion beam</td>
</tr>
<tr>
<td>HAADF-STEM</td>
<td>high-angle annular dark-field field scanning</td>
</tr>
<tr>
<td></td>
<td>transmission electron microscopy</td>
</tr>
<tr>
<td>IC</td>
<td>integrated circuits</td>
</tr>
<tr>
<td>ILD</td>
<td>inter layer dielectric</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>ITRS</td>
<td>international technology roadmap for semiconductors</td>
</tr>
<tr>
<td>MLE</td>
<td>maximum likelihood estimation</td>
</tr>
<tr>
<td>n</td>
<td>current density exponent</td>
</tr>
<tr>
<td>p.d.f</td>
<td>probability density function</td>
</tr>
<tr>
<td>PECVD</td>
<td>plasma-enhanced chemical vapor deposition</td>
</tr>
<tr>
<td>PVC</td>
<td>passive voltage contrast</td>
</tr>
<tr>
<td>PVD</td>
<td>physical vapor deposition</td>
</tr>
<tr>
<td>RC</td>
<td>resistance-capacitance</td>
</tr>
<tr>
<td>RIE</td>
<td>reactive ion etching</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscopy</td>
</tr>
<tr>
<td>SFT</td>
<td>stress free temperature</td>
</tr>
<tr>
<td>SIV</td>
<td>stress-induced voiding</td>
</tr>
<tr>
<td>SM</td>
<td>stress migration</td>
</tr>
<tr>
<td>SoC</td>
<td>system-on-chip</td>
</tr>
<tr>
<td>TCR</td>
<td>the temperature coefficient of resistivity</td>
</tr>
<tr>
<td>TEM</td>
<td>transmission electron microscope</td>
</tr>
<tr>
<td>t_{grow}</td>
<td>void growth time</td>
</tr>
<tr>
<td>TIVA</td>
<td>thermally induced voltage alteration</td>
</tr>
<tr>
<td>TTF</td>
<td>time to failure</td>
</tr>
<tr>
<td>t_{nucl}</td>
<td>void nucleation time</td>
</tr>
<tr>
<td>TXM</td>
<td>transmission x-ray microscopy</td>
</tr>
<tr>
<td>ULSI</td>
<td>ultra-large scale integration</td>
</tr>
<tr>
<td>XRD</td>
<td>x-ray diffraction</td>
</tr>
</tbody>
</table>
\(\kappa \)
dielectrics constant

\(\sigma_{\text{crit}} \)
critical stress for void nucleation
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Moore’s Law trend which predicts that the number of transistors on an integrated circuit doubles every two years.</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Interconnect system cross-sectional model with parasitic capacitances included.</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>IBM air gap microprocessor-empty space used to lower the ILD dielectric constant.</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Predicted trends in the (a) reduction of the feature size (M1 pitch), (b) higher current density required at operating condition, and (c) minimum effective dielectric constant needed, as depicted by the International Technology Roadmap for Semiconductors (ITRS) 2010.</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic illustration of the temperature dependence of thermomechanical stress in an interconnect and vacancy diffusivity, which leads to a peak in the rate of stress migration at an intermediate temperature range.</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Tensile stress in Cu due to cap deposition. (a) After Cu CMP (25°C); (b) The deposition of the capping layer (SiN) occurs at a relatively high temperature (> 300°C); (c) After cooling back to room temperature.</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>(a) Cross-section analysis of void-formation beneath a via, placed over a wide metal lead. (b) SEM micrograph of a stress-induced damaged via taken at a high tilted angle. The dotted line indicates the extent of the void growth that caused an open circuit beneath the gouging via.</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Cross-sectional analysis of void-formation within a via.</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic diagram illustrating the vacancy generation and accumulation process in the SM mechanism. (a) Vacancy generation through grain growth in constrained metal leads (b) Small grains that are constrained by the barrier and capping layers that undergo grain growth will be unable to eliminate the</td>
<td>21</td>
</tr>
</tbody>
</table>
trapped vacancies at a free surface (c) Stress gradient developed beneath the via serves as a driving force to attract vacancies to coalesce into voids.

2.6 Schematic diagrams of SM failure mechanisms within via. 22

2.7 Dependence of SM failure rate on the metal width for (a) lower-metal structure and (b) upper metal structure. In both cases, wide metal is more prone to failure compared to the narrow metal. 23

2.8 Diffusion area for narrow and wide lines. The wide line is more susceptible to SM failure compared to the narrow line because it can provide more vacancies supply. 24

2.9 Time series of TXM micrographs showing the void evolution during the SM experiment at 175 °C. The sample was thermally stressed at 175°C for (a) 80 hours, (b) 90 hours, (c) 95 hours, and 100 hours, respectively. 26

2.10 Series of SEM images recorded during FIB milling of the SM test structure after the void evolution experiment in the TXM for 100 h at 175 °C. 26

2.11 Illustration of the electromigration mechanism. Electrons collide with the copper ions resulting in a momentum transfer to the copper ions, which initiates a mass transport of Cu towards the anode terminal. 28

2.12 The failure distributions of (a) M1-type and (b) M2-type test structures, as a function of the (jL) product. From this figure, it can be inferred that the (jL)c of M1 is 2100A/cm, while for M2, it is ~ 3700A/cm. 31

2.13 Stress evolution as a function of location along the interconnect at different time instants in a 1D line segment (a) before (b) after void nucleation. 34

2.14 SEM image of mass depletion at (I) cathode and mass accumulation at the (II) anode end of a 0.18μm wide line at: (a) 0 h, (b) 9 h, (c) 46 h, and (d) 74 h. 36

2.15 Different possible diffusion paths for Cu atoms during electromigration in the Cu interconnect system. 37

2.16 SEM images show various EM failures in M2 line. (a) voids at 40
the cathode end of the M2 line, (b) in the trench and (c) inside the via.

2.17 SEM images show various EM failures in M1 test structures: (A) narrow slit void under the via, (B) voids under the via, but displaced along the line-length and (C) void in the line attached to the via.

2.18 An electromigration-induced slit-like opening at the tip of a stress void. Stress voiding gives rise to a wider area of depletion at the top of the stripe.

2.19 Determination of (a) current density exponent (n) and (b) EM activation energy (E_a) for M1-line test structures with and without pre-existing stress-induced voids.

3.1 A sequential flow chart of the experimental work carried out in this study.

3.2 Process flow for interconnect test structure fabrication involving - (a) Dielectric deposition, (b) Trench / via patterning, (c) Metal barrier deposition, Cu seed deposition and Cu electroplate fill, (d) Cu and metal barrier CMP and (e) Nitride barrier passivation.

3.3 (a) Mechanical dicing process using the single cut method to dice the Si wafer into individual chips. (b) A photo of a diced Si wafer.

3.4 Schematic diagram of wire bonding. The wires shown connect the chip bond pad to the lead frame.

3.5 Photo of the (a) EM testing chamber XACT-810 and the (b) burn-in-board to place the samples for testing.

3.6 PVC image of a via chain test structure after SM test to localize the defective metal area.

3.7 Schematic diagram of the four-terminal EM test structure used for joule heating test.

3.8 Joule heating measurement for a Cu-based interconnect structure. (a) Resistance vs. temperature at nominal current density (b) rise in temperature, ΔT, as a function of the current density, j, which is increased to an extreme value at elevated temperature over a short span of time.
3.9 (a) XRD measurements of the thermal stress and (b) the linear relation between lattice spacing and $\sin^2 \psi$ used to determine the principal stress / strain values.

3.10 A unit segment of the Cu interconnect structure showing finite element “mesh” discretization used for the calculations. Considering the symmetry, only a half-line model was employed.

3.11 Stress component distribution for various line-width/pitch dimensions in the simulated Cu/SiO$_2$ model.

3.12 (a) Comparison between the measured X-ray data and FEA results for TEOS passivated Cu lines as reported by S.H. Rhee et al. (b) The thermal stress data obtained from the simulation model developed in this work.

4.1 Schematic diagram of the top view of the dielectric slot in the bottom Cu metal lead (M1).

4.2 Schematic diagram illustrating the process flow involved in patterning and fabrication of the dielectric slot in the wide bottom Cu metal lead level.

4.3 Impact on interconnect resistance for varying dielectric slot dimensions. (a) Slot length, L, varied with a fixed width of 0.3μm and (b) Slot width, W, varied with a fixed length of 1.2μm. The insert shows the location of a 0.19μm via in a 2μm x 10μm Cu metal lead.

4.4 (a) SM reliability improves drastically for wide bottom Cu interconnects with dielectric slots. (b) Similar SM robustness is demonstrated for wide bottom Cu interconnects with dielectric slots as compared to that with dual-via structures.

4.5 Significant improvement of SM reliability for wide Cu interconnects with dielectric slot. Physical failure analysis of wide Cu metal leads after SM Test for (a) a conventional test structure shows significant voiding extending into the Cu line, while for the (b) test structure with a dielectric slot, no voiding is observed.

4.6 Cumulative failure distribution plot for SM tests on different dielectric slot design structures. The control sample with no dielectric slot had the highest failure rate, followed by the
segmented slots at the center of the block, long slots at the center of the block and long slots at the edges of the block, near the via.

4.7 Joule heating four-point probe measurement of the temperature rise (ΔT) in conventional and dielectric slot test structures.

4.8 EM lognormal cumulative failure distribution plot for the standard and dielectric slot test structures.

4.9 (a) EM resistance evolution trend and (b) TEM analysis of the EM-failed samples for the standard slotless test structure.

4.10 (a) EM resistance evolution trend and TEM analysis of the EM-failed samples for the dielectric slot test structure during (b) void nucleation, and (c) void growth.

4.11 Top down SEM analysis of an EM degraded sample for the dielectric slot test structure at the instance of the first resistance jump.

4.12 Schematic diagram of the finite element model used in the simulation.

4.13 Simulated hydrostatic stress distribution for an SM test condition at $T = 200^\circ C$ and postulated vacancy transport mechanism for the (a) conventional slot-less and (b) dielectric slotted test structures. The units of the stress scale are expressed in MPa.

4.14 Schematic diagram of the electron flow path in the interconnect with a dielectric slot. The presence of the dielectric slot is not effective in blocking electron wind force dominated Cu atom migration because current can still effectively flow through the narrower metal segments at the two sides of the dielectric slot.

5.1 SM Model for void formation rate as a function of temperature. SM is caused by the interaction between the thermo-mechanical stress in the interconnect systems and the diffusion of vacancies. The graph shows that the SM is expected to occur at use condition, however at the EM accelerated test condition close to SFT, role of SM is expected to be negligible.

5.2 Schematic diagrams of the (a, c) top view and (b, d) side view of the via-chain test structures used for the SM-EM interaction study in (a, b) lower and (c, d) upper metal leads, respectively.
5.3 The temperature rise of lower metal multi-link test structure as a function of the lower metal current density, heated at 350°C. It is observed that the temperature rise at EM test condition is only about 0.27K and thus the possibility of temperature-induced failures during EM testing is very minimal.

5.4 Failure distribution of samples under SM+EM test compared to EM-test only samples for the study of SM/EM interaction in the lower metal interconnects. Accelerated life tests show that the failure distribution of failed samples under SM+EM test exhibits a trimodal distribution. The inset shows the resistance trends for each sub-population of this mixture distribution.

5.5 Cross section of degraded sample after SM+EM test from (a) FM-I population, where the void formed directly below the via of the cathode end causing open circuit failure. (b) FM-III population, in which the trench void formed in the Cu metal line.

5.6 Failure distribution of samples under SM+EM test compared to EM-test only samples for the study of SM/EM interaction in the upper metal interconnects. The lifetime degradation due to SM effect is ~10.24%. The inset shows the resistance evolution trend for each group population.

5.7 TIVA analysis of one of the degraded samples from SM+EM test in the top metal of the M2 test structure. The rectangular region points to the stressed test structure. The bright spots indicate the void location where many voids are detected at the end of each single chain metal line.

5.8 FEA simulation of hydrostatic stress in the lower metal test structure [16]. The non-uniform tensile stress near the via bottom leads to a prominent stress gradient that drives vacancies towards the via.

5.9 FEA simulation of hydrostatic stress in the upper metal test structure. The non-uniform tensile stress is evident near the upper metal lead (SM-I) and inside the via (SM-II). The resulting stress gradient may favor vacancies to migrate towards these two different areas during SM test.

5.10 Mechanism of SM and EM interaction – an approach using stress evolution diagram. (a) Schematic showing the atom and vacancy movements, assuming symmetrical structure condition, wherein the vacancy distribution near both ends after the SM stress test is assumed to be the same. (b) As a result, the metal line becomes
more tensile by almost the same increment (σ_{SM1} and σ_{SM2}) and the time to void nucleation is shorter, $t_{N2} < t_{N1}$, during subsequent EM test at the cathode end.

5.11 (a) Schematic showing the atom and vacancy movements, assuming the amount of vacancies at the cathode region is limited. (b) As a result, there is no tensile stress developed at the cathode side of the metal line after SM test. The time to reach void nucleation is the same, $t_{N2} \approx t_{N1}$, during EM test, i.e., SM effect is almost negligible.

5.12 Logormal EM failure distribution of lower metal interconnect samples under various stress temperatures, ranging from 150ºC-325ºC

6.1 EM lognormal failure distribution of SM+EM test and EM-test only samples at test temperatures of $T = (300, 325)^\circ$C.

6.2 Plot of $\ln(t_{50})$ versus $(1/kT)$ with extracted values of EM activation energy for lower metal structure. It shows that both values represent diffusion at the Cu/cap interface.

6.3 The possible mechanism of SM and EM interaction. It shows that after SM test, vacancies will be accumulated both at the interface and grain boundaries of the metal lead near the vias. However, since the main diffusion path for subsequent EM is along the Cu/cap interface, only vacancies in the surface would be able to contribute to the void nucleation process.

6.4 Plot of $\ln(t_{50})$ versus $(1/kT)$ with extracted values of EM activation energy for the upper metal structure. It can be inferred from the data that the similar value of $E_a \sim 0.93eV$ represents diffusion at the Cu/cap interface for both tests.

6.5 Lognormal failure distribution for samples under SM+EM test compared to EM-test only samples at $T = (300, 325)^\circ$C. Accelerated life tests show that the TTF of samples with SM+EM test show significant lifetime degradation by $\sim 10\%$.

6.6 Plot of $\ln(t_{50})$ versus $\ln(1/J)$ with extracted values of Cu migration activation for SM+EM test and EM test-only samples in the upper metal line. The data indicates that there is no drastic change of the “n” value for samples which were subjected to additional SM stress.

6.7 Plot of $\ln(t_{50})$ versus $\ln(1/J)$ with extracted values of Cu
migration activation energy for SM+EM test and EM test-only samples in the lower metal line. Again, no significant change in the “n” value is observed for samples which had been subjected to additional SM stress.

6.8 Permittivity value vs. elastic modulus for commonly available low-κ ILD. As the value of κ decreases, the elastic modulus also decreases.

6.9 Failure distribution for samples under SM+EM test compared to the case of EM-test only. Accelerated life tests show that the TTF of SM+EM test samples with low-κ dielectric exhibit significant lifetime degradation. On the other hand, the failure times for the test structure with conventional FTEOS dielectric are not affected by the SM-EM interaction.

6.10 The hydrostatic stress value (normalized) of lower metal structure, obtained from finite element simulation, as a function of distance at the Cu/cap interface.

6.11 The hydrostatic stress value (normalized) of lower metal structure, obtained from finite element simulation, as a function of distance at the at a depth of 30nm from Cu/cap interface.

6.12 Resistance change versus time during EM stress for (a) EM test-only and (b) SM+EM test samples, with electrical stress duration fixed to 200 hours. The resistance change for both samples is small, around 3-4% and tends to eventually saturate, which is representative of the immortal behavior.

6.13 SM failure at various interconnect lengths, (a) L=1.5μm, (b) L=30μm and (c) L=70μm. Void nucleation and subsequent growth occurs due to SM flux, independent of the metal length.

6.14 Resistance evolution with time in (a) EM test-only and (b) SM+EM test samples, for 200 hours of EM testing. The resistance change for EM-test only samples is small, which shows the immortality behavior. On the other hand, for SM+EM test samples, the voids start to nucleate and saturate, with 61% of the lines failing.

6.15 Resistance evolution with time in fresh samples (non-SM stressed) for 200 hours of EM testing. The stressing condition is at j=1MA/cm², tested with a longer line metal, L = 40μm. Since (jL) > (jL)_c for this case, the void is observed to nucleate and grow very rapidly.

7.1 Schematic showing the basic unit of the via-chain test structure
used for the SM-EM interaction study in the narrow lines. The width of both metal levels are 0.07 µm. By keeping the upper metal short, EM failure is induced in the lower metal line only.

7.2 Lognormal probability plot of time to failure for samples under SM+EM test compared to EM-test only samples for M1-structures with line-width = 0.07 µm, encapsulated with a low-κ dielectric material (κ~2.7). Statistical fitting results indicate that the median time-to-failure for samples subjected to SM+EM is ~38% lower than that of the EM-only test samples.

7.3 Lognormal probability plot of time to failure for samples under SM+EM test compared to EM-test only samples for M1-structures with line-width = 0.07 µm, encapsulated with a low-κ dielectric material (κ~3.0). Statistical fitting results indicate that the median time-to-failure for samples subjected to SM+EM is ~24% lower than that of the EM-only test samples.

7.4 Logarithmic plot of the variation of the median time to failure (t50) with inverse current density (1/J). The linear fit to the data on this scale provides the value of the current exponent, n. Our analysis results in a value of n ~ 1.

7.5 The intrinsic stress and active diffusion volume as a function of the line-width. For narrow lines, the intrinsic stress effect is dominant causing SM failure. While in the wide line, SM failure may be attributed to the accumulation of vacancies due to the stress gradient.

7.6 Block diagram showing the algorithm of Monte Carlo simulation used in this study.

7.7 Monte Carlo simulation to determine the nucleation time distribution, given the growth and overall failure time distribution parameters, obtained from the SM+EM and EM-only test results. At very low percentiles, the overall failure time is mainly growth dominated while for very high percentile failures, overall failure time is nucleation dominated.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Statistical test results for the M_X test structure. Here, t_{50} is the measured median time to failure and σ is the standard deviation of the natural log of the failure times for each population of samples (also known as the lognormal shape parameter). The error estimates for t_{50} and σ were calculated with 90% two-sided confidence bounds.</td>
<td>100</td>
</tr>
<tr>
<td>5.2</td>
<td>Statistical test results for M_{X+1} test structure.</td>
<td>103</td>
</tr>
<tr>
<td>5.3</td>
<td>Material properties used in our simulation model.</td>
<td>105</td>
</tr>
<tr>
<td>6.1</td>
<td>Material properties used in our simulation model</td>
<td>127</td>
</tr>
<tr>
<td>8.1</td>
<td>Post-plating anneals conditions and indication of postulated residual vacancy and stress gradients</td>
<td>152</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

The interconnect system is a critical part of integrated circuit (IC) because of its function to connect millions of transistors, routing signals into and out of the chip or from one part of the chip to another, forming networks of devices and routing power to various devices on the chip. As the device dimensions have been shrinking rapidly to increase the speed of transistors, the wiring density increases correspondingly. In today’s technology, a high performance IC chip contains several kilometers of wires on a 1×1 cm chip, which are tens of nanometers to a few microns wide, stacked into twelve layers at backend [1].

1.1.1 Scaling and its Challenges

Since the first invention of the IC in the 1960s, the semiconductor industry has continuously tried to improve the performance of IC by miniaturizing device dimensions. Scaling the dimensions paves way for increasing the integration density of transistors, as well as to converge different types of devices and functions to realized system-on-chip (SoC). In addition, smaller transistor size also results in higher speed and lower operating voltage. The transistor scaling has been following the predictions of the Moore’s Law, published as a simple observation by Gordon Moore in 1965 [2], who predicted that the number of transistors on an integrated
circuit would double every two years (Fig. 1.1). This trend has been followed for many years and is expected to continue until 2015 - 2020 or later [3].

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

Fig.1.1: Moore’s Law trend which predicts that the number of transistors on an integrated circuit doubles every two years [4].

In spite of the success in producing faster microelectronic devices, the process of downscaling has imposed many challenges at the backend over the years. One of the challenges is the increase in resistance-capacitance (RC) delay which becomes a critical limiting factor in chip performance budgeting. This problem was first reviewed in Bohr’s paper in 1995 [5]. Assuming that the minimum metal pitch (P) equals twice the metal width (W), and assuming that the dielectric thickness above and below a metal line equals the thickness of the metal line (T), and using L
to denote line length, the following equations can be used to estimate line resistance, line capacitance and RC delay:

\[R = \frac{2\rho L}{PT} \quad \text{(Eq. 1.1)} \]

\[C = 2(C_L + C_V) = 2\varepsilon_0\varepsilon \left(\frac{2LT}{P} + \frac{LP}{2T} \right) \quad \text{(Eq. 1.2)} \]

\[RC = 2\rho\varepsilon_0\varepsilon \left(\frac{4L^2}{P^2} + \frac{L^2}{T^2} \right) \quad \text{(Eq. 1.3)} \]

where \(\rho \) is the resistivity, \(C_L \) is the lateral capacitance, and \(C_V \) is the vertical capacitance and \(\varepsilon_0 \) is the permittivity of the dielectric.

As described by Eq. 1.1, when the dimension of devices shrinks, the total interconnect resistance increases rapidly due to the reduced line cross-section and increased length of interconnects in the global or semi-global lines. Therefore, in
order to minimize the RC delay, we need to use materials with a lower resistivity for interconnect lines to reduce the R component and a lower dielectric constant material to decrease the intra/inter line capacitance. In 1997, IBM announced a key breakthrough in their complementary metal-oxide-semiconductor (CMOS) technology using copper (Cu) instead of aluminum (Al) as an interconnect metallurgy. Although silver (Ag) and gold (Au) were also considered for their better electrical properties, these materials were not cost effective. When implemented in the actual interconnect structure, it is reported that the resistivity of Cu lines is 40–45% less than that of comparable Ti/Al(Cu)/Ti lines [6]. The higher conductivity of Cu simplifies interconnect routing, which reduces the number of interconnect levels [7]. As a result, the cost per function is reduced by 25% to 30% per year. In addition, chips with Cu interconnect operate with approximately 30% less power at a given frequency than that with Al interconnect. This technology enables circuits with significantly higher performance for mobile applications.

As suggested by Eq. 1.3, the interconnect delay can be reduced as well by using a lower dielectric constant material (low-κ) for the interlayer dielectric (ILD). Low-κ dielectrics can be defined generally as those having bulk $\kappa \leq 3.0$. However in the implementation phase, low-κ dielectrics faced serious challenges concerning their structural integrity and mechanical stability. Many possible new low-κ materials failed to meet specifications because it is too leaky, unstable and expensive [8]. Compared with SiO$_2$, low-κ dielectrics are softer, have lower adhesion to Cu, higher coefficient of thermal expansion, lower thermal conductivity and chemical stability [8]. Due to their intrinsically poor adhesion to other materials, thermal stresses in low-κ stacks can more easily cause interfacial
delamination and cracking in the Cu/low-κ network [9]. In 2010, with a few exceptions, the only low-κ dielectric used in commercial fabs is CVD SiCOH [10].

For future technology nodes, air-gaps could be a promising low-RC solution. Figure 1.3 shows the cross-section of an interconnect with air-gap in between two metal lines. Air gaps are formed by adding a maskless process step that uses a polymer-based nanomaterial to etch out the dielectric between the most tightly spaced lines in the metallic interconnection layers, thereby reducing the parasitic capacitance [11].

![Fig. 1.3: IBM air gap microprocessor-empty space used to lower the ILD dielectric constant [12].](image)

1.1.2 Reliability concerns of Cu interconnect

The formation and growth of voids in metallization can occur by two different failure mechanisms, electromigration (EM) and stress migration (SM). When Cu was implemented firstly as a new conductive material, it was expected that its reliability would be better than Al. Based on the lower diffusivity of Cu, it is
supposed to exhibit enhanced resistance to electromigration and stress migration [13]. However, since the Cu wiring system is made differently from Al wiring, the metallization reliability has to be evaluated. Al metallization technology made use of conductive refractory layers both on top and below the metal lead thereby eliminating the risk of catastrophic failure due to an electrical open circuit. On the other hand, in the Cu interconnect structure, there is no refractory layer on the upper surface of the Cu leads, so that any void formation under the via or large void can result in an open circuit failure.

Fig. 1.4: Predicted trends in the (a) reduction of the feature size (M1 pitch), (b) higher current density required at operating condition, and (c) minimum effective dielectric constant needed, as depicted by the International Technology Roadmap for Semiconductors (ITRS) 2010 [1].
Electromigration remains a dominant reliability concern for the modern IC due to aggressive interconnect scaling, which resulted in an increase in the current density (Figs. 1.4 (a) and (b)), and the implementation of mechanically weaker low-\(\kappa \) ILD materials (Fig. 1.4 (c)). The reliability of Cu depends also on the property and quality of the seed layers, diffusion barriers and capping layers.

1.2 Motivation for Present Research

Reliability has always been one of the key challenges identified by the International Technology Roadmap for Semiconductors (ITRS) [1]. It is as important as operating stress performance and a key to commercial success in the microelectronics industry. Therefore, we need to evaluate the device reliability before commercialization to ensure that the lifetime of the device can meet the minimum set reliability criterion (typically 10 years at operating conditions) and the failure rate during the normal operating life is much lower than the target failure rate. However, it is impossible to test the device at actual operating conditions as the test will have to be prolonged for a few years to observe any failure, which is impractical. Therefore, the concept of accelerated stress testing is necessary to induce field failure in the laboratory at a much faster rate by stimulating a harsher, nonetheless, representative environment. In such a test, the device is assumed to fail in the lab just as it would have failed in the field (same failure mechanism and kinetics), but in a much shorter time.

The most common reliability tests for Cu interconnects are SM and EM test, which are typically investigated separately. The objective of the SM test is to study the metal failure mechanism due to intrinsic thermomechanical stresses. On the
other hand, the purpose of EM test is to quantitatively assess the reliability of the Cu line with respect to electrical current density. Typical accelerated EM tests are carried out at high temperatures of around 300-350°C for Cu interconnects. However, the thermal stress at this temperature is very low because it is close to the stress free temperature (SFT) of the metal lines, which is around 250-300°C [14, 15]. Therefore, the intrinsic hydrostatic stress in the metal lines is relaxed at the high temperature EM stress and thus the detrimental effects of SM are not accounted for during a conventional EM test.

However at use condition, it is expected that both SM and EM could actually co-exist concurrently and have non-negligible contributions to the physics of failure. The role of SM exists for all time during chip operation, typically at temperatures around 100-125°C. At the same time, the EM driving force may also be dominant due to the electron wind force (EWF) through the interconnects. Therefore, it is important to understand the “interaction” and “co-existence” of SM and EM since both can play a collective role in causing interconnect failure at chip operating condition.

Despite many extensive studies on SM and EM reliability, so far, there is no study to describe and explain the interaction between these two failure mechanisms. No physical analysis has been performed to support the hypothesis and the associated failure mechanisms remain unclear. Also, the extendibility of this study to future nanoscale technologies employing ultra low-κ dielectrics has not been discussed. Therefore, there is an increasing interest in the backend research community to gain in-depth understanding of SM and EM interaction, so that the reliability risk for backend of line (BEOL) interconnects under the influence of
multiple failure mechanisms can be more accurately assessed and possible solutions
to enhance the reliability can be proposed.

1.3 Objectives

The objectives of this work are summarized as follows:

1. To understand the physics behind the SM and EM interaction in Cu interconnects.

2. To investigate the effect of SM on the important parameters of EM, which
 includes the effect of inter-layer dielectric scaling, activation energy (E_a),
 current density exponent (n) and short length structures.

3. To evaluate the stress migration risk on electromigration reliability in
 advanced narrow line Cu interconnects.

4. To model and analyze the stress distribution in Cu interconnects.

5. To propose approaches to improve the interconnect reliability based on the
 understanding of the physics of failure.

1.4 Organization of the Thesis

This thesis is divided into eight major chapters. The organization of this thesis is
presented as follows:

- Chapter One introduces the motivations and objectives of this work,
 including the major contributions and impact of the presented results to the
 CMOS backend reliability community.
Chapter 1: Introduction

- Chapter Two provides a literature review on the research work that has been performed and reported for SM and EM interconnect reliability, which includes the basic understanding and the failure mechanisms for SM and EM in Cu interconnects. In addition, we also discuss the outcomes of past preliminary investigations on the effect of SM on the EM behavior in Al-based metallization.

- Chapter Three describes the process flow for SM/EM test structure fabrication, proposed test structure design, test methodology, failure classification criterion and physical analysis methods employed. The details of a 3D finite element analysis (FEA) simulation model developed for stress analysis studies are presented as well.

- Chapter Four studies the individual SM and EM mechanism in Cu/low-κ interconnects, where in, the impact of dielectric slots on SM and EM reliability is investigated. The possible SM and EM failure mechanisms, design and the process integration challenges are discussed. The purpose of this work is to obtain a good understanding of SM and EM behavior, as a basis to further extend the study to understand the interactions between these two failure mechanisms.

- Chapter Five discusses in details the interaction between SM and EM in lower and upper metal of dual-damascene Cu/low-k interconnects. The reliability implication of the residual stress in Cu interconnects on the EM is further investigated with various failure analysis techniques and 3D FEA simulation. A failure mechanism model for stress evolution and void
formation is proposed to provide insight into the interaction between these two failure mechanisms.

- **Chapter Six** investigates the effect of SM on the important parameters of EM, which includes the effect of inter-layer-dielectrics scaling, activation energy, current density exponent and short length effect.

- **Chapter Seven** studies the influence of SM on the EM reliability for very fine line interconnects. In addition, a simple Monte Carlo (MC) simulation routine was developed to estimate the void nucleation and growth time.

- **Chapter Eight** concludes the thesis by providing an overall summary of the outcomes of this project and key suggestions for further in-depth futuristic study.

1.5 Contributions of This Study

The findings of this study are summarized as follows.

1. We report the effect of the dielectric slot on the Cu/low-κ interconnect EM reliability. The EM stress test results show that the failure time distribution of the dielectric slot structure is comparable to that of a conventional Cu-dielectric stack structure. The failure mechanism for both structures was observed to be similar, wherein voids preferably nucleate near the via bottom along Cu/Si₃N₄ interface. Therefore, the incorporation of the dielectric slot structure can be useful since it shows superior SM reliability, without compensating on the robustness to the EM failures.
2. We demonstrate the SM and EM interaction in lower (M_X structure) and upper metal (M_X+1 structure) lines of the dual-damascene Cu/low-κ interconnect. It is found that both mechanisms are interdependent; statistical analysis shows that EM failure time is affected by the presence of residual stresses induced by SM. This effect is more severe in the lower metal line, where the EM median-time-to-failure (t_{50}) for the majority of the samples is degraded by 30-60%. For the upper metal line Cu interconnects, the degradation in t_{50} is only about 10%. The role played by the residual stress in Cu interconnects on the EM is further investigated with various failure analysis techniques and 3D finite element simulation. It is proposed that SM can influence EM when there is significant amount of vacancy accumulation due to SM at the cathode area, which accelerates the EM nucleation time. In the case of the M_X structure, our experimental results show that SM and EM interaction occurs exactly below the via at the M_X cathode side, leading to abrupt failures. On the other hand, for the M_{X+1} structure, vacancies are likely to accumulate at the edge of the upper metal lead during SM test, thus accelerating the failure during subsequent EM test. A failure mechanism model for stress evolution and void formation is proposed to provide insight into the interaction between these two failure mechanisms.

3. The effect of stress migration on electromigration activation energy is presented. We found that samples which have been subjected to SM stress (i.e., SM+EM test sample) have activation energy 0.71eV, almost similar to that of the control samples (i.e., EM test only) 0.79eV, for the lower metal structure and correspondingly 0.929eV (SM+EM test) and 0.937eV (EM
test) for the upper metal line structure. These values represent diffusion at the Cu/Si$_3$N$_4$ interface on top of the metal line, in good agreement with the data reported in literature [16]. The analysis reveals that there is no change in the dominant diffusion mechanism for the samples which have been subjected to SM stress. In addition, we assessed the SM and EM interaction with different ILD materials. Unexpectedly, accelerated life tests show that no degradation occurred for Cu interconnects with FTEOS dielectric under SM+EM test. Simulation results show that higher stress gradients are present when using low-κ materials, making them more vulnerable to SM compared to FTEOS.

4. The influence of stress migration risk on the electromigration reliability for very fine line interconnects is discussed. As opposed to the current understanding that SM is not a concern for the narrow metal lines due to limited availability of vacancies for voiding, we found that SM does have serious wear-out effects. The EM lifetime distribution was severely degraded by around 38%, for the samples which had been subjected to 1000 hours of SM test, with a drastic reduction in the inverse slope of the EM lognormal fitting distribution, from $\sigma = 0.548$ to 0.193. The current density exponent of the Black’s equation for SM+EM stressed samples is ~ 1, suggesting that void has already been nucleated due to the SM test. We attributed the nucleation of void in the metal line during SM to be due to the high intrinsic mechanical stress and the stress developed due to accumulation of vacancies during SM test. As the intrinsic stress of the narrow line is high, it is easier to reach the critical void nucleation stress. In
addition, we developed a Monte Carlo simulation routine to estimate the void nucleation and growth time using the EM-only and SM+EM degradation test results. We found that at low percentile, the overall failure time is mainly growth dominated while for high percentile failures, the overall failure time is nucleation dominated.
CHAPTER 2

LITERATURE REVIEW

2.1 Stress Migration

Stress migration or stress-induced voiding (SIV) is one of the failure mechanisms in chip metallization, which has become an increasingly important concern in the microelectronic industry. It was first observed on dynamic random access memory (DRAM) chips with Al-based metallization by Curry et al. in 1984 [17]. Briefly, SM is primarily a problem for narrow Al lines (< 4 µm) driven by the hydrostatic stress due to thermal mismatch between Al lines and its surrounding rigid dielectrics and the silicon substrate below [18, 19].

However, it is to be noted that relatively fewer papers have appeared in the literature on SM in Cu interconnects. This may be due to observations of lower SM in Cu metallization as compared to the case of Al [20]. Copper migration has a higher activation energy, which results in a lower diffusivity / mobility [13]. This means Cu is expected to show higher resistance to SM than Al for the same stress levels. However, it may be overly optimistic to assume that Cu would always have excellent SM robustness, because the role of SM can be strongly process and test structure dependent. In addition, the integration of Cu with new low-κ dielectric materials for state-of-the-art interconnect technologies is reported to further degrade the SM reliability [21].

The role of stress migration has to be carefully studied because it can cause catastrophic circuit failure. Void in Cu metallization tends to nucleate and grow
around the vias and blocks the flow of electrical current. However, when voiding is detected during SM testing for Cu metallization, the affected fraction of the population of interconnect segments is often small, making it hard for acquisition of sufficient data to probe the kinetics / dynamics of this process. Therefore, in order to detect stress voiding better, special structures are designed with higher sensitivity, for instance a via chain structure with large Cu plates.

2.1.1 Fundamentals of Stress Migration

Stress migration is a diffusion controlled process, in which the driving force for the transport of materials is the mechanical stress gradient. In general, SM is caused by the interaction between the thermomechanical stress in the interconnect system and the diffusion of vacancies. The presence of these two factors gives stress migration an interesting dependence on temperature. As shown in Fig. 2.1, at low temperatures, the metal is under high tensile stress due to thermal expansion mismatch between the surrounding materials. As the temperature is increased, the stress relaxation rate from diffusion increases but the absolute stress decreases. The peak of stress migration is at an intermediate temperature range.

J. W. McPherson and C. F. Dunn developed a SM model to quantify the voiding mechanism based on a standard reliability test procedure [22]:

\[
R = C (T_0 - T)^N \exp\left(\frac{-Q}{k_B T}\right)
\]
(Eq. 2.1)

where \(R \) is the creep rate, \(T_0 \) is the stress free temperature where the stress changes from tensile to compressive, \(T \) is the testing temperature, \(N \) is the creep exponent, \(Q \)
is the activation energy, k_B is the Boltzmann constant and C is a proportionality constant. The creep rate is a strong function of the test temperature and T_0. The parameter T_0 is dependent on the thermal history and the initial stress state of the metal. For the Cu interconnect, the stress free temperature is reported to vary within the range of 250-400°C [21, 23, 24].

Fig. 2.1: Schematic illustration of the temperature dependence of thermomechanical stress in an interconnect and vacancy diffusivity, which leads to a peak in the rate of stress migration at an intermediate temperature range [22].

The existence of thermal stress in the interconnect is caused by thermal expansion mismatch between the metal and the surrounding materials. The BEOL interconnect structure consists of several different materials including metal, dielectric, diffusion barrier, silicon substrate and capping layer. Since the fabrication of the structure involves several thermal cycles from room temperature to about 400°C, a large amount of stress can be introduced due to the thermal
expansion mismatch among these materials. An example is shown in Fig. 2.2 for a capping layer deposition [25].

In Fig. 2.2, after Cu CMP, the thermal stress in the wires is relatively low, because the metal processing occurs at low temperatures and the top surface of the Cu is unconstrained. However, the deposition of the capping layer (SiN) occurs at a relatively high temperature (>300°C). Copper in the trenches expands due to heating at such high temperatures, and then contracts during the cooling process to room temperature. Since the Cu is constrained by the dielectric capping layer, it is unable to retract to the original stress state and shrink to the original dimensions. As a result, there is a tensile stress in the Cu wires after deposition of the capping layer. Hence, the stress in Cu will be higher as the temperature of the capping layer deposition increases.

Fig. 2.2: Tensile stress in Cu due to cap deposition. (a) After Cu CMP (25°C); (b) The deposition of the capping layer (SiN) occurs at a relatively high temperature (>300°C); (c) After cooling back to room temperature [25].

2.1.2 Stress Migration Failure Modes

Stress migration is an intrinsic wear out failure mechanism which causes an open circuit in the metal interconnects, especially at the via, since it is the weakest
link in the chain of interconnects that constitute a working IC. Stress migration failures in dual-damascene Cu interconnect structures tend to occur around the vias. Two types of SM failures have been reported in the literature. One was found to form beneath a via which was connected to a wide bottom metal lead (Fig. 2.3). The other was found to form within a via which was connected to a wide top metal lead (Fig. 2.4). The mechanisms that result in the formation of the SM voids are discussed here.

Fig. 2.3: (a) Cross-sectional analysis of void-formation beneath a via, placed over a wide metal lead [23]. (b) SEM micrograph of a stress-induced damaged via taken at a high tilted angle. The dotted line indicates the extent of the void growth that caused an open circuit beneath the gouging via [26].

Fig. 2.4: Cross-sectional analysis of void-formation within a via [27].
For the SM failure beneath vias in Cu interconnects, the widely accepted SM voiding process is proposed by E.T. Ogawa et al. [23]. He explained that for a confined Cu, which did not undergo any prior annealing, the vacancies generated through significant grain growth will subsequently be unable to leave the Cu material. As a consequence, the remaining boundaries, interfaces and even bulk grains tend to become supersaturated with vacancies. Since grain growth is expected to sweep outwards in a direction normal to the boundary surface, the grain boundaries are the most likely region for vacancy storage. The subsequent via placement over the interconnect would generate a stress concentration that attracts vacancies within a given active diffusion volume, leading to void nucleation and growth. The via finally gets disconnected from the M1 lines when the void moves towards the area beneath the via. The general scenario of constrained grain growth leading to vacancy supersaturation is shown in Fig. 2.5.

This hypothesis was supported by the observation of vacancy defects in the electroplated Cu film [28]. The positron annihilation and high-angle annular dark-field field scanning transmission electron microscopy (HAADF-STEM) tools were used to detect and measure the vacancy defects. From this study, the vacancy concentration in the electroplated Cu film was estimated to be of the order of \(10^{19} - 10^{20}/\text{cm}^3\), which is similar to the void volume estimates during SM failure. In addition, the effect of different post-plating anneal conditions on the vacancy concentration were also investigated. It was found that post-plating anneals at higher temperatures will lower the vacancy concentration.
For SM within the via, G. B. Alers et al. [29, 30] proposed two possible failure mechanisms which cause voiding within a via. As shown in Figure 2.6, the first SM failure is caused by etch-related or fill-related voids in the metallic Cu that forms the via. At the high thermal stress, the voids coalesce and migrate to the via bottom, resulting in an open connection between the via and the diffusion barrier layer at its bottom. The other failure mechanism is related to the high level of tensile stress in Cu after a thermal cycle. At high temperature, Cu will expand more than the oxide trench enclosure thus inducing a compressive stress in Cu. Copper
will recrystallize and relax through dislocation motion at these high temperatures. Upon cooling, Cu will contract and tensile stress builds up, resulting in an ambient temperature tensile stress that is greater than the deposited stress. This internal tension if sufficiently large can simply rip the via off the diffusion barrier layer on the underlying metal lead.

In contrast to Al interconnects, in which narrow lines are more susceptible to SM [31], Cu interconnects are more prone to SM for the case of wide lines [23, 32-34]. They observed that a via connected to a wide line above it (i.e., wide M2 line) is weaker when compared to SM inside the via. On the other hand, a via connected to a wide M1 line is vulnerable to SM at the via bottom (Fig. 2.7). In both cases, it is postulated that wide lines serve as vacancy sources for SM.

Fig. 2.6: Schematic diagrams of SM failure mechanisms within via [29, 30].
The dependence of SM failure rate on the metal line-width can be explained using the concept of active diffusion volume (ADV). From a mass transport perspective, the ADV is defined by a coexistence region among the three volumes surrounding the vulnerable stress-induced voiding site, i.e., the interconnect volume, the diffusion volume and the stress gradient. The interconnect volume is given by the product of length, height, and width within the formation region of the damage. The diffusion volume is defined by the vacancies supply, which coalesces to form a void during a given SM test, which depends on the active diffusion mechanisms present, the stress temperature and the stress time. The diffusion pathways that define the diffusion volume may be able to extend for long distances depending on the stress temperature and time. However, a diffusion pathway is usable only when a sufficient driving force exists. The third is the stress gradient region where a significant driving force exists to compel vacancies to migrate towards a specific voiding site. The stress gradient region will depend on the
geometrical factors that define the interconnect system, material properties of metal, barrier, dielectrics, and local stress levels developed at the stress temperature.

Assuming the diffusion volume and the stress gradient in narrow and wide lines to be the same, the differences in the SM failure rate are caused by the different interconnect volumes. As shown in Fig. 2.8, while in narrow lines only vacancies beside the via can move towards it; in wide lines, significantly more vacancies from all directions are available around the via. Consequently, wide lines can provide more vacancies per time to the via, leading to earlier failure times.

Fig. 2.8: Diffusion area for narrow and wide lines. The wide line is more susceptible to SM failure compared to the narrow line because it can provide more vacancies supply [35].

2.1.3 In-situ Stress Migration

In addition to statistically relevant standard reliability tests and lifetime analysis, the in-situ study of the void evolution in Cu interconnects caused by SM is needed to understand kinetics of the degradation process. E. Zschech et al. presented dynamic studies of damage mechanisms in Cu interconnect caused by SM [36]. Scanning electron microscopy (SEM) and synchrotron-based transmission X-ray microscopy (TXM) were applied to visualize the void evolution. SEM experiments seem to be not very appropriate to study the SIV dynamics during baking since the focused ion beam (FIB) cut, which has to be located less than 100
nm in front of the Cu via, would intersect the Cu wide line in a region where the voiding is expected. In the case of TXM, the sample thickness can be larger than 1 μm, and consequently, at least several 100 nm of wide line material exists in each direction of the Cu via structure.

The test structures were stressed at a temperature of 175°C, a typical temperature for SM baking. The initial pre-stressing of the sample was performed for 50 hours. Subsequently, a series of TXM images were recorded after every 5 hours of baking at the same temperature. The time series of TXM images (Fig. 2.9) shows the void evolution in the Cu interconnect structures. Figure 2.9(a) shows the TXM image after 80 hours of thermal stressing, without any visible voids. In Fig. 2.9(b), after 90 hours of thermal treatment, an early stage of void formation was observed in the wide Cu line beneath the via. The void continued to grow during further thermal treatment, as clearly seen after 95 hours of thermal stress in Fig. 2.9(c). For this particular sample, the void fully encompassed the bottom of the via after 100 hours of baking at a temperature of 175°C, as seen in Fig. 2.9(d).

In contrast to EM studies, no void movement was observed. Subsequently after these TXM experiments, the FIB-based serial section technique was used to create a number of parallel cuts through the wide Cu line and the Cu via, and particularly around the region where the void was formed. It was found that the extension of the void is significantly larger than the via cross (see Fig. 2.10). These experimental results support the SM failure mechanism model proposed by Ogawa et al.[23], in which vacancies within the ADV migrate along a stress gradient to the location where the small vias connect wide Cu lines, causing void nucleation and subsequent growth.
Fig. 2.9: Time series of TXM micrographs showing the void evolution during the SM experiment at 175 °C. The sample was thermally stressed at 175°C for (a) 80 hours, (b) 90 hours, (c) 95 hours, and 100 hours, respectively [36].

Fig. 2.10: Series of SEM images recorded during FIB milling of the SM test structure after the void evolution experiment in the TXM for 100 h at 175 °C [36]. The SEM image series gives an impression about the 3D shape of the void located close to the via.
Chapter 2: Literature Review

2.2. Electromigration

The phenomenon of electromigration has been known for over a century with initial observations reported as early as 1861 by Geradin in molten alloys of lead-tin and mercury-sodium [37]. During that period of time, the investigations were primarily basic studies, concentrated mostly on bulk materials. However, EM did not receive much attention from the engineering community until it was identified as the root cause of failure in Al interconnect lines in the integrated circuits of the 1960s [38]. Since then, EM became a key interconnect reliability concern and a great amount of research and developmental efforts have been invested towards improving the EM performance.

2.2.1 Fundamentals of Electromigration

Electromigration is a diffusion controlled mass transport of metal atoms, driven by electron wind current flow in metal lines [39]. As shown in Fig. 2.11, during electromigration, electrons collide with metal ions transferring momentum to them, causing metal ions migrate from the cathode and accumulate at the anode. This significant mass transport during EM results in accumulation of vacancies or atoms, creating voids at the cathode end and hillocks at the anode end of the interconnection [39]. The void formation in the interconnection results in an open circuit or increased line resistance that can cause circuit malfunction. The hillock formation at the anode terminal of the interconnect can cause a “short circuit” between adjacent interconnects.
Fig. 2.11: Illustration of the electromigration mechanism. Electrons collide with the copper ions resulting in a momentum transfer to the copper ions, which initiates a mass transport of Cu towards the anode terminal [40].

In general, EM failures are a result of the electron wind forces acting on metal ions. The electron wind is induced by an external electric field, wherein two forces act on the copper ions: a direct coulombic force which pulls the ions in the direction of the applied field and an opposite force resulting from a momentum exchange with scattering electrons [39]. As the latter force dominates, the electron wind induces a net material flow and the ions move in a direction opposite to the field. The electron wind force is generally expressed as [41]

\[F_{\text{elec}} = e^* E = Z^* e \rho j \]

(Eq. 2.2)

where \(e^* \) is the effective atomic charge, \(E \) is the electric field, \(Z^* \) refers to the effective atomic charge number, \(e \) is the fundamental electron charge, \(\rho \) is the electrical resistivity of the metal and \(j \) is the current density.
In the case of an interconnect segment on an IC chip, with rigid dielectric materials surrounding the metal lines, the motion of atoms leads to mechanical stress. The cathode end develops a tensile stress due to the depletion of Cu atoms, while the atom accumulation at the anode end makes it compressive. The flux divergence results in a stress gradient. This gradient in stress results in a gradient of the chemical potential and it is often referred to as the “back-stress”. Considering the back-stress, the net EM atomic flux (J) can be described by Eq. 2.3 [41].

$$J_{EM} = \frac{DC}{kT} \left(Z* e \rho j - \Omega \frac{d\sigma}{dx} \right)$$

(Eq. 2.3)

where D is the Arrhenius temperature dependent diffusivity, C is the concentration of atoms, k is the Boltzmann’s constant, T is temperature, Ω is the atomic volume, and $d\sigma/dx$ is the stress gradient along the one-dimensional (1D) interconnect line.

This atomic flux is mainly the result of two opposing driving forces: the EWF moving the ions in the direction of the electron flow and a back stress that pushes the ions in the opposite direction. From this equation, it can be inferred that the back-stress, which causes a reversal of the migration process, may reduce or even compensate the effective forward material flow. A steady-state condition can be achieved when the back-stress balances the EWF component, resulting in a zero net atomic flux along the line. I.A. Blech pioneered this observation and coined a condition for EM immunity, which is popularly known as the “Blech-length” or “short-length” effect criterion [41]. By equating Eq. 2.3 to zero, we can get a product of length and current density (known as the “jL” product), which can be used to identify the “immortality” condition:
\[(jL)_c = \frac{\Delta \sigma_{nucleation} \Omega}{Z^* \rho} \]

(Eq. 2.4)

where \(\Delta \sigma_{nucleation} \) denotes the stress difference between the cathode and anode required for void nucleation, \(L \) is the line length, and \(\Omega \) is the activation volume for EM. Generally, if the critical tensile stress for void nucleation, \(\Delta \sigma_{nucleation} \), is larger than the maximum steady state tensile stress developed in the line, no void will form and the line does not suffer from any EM failure. On the other hand, if \((jL)\) exceeds critical \((jL)c\) product, \((jL)c\), void nucleation is favored.

After void nucleation, the voids further tend to grow. Depending on the robustness of the diffusion barrier, which can shunt the electron flow inside the interconnect and the relative location of the void, it may attain a relatively large size without causing any open-circuit failure. In this case, the resistance will gradually increase as the void grows. Growth will eventually stop when an open failure occurs or when the EM wind force is balanced by the back stress, whichever happens first. If a force balance develops before the resistance reaches an unacceptably high value, the segment tends to remain immortal.

The immortality behavior and \((jL)c\) in Cu interconnects have been investigated by several authors. Generally, there is no standard \((jL)c\) product value for initiating EM because it is very much dependent on various factors such as the test structure dimension, dielectric material, metal capping material and process of fabrication. However, from the \((jL)c\) values reported in the literature, it can be observed that \((jL)c\) of M1-type structure is relatively lower compared to the M2-type structure. For the M1-type structure, the reported \((jL)c\) values is 2100A/cm (see Fig. 2.12(a)) [42]. On the other hand, for the M2-type structure, the reported \((jL)c\) values
is as high as 3700A/cm (see Fig. 2.12(b)) [43]. The possible reason for this discrepancy is attributed to the possibility of a void forming directly below the via to block current flow in an M1-type structure. While in M2-type structure, immortality requires the small void at the Cu/Si$_3$N$_4$ interface to grow sufficiently to become a fully-spanning void. The $(jL)_c$ was reported to be dependent on the Young’s modulus of the ILD [44].

Fig. 2.12: The failure distributions of (a) M1-type and (b) M2-type test structures, as a function of the (jL) product. From this figure, it can be inferred that the $(jL)_c$ of M1 is 2100A/cm, while for M2, it is \sim 3700A/cm [42, 43].
2.2.2 1D Electromigration Model

The most well accepted electromigration model in interconnect lines is the one proposed by Korhonen et al. [45], along with J.J. Clement et al. [46] in the early 1990s. The derivations of the relevant concepts presented in their work are summarized below.

Considering that the atoms migrate via a vacancy exchange mechanism, the flux of the metal atoms is equal and opposite to the flux of the vacancies. Therefore, the net vacancy flux can be expressed as

\[J_v = -\frac{D_v C_v}{kT} \left(\frac{\partial \sigma}{\partial x} - Z^* e \rho \right) \]
(Eq. 2.5)

where \(D_v \) is the vacancy diffusivity and \(C_v \) is the vacancy concentration. The material balance in the line direction gives the continuity equation as:

\[\frac{\partial J}{\partial x} = \frac{\partial C_v}{\partial t} - \frac{\partial C}{\partial t} \]
(Eq. 2.6)

In confined metal lines, the relative density change \(dC/C \) corresponds to a change in the stress as:

\[\frac{\partial C}{C} = -\frac{\partial \sigma}{B} \]

\[\frac{\partial C}{\partial t} = -\frac{C \partial \sigma}{B \partial t} \]
(Eq. 2.7)

where \(B \) is the effective modulus. Assuming that the vacancies are in equilibrium with the stress, the vacancy concentration can be written as:

\[c_v = c_{v,0} \exp\left(\frac{\Omega \sigma}{kT} \right) \]
(Eq. 2.8)
\[
\frac{\partial C_v}{\partial t} = \frac{\Omega C_v}{kT} \frac{\partial \sigma}{\partial t} \tag{Eq. 2.9}
\]

where \(c_{v,0} \) is the vacancy concentration in the absence of stress. Combining Equations (2.5) to (2.9), we can derive a partial differential equation describing the EM-induced stress evolution in the interconnect. This one-dimensional Korhonen-Clement model is thus given by

\[
\frac{\partial \sigma}{\partial t} = \frac{\Omega}{kT} \frac{\partial}{\partial x} \left[D_v C_v \left(\frac{\partial \Omega}{\partial x} - \frac{Z^* e \rho J}{\Omega} \right) \right]
\]
\[
\frac{C}{B} \left[1 + \frac{B \Omega C_v}{kT C} \right]
\tag{Eq. 2.10}
\]

Due to its non-linearity, and the stress-dependence of \(D_{\text{eff}} \), Eq. 2.10 can only be solved numerically. The stress evolution as a function of location along the interconnect at different times before and after void nucleation is shown in Figs. 2.13(a) and (b), respectively.
Fig. 2.13: Stress evolution as a function of location along the interconnect at different time instants in a 1D line segment (a) before (b) after void nucleation [47].

2.2.3 In-situ Electromigration

In recent years, a number of in-situ electromigration studies have been carried out on copper lines to understand the dynamics and evolution of the mechanism. Koetter et al. studied the correlation between void and hillock growth and microstructure in unpassivated physical vapor deposited Cu lines [48]. K.L Lee
et al. carried out Blech-type \textit{in situ} drift experiments on 10-\(\mu\)m-wide Ta/Cu/Ta and Ta/Cu(Sn)/Ta sandwich line structures and showed that the addition of Sn reduced the drift velocity significantly [49]. Proost \textit{et al.} have carried out drift experiments on passivated Blech-type test structures looking at the effect of various barrier layers on the drift velocity in both polycrystalline and bamboo plated Cu structures [50]. They concluded that the drift proceeds at the Cu/barrier layer interface, with the highest drift velocity measured in the case of Ta followed next by TaN and then TiN. A.V. Vairagar \textit{et al.} clearly observed void formation and migration at the Cu/dielectric interfaces [51].

In this part, we discuss the observation of \textit{in-situ} SEM electromigration in dual-damascene electroplated Cu fine lines with a bamboo grain structure [52]. Figures 2.14.I (a)-(d) consist of SEM micrographs of bamboo-like 0.18 \(\mu\)m wide line segments tested in series at 260\(^\circ\)C with \(j=1.8\) MA/cm\(^2\) for a series of testing times of 0, 9, 46, and 74 hours, respectively. The void growth up to 9 hours appears to occur by edge displacement. However, it is apparent from a series of SEM micrographs that the grain ahead of the void front is thinning from the grain surface for the test time of \(t = 9\) hrs to 46 hrs. Once the grain empties out, the next grain again thins from the grain surface for \(t = 46\) hrs to 74 hrs. This suggests that surface diffusion is the dominant diffusion path for void growth. On the other hand, at the anode end, a large hillock has formed due to the accumulation of copper, as shown in Figs. 2.14.II (a)-(d).
2.2.4 Electromigration Diffusion Paths in Cu Lines

The microstructure of copper is one of the important factors in determining the dominant Cu transport path. In a Cu interconnect line, Cu atoms can diffuse along several paths: bulk crystal lattices, grain boundaries, Cu/diffusion barrier interfaces and Cu/capping layer interfaces as shown in Fig. 2.15. An expression for the product of Z^* and D for a damascene structure can be written as a weighted sum of all possible diffusion paths in the interconnect system [53]:

$$Z^* D = Z^*_B n_B D_B + Z^*_I D_I \delta_I \left(\frac{2}{w} + \frac{1}{h} \right) + Z^*_S D_S \frac{\delta_S}{h} + Z^*_{GB} \sum_j D_{GBj} \left(\frac{\delta_{GBj}}{d} \right)$$ (Eq. 2.10)

where the subscripts B, I, S, and GB refer to the bulk, metal/liner interface, metal/inter-level diffusion barrier surface, and grain boundary, respectively; δ_b, δ_S, etc.
and δ_{GB}, are the width of the interface, surface and grain boundary, respectively; d is the grain size, w is the line-width, h is the line thickness, and n_B, $\delta_I \left(\frac{2}{w} + \frac{1}{h} \right)$, δ_S/h, and (δ_{GB}/d) are the fractions of atoms diffusing through the bulk, interface, surface, and grain boundary of the line, respectively.

![Diagram of diffusion paths](image)

Fig. 2.15: Different possible diffusion paths for Cu atoms during electromigration in the Cu interconnect system.

A range of activation energies for the diffusion along the grain boundary, the Cu/SiN$_x$ interface, grain bulk, and the Cu/Ta liner interface have been reported to range between 0.7 and 0.95eV [54-56], 0.8 and 1.1eV [35, 57, 58], 1.53eV [59], and 0.7 and 1.8eV [60-62], respectively. The top surface of the Cu is reported to be the fastest diffusion path [53]. Diffusion along the interfaces, such as Cu/SiN$_x$ and Cu/Ta), is highly dependent on their chemistry, bonding and impurity. The large variation in E_a for the interfaces is likely to be related to the interface property and materials, and both of these parameters are very sensitive to the fabrication process conditions. For a typical Cu damascene line, the atomic diffusion at the Cu/Ta liner
interface [61] and bulk diffusion [62] are not considered because of their very slow
diffusivities. As a result, Eq. 2.10 can be simplified as:

\[Z * D \approx Z_s^* D_s \frac{\delta_s}{h} + Z^{*}_{GB} \sum_{i} D_{GB_i} \left(\frac{\delta_{GB_i}}{d} \right) \]

(Eq. 2.11)

2.2.5 Electromigration Failure Modes

Most of the copper interconnect EM concerns are via-related. Copper interconnects without via connections typically demonstrate more robust EM behavior than structures with via connections, assuming no obvious process-induced defects. Furthermore, failure times for Cu interconnects without via connections tend to be significantly longer than for their Al counterparts at use conditions. As a result, most copper EM studies focus only on the via/line structures.

The direction of the current flow during EM test was found to have a strong effect on the reliability [63]. EM failures in the dual-damascene copper interconnect via/line structures can be classified into two distinct modes based on the stress current directions, i.e., “upstream” and “downstream”. The “upstream” is defined for the electrons flowing from the lower metal line through via into the upper metal line and the “downstream” case is defined vice-versa.

Three failure modes were found for the upstream case. The first failure mode corresponds to a void nucleation and growth at the Cu/Si$_3$N$_4$ interface at the cathode end of the M2 line (Fig. 2.16(a)) [63]. A void may preferentially nucleate and grow at the Cu/Si$_3$N$_4$ interface at the cathode end of the M2 line instead of the via itself, where the tensile stress is expected to be the highest. After a void has
nucleated at the Cu/Si$_3$N$_4$ interface of the M2 structure, the void will initially grow in the direction of the electron flow, resulting in a partially spanning void. As a result, the resistance of the test structure will increase only slightly while there is still a high-conductivity Cu path for conduction. An open-circuit failure will result only when the void grows to span the whole thickness of the metal line. This forces all the current to flow through the thin Ta liner layer, inducing significant Joule heating in the liner and leading finally to an open circuit failure.

The second failure mode for the upstream case is a void formation in the trench of the M2 line (Fig. 2.16(b)) [64]. Trench voiding may occur by grain thinning in the electron flow direction or by depletion of Cu grains in a step-wise fashion along the line [65]. Motion and agglomeration of surface voids has also been reported [51]. If this type of void occurs, a prolonged EM failure time is observed. In general, a very large void is needed to completely remove the copper across the line and cause a resistance jump. When a current path through the copper is interrupted by a large void, the liners across the bottom and sidewalls of the line shunt the current and show solid redundancy. This is the reason why electromigration failures caused by voiding may not be a serious reliability concern for copper lines without via connections.

The third failure mode is the voiding within vias (Fig. 2.16(c)) [66]. However, this type of voiding is much more strongly process dependent and is typically observed during early technology development. It can be suppressed by optimization of the via barrier [67], cleaning, and etch processes [68].
Fig. 2.16: SEM images show various EM failures in M2 line. (a) voids at the cathode end of the M2 line [63], (b) in the trench [64] and (c) inside the via [67].

For the downstream case, three EM failure modes were commonly observed, i.e., (A) surface voids directly under vias, where the void is in the shape of a narrow slit, (B) voids under the via, but displaced along the line – length and (C) in the line attached to the via (Fig. 2.17) [69]. The surface void mode (Case A and B) is an evidence that the dominant diffusion mechanism of Cu interconnects is the interface, therefore the void will preferentially nucleate at the Cu/Si₃N₄ surface near the cathode end of the M1 line. In Case A, the void is nucleated exactly under the
via. As such voids grow, even a partially spanning void can block current through the via since the Si$_3$N$_4$ insulator does not provide a conducting path to shunt current. Thus, a much smaller void volume is required for failure, resulting in shorter lifetimes. In Case B, the void location is not in contact with the via bottom, but displaced further downstream in the Cu trench. As a result, the void can grow larger and cause gradual resistance increase. In Case C, the voiding mechanism of the line depletion mode is similar to the upstream case. This type of void requires a prolonged duration of operating time before final failure.

Fig. 2.17: SEM images show various EM failures in M1 test structures: (a) narrow slit void under the via, (b) voids under the via, but displaced along the line-length and (c) void in the line attached to the via [69].
2.3 Effect of Stress Induced Voiding on Electromigration

It is evident from the previous two sections that both electromigration and stress migration are critical wear-out mechanisms, limiting the lifetime of ultra-large scale integration (ULSI) copper interconnect systems. Many researchers have attempted to study the influence of stress voiding on the EM behavior, however the study is limited to Al-based metallization only. This section summarizes the literature work aimed at studying the effect of SIV on EM in Al interconnects.

A.S Oates et al. characterized electromigration in narrow, stress–voided AlSiCu conductors [70]. The effect of passivation stress was investigated in particular since this parameter has a strong effect on stress-induced void growth. When the passivation stress is high, so that void growth is not saturated prior to EM testing, a pronounced degradation of failure time occurs. With a lower passivation stress, failure times were largely unaffected by SIV. The reliability implications of the presence of stress voids were also studied in terms of characterizing the current density exponent of the Black’s equation \(n \) and temperature acceleration parameters [70]. It was found that SIV does not affect \(n \), which is close to 2 for both stress voided and unvoided stripes, and the activation energy remains the same, which is close to 0.74eV. In addition, the examination of the failed stripes showed that in metallizations with high stress passivation, pre-existing voids were preferential sites for EM failure, producing slit-like open circuits as shown in Fig. 2.18. It was proposed that mechanical stress gradients generated by SIV growth are critical in the processes that result in these open circuits.
One of the reasons for EM degradation due to stress voiding was proposed by Matsunaga et al. [71]. He explained that the stress voiding in Al based interconnects will cause an increase of Al atomic flux divergence during EM test due to the current crowding and joule-heating effects around the voids. Since the EM time-to-failure (TTF) is considered to be inversely proportional to the gradient of the flux density of Al atoms, presence of stress voiding will enhance the EM degradation. It was found that the size of the SIV is independent of the line-width; hence, the influence of the voids on the interconnect reliability becomes more severe and pronounced with decreasing line width.

Further investigations on the growth propensity of pre-existing SIV during electromigration were performed by C.A Minor et al. using a numerical modeling approach [72]. Thermomechanical and electrical finite element analysis of voided metal interconnects were performed. The resulting information was used in modeling the stress buildup and atomic flux divergence during electromigration using the finite difference method. A simple correlation between the preexisting
stress-void and electromigration void growth was identified. A large preexisting-stress void in the metal line is more prone to growth during electromigration than smaller voids. This is a consequence of the stress gradient along the line generated by the stress-induced voiding. Therefore, controlling SIV is considered to be an important criterion in the initiatives to preventing or prolonging electromigration failure.

The growth of SIV and its influence on the electromigration performance were studied on different submicron Al-metallization encapsulated in an SiO₂ dielectric matrix by A.H. Fischer et al. [73]. The investigations on the EM behavior revealed a reduction of the Black’s equation current density exponent to \(n \approx 1.0 \) in metal lines with pre-existing stress-induced voids in comparison to \(n = 1.7 \) for good interconnects (Fig. 2.19). Despite these significant changes, the activation energy and shape factor (\(\sigma \)) of the EM lognormal failure distribution were observed to be unaffected by the presence of stress-induced voids. As a consequence, EM lifetime is significantly reduced in stress-void-damaged metallization. Hence, the influence of SIV on the EM performance has to be classified as a critical reliability concern.
Fig. 2.19: Determination of (a) current density exponent and (b) EM activation energy for M1-line test structures with and without pre-existing stress-induced voids [73].

2.4 Summary

In this chapter, we summarize the current status of understanding on interconnect reliability through the literature review of SM and EM in Al and Cu dual damascene interconnects. The basic understanding and principles underlying the SM phenomenon such as the stress migration physics, driving force for void nucleation, various factors affecting its growth such as active diffusion volume and
stress gradient were reviewed. Furthermore, the governing physics and opposing forces of flux for EM were also discussed. The driving forces for void nucleation, the Blech length (jL product) immortality condition and the effect of varying line width were also reviewed.

Although SM and EM are generally categorized under different failure mechanisms for interconnect reliability study, the fundamental physics underlying SM and EM are “similar”, since both are activated by diffusive mass transport induced voiding, from different driving forces. Past studies reveal that SIVs would influence the EM behavior in Al interconnects. It was reported that the EM failure time was reduced with increasing stress voiding severity. Current crowding and joule heating around the initial SIV were believed to accelerate the EM degradation. A large pre-existing SIV in the metal line was shown to be more prone to growth during electromigration than a small one due to the stress gradient along the line generated by the void. The current density exponent in the Black’s Equation was found to decrease in metal lines with pre-existing SIVs.

However, it is noted that the SM and EM interaction study is limited only to the Al-based metallization structures. Since most advanced technologies now adopt Cu for the backend and since the Cu interconnect material stack is different from that of the Al stack, in-depth theoretical and experimental investigations are needed to understand the SM - EM interaction in Cu/low-κ interconnects.
CHAPTER 3

EXPERIMENTAL AND SIMULATION DETAILS

As shown in the schematic diagram below, the experimental work in this study can be divided into four main parts: test structure design and sample fabrication, packaging, accelerated testing and physical failure analysis. The details of each part are discussed in this chapter.

![Sequential flow chart](image)

Fig. 3.1: A sequential flow chart of the experimental work carried out in this study.

3.1 Experimental Setup

The transition from Al to Cu for advanced VLSI interconnects involves changes in the architecture and the deposition technique. Unlike the direct patterning process for Al interconnects, no chemicals are available to etch Cu blanket films to form Cu interconnect lines. Wet etching is not applicable because Cu is isotropic, while reactive ion etching (RIE) is not practical due to the lack of volatile compounds at low temperatures. Therefore, Cu-based interconnects are fabricated using the damascene technique, following the approach to form trench and via patterns in the dielectric layers by lithography and etching, and filling them subsequently with Cu as the conductor material by electrodeposition.
The Cu interconnect samples used in this study were prepared by GLOBALFOUNDRIES, Singapore. The test samples were fabricated using a standard 45 nm CMOS process on 300 mm wafers, with a single damascene Cu on metal 1 (M1) and dual damascene Cu on the subsequent via (Vx) and metal leads (Mx), where x denotes the level of the metallization layer. The schematic diagram of the dual-damascene process is illustrated in Fig. 3.2.

First, the inter-layer dielectric film stack is deposited on Si substrate by plasma-enhanced chemical vapor deposition (PECVD) method to give a good film thickness uniformity and coverage conformity. The dielectrics constant (κ) values used in this study range from 2.7 to 3.7. After that, the dielectric film is patterned and etched using photolithography and RIE methods to produce high-aspect ratio trench/via that define the interconnect layout. Next, a Ta-based film of 10 - 20 nm thickness is deposited, which serves as an effective diffusion barrier. This is followed by a Cu seed layer deposited by the physical vapor deposition (PVD) technique. Cu is subsequently electrodeposited onto the wafer surface. The microstructures of the electroplated Cu films are found to comprise extremely fine initial granular structures. In order to enhance grain growth and recrystallization, the thin film had to be annealed at an elevated temperature. After Cu electroplating, the Cu overburden and the excess barrier layer at the top surface were removed by chemical mechanical polishing (CMP), followed by a Si₃N₄ dielectric cap layer deposition so that the subsequent interconnect layers can be deposited in a similar fashion using the same template as the base. These fabrication steps are repeated to produce the next metallization layer. Finally, the multi-layer metallization was
capped with a thick passivation layer and was subjected to a short duration of forming gas anneal (FGA) for defect curing.

Fig. 3.2: Process flow for interconnect test structure fabrication involving - (a) Dielectric deposition, (b) Trench / via patterning, (c) Metal barrier deposition, Cu seed deposition and Cu electroplate fill, (d) Cu and metal barrier CMP and (e) Nitride barrier passivation.

The SM and EM accelerated tests were carried out at a package level, which means the wafer was diced, the dies were attached and wire bonded to a ceramic
package for thermal and/or electrical stress testing. The reliability assessment was preferred in the package-level than wafer-level because of long measurement time. The packaging process was carried out at the Singapore Institute of Manufacturing Technology (SIMTech), A*STAR.

The first packaging step involves mechanical dicing to cut the Si wafer into individual chips. It was carried out by a full cut dicing method using a Disco DAD 341 dicing system. As a preparation step for dicing, the wafer was mounted on a dicing frame using ultra-violet dicing tape which has a base film and adhesive layer on top. The cutting tool, which is called as the dicing blade, was mounted in the spindle of the dicing equipment. Then, the wafer was mounted in the wafer frame held in a vacuum chuck, which moved at a specific feed rate passing through the dicing blade in the X and Y directions. The wafer was carefully diced because cracks can be easily generated in the low-κ material. To minimize crack and delamination, the dicing was performed in a surrounding presence of guard rings and the dicing blade was set to rotate at a relatively slow speed of 29,000 rpm. The guard ring prevented the moisture penetration into the devices through the edge of the chip. As shown in Fig. 3.3, the dicing cut method used was a single cut. It is a conventional method of singulating the chips by using one blade and one spindle in a single pass.

After wafer dicing, the selected samples were packaged in 24-pin dual-in-line ceramic packages (DIP) with a die-attach silver paste, and then cured in a vacuum oven at 120°C for 5 minutes to improve the adhesion. Next, the chip bond pads were wire-bonded to the lead frame for electrical connection. An example of the wire bonding schematic diagram is shown in Fig. 3.4. The pin-to-pin resistance
of all the structures was measured using a multi-meter, and they were inspected under the optical microscope to ensure that the wire bonding was properly performed.

![Diagram of dicing process](image)

Fig. 3.3: (a) Mechanical dicing process using the single cut method to dice the Si wafer into individual chips. (b) A photo of a diced Si wafer.

![Photo of diced Si wafer](image)

Fig. 3.4: (a) Schematic diagram of wire bonding. The wires shown connect the chip bond pad to the lead frame. (b) A photo of a packaged die.
Chapter 3: Experimental and Simulation Details

3.2 Testing and Analysis

3.2.1 Electrical Testing

Assessing the EM and SM reliability under normal operating conditions is not practical due to the extremely long testing time needed to observe sample failures. Thus, a more realistic accelerated lifetime testing is usually conducted at a high temperature and high current density stress for EM or at a medium temperature for SM, i.e., 150-200°C. The testing results can then be extrapolated back to the normal operating conditions using suitable physical / empirical extrapolation models. For stress migration, the extrapolation of the TTF from the high storage temperature to the operating temperature conditions can be carried out using the model in Eq. (3.1), prescribed in [74]:

$$TTF = C^* \frac{1}{(\Delta T)^2} \exp \left(\frac{E_a}{k_B T_{str}} \right)$$

Eq. (3.1)

where C^* is a constant, ΔT is the difference between the effective passivation deposition temperature and the storage temperature (T_{str}). For electromigration, the basis for such an extrapolation is the Black’s empirical equation, expressed in Eq. (3.2) [75]:

$$TTF = A j^{-n} \exp \left(\frac{E_a}{kT} \right)$$

Eq. (3.2)

where A is an empirically determined constant, j is the current density, n is the current density exponent typically ranging between 1 and 2, and E_a is the activation energy for the limiting diffusion path. It has been shown that a current density
exponent of $n = 1$ is consistent with void-growth-limited failure, while an exponent of $n = 2$ indicates void-nucleation limited failure.

The standard test method for stress migration test is relatively straightforward. SM tests are typically carried out at the wafer level. The resistance of the test structures is measured before baking. The total duration for baking is conventionally 1000 hours, with resistance measurements recorded at intermittent points of time, e.g. 250, 500, 750 and 1000 hours. The wafers are cooled to room temperature before each resistance measurement and then returned to the baking temperature. Resistance of the test structures that are obtained after each exposure to baking are compared to the initial resistances and any failures, if detected, are recorded down. Failure is defined as a resistance increase greater than a predefined amount, typically 10% from the original value.

However, from a practical viewpoint, SM test is not easy to be performed because of the long test duration. Tests that last 1000 hours correspond to an overall duration of about 6-8 weeks, including the testing time and data analysis. Furthermore, in contrast to EM, where the entire sample can be forced to fail, often only a small population of samples encounters SM failures. The small amount of data collected limits the failure distribution characterization and failure rate projection to the use condition. Considering these difficulties, IC manufacturers often choose to improve the process until no measurable SM behavior is evident in the metallization. This does not mean that the metallization is void free. Rather, it means that no void grows large enough to cause a measurable resistance shift by the end of a product life.
As shown by Eq. 3.2, EM test can be accelerated by increasing the current density and/or the temperature. While EM stresses for Al interconnects were carried out at around 250°C, Cu EM structures were tested here at 300°C or more, in order to keep the stress duration short and reasonable. The EM test was performed using a XACT-810 EM-tester which can host 64 test structures simultaneously. This is an in-situ test system, where the resistance change is monitored continuously with a high measurement resolution. A Keithley 2000 multi-meter was used to measure the individual voltage drops across each test structure. A photograph of the EM testing chamber is shown in Fig. 3.5.

During the EM test, there are two parameters that need to be precisely controlled: the testing temperature and the current density. Such control is necessary for appropriate EM lifetime extrapolation from the stress conditions to the regular operating condition. In order to achieve adequate temperature control during the experiment, a thermocouple was installed in the chamber to measure the ambient temperature and to provide feedback to the temperature controller. The constant current condition was adjusted and maintained by a current regulating board. As a result, the EM testing system offers effective regulation of both the stress temperatures and the current densities. The current fluctuation was very minimal and the temperature variation was less than 0.2°C.
3.2.2 Physical Failure Analysis

Extensive failure analysis of selected failed samples was carried out to observe the void morphology using either the SEM or transmission electron
microscope (TEM). However, since some of the test structures used in this study are via chain structures which consisted of a large number of vias, advanced failure localization technique is required. In this study, passive voltage contrast (PVC) technique and thermally induced voltage alteration (TIVA) methods were used to isolate and locate the failure site in the complex via chain structure.

PVC technique was used when there is a very high resistance defect in the via chain, such as an open via. The experimental procedure can be described as follows: at first, RIE and mechanical polishing were employed to selectively delayer the dielectric layers and Cu metal leads until the top metal of the stress-induced damaged via chain was physically revealed. During PVC analysis using SEM, an Al pad of the via chain structure was grounded and the electron beam accelerating voltage was adjusted to maximize the secondary electron yield. The defect essentially divided the structure into a grounded region and a floating region. This difference in potential generated a different secondary electron yield from each of these regions thereby enabling the failure analyst to identify the location of the defect at the boundary between the two regions.

As seen in Fig. 3.6, at areas where there is a discontinuity, the secondary electrons generated were attracted by the positive potential surface; thus these regions appeared dark. On the other hand, at areas with good connectivity, the surface of the sample would be grounded and the secondary electrons generated could be detected by the electron beam detector; hence these regions appeared bright. The difference in the contrast helped to locate the failed via easily. Subsequently, TEM analysis was performed to study the void morphology and infer the associated failure mechanism.
While PVC was used to locate a high resistance defect, TIVA is more sensitive in locating the defect. For TIVA, the sample was scanned with an infrared laser beam whose wavelength is 1340 nm. The sample was biased with constant current and the voltage was monitored. As the laser struck the defect location, the resistance change due to thermal effect and the measured voltage changed accordingly. Through this approach, the location was recorded and correlated to the sample.

3.2.3 Joule Heating Test

The purpose of quantifying Joule heating in the interconnects is to determine the maximum current density that can be applied at EM accelerated testing experiments. Significant Joule heating caused by resistive heating may occur when lines are stressed at very high current densities. Since diffusivity is highly temperature dependent, these temperature gradients will induce mass flux
divergences that may not occur at use conditions. To minimize this effect, the average temperature increase due to Joule heating is kept below 4 K.

The average Joule heating of the whole interconnect at the test temperature was estimated by first measuring the temperature dependence of the resistance at low current densities (in order to have only a negligible amount of Joule heating). The experiment was performed using a wafer level four point measurement technique. Then, the resistance was measured as a function of the current density at the test temperature. The resistance change of the metal line with temperature is defined by the following equation:

$$R = R_0(1 + \alpha \Delta T)$$ \hspace{1cm} \text{Eq. (3.3)}

where R_0 is the initial resistance of the line, and α is the temperature coefficient of resistivity (TCR). The TCR of the line was determined from the slope of the resistance vs. the temperature graph. Next, the sample was maintained at the EM test temperature while the current density was increased. From the change in the resistance as a function of the current density, the amount of Joule heating was calculated by:

$$\Delta T = \frac{R}{R_0} - 1$$ \hspace{1cm} \text{Eq. (3.4)}

Figure 3.7 shows an example of joule heating measurement for a 400μm long, 0.58μm wide M1 test structure. The test structure used in this experiment is a four-terminal EM structure, shown in Fig. 3.7.
First, a nominal current density ($< 0.1 \text{MA/cm}^2$) was passed through the structure in order to obtain the resistance value at temperatures ranging from 100 to 350°C. From the slope of the graph, it was estimated that the TCR of the test structure was $3.33 \times 10^{-3} \text{K}^{-1}$. Subsequently, while the temperature was fixed at the EM stress condition of 350°C, the current density was ramped from 0.2 MA/cm2 to 10 MA/cm2. Using Eq. 3.4, the amount of joule heating can be obtained. As shown in fig. 3.8 (b), even the maximum current density can be safely applied at 350°C test temperature without causing significant Joule heating. Note that $\Delta T < 4$ K even at $j = 6.2 \text{MA/cm}^2$.

Fig. 3.7: Schematic diagram of the four-terminal EM test structure used for joule heating test.
Fig. 3.8: Joule heating measurement for a Cu-based interconnect structure. (a) Resistance vs. temperature at nominal current density, (b) rise in temperature, ΔT, as a function of the current density, J, which is increased to an extreme value at elevated temperature over a short span of time.

3.2.4 Statistical Analysis

Electromigration-induced failures are stochastic in nature, therefore the EM failure time for any given population of interconnects is not deterministic, but governed by a statistical probability (cumulative failure) distribution instead. It is to be noted that most of the literature reports used the monomodal lognormal
distribution to describe the scatter of electromigration lifetime data, although the justifications are mostly empirical. As described in Chapter 2.2.5, there are several EM failure mechanisms for the same stressing conditions, and different underlying thermally driven failure mechanisms will have different failure time distributions (median failure time and spread of the failure data), with different statistical distribution parameters. EM failures caused by voiding in the Cu line at locations separated from the via usually have longer failure times, than those caused by voiding associated with the via bottom.

As will be discussed in Chapters 5 and 6, the experimental results show that the failure time for samples under the SM+EM test were widely distributed and the failure distributions did not show monomodal lognormal behavior. Therefore, in this study we use a statistical algorithm using the Akaike information criterion (AIC), Expectation and Maximization (E&M) algorithm and the Bayes’ posterior probability theory to identify the number of underlying failure mechanisms embedded in a given set of test data and classify the failed units belonging to each of these different mechanisms. The details of the adopted algorithm for this statistical approach are summarized below [77].

To identify the number of underlying physical failure mechanisms contained in the set of test data, the AIC was employed [78]. This AIC is a measure of the goodness-of-fit of a proposed statistical mixture model. It is used to determine the optimal number of mixture components that fit a given set of failure data. The expression for AIC is given by Eq. 3.5, where \(L \) is the maximum likelihood estimation (MLE) of the fitted model and \(m \) is the number of degrees of freedom (D.O.F.) in an \(n \)-component mixture distribution. The relationship between \(m \) and \(n \)
is given by \(m = 3n - 1 \). The term \((2m)\) in Eq. 3.5 is the penalty factor that prevents too many mixture components to be redundantly added to fit the data more accurately. The number of components \(n \), for which the AIC is the lowest is found to be the best-estimate for the number of distinct component distributions (failure mechanisms) in the test data:

\[
AIC = -2 \log(L) + 2m \quad \text{Eq. (3.5)}
\]

After determining the number of failure mechanisms, the E&M algorithm was used for the analysis of the mixture distribution [79-81]. It determined the distribution parameters by maximizing the log-likelihood function of the mixture distribution. Here, the E&M algorithm was applied to the case of a three-parameter lognormal mixture.

The probability density function (p.d.f), \(f(t) \), for a three parameter lognormal model is given by Eq. 3.6 where \(t_{50} \) is the median-time-to-failure; \(\sigma \) is the shape parameter and \(X_0 \), the failure-free time [82]. Since no failures can occur before the failure-free time, \(f(t) = 0 \) for \(t < X_0 \):

\[
f(t; t_{50}, \sigma, X_0) = \begin{cases}
\frac{1}{(t - X_0) \cdot \sqrt{2\pi \cdot \sigma}} \exp \left[-\frac{\ln^2 \left(\frac{t - X_0}{t_{50} - X_0} \right)}{2\sigma^2} \right], & t > X_0 \\
0, & t < X_0
\end{cases}
\]

\[
f(t; t_{50}, \sigma, X_0) = 0, \quad t < X_0 \quad \text{Eq. (3.6)}
\]
The p.d.f. for a n-component mixture distribution, \(f(t) \), is generally expressed as in Eq. 3.7, where \(p_i \) represents the mixing weight, \(\Theta_i \) represents the set of lognormal parameters \([t_{50j}, \sigma_i, X_{0j}]\) and \(f_i(t) \) is the p.d.f. expression for component \(i \) of the mixture. The sum of all the mixing weights is equal to 1. The component with the highest mixing weight is the dominant failure mechanism.

\[
f(t | \Theta) = \sum_{i=1}^{n} p_i \cdot f_i(t | \Theta_i), \quad \sum_{i=1}^{n} p_i = 1 \quad \text{Eq. (3.7)}
\]

For a two-component lognormal mixture, the effects of the failure-free time for the two different components, denoted as \(X_{0(1)} \) and \(X_{0(2)} \) respectively are included, and the overall mixture p.d.f. may be expressed as in Eq. 3.8:

\[
f(t | \Theta) = 0, \quad t < X_{0(1)}
\]

\[
= p_1 \cdot f_1(t | \Theta_1), \quad X_{0(1)} < t < X_{0(2)}
\]

\[
= p_1 \cdot f_1(t | \Theta_1) + (1 - p_1) \cdot f_2(t | \Theta_2), \quad t > X_{0(2)} \quad \text{Eq. (3.8)}
\]

The log-likelihood function \((L) \) for a three-parameter lognormal mixture is given by Eq. 3.9 where \(t_j \) represents the \(j \)th failure data. Based on Eq. 3.9, the best-fit distribution parameters are obtained by solving the four partial derivative expressions in Eq. 3.10:

\[
L(t | \Theta) = \sum_{j} \ln \left[f(t_j | \Theta) \right] \ln(n!)
\]

\[
\frac{\partial L}{\partial p_i} = \frac{\partial L}{\partial t_{50i}} = \frac{\partial L}{\partial \sigma_i} = \frac{\partial L}{\partial X_{0(i)}} = 0 \quad \text{Eq. (3.10)}
\]

These expressions can be modified to give equations Eq. 3.11 - Eq. 3.13, which are easier to solve. The expression \(\Pr(t_j) \) in Eq. 3.11 is the probability that a failure
unit which fails at time $t = t_j$ belongs to component i of the mixture distribution. It is called the *posterior probability*, and it is obtained from Bayes’ theory [80]. The symbol y in Eq. 3.13 represents either t_{50}, σ or X_0 as required:

$$\Pr(i | t_j) = \frac{f_i(t_j | t_{50(i)}, \sigma_i, X_{0(i)})}{\sum_{all} p_i \cdot f_i(t_j | t_{50(i)}, \sigma_i, X_{0(i)})} \quad \text{Eq. (3.11)}$$

$$p_i = \frac{1}{n} \cdot \sum_{j} \Pr(i | t_j) \quad \text{Eq. (3.12)}$$

$$\sum_{j} \Pr(i | t_j) \cdot \frac{\partial \ln \left[f_i(t_j | t_{50(i)}, \sigma_i, X_{0(i)}) \right]}{\partial y} = 0 \quad \text{Eq. (3.13)}$$

Equations 3.11 - 3.13 were numerically solved using the Matlab software to obtain the distribution parameters.

3.3 Simulation Details

A finite element modeling (FEM) and simulation approach was developed to understand the hydrostatic stress distribution in Cu interconnects, which is important to study the tendency for vacancy migration during SM and investigate the influence of interconnect geometry and dielectric material scenarios. Differential thermal stresses are generated in the Cu line-via structures during temperature cycling and at use condition. The thermal stresses generated in the Cu films and Cu lines are different. The thickness of a Cu film could be small, but its in-plane dimension is relatively large, resulting in a biaxial stress state. In a Cu line, the tri-axial stress state is expected since the sidewalls of the line are confined by the diffusion barrier and the dielectrics. Furthermore, plastic deformation behavior
is also different due to much smaller dimension of Cu lines. As the thickness of the Cu lines decreases, the yield strength is expected to be higher according to the Hall-Petch relationship. Therefore, thermal stress behavior of Cu films might not be a suitable model system to analyze the stress related failure mechanisms in Cu lines.

There are two ways to understand the stress distribution in the Cu interconnects, i.e., through measurement and/or modeling. The stress in the interconnect can be measured experimentally by wafer curvature and x-ray diffraction (XRD) technique. However, the current stress measurement technique is limited only to simple test structures. It has insufficient spatial resolution to determine the detailed stress distribution in complex interconnect systems. Hence, FEM has been extensively used for detailed stress distribution analysis. During the last few years, XRD measurements [24] have been used to validate the stress modeling theory.

3.3.1 Finite Element Simulation Model Approach

The FEM was built using the commercial ANSYS® software by assuming isotropic material properties with linear elastic behaviors [24]. The high yield strength of thin and narrow lines is explained by the limited grain size and the restrained dislocation movement due to increased interface area of contact [83-85]. In general, the model development comprises three steps.

A. Preprocessing

In this stage, the geometry of the test structure is designed, structured mesh for each volume is created, suitable material properties are assigned and appropriate initial and boundary conditions are applied. The type of element used in this
simulation is a 3D solid structure, i.e., “solid 45”. It has eight nodes having three
degree of freedom with each node translating in the nodal x, y, and z directions. The
boundary conditions used in the simulation are defined as follows:

1. The bottom plane is assumed to be rigidly clamped onto the substrate, thus
no displacement is allowed in any direction, i.e., \(u_x = u_y = u_z = 0 \). (Note: The
symbol \(u \) means displacement, e.g. \(u_x \) means displacement in the x
direction).

2. The top surface is free to move during deformation.

3. The structure was considered to be arrayed periodically along the x and y
directions, mirror symmetry normal to each surface. All interfaces were
assumed to have perfect adhesion, therefore no displacement is allowed in
the x and y directions.

B. Solution

During the solution phase of the analysis, the governing equations for each
element are formulated, assembled into matrix form and then solved numerically by
the computer. The stress free temperature was set to 300°C [15] and the simulations
were carried out at an SM-test temperature of 200°C.

C. Post-Processing

This is the last stage in the FEA process wherein the results are visualized
within the FEA environment. Numerical and graphical tools are used to analyze the
stress distribution in the designed model.

3.3.2 Validation of Stress Simulation Model
The stress simulation model developed in this work was verified using the simulation and experimental stress measurement data reported by S.H. Rhee et al. [24]. In order to evaluate the validity of our FEM model, the computed results were compared against data from volume-averaged thermal stresses in Cu, measured by XRD. XRD is a commonly used technique for measuring stresses in thin films and interconnect lines. As shown in Fig. 3.9(a), the method of this measurement is to get the change in the lattice parameter of the Cu lines in the stressed state. The plane spacing was measured at different inclination angles (ψ) to the surface normal and rotation angles (ϕ). Then a linear relation between the lattice spacing (d) and $\sin^2\psi$ was used to determine the principal strains as shown in Fig. 3.9(b). The corresponding strain was finally transformed to obtain the stress value [24].

As described in [24], the test structures used for stress measurement correlation were arrays of parallel Cu lines in TEOS oxide processed by a damascene patterning. A 0.5μm thermal oxide was grown on top of the 8 inch wafers. A blanket 0.6μm TEOS oxide film was then deposited on this 0.5μm thermal oxide. Following this, 0.6μm deep trenches were patterned in the TEOS oxide and a 40 nm Ta barrier layer was deposited prior to the deposition of a Cu seed layer and Cu electrochemical deposition. The excess Cu over the lines was removed by CMP. Finally, a 50 nm SiN capping layer was deposited, followed by the deposition of a 0.4μm thick TEOS oxide. Four different dimensions for the interconnect lines were reported for nominal widths/pitches: 1.0/2.0μm, 0.6/1.2μm, 0.4/0.7μm, and 0.25/0.55μm. The slopes of the stress–temperature curves, ($d\sigma/dT$), obtained from our FEA-based on the simplified 3D models were compared with those measured by the XRD method for TEOS. This method is preferable rather
than comparing the absolute stress value because the zero stress temperature varies depending on the process conditions in the experiment. Therefore, the slope is a more consistent parameter to use for comparing the stress characteristics of different samples.

Fig. 3.9: (a) XRD measurements of the thermal stress and (b) the linear relation between lattice spacing and $\sin^2 \psi$ used to determine the principal stress / strain values [24].
Considering the mirror symmetry condition in the simulated structure, a simplified half-line model was employed in this study as shown in Fig. 3.10. All interfaces in the structures were assumed to be perfect, and the metal lines were considered to behave elastically within the temperature range of the XRD measurements. Using the thermo-mechanical properties of the materials, boundary conditions, and stress free temperature data provided in [24], the thermal stress simulation was executed using our model. The results of the stress simulation in x, y, and z directions can be seen in Fig. 3.11. In general, the results obtained from the finite element analysis (see Fig. 3.12(b)) are in good agreement with the reported simulation and experimental data (as shown in Fig. 3.12(a)). Hence, our model is verified to be reasonable for stress simulation studies.

Fig. 3.9: A unit segment of the Cu interconnect structure showing finite element “mesh” discretization used for the calculations. Considering the symmetry, only a half-line model was employed.
Fig. 3.11: Stress component distribution for various line-width/pitch dimensions in the simulated Cu/SiO$_2$ model.
Fig. 3.12: (a) Comparison between the measured X-ray data and FEA results for TEOS passivated Cu lines as reported by S.H. Rhee et al. [24]. (b) The thermal stress data obtained from the simulation model developed in this work.

3.3 Summary

In this chapter, a detailed description of the experimental and simulation procedures adopted for the Cu interconnects SM-EM reliability study was presented. In the first part, we discussed the experimental procedure consisting of test structure design and sample fabrication, packaging, accelerated testing and physical failure analysis. The fabrication process for the Cu interconnects test structure using the damascene technique and detailed descriptions of the packaging
process were presented. After that, we elaborated on the standard SM and EM tests and the details of the physical analysis methods employed to examine the failure defect were discussed.

In the second part, we presented the approach for our simulation work. A finite element model was developed to understand the hydrostatic stress in Cu interconnects, which is important to study the vacancy migration tendency during stress migration and investigate the influence of interconnect geometry and dielectric material properties. In order to evaluate the validity of the FEM model, the computed simulation results were compared with the experimental data imported from literature.
CHAPTER 4

THE EFFECT OF DIELECTRIC SLOTS ON CU INTERCONNECT RELIABILITY

4.1 Introduction

As introduced in Chapter 1, the integration of low permittivity dielectric materials in the copper interconnects backend network has become very critical, considering the need for faster response devices (lower RC delay) in addition to miniaturization. However, the implementation of low-κ and replacement of SiO₂ has posed new challenges to both stress migration and electromigration reliability (and dielectric breakdown as well). It has been reported that Cu interconnects with low-κ ILD have a shorter SM lifetime compared to FTEOS [14]. Moreover, studies have shown that the presence of low-κ material enhances the mass transport kinetics for Cu migration during EM due to degraded thermo-mechanical properties of the stack and poor interface adhesion [44].

Generally, there are two approaches to improve the robustness of Cu interconnect reliability. Firstly, the system can be improved through process optimization, such as alloying the Cu [86, 87], replacing the traditional dielectric cap with a metal cap [62, 88], optimizing the thermal annealing process and re-sputtering step during PVD process for the diffusion barrier layer [89], etc. Secondly, the system can be improved through alteration of the interconnect design. One such approach is to add redundant vias in the metal line. Previous work has shown that employing a parallel configuration of multiple Cu vias helps to improve
the robustness of Cu interconnects towards both SM and EM failures [90-92]. Another approach is where the dielectric slot of the Cu interconnect is redesigned. This method is reported to be able to suppress SM failures [95, 96]. The dielectric slot here refers to a redesigned small dielectric block, which is commonly used in wide Cu metal leads to prevent dishing during the CMP process.

In this chapter, we study the individual SM and EM reliability of Cu interconnects in the presence of the dielectric slots. The possible SM and EM failure mechanisms and design and process integration challenges are discussed. The purpose of this work is to gain a good understanding of the SM and EM behavior in our test structures, as a basis to later investigate the interaction between these two failure mechanisms.

4.2 Fabrication Scheme of Cu Interconnect with Dielectric Slots

Figure 4.1 shows the schematic diagram of the test structure with a small dielectric slot in a wide bottom Cu metal lead (M1). This dielectric slot is incorporated into advanced Cu interconnects using a damascene process without additional masking steps. The fabrication process is described by the following steps (Fig. 4.2).

(a) First, M1 and a rectangular dielectric slot were masked together after the inter-layer dielectric (ILD) CVD process. The ILD material was a carbon-doped oxide, SiCOH (κ ~ 3).
(b) During the etch process, the rectangular dielectric slot was patterned within the wide M1. The location and shape of the dielectric slot has to be designed carefully as it will affect the interconnect resistance and reliability robustness.

(c) Then, Cu was electroplated on its seed layer template and was annealed at an elevated temperature.

(d)/(e) Following this, the redundant Cu was removed by a CMP process and the Cu surface was passivated with a layer of Si$_3$N$_4$. Thereafter, the M1 dielectric slot was formed.

Fig. 4.1: Schematic diagram of the top view of the dielectric slot in the bottom Cu metal lead (M1).

Fig. 4.2: Schematic diagrams illustrating the process flow involved in patterning and fabrication of the dielectric slot in the wide bottom Cu metal lead level.
4.3 Design Integration Challenges

As will be discussed in section 4.4, the location and shape of the dielectric slots was found to be very crucial in determining the SM reliability improvement. The dielectric slot, which is incorporated near the via, is more effective in lowering the tendency for void nucleation (discussed in section 4.6). In addition, the dielectric slot must be sufficiently long to effectively impede vacancy coalescence in Cu interconnects for SM reliability improvement, and yet have a minimal effect on the interconnect resistance increase and EM performance. A very long dielectric slot will increase the interconnect resistance drastically and degrade EM performance (due to current density increase at the metal lead beside the dielectric slot). Hence, a balance between good reliability and electrical performance has to be achieved through appropriate design of experiment (DOE) and optimization.

The effect of the dielectric slot design and location on the electrical performance can be predicted by a resistance calculation. Assuming a 2μm x 10μm metal lead, with a rectangular dielectric slot, the interconnect resistance dependencies on the width and the length of the dielectric slot are shown in Fig. 4.3(a) and (b). The interconnect resistance changes exponentially with the dielectric slot length \(L \) and linearly with the dielectric slot width \(W \). Its resistance could increase by more than 25% if an inappropriate choice of the slot length is made. Thus, an optimum length has to be chosen to prevent any significant increase in the interconnect resistance and simultaneously, it should still serve as a good impeder against vacancy coalescence. In addition to that, the dielectric slot width has to be designed to be sufficiently wide. A narrow slot poses difficulty in process
integration. During the masking and etching processes, narrow photo-resists tend to topple easily and causes distorted or missing patterns.

Fig. 4.3: Impact on interconnect resistance for varying dielectric slot dimensions. (a) Slot length, L, varied with a fixed width of 0.3μm and (b) Slot width, W, varied with a fixed length of 1.2μm. The insert shows the location of a 0.19μm via in a 2μm x 10μm Cu metal lead [95].

4.4 Effect of Dielectric Slots on Stress Migration Reliability

Figure 4.4(a) shows the experimental result of a SM test at 200°C for 1000 hours. It shows that the SM reliability of the wide bottom Cu interconnects with the dielectric slot is more superior to that without the dielectric slot. Moreover, as illustrated in Fig. 4.4(b), the SM reliability of interconnects with dielectric slots and dual-via interconnects, known to improve SM robustness [93, 94], is comparable. This observation was further supported by a physical analysis performed on stressed structures. Fig. 4.5(a) shows that in the absence of the dielectric slots, a stress-induced void was formed beneath the via and extended significantly into the wide Cu metal lead. On the other hand, as shown in Fig. 4.5(b), no voiding was observed in the presence of a dielectric slot close to the via [95]. The impact of dielectric slot on the interconnects resistance was minimal, i.e. \sim1.7% increment [95].
Fig. 4.4: (a) SM reliability improves drastically for wide bottom Cu interconnects with dielectric slots. (b) Similar SM robustness is demonstrated for wide bottom Cu interconnects with dielectric slots as compared to that with dual-via structures [95].

Fig. 4.5: Significant improvement of SM reliability for wide Cu interconnects with dielectric slot. Physical failure analysis of wide Cu metal leads after SM Test for (a) a conventional test structure shows significant voiding extending into the Cu line, while for the (b) test structure with a dielectric slot, no voiding was observed [95].
Further studies were carried out by G.D.R. Hall et al., who compared the effect of the dielectric slot for different sizes and locations on the SM robustness [96]. As shown in Fig. 4.6, it was reported that the metal lead without dielectric slot has the highest failure rate and dielectric slots placed near the via show the lowest failure rate. Moreover, longer slots are proven to be more effective in suppressing stress-induced failure than segmented slots [96].

Fig. 4.6: Cumulative failure distribution plot for SM tests on different dielectric slot design structures. The control sample with no dielectric slot had the highest failure rate, followed by the segmented slots at the center of the block, long slots at the center of the block and long slots at the edges of the block, near the via [96].
4.5 Effect of Dielectric Slots on Electromigration Reliability

In this part, we evaluate the electromigration reliability of interconnects with the dielectric slot in the lower metal line (M1). The length and width were 400μm and 0.58μm, respectively, while the M2 line was broader and shorter. The via diameter was fixed at 0.14μm and the dielectric slot size was 0.3X0.3μm slot. The distance between the dielectric slot and via was 0.12μm. The samples were stressed at a 1.5MA/cm² current density (line) and at a temperature of 350°C. The failure criterion used is the standard 10% increase in resistance.

The relatively low current density stress was selected to minimize Joule heating induced failures, especially at the sides of the dielectric slotted metal lead (M1). It was found that the stressing current density can be as high as 3MA/cm² at the sides of the dielectric slot. The TCR and average Cu interconnect temperature increase due to Joule heating was measured using a wafer level 4-point probe measurement technique. The TCR for the dielectric slot structure was calculated to be 0.00333K⁻¹ and the line average temperature increase is 0.1°C at 1.5MA/cm² test condition (Fig. 4.7). It was estimated that the temperature rise at the side of the dielectric slot was 0.2°C; giving rise to a negligible temperature increase in the Cu region next to the dielectric slot.
Fig. 4.7: Joule heating four-point probe measurement of the temperature rise (ΔT) in conventional and dielectric slot test structures.

Figure 4.8 shows the lognormal EM failure time distributions for the standard and dielectric slot test structures. Interestingly, the median times to failure (t_{50}) for both the test structures are similar. There was no notable lifetime degradation due to the dielectric slot or lifetime improvement as what we found for the SM phenomenon. Furthermore, to study the EM failure mechanism of the dielectric slot structure, the resistance changes as a function of time for most of the stressed samples were analyzed and compared with the conventional structures (see Fig. 4.9(a) and 4.10(a)). Physical analysis of the failed test structures was then performed using TEM. Fig. 4.9(b) shows that the failure occurred at the cathode terminal via in the form of a void along the Cu/Si$_3$N$_4$ interface, for the sample with the dielectric slot. The voids agglomerated near the via bottom along the Cu/Si$_3$N$_4$ interface, leading to a sudden increase in the resistance, followed subsequently by saturation (Fig. 4.9(c)). This failure mechanism was observed to be similar to that observed in the conventional EM test structure, as shown in Fig. 4.9(b).
Chapter 4: The Effect of Dielectric Slots on Cu Interconnect Reliability

Fig. 4.8: EM lognormal cumulative failure distribution plot for the standard and dielectric slot test structures.

Fig. 4.9: (a) EM resistance evolution trend and (b) TEM analysis of the EM-failed samples for the standard slotless test structure.
Fig. 4.10: (a) EM resistance evolution trend and TEM analysis of the EM-failed samples for the dielectric slot test structure during (b) void nucleation, and (c) void growth.
These results show that the Cu/Si$_3$N$_4$ interface is the dominant diffusion path for the Cu EM flux and the dielectric slot has minimal effect in suppressing Cu atom diffusion along the interface. In addition, the Cu void found next to the dielectric slot (Fig. 4.11) and the absence of any EM lifetime improvement confirm that the dielectric slot did not introduce any significant back stress in the metal lead, as was initially expected.

![Void was observed](image.png)

Fig. 4.11: Top down SEM analysis of an EM degraded sample for the dielectric slot test structure at the instance of the first resistance jump.

To study the stress distribution in the via-metal test structure, a three-dimensional (3D) finite element simulation was performed. Fig. 4.12 shows a 3D finite element mesh description of a two-level via-metal structure with a dielectric slot in M1. Due to symmetry, simulation was conducted using only one half of the test structure. The bottom plane of the structure was assumed to be rigidly clamped onto the substrate.
4.6. Discussion

We studied the SM and EM behavior of Cu interconnects with and without dielectric slots from a statistical, electrical and physical perspective. Our results suggest that despite the presence of a dielectric slot, the EM performance is not affected, while the SM reliability is enhanced. The possible mechanisms that improve the SM reliability are described below.

The process of void nucleation is strongly driven by the hydrostatic stress. Hence, interconnect regions which have a higher hydrostatic stress, have a greater tendency towards voiding. Although stress profiles hardly change for most part of the test patterns due to dielectric confinement and Si substrate clamping, the hydrostatic stress distribution around the via was lower in the case of the presence of a dielectric slot. We postulate the lifetime improvement was due to the hydrostatic stress reduction (~15%) in the dielectric slot test structure near the via, as shown in Fig. 4.13.
From a diffusion perspective, it was reported that the void nucleation rate is dependent on the transported vacancies within the active diffusion volume to the via, which is dependent on the stress gradient within the interconnects. The thermally generated stress gradient in the Cu interconnect drives the saturated vacancies from high stress regions towards the low stress regions [97], either through the grain boundaries or the Cu/Si$_3$N$_4$ interfaces. The vacancy flux can be expressed as [23]:

$$ J_{SM} = C(x,t) \left(\frac{D_{0,eff} \exp(-Q_{eff}/k_B T)}{k_B T} \right) \frac{\Delta \sigma}{\Delta x} $$

where: J_{SM} is the vacancy flux due to stress gradient, $C(x,t)$ is the local concentration, $D_{0,eff}$ is an effective diffusion prefactor, Q_{eff} is the activation energy, k_B is the Boltzmann constant, T is the test temperature, Ω is the local atomic volume and $d\sigma/dx$ is the local stress gradient.

Our FEM analysis in Fig. 4.13(a) shows that the stress states are lower at the Cu interfaces as compared with the region at the bottom of the metal lead. Hence, the vacancies are more likely to be driven from the Cu bulk towards the Cu/Si$_3$N$_4$ interfaces. Moreover, the Cu/Si$_3$N$_4$ interfaces near the via always show the lowest stress as compared to the other interfaces; thus they are more prone to be the destination for the diffusing vacancies.
Fig. 4.13: Simulated hydrostatic stress distribution for an SM test condition at $T = 200^\circ C$ and postulated vacancy transport mechanism for the (a) conventional slotless and (b) dielectric slotted test structures. The units of the stress scale are expressed in MPa.
The possible mechanism for SM improvement with the incorporation of a dielectric slot is due to the change of the diffusion pathway for vacancy migration. Fig. 4.13(b) shows that regions surrounding the dielectric slot have a lower hydrostatic stress. It is hypothesized that the dielectric slot will cause the vacancy to migrate towards it instead of the via. In other words, the dielectric slot acts as an effective vacancy diffusion block, thereby preventing the formation of stress induced voids beneath the via and enhancing the SM robustness of the designed structure.

The differences in the reliability robustness towards SM and EM mechanisms for the dielectric slot interconnects can also be explained from the atomic diffusion process perspective. Unlike SM, which is driven by stress gradients (Eq. 4.1), EM is strongly driven by the electron wind force, wherein atoms tend to move in the same direction of the electron flow. The atomic flux can be described by [39]:

\[J_{EW} = \frac{D C_a}{kT} \rho \left| j \right| z^* q \] \hspace{1cm} \text{Eq. (4.2)}

where \(J_{EW} \) is the atomic flux due to electron wind force, \(D \) is the diffusivity, \(C_a \) is the concentration of atoms, \(k_B \) is the Boltzmann’s constant, \(T \) is the temperature, \(Z^* \) is the effective charge number, \(e \) is the fundamental electronic charge and \(E \) is the electric field.

The presence of the dielectric slot is not effective in blocking Cu atom transport because the current can still effectively flow through the narrower metal segments at the two sides of the dielectric slot, leading to the expected migration of
Cu atoms away from the cathode area (Fig. 4.14). Similar to the case with the dielectric slot, voids tend to nucleate at the Cu/Si$_3$N$_4$ interface because the tensile stress in its neighborhood is expected to be the highest.

![Fig. 4.14](image)

Fig. 4.14: Schematic diagram of the electron flow path in the interconnect with a dielectric slot. The presence of the dielectric slot is not effective in blocking electron wind force dominated Cu atom migration because current can still effectively flow through the narrower metal segments at the two sides of the dielectric slot.

4.7 Summary

In this chapter, we investigated the effect of dielectric slot on Cu/low-κ SM and EM reliability in sufficient detail. The possible SM and EM failure mechanisms, design and process integration challenges were also discussed. It was reported that the SM reliability of wide bottom Cu interconnects with the dielectric slot is more superior compared to the standard slot-less Cu test structure [95, 96]. On the other hand, the EM test results show that the failure time distribution of the dielectric slot structure overlaped with that of the standard Cu structure. Unlike SM, which is driven by stress gradient, EM is predominantly driven by the electron wind force, with atoms migrating in the same direction of electron flow. The failure mechanism for both structures was observed to be similar, wherein voids tend to nucleate near the via bottom along the Cu/Si$_3$N$_4$ interface. Therefore, the
incorporation of the dielectric slot structure is a very useful design-for-reliability (DFR) consideration since it shows superior SM reliability, without compromising on the EM robustness.
CHAPTER 5

THE EFFECT OF STRESS MIGRATION ON ELECTROMIGRATION IN DUAL DAMASCENE COPPER INTERCONNECTS

5.1 Introduction

As discussed in Chapter 2, in interconnect reliability tests, SM and EM are typically investigated separately. The objective of the SM test is to study the metal failure mechanism due to intrinsic thermo-mechanical stresses. On the other hand, the objective of the EM test is to study the reliability of the Cu line for current density stress factor. Typical accelerated EM testing conditions are at a high temperature of 300-350°C for Cu interconnects. As shown in Fig. 5.1, the thermal stress at this temperature is likely to be very low since it is close to the SFT of the metal lines, which is around 250-300°C [14, 15]. Therefore, the intrinsic hydrostatic stress in the metal lines is relaxed and SM is unlikely to occur.

However at operating conditions, we might find that SM and EM can exist concurrently and have significant contributions to the physics of failure. SM might dominate along with EM (driven by the electron wind force) simultaneously when the chip is working, typically at temperatures around 100-125°C. Therefore, there is a need to understand the interaction of the SM and EM mechanisms since both could play a detrimental role in causing interconnect failure at chip operating condition.
In this chapter, the SM and EM interaction in lower and upper metal lines is evaluated. The statistical study of accelerated life test (ALT) time-to-failure data is discussed, followed by an analysis of the electrical characteristics and physical investigation into the voiding site, using various failure analysis techniques to understand the associated failure mechanisms. Three dimensional (3D) FEA simulation has also been carried out to study the SM behavior of Cu/low-κ interconnects. A failure mechanism model for stress evolution and void formation is formulated to provide insight into the interaction between these two failure mechanisms.

Fig 5.1: SM Model for void formation rate as a function of temperature. SM is caused by the interaction between the thermo-mechanical stress in the interconnect systems and the diffusion of vacancies [23]. The graph shows that the SM is expected to occur at use condition, however at the EM accelerated test condition close to SFT, role of SM is expected to be negligible.
5.2 Mass Transport Equation

The conventional equation for describing the kinetics of failure in Cu interconnects is given by Eq. 5.1. This net flux of atoms \(J \) is caused by electromigration only, where the metal ions drift due to momentum exchange between the conducting electrons and copper ions. The atomic flux is mainly the result of two opposing driving forces, the electron wind force moving the ions in the direction of the electron flow and a back stress that develops due to asymmetric metal migration towards the anode (causing stress gradient) which pushes the ions back in the opposite direction. The atomic flux \(J \) is therefore expressed as [44]:

\[
J = \frac{DC_a}{k_BT} \left(F_{EM} \right) = \frac{DC_a}{k_BT} Z^* e \rho j - \frac{DC_a}{k_BT} \Omega \frac{\partial \sigma_{EW}}{\partial x}
\] (Eq. 5.1)

where \(D \) is the diffusivity (m\(^2\)/s), \(C_a \) is the atomic concentration (m\(^3\)), \(k_B \) is the Boltzmann’s constant (m\(^3\)kg/s\(^2\)K), \(T \) is the temperature (K), \(Z^* \) is the effective charge number, \(e \) is the fundamental electronic charge (Coulomb), \(\rho \) is the electrical resistivity (Ω-m), \(j \) is the current density (A/m\(^2\)), \(\Omega \) is the atomic volume, and \(\frac{\partial \sigma_{EW}}{\partial x} \) is the stress gradient induced by the electron wind force (MPa/m).

However as discussed earlier, SM also plays a significant role in determining the Cu reliability at use conditions. Other driving forces such as concentration gradient and/or temperature gradient may be present as well, but they appear to be insignificant in properly designed products [98, 99]. Adding the effect of stress migration, the atomic flux in the BEOL interconnects at use condition can be rewritten as:
Chapter 5: The Effect of Stress Migration on Electromigration in Dual Damascene Copper Interconnects

\[
J = \frac{DC_a}{k_BT} \left(F_{SM} + F_{EM} \right)
\]

\[
J = \frac{DC_a}{k_BT} \Omega \frac{\partial \sigma_{mech}}{\partial x} + \frac{DC_a}{k_BT} Z^* e \rho j - \frac{DC_a}{k_BT} \Omega \frac{\partial \sigma_{EW}}{\partial x} \quad \text{(Eq. 5.2)}
\]

where \(\frac{\partial \sigma_{mech}}{\partial x} \) is the stress gradient due to mechanical stress.

The first and second terms in Eq. 5.2 are the forward atomic flux due to mechanical stress and electron wind force, respectively, and the interaction between these two driving forces in the metal line will be discussed in this chapter. The third term is the backward flux resulting from the back stress gradient induced by the electron wind force. However, considering that we use a long metal line for the test structure in this study, the effect of this force is negligible due to the shallow EWF-induced stress gradient (i.e., for large \(L, \frac{\partial \sigma_{EW}}{\partial x} \sim \Delta \sigma_{EW}/L \rightarrow 0 \)).

5.3 Test Structure Design

In this work, two test structures were designed and fabricated. Figure 5.2 shows the schematic diagram of the test structure to study the SM/EM interaction in lower and upper metal leads. The test structures used in this study consist of an arrangement of serial interconnects. A multilink test structure consisting of 28 plates with 56 via connections was used to investigate the SM and EM interaction. The advantage of the via-chain test structure is that SM failures can be detected with a small sample size. The test samples were fabricated using a standard 45-nm CMOS process on 300mm wafers, with the dual damascene process scheme. The
ILD material was a carbon-doped oxide, SiCOH ($\kappa \sim 3$).

In order to observe the SM-EM interaction in the lower metal, the interconnect system was designed such that M_X was susceptible to SM/EM failure while the chances of SM/EM failure at the upper metal is greatly suppressed due to a large interconnect length. It is well reported that wide metal is more sensitive to SM failure as compared to narrow metal lines [23]. Therefore the test structure was designed to have a wide M_X (width = 0.7 μm) and a narrow M_{X+1} (width = 0.14 μm) as shown in Fig. 5.2(a). There is a critical line-length current-density product that defines the condition for immortality, $(jL) < (jL)_c$, and this concept was used to localize the interconnect failure due to EM [41]. As shown in Fig. 5.2(b), the test structure for M_X was designed to be sufficiently long, i.e., 100μm, such that $(jL) > (jL)_c$ making EM failure highly probable. Whereas, for M_{X+1}, we opted for a very short length design, i.e., 1.66μm, such that $(jL) < (jL)_c$, leading to immortality with respect to EM. Upper metal extension is made longer; with a reservoir length of 1.15μm in order to further improve its EM reliability. Using an EM current density stress of 0.8MA/cm2 and 4MA/cm2 for M_X and M_{X+1} respectively, we can obtain $(jL)_{M_X} = 8000$A/cm and $(jL)_{M_{X+1}} = 664$A/cm. Thus, the value of $(jL)_{M_X} > (jL)_c = 2100$ A/cm for M_X [42] and $(jL)_{M_{X+1}} < (jL)_c = 3700$A/cm for M_{X+1} [43], such that EM failures are confined to occur only in M_X. The via diameter was kept at 0.14μm.

A similar concept with an inverted test structure was designed to study the SM/EM interaction in the upper metal leads. As illustrated in Fig. 5.2(c) and (d), the upper metal of the test structure was designed to be wide and long to make it susceptible to SM/EM failures. On the other hand, the lower metal was designed to be narrow and short for SM/EM immortality.
Fig. 5.2: Schematic diagrams of the (a, c) top view and (b, d) side view of via-chain test structures used for the SM-EM interaction study in (a, b) lower and (c, d) upper metal leads, respectively.
5.4. Testing Methodology

We performed the required SM/EM tests at a package level, as discussed in Chapter 3. Firstly, the samples were subjected to SM stress through a thermal bake at 200°C for 1000 hours. It was observed that the resistance increase (ΔR) for all the structures after the 1000-hours of SM stressing was very minimal ~<0.5%. Immediately after the SM stress, the temperature of the chamber was increased to the EM test temperature of 350°C with a stressing current of 0.8MA/cm² in Mₓ. With an increasing number of interconnect links, the resistance of each test device increases, resulting in a smaller percentage of resistance changes compared to the single link test structure when a void forms in the line. Therefore, the typical failure criterion used for this multi-link test structure is the first jump in the resistance [100].

It is well known that interconnects may exhibit joule heating effects caused by resistive heating when lines are stressed at high current densities. In order to validate the experimental testing condition, the joule heating effect in the test structure was measured. Since both test structures have the same design, we only measured the joule heating in the lower metal test structure. First, the test line was biased at a very low current density using a wafer-level four-point measurement technique. The resistance of the line was monitored as the sample was heated from room temperature to the stress temperature at 350 °C and the TCR was extracted. The value is approximately 3.09x10⁻³ K⁻¹. Next, the sample was maintained at the proposed stress temperature while the current density was increased. Figure 5.3 shows a plot of temperature change in the test structure as function of the applied current density. Compared with a single-link test structure, the temperature increase
in this multi-link test structure is observed to be more rapid, owing to the denser arrangement of lines and vias. It can be observed that the stress current density of 0.8MA/cm² at Mₓ causes a temperature increase of ~0.27K. Therefore, this EM test current density can be safely applied without causing any significant Joule heating.

Fig. 5.3: The temperature rise of lower metal multi-link test structure as a function of the lower metal current density, heated at 350°C. It is observed that the temperature rise at EM test condition is only about 0.27K and thus the possibility of temperature-induced failures during EM testing is very minimal.

5.5 Experimental Results

5.5.1 SM/EM interaction in the lower metal interconnects

A lognormal plot of the time to failure for the lower metal structure samples under SM+EM test and EM-test only, as a control sample, is shown in Fig. 5.4. The statistical data fitting for the failure distribution was achieved using the E&M algorithm and Bayes’ posterior probability theory [77]. The algorithm for this statistical fitting was discussed in Chapter 3. This statistical method was developed to identify the number of underlying failure mechanisms embedded in a given set of test data and classify the failed units belonging to each of these different
mechanisms. From the statistical study, the failure of the samples under SM+EM test shows a trimodal distribution, indicating the presence of three different failure mechanisms. It is deduced that 18.6% of the test structures failed due to Failure Mechanism I (FM-I); the majority of the failures (66.7%) correspond to FM-II and 14.7% of the failures could be attributed to FM-III. On the other hand, the control sample (EM-test only) shows a monomodal distribution trend. The statistical results are summarized in Table 5.1.

Fig. 5.4: Failure distribution of samples under SM+EM test compared to EM-test only samples for the study of SM/EM interaction in the lower metal interconnects. Accelerated life tests show that the failure distribution of failed samples under SM+EM test exhibits a trimodal distribution. The inset shows the resistance trends for each sub-population of this mixture distribution.
Table 5.1: Statistical test results for the M_X test structure. Here, \(t_{50} \) is the measured median time to failure and \(\sigma \) is the standard deviation of the natural log of the failure times for each population of samples (also known as the lognormal shape parameter). The error estimates for \(t_{50} \) and \(\sigma \) were calculated with 90\% two-sided confidence bounds.

<table>
<thead>
<tr>
<th>Population</th>
<th>(t_{50}) (Hours)</th>
<th>Confidence Bounds (Hours)</th>
<th>(\sigma)</th>
<th>Confidence Bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
<td>Lower Bound</td>
</tr>
<tr>
<td>FM-I</td>
<td>42.27</td>
<td>40.6</td>
<td>44.0</td>
<td>0.05</td>
</tr>
<tr>
<td>FM-II</td>
<td>65.76</td>
<td>63.0</td>
<td>68.6</td>
<td>0.122</td>
</tr>
<tr>
<td>FM-III</td>
<td>117.44</td>
<td>98.5</td>
<td>140.1</td>
<td>0.211</td>
</tr>
<tr>
<td>Control</td>
<td>98.62</td>
<td>91.7</td>
<td>106.1</td>
<td>0.196</td>
</tr>
</tbody>
</table>

As evidenced by the FM-I and FM-II populations, when the SM effects in the metal line are dominant, the EM median lifetime can be degraded by as much as 57.14\% and 33.32\%, respectively. This lifetime degradation suggests that SM can potentially accelerate EM failures during circuit operation. On the other hand, the statistical analysis also suggests that there is a small sub-population where the EM lifetime is not greatly affected by SM, as observed for FM-III. Note that the higher \(t_{50} \) for this sub-population compared to the control sample does not indicate that there is any lifetime enhancement; it is just an artifact due to the small sample size.

The typical resistance trends for each group of failures are shown as an inset in the plot below and in Appendix B. Both FM-I and FM-II groups of the SM+EM samples show a catastrophic resistance shoot-up trend where open-circuit failures occur abruptly. The FM-III group has a smaller resistance jump before the test was
terminated. On the other hand, the resistance trend for the majority of the control sample is a staircase-like gradually increasing trace which indicates that multiple, small random voids in the via-chain structure nucleate and grow before a final failure.

A PVC imaging technique was employed to locate the failure in the multilink structures after the SM/EM test. Fig. 5.5(a) shows the TEM micrograph of a device failed in the FM-I population which has an abrupt failure resistance trend. It reveals that the void is formed exactly below the via at the M1 cathode side. The TTF is very low because a small amount of Cu depletion around the via/metal interface is sufficient to cause a large resistance change. Since FM-I and FM-II have the same resistance characteristics, the voiding behavior of the FM-II population is expected to be the same. On the other hand, in FM-III, the failures occurred at the later stage where void forms in the trench of the metal line instead; as shown in Fig. 5.5(b). The TTF is enhanced because a large volume of Cu must be depleted prior to reaching the resistance failure criteria. The cross-sections shown are direct evidence that two very distinct failure modes are present.
Fig. 5.5: Cross section of degraded sample after SM+EM test from (a) FM-I population, where the void formed directly below the via of the cathode end causing open circuit failure. (b) FM-III population, in which the trench void formed in the Cu metal line.

5.5.2 SM/EM interaction in the upper metal interconnects

The failure distribution of the samples under the SM+EM test and EM-only test for upper metal structure is shown in Fig. 5.6. Statistical analysis indicated that the failure of the samples under these two tests exhibits monomodal statistics. The t_{50} for the upper metal structure under the EM-only test was 119.82-hours, which is larger than the EM-t_{50} in the lower metal test structure. This experimental data is consistent with the literature reports that the upper metal structure has a longer lifetime since a larger void volume is required for open failure [63]. The t_{50} for the samples under the SM+EM test was 107.55-hours, implying that the EM lifetime degradation due to SM effect is \sim10.24%. The statistical results are summarized in Table 5.2.
Table 5.2: Statistical test results for M_{X+1} test structure.

<table>
<thead>
<tr>
<th>Population</th>
<th>t_{50} (Hours)</th>
<th>Confidence Bounds</th>
<th>Confidence Bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
</tr>
<tr>
<td>SM+EM Test</td>
<td>107.55</td>
<td>102.1</td>
<td>113.3</td>
</tr>
<tr>
<td>Control</td>
<td>119.82</td>
<td>113.1</td>
<td>126.9</td>
</tr>
</tbody>
</table>

The resistance evolution trends for all samples in both populations were observed to be the same, i.e., a step-like resistance increase (see Fig. 5.6). In order to assess void distribution in the multi-link test structure, a TIVA imaging technique was used. As shown in Fig. 5.7, the bright spots show the void nucleation locations in the via-chain structure on one of the degraded samples after the SM+EM test. Some voids were detected at the end of the single-link metal line. There are two possibilities of voiding site for the EM failure in the upper metal line, i.e., voiding occurs inside the via or in the line [101]. When a void forms, spanning the via, all the current must suddenly be carried by the highly resistive liner, thus causing a sharp resistance increase by a rapid joule heating and ultimately a disruption of the conduction path at a weak spot in the liner. On the other hand, when a void grows in the line, the available Cu volume gradually decreases, and the current is gradually shunted to longer sections of the liner, leading to a more gradual resistance increase. Since all the samples have a step-like resistance increase behavior and we did not observe any single sample having an abrupt resistance increase, voiding is most likely believed to occur at the M_{X+1} trench.
Fig. 5.6: Failure distribution of samples under SM+EM test compared to EM-test only samples for the study of SM/EM interaction in the upper metal interconnects. The lifetime degradation due to SM effect is ~10.24%. The inset shows the resistance evolution trend for each group population.

Fig. 5.7: TIVA analysis of one of the degraded samples from SM+EM test in the top metal of the M2 test structure. The rectangular region points to the stressed test structure. The bright spots indicate the void location where many voids are detected at the end of each single chain metal line.
5.6 Simulation

A finite element simulation code was developed to study the SM behavior due to process-induced thermal stress profiles generated in the Cu/low-κ interconnect structure and assess the most probable sites for vacancy accumulation. The simulation model of the test structure shown in Fig. 5.2 was built using ANSYS®. All these models were implemented assuming isotropic material properties with linear elastic behaviors. Due to line symmetry, only a quarter of the model was simulated. The material properties used are given in Table 5.3 and the stress free temperature was set to 300°C. Simulations were performed at an SM-test temperature of 200°C. In order to evaluate the validity of the simulation model more quantitatively, the computed results have been compared with the data obtained from volume-averaged thermal stress measurements in Cu using the XRD technique as described in Ref. 24.

Table 5.3: Material properties used in our simulation model [15, 102].

<table>
<thead>
<tr>
<th>Materials</th>
<th>CTE (10^{-6}/K)</th>
<th>Modulus (GPa)</th>
<th>Poisson’s Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>17.7</td>
<td>104.2</td>
<td>0.352</td>
</tr>
<tr>
<td>Ta</td>
<td>6.5</td>
<td>185.7</td>
<td>0.342</td>
</tr>
<tr>
<td>Si₃N₄</td>
<td>3.2</td>
<td>220.8</td>
<td>0.27</td>
</tr>
<tr>
<td>SICOH</td>
<td>12</td>
<td>16.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Fig. 5.8 shows the simulated hydrostatic stress profile in the lower metal lines of the Cu/low-κ interconnect system. It reveals that the region near the edge of the metal bottom has the lowest tensile stress (~50MPa) and the highest tensile
stress location is at the Cu bulk region (~185MPa). This generates a large stress
gradient between the Cu bulk and metal edge which enhances vacancy diffusion due
to thermo-mechanical stress of Cu interconnects. Furthermore, the insertion of a via
in the Cu metal lead enhances the non-uniform stress in the system. As reported in
Ref. [97], the thermally generated stress gradient in the Cu interconnect drives the
saturated vacancies from high stress regions towards low stress regions. Thus, the
non-uniform tensile stress near the via leads to a considerable stress gradient
cauising the vacancies to be driven towards the via. The stress gradients along the
top interface of the metal line would favor an interface mechanism transporting
vacancies to the via edge, while the bottom-to-top stress gradient would favor a
grain boundary diffusion. Thus, grain boundaries might be an added feasible path
for more vacancies to contribute to the interface migration.

Fig. 5.8: FEA simulation of hydrostatic stress in the lower metal test structure. The
non-uniform tensile stress near the via bottom leads to a prominent stress gradient
that drives vacancies towards the via.
For upper metal lines, the simulated hydrostatic stress profile is shown in Fig. 5.9. An interesting feature in this simulation result lies in the location of the peak stress gradient present in the two regions, i.e., near the edge of the upper metal lead (SM-I) and inside the via (SM-II). The hydrostatic stress at \(M_{X+1} \) Cu bulk is \(-135\) MPa, while at the edge, it is \(-72\) MPa. The non-uniform tensile stress in the via ranges from \(-30\) to \(-135\) MPa. The resulting stress gradient may favor vacancies to migrate towards these two different areas during SM test. However, apart from the stress gradient, SM also depends on the active diffusion volume as well [23]. Only those vacancies within this region would be able to participate in the voiding process. Since ADV in the SM-I region is much larger compared to the SM-II region, more vacancies will be accumulated at the SM-I site.

![Figure 5.9: FEA simulation of hydrostatic stress in the upper metal test structure. The non-uniform tensile stress is evident near the upper metal lead (SM-I) and inside the via (SM-II). The resulting stress gradient may favor vacancies to migrate towards these two different areas during SM test.](image)

107
5.7 Proposed Failure Mechanism

From the electrical results, physical failure defect signatures and simulation results, it is believed that during the SM test, the thermally generated stress gradient in the Cu interconnect drives the saturated vacancies to diffuse towards the “weak” via(s) as deduced from Figs. 5.8 and 5.9. A more compressive stress develops in volumes in which atoms accumulate, whereas the stress becomes more tensile in volumes in which atoms are depleted. The relative change in the atom concentration \(\frac{\partial C}{C} \) corresponds to a change in the hydrostatic stress [45]

\[
\frac{\partial C}{C} = -\frac{\partial \sigma}{B}
\]

(Eq. 5.3)

where \(B \) is the effective modulus of the dielectric. Therefore, the metal lines near the via become more tensile \((\sigma_{SM}) \) after SM test due to vacancy accumulation. If failure occurs when a critical stress \((\sigma_{crit}) \) is reached [45], this SM effect shortens the nucleation time \((t_{nucl}) \) for the cathode. Hence, the equation for time to nucleation, proposed by Korhonen et al. [45] can be rewritten as

\[
t_{nucl} = \left(\frac{\sigma_{crit} - \sigma_{SM}}{2G} \right)^2 \frac{\pi}{\kappa}
\]

(Eq. 5.4)

where \(G = Eq*/\Omega, \kappa = DB\Omega/kT \), \(E \) is the electric field, \(\Delta\sigma = \sigma_{crit} - \sigma_{SM} \) is the marginal additional stress needed to nucleate the void during EM test and \(q^* \) is the absolute value of the effective charge. Once a void is nucleated, it can evolve until it reaches a critical void size which causes a significant resistance increase \((V_{fail}) \). The approximate growth time to reach the critical volume size is given by [13]
where \(J_{EM} \) is the atomic or vacancy flux driven by electromigration and \(A_d \) is the effective cross-sectional area of the diffusion flux. The failure time can be expressed as the sum of the time required to nucleate a void, \(t_{nucl} \), and the time it takes for the void to grow and reach a certain resistance failure criterion, \(t_{grow} \) [16]. Substituting Eqs. (5.4) and (5.5), the failure time is expressed as

\[
 t_{failure} = t_{nucl} + t_{grow}
\]

(Eq. 5.6a)

\[
 t_{failure} = \left(\frac{\sigma_{crit} - \sigma_{SM}}{2G} \right)^2 \kappa + \frac{V_{fail}}{\Omega J_{EM} A_d}
\]

(Eq. 5.6b)

It was observed that in the lower metal line structure, SM can severely affect the EM lifetime as indicated by the FM-I (~57.1% degradation) and FM-II population (~33.3% degradation) in Fig. 5.4. The EM lifetime degradation mechanism is explained as follows - assuming a symmetrical condition, where the amount of vacancies accumulated near the vias after the SM test are the same, the metal line becomes more tensile at both ends by almost the same increment (\(\sigma_{SM1} \) and \(\sigma_{SM2} \)), as illustrated in Fig. 5.10. Equation (5.5) indicates that when SM is dominant, this tensile stress (\(\sigma_{SM} \)) shortens the nucleation time (\(t_{nucl} \)) for the cathode end during the EM test. It may cause void nucleation, if the stress developed at the cathode region due to SM reaches the critical stress value (\(\sigma_{SM} \rightarrow \sigma_{crit} \)). This void which functions as a sink of ensuing vacancies supplied by EM, continues to grow until it reaches a critical void size which causes a significant resistance increase.
(t_{grow}). On the other hand, at the anode side, the EM mass flux will cancel out the vacancy accumulation. Therefore, the stress will be neutralized and during subsequent EM stressing, this region progressively shows compressive stress due to Cu atom accumulation. Our TEM analysis further supports this hypothesis. As shown in Fig. 5.5(a), the induced void for a majority of the SM+EM test samples was formed beneath the via, causing open circuit failure. This suggests that high concentration of vacancies beneath the via after SM test, favors void nucleation in this region during the EM test.

![Mechanism of SM and EM interaction – an approach using stress evolution diagram.](image)

Fig. 5.10: Mechanism of SM and EM interaction – an approach using stress evolution diagram. (a) Schematic showing the atom and vacancy movements, assuming symmetrical structure condition, wherein the vacancy distribution near both ends after the SM stress test is assumed to be the same. (b) As a result, the metal line becomes more tensile by almost the same increment (σ_{SM1} and σ_{SM2}) and the time to void nucleation is shorter, $t_{N2} < t_{N1}$, during subsequent EM test at the cathode end.
Since self-diffusion of vacancies in the polycrystalline microstructure material during SM test is a random process, the amount of vacancies accumulated near the vias at both ends after SM test can be largely different for a statistically small subset of the samples tested. This could be the reason why we observe three different populations for the samples under the SM+EM test. It may also be possible to observe void nucleation prior to any EM test, if the stress developed at the cathode region during SM reaches the critical value, $\sigma_{SM} \rightarrow \sigma_{crit}$. In this case, there is no initial time required for void nucleation and the EM failure time is solely governed by the growth time only, as shown in Equation (5.7).

$$t_f = t_G = \frac{V_{fail}}{\Omega(J_{SM} + J_{EM})A_d} \quad \text{(Eq. 5.7)}$$

On the other hand, the statistical results in Fig. 5.4 show a small late-failure population where the EM lifetime is not degraded due to SM effect, i.e., the FM-III group. The insensitivity to the SM effect for this sub-population may be attributed to the possibility of “limited” vacancy density accumulation at the cathode region in each single link of a serial chain test structure, compared to the anode region (see Fig. 5.11), thereby making the resulting SM effect negligible. Equation (5.4) indicates that when the SM effect is insignificant, the void is nucleated due to EM flux only. The physical failure analysis for this failure mode shows that the void occurs in the trench of the metal line and this failure is typical of EM downstream failures as reported in Refs. [69, 103]. This observation agrees well with the in-situ SEM analysis, where, in the case of the EM-only test, voids are formed at interfaces
and grain boundaries, often far away from the vias [104]. Depending on the interface strength, voids can move over large distances in the opposite direction of current flow.

Fig. 5.11: (a) Schematic showing the atom and vacancy movements, assuming the amount of vacancies at the cathode region is limited. (b) As a result, there is no tensile stress developed at the cathode side of the metal line after SM test. The time to reach void nucleation is the same, \(t_{N2} \approx t_{N1} \), during EM test, i.e., SM effect is almost negligible.

Our observation that SM effects may accelerate EM failure kinetics agrees well with the observation by M. Hauschildt et al. [105]. Their paper presented the downstream EM failure distribution of samples under various stress temperatures, ranging from 150°C-325°C. It was observed that the EM failure distribution of samples subjected to SM-dominant temperatures, i.e., around 150 and 175°C,
showed a bimodal trend, whereas other temperature conditions exhibited monomodal statistics (Fig. 5.12). A few very early failures were found at 150 and 175°C possibly indicating that the presence of SM can accelerate the EM failure process, resulting in a much shorter time to failure.

![Graph showing Lognormal EM failure distribution of lower metal interconnect samples under various stress temperatures, ranging from 150°C-325°C [105].](image)

Fig. 5.12: Lognormal EM failure distribution of lower metal interconnect samples under various stress temperatures, ranging from 150°C-325°C [105].

In the case of the upper metal structure, Fig. 5.5 shows that the group of samples under the SM+EM test suffers ~10.2% degradation. From the initial resistance data prior to the EM test, there was no classical SM failure detected in any of the samples since there were no abrupt failures. The literature suggests that SM voiding in upstream structure is typically located inside the vias, causing open circuit failure [35, 89].
From the experimental and simulation results above, we postulate that SM can potentially accelerate EM failures at nominal circuit operating conditions because of vacancy accumulation at the end of the metal line and shorten the nucleation time (t_{nuc}) for the cathode end to reach the critical voiding stress during the EM test earlier. SM stress can shorten the time to reach nucleation stress during EM test, as shown in Eq. 5.6. However EM degradation in the upper metal structure is not as severe as in the lower metal structure because after a void has nucleated at the Cu/Si$_3$N$_4$ interface of the M$_{X+1}$ structure, the void still needs a long time to grow to span the whole thickness of the metal line before it causes resistance of the line to increase substantially. This suggests that for upper metal structures, the nucleation time is negligible compared to void growth time, i.e., $t_{nuc} < t_{grow}$. In such a case, it is the growth process, not nucleation that causes the device to fail most of the time. In contrast, for the M$_X$ test structure, voids will preferentially nucleate near the cathode end of the M$_x$ bottom via. Thus, the amount of growth in void size needed to cause failure in M$_x$ is much lower.

The effect of SM on EM is more prominent when the technology node is scaled down to the sub-45nm range. Smaller vias need a lower vacancy density to cause the metal line to reach the required critical tensile stress for void nucleation. In addition, the introduction of more porous low-κ materials lowers the critical nucleation stress [44]. This will reduce the time-to-failure for the cathode end to reach a vacancy threshold for super-saturation which, in turn, leads to a much earlier void nucleation at the interface. However, this SM and EM interaction could be minimized with some process improvement, such as optimizing post-plating annealing conditions. Equation 5.2 indicates that the atomic flux in BEOL is a
function of the hydrostatic stress gradient. Therefore, reducing post-plating annealing temperature will reduce SFT, leading to lower stress gradients. Reference [106] reported that long low-temperature post-plating annealing has a superior SM and EM performance compared to long high-temperature post-plating anneal.

5.8 Summary

In this chapter, we have studied the interaction of SM and EM in the lower and an upper metal leads of dual-damascene Cu/low-κ interconnects. The dependency and combined effect of these two key failure mechanisms are important to be understood, as it is expected to be dominant in the chip when used at nominal operating conditions, wherein the thermal hydrostatic stresses are considerably higher. The typical accelerated EM testing conditions are at a relatively high temperature, typically close to the SFT of the metal lines. As a result, the effect of intrinsic thermal stress on the reliability and lifetime of metal lines is seldom properly accounted for and the current reliability projections based on the standard EM test algorithms may be overly optimistic.

The influence of the SM on EM behavior in Cu interconnects was analyzed here from a statistical, electrical and physical perspective. The results from these different types of analysis clearly reveal that the EM failure time of the metal line could be strongly affected by the presence of the residual stresses, due to SM at the cathode end. When the SM effect in the lower metal line is dominant, the EM lifetime could be degraded by as much as 30 – 60%. TEM analysis shows that the void tends to nucleate and grow beneath the via, causing catastrophic failure. This phenomenon is attributed to vacancy accumulation near the vias after the SM test,
causing the metal line to become more tensile and thereby shortening the nucleation time (t_{nuc}) for the cathode end to reach σ_{crit} during the EM test. However, vacancy diffusion in the polycrystalline material during SM test is expected to be a random process. When vacancy accumulation at the cathode region is limited, the SM effect may be negligible and EM lifetime is not degraded, which is shown by the small late-failure population in the statistical plot of Fig. 5.4.

For the upper metal structure, the failure distribution of samples under the SM+EM test shows that the EM lifetime was degraded by ~10%. It was observed that the EM degradation is not as severe as in the case of the lower metal line. Unlike in the lower metal structure, after a void has nucleated at the Cu/Si$_3$N$_4$ interface of the M_{X+1} structure, the void still needs to grow to span the whole thickness of the metal line before it causes the resistance of the line to fail. Since the lower metal structure has a poorer EM lifetime compared to the upper metal structure and the EM degradation due to SM was observed to be more significant in M_X, we may conclude that the lower metal structure is the weakest link determining the overall back-end chip lifetime.
CHAPTER 6

THE INFLUENCE OF STRESS MIGRATION ON ELECTROMIGRATION PARAMETERS IN COPPER DUAL DAMASCENE INTERCONNECTS

6.1 Introduction

The estimation of device lifetime at normal operating conditions is obtained from the extrapolation of accelerated failure test data. For Cu interconnects, the most common industrial practice to predict its lifetime is to extrapolate the EM reliability test to operating conditions using Black’s equation:

\[TTF = A j^{-n} \exp \left(\frac{E_a}{kT} \right) \]

Eq. (6.1)

where A is an empirically determined constant, \(j \) is the current density, \(n \) is the current density exponent typically ranging between 1 and 2, and \(E_a \) is the activation energy. It has been established through previous studies that a value of \(n=1 \) corresponds to the void-growth-limited EM failure, while void-nucleation-limited failure is represented by \(n=2 \) [16].

One of the limitations of the extrapolation method using Black’s equation is that it does not consider the effect of intrinsic thermal stress (SM). On the other hand, as discussed in Chapter 3, the lifetime extrapolation based on an accelerated SM-only test for Cu interconnect is not feasible considering the very long test durations needed. The small amount of data that can be collected limits the failure distribution characterization and failure rate projection to use condition.
Eq. 6.1 shows that there are two important parameters for interconnect lifetime extrapolation, i.e., activation energy and current density exponent. Therefore, in this chapter, we will characterize the effect of SM on these two EM parameters. After that, a simple empirical method to extrapolate the interconnect lifetime accounting for the effect of both SM and EM will be discussed. Finally, the influence of SM on other important EM parameters, i.e., permittivity scaling and short length effect, will be investigated as it is important for the assessment of further technology scaling and interconnect design.

6.2 Experiment

The test structure design is basically similar with the previous experiment (Chapter 5). However, in this test, we investigated two different ILD materials, i.e., SiCOH, with \(\kappa \sim 3 \), and FTEOS, with \(\kappa \sim 3.7 \), for assessing the permittivity scaling effect. The length of \(M_X \) was shortened to 10\(\mu \)m and 40\(\mu \)m for the short length experiment. All the SM/EM tests were carried out at the package level. Firstly, the samples were subjected to SM stress through a thermal bake at 200°C for 1000 hours. Immediately after the SM stress, the samples were transferred from an oven to an EM tester with a temperature of 350°C. The failure criterion used was the first abrupt jump in resistance.

6.3 Characterization of Activation Energy

The activation energy represents the energy barrier against the diffusive process resulting in EM and has an exponential relationship with EM lifetime so that increase in \(E_a \) is highly desirable [39]. It has been shown that the numerical
The value of E_a is representative of different specific diffusion paths. The possible diffusion paths in the Cu damascene line are grain boundaries, the Cu/dielectric interface and the Cu bulk with a range of activation energies as 1.2eV, 0.7-1.0eV, and 2.3eV, respectively [98]. For EM, it is well known that the main diffusion path in Cu lines is along the Cu/cap interface. On the other hand, the dominant diffusion mechanisms for SM is interfacial and grain boundary diffusion [23]. The voids are expected to be formed by agglomeration of vacancies at interfaces and grain boundaries within an active diffusion volume, which is the contour region within which vacancies are able to participate in the voiding process.

The effect of SM on EM activation energy was examined here with stressing the samples at three different EM temperatures, in the range of 300 to 350°C, maintaining the current density stress at 0.8 MA/cm². The lognormal plot of the TTF for the samples under SM+EM test and EM test-only for lower metal structure, at 300 and 325°C, is shown in Fig. 6.1, while the failure distribution at 350°C has been shown earlier in chapter 5. The t_{50} and shape parameter (σ) values of the lifetime distributions are consistent, where the t_{50} is increasing as the temperature decreases and sigma values are comparable over the entire temperature range. Statistical analysis indicates that the failure of the samples which has been subjected to SM test exhibits bimodal distributions, independent of the EM test temperature. The early failure population which shows lifetime degradation suggests that SM can potentially accelerate EM failures during circuit operation (FM-A). While the other population shows that the EM lifetime is not greatly affected by SM (FM-B). The t_{50} of FM-B population is found to last about 30-40% longer than the FM-A population with a similar σ value at the various test temperatures.
Chapter 6: The Influence of Stress Migration on Electromigration Parameters in Dual Damascene Copper Interconnects

Fig. 6.1: EM lognormal failure distribution of SM+EM test and EM-test only samples at test temperatures of $T = (300, 325)\, ^\circ C$.

The activation energy of FM-A population was extracted to determine the dominating diffusion mechanism for samples which are affected by SM. From the slope of t_{50} versus temperature (Fig. 6.2), it can be deduced that the activation energy of FM-A samples and control samples are 0.71eV and 0.79eV, respectively. Both these values represent diffusion at the Cu/Si$_3$N$_4$ interface of the M_X line, in good agreement with data reported in literature [98]. This result suggests that there is no change in the dominant diffusion mechanism for the sample which has been subjected to the additional SM stress.

Figure 6.3 illustrates the void formation process during SM+EM test. In the SM test, thermally generated stress gradients in the Cu interconnect drive the saturated vacancies to diffuse towards the via. As a result, the vacancies will accumulate in the interface and the grain boundary region near the vias. However, since the EM diffusion path is predominant at the interface, our experimental result suggests that only vacancies generated at the surface can contribute to the void
formation process during EM.

Fig. 6.2: Plot of $\ln(t_{50})$ versus $(1/kT)$ with extracted values of EM activation energy for lower metal structure. It shows that both values represent diffusion at the Cu/cap interface.

Fig. 6.3: The possible mechanism of SM and EM interaction. It shows that after SM test, vacancies will be accumulated both at the interface and grain boundaries of the metal lead near the vias. However, since the main diffusion path for subsequent EM is along the Cu/cap interface, only vacancies in the surface would be able to contribute to the void nucleation process.

The effect of SM on EM activation energy for upper metal structure is examined as well. From the slope of t_{50} versus temperature (Fig. 6.4), it can be deduced that the E_a value of SM+EM samples and control samples are 0.929eV and 0.933eV, respectively. Again, both these values are representative of diffusion along the Cu/ Si$_3$N$_4$ interface of the M$_{X+1}$ line. This suggests that there is no change in the dominant diffusion mechanism for the upper metal line.
Fig. 6.4: Plot of ln(t_{50}) versus (1/kT) with extracted values of EM activation energy for the upper metal structure. It can be inferred from the data that the similar value of $E_a \sim 0.93$eV represents diffusion at the Cu/cap interface for both tests.

6.4 Characterization of Current Density Exponent

In this part, the influence of SM on the EM current density exponent is investigated. The samples were stressed at three different EM current densities, ranging from 0.6MA/cm2 to 1 MA/cm2 with T = 350°C. A lognormal plot of the TTF for the samples under SM+EM test and EM-test only for upper metal structure is shown in Fig. 6.5. The EM median lifetime is extracted and plotted against the applied current density (Fig. 6.6). From the slope of this plot, the current density exponent can be obtained, in which the n value of SM+EM stressed samples and control samples are 2.071 and 1.796, respectively.

A similar method was applied to the lower metal structure, and from the slope of t_{50} versus applied current density (see Fig. 6.7), it can be deduced that the current density exponent in Black’s equation for the SM+EM stressed samples and EM test-only are 1.76 and 1.88, respectively. These results suggest that void has not been nucleated before EM test.
Fig. 6.5: Lognormal failure distribution for samples under SM+EM test compared to EM-test only samples at T = (300, 325)°C. Accelerated life tests show that the TTF of samples with SM+EM test show significant lifetime degradation by ~10%.

Fig. 6.6: Plot of ln(t_{50}) versus ln(1/J) with extracted values of Cu migration activation for SM+EM test and EM test-only samples in the upper metal line. The data indicates that there is no drastic change of the “n” value for samples which were subjected to additional SM stress.[107]
Fig. 6.7: Plot of $\ln(t_{50})$ versus $\ln(1/J)$ with extracted values of Cu migration activation energy for SM+EM test and EM test-only samples in the lower metal line. Again, no significant change in the “n” value is observed for samples which had been subjected to additional SM stress.

The observation of a relatively constant E_a and n values for the SM+EM and EM-only stressed samples suggests that the failure mechanism of these two samples has to be similar. Therefore, we can validate the use of the Black’s equation for SM+EM stress case to extrapolate the failure time obtained from accelerated test conditions to operating conditions. Since the SM+EM stressed samples have a shorter lifetime than the EM-test only samples, extrapolating the EM-only test results of lifetime may be too optimistic to predict the overall interconnect reliability. In order to be more conservative in predicting the interconnect lifetime, it is necessary to introduce a proportionality constant, the EM accelerating factor (AF), which describes the effect of SM in reducing the lifetime. The AF can be expressed as:

$$AF = \frac{(t_{50})_{SM+EM}}{(t_{50})_{EM}}$$ \hspace{1cm} (Eq. 6.2)
Using the Black’s equation, we can re-express the interconnect lifetime operating condition, which incorporates the effect of SM on EM, as:

\[TTF_{\text{op}} = AF \times TTF_{\text{str}} \times \left(\frac{j_{\text{str}}}{j_{\text{op}}} \right)^n \exp \left(\frac{E_a}{k_B} \left(\frac{1}{T_{\text{op}}} - \frac{1}{T_{\text{str}}} \right) \right) \]

(Eq. 6.3)

where \(TTF_{\text{op}} \) is the extrapolated failure times at operating condition, \(TTF_{\text{str}} \) is the EM accelerated failure time, \(j_{\text{str}} \) and \(j_{\text{op}} \) are the current densities at stress and operating condition and \((T_{\text{str}}, T_{\text{op}}) \) are the temperatures at stress and operating condition.

6.5 Dielectric Permittivity Scaling Effect

The drive towards increased device density and improved performance in semiconductor devices makes the switch from SiO\(_2\) to low-\(\kappa\) materials ILD inevitable. Transition to lower-\(\kappa\) materials is necessary to prevent crosstalk between conducting lines and reduce signal delays in the BEOL interconnect wiring. As shown in Fig. 6.8, in general, the ILD material generations can be classified into three groups, i.e., ILD materials with dielectric constants \(\kappa > 3.0\) (group I), \(\kappa = 2.5\) to 3.0 (group II), and \(\kappa < 2.5\) (group III). In this part, we assess the SM and EM interaction for two different ILD groups, i.e., group I and II. The materials chosen for integration with copper are FTEOS (\(\kappa \sim 3.7\)) and low-\(\kappa\) material - SiCOH (\(\kappa \sim 3.0\)).

Figure 6.9 shows the failure distribution for samples under SM+EM test compared to EM-test only samples. Accelerated life tests show that no degradation occurs for Cu interconnects with FTEOS dielectric. On the other hand, the effect of
SM and EM interaction seems to be quite detrimental with the integration of low-κ materials.

Fig. 6.8: Permittivity value vs. elastic modulus for commonly available low-κ ILD, obtained from Refs. [14, 15, 24, 102, 108] As the value of κ decreases, the elastic modulus also decreases.

Fig. 6.9: Failure distribution for samples under SM+EM test compared to the case of EM-test only. Accelerated life tests show that the TTF of SM+EM test samples with low-κ dielectric exhibit significant lifetime degradation. On the other hand, the failure times for the test structure with conventional FTEOS dielectric are not affected by the SM-EM interaction.
To understand the mechanism, we developed an FEA simulation code. We compared the hydrostatic stress at this interface for different dielectric materials with $\kappa = 3.7$ (FTEOS), 3.0 (SICOH) and 2.1 (p-SICOH), which represents a normal low-κ and ultra low-κ ILD material, respectively. The same material properties, shown in table 5.3, are used for simulation in Figs.6.10 and 6.11. The material properties of FTEOS and p-SICOH dielectrics are shown in Table 6.1.

Table 6.1: Material properties used in our simulation model [15,102]

<table>
<thead>
<tr>
<th>Materials</th>
<th>CTE (10^{-6}/K)</th>
<th>Modulus (GPa)</th>
<th>Poisson’s Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTEOS</td>
<td>1</td>
<td>59</td>
<td>0.16</td>
</tr>
<tr>
<td>p-SICOH</td>
<td>16</td>
<td>3.85</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Figure 6.10 shows the normalized hydrostatic stress as a function of distance along the Cu/cap interface and Fig. 6.11 shows the stress profile at a depth of 30nm from the interface. It shows a steep stress gradient from point A to B for Cu with low-κ material, while the stress gradient for FTEOS dielectric is almost flat. This suggests that the integration of low-κ materials favors self diffusion of vacancies along the interface towards the via (SM phenomenon) due to the stress gradient driving force. Hence, when the electron flows from via to lower metal, the EM flux will interact with the vacancies accumulation caused by SM, leading to early failures.

For future implementation of low-κ materials in the sub-45 nm technology node, our simulation results show that for further lowering of κ values in the back-end dielectric structure beyond $\kappa \sim 3$, there is no further rise in the stress gradients. This means that the rate of vacancy diffusion towards the via is the same for lower-
κ materials. However, as the critical stress (σ_{crit}) for void nucleation decreases when the Young’s modulus of the inter-level dielectric decreases, the implementation of lower-κ dielectrics becomes a big challenge. The critical stress can be approximated by [44]:

$$\sigma_{\text{crit}} \propto \sqrt{B\gamma}$$ \hspace{1cm} (Eq. 6.4)

where B is the effective bulk modulus and γ is the interface energy per unit area. As the critical stress goes down, the time-to-failure for the cathode end to reach a vacancy threshold for super-saturation decreases as well, leading to a much earlier void nucleation at the interface.

Fig. 6.10: The hydrostatic stress value (normalized) of lower metal structure, obtained from finite element simulation, as a function of distance at the Cu/cap interface.
Fig. 6.11: The hydrostatic stress value (normalized) of lower metal structure, obtained from finite element simulation, as a function of distance at the at a depth of 30nm from Cu/cap interface.

6.5 Short Length Effect

The EM threshold or short-length or Blech effect has been observed in the interconnect line for over 30 years [41]. It was found that shorter interconnect lengths are significantly less susceptible to EM damage than longer ones under the same stressing conditions. Because of this favorable condition, the short-length effect has been incorporated into circuit designs to allow for increased current densities at short conductor lengths [109].

Basically, the short-length effect phenomenon is caused due to the EM-induced mechanical stress gradient that generates a back flow of metal atoms in the direction opposite to the EM flux. The EM flux transports metal atoms toward the anode causing accumulation. This accumulation increases the chemical potential to such a level that further transport of the atoms to the anode is slowed down or even
impossible. As a result, the EM lifetime increases or may even reach immortality condition, if the accumulation induced back-stress from the anode end balances the electron wind force (see Fig. 2.12).

However, it is to be noted that most previous studies investigated the short-length effect phenomenon under EM-test only. As we might find SM and EM co-existing at operating conditions, it is important to investigate the SM and EM interaction and Blech effect in a short line structure. The immortality condition of short interconnect lines with respect to EM-only does not mean that the line would not fail at use condition. As previously discussed, the atomic flux in the BEOL interconnects at use condition can be expressed by Eq. 6.5. The interaction among the mechanical stress gradient (term 1), electron wind force (term 2), and the back stress gradient (term 3) needs to be fundamentally understood.

\[
J = \frac{DC_a}{k_b T} (F_{SM} + F_{EM})
\]

\[
J = \frac{DC_a}{k_b T} \frac{\partial \sigma_{mech}}{\partial x} + \frac{DC_a}{k_b T} Z^* \rho j - \frac{DC_a}{k_b T} \frac{\partial \sigma_{EW}}{\partial x}
\]

(Eq. 6.5)

Here the terms 1, 2 and 3 describe the influence of the mechanical stress gradient, electrical current and back-stress, respectively.

The focus of our study is only for lower metal line, with the length of M1 being \(L = 10\mu m\) and \(40\mu m\). The effect of SM was introduced to the samples with stressing them at a thermal bake of \(200^\circ C\) for 1000-hours. After that, the samples were subjected to EM stress, with three different levels of \((jL)\) product, i.e., \((jL) < (jL)_c\), \((jL) \approx (jL)_c\), and \((jL) > (jL)_c\). The dielectric used in this work is SiCOH with
κ~3.0, and it has been reported that the \((jL)_c\) for downstream stressing with this dielectric material is 2100 A/cm [42]. In this experiment, we limited the EM stressing time to 200-hours. Therefore, if the samples did not fail or show sufficient degradation within this period of time, it was considered to be immortal.

The first stressing condition is at \(j=1\text{MA/cm}^2\) corresponding to \((jL)=1000\text{A/cm}\), such that \((jL) < (jL)_c\). As shown in Fig. 6.11, if the stressing condition is much lower than the threshold criterion, there is no substantial resistance degradation, which implies immortal behavior for both SM+EM test and EM-only test samples under these conditions. The small resistance increase, around 3-4%, is a typical behavior observed during short-length test [109, 110]. This saturation of the resistance increase with time indicates the suppression of further EM-induced damage [109]. However, this immortality condition does not mean that the line would not fail at use condition. The literature reports have shown that the line can still fail due to SM effect, independent of the length. SM failures have been observed at various interconnect lengths of \(L = 1.5 \, \mu\text{m}, 30 \, \mu\text{m} \text{ and } 70 \, \mu\text{m}\) (Fig. 6.13).
Fig. 6.12: Resistance change versus time during EM stress for (a) EM test-only and (b) SM+EM test samples, with electrical stress duration fixed to 200 hours. The resistance change for both samples is small, around 3-4% and tends to eventually saturate, which is representative of the immortal behavior.

Fig. 6.13: SM failure at various interconnect lengths, (a) L=1.5μm [23], (b) L=30μm [95] and (c) L=70μm [92]. Void nucleation and subsequent growth occurs due to SM flux, independent of the metal length.

The second stressing condition is at 2MA/cm² where in (jL)=2000A/cm, such that (jL)≤(jL)c. As shown in Fig. 6.14(a), the resistance evolution trend of EM test at this stress condition still shows an immortal behavior up to 200 hours of
testing. However, when the EM test is performed on SM+EM test samples, a subset of the population starts to fail (Fig. 6.14(b)). For the 18 samples tested, 11 samples (61%) failed within the stress time. This set of results suggest that if the SM residual stress is very high, the line still fail EM, even if the \((jL) \) product is \(\leq (jL)_c \). This shows that the immortality condition in the short length structures may no longer hold true if the tensile stress built-up due to SM \((\sigma_{SM}) \) and EM \((\sigma_{EM}) \) is larger than the back-stress, that pushes the ions in the opposite direction. On the other hand, for a long line, the situation can be even worse since the high residual stress will accelerate EM failure as discussed previously in Chapter 5.

Fig. 6.14: Resistance evolution with time in (a) EM test-only and (b) SM+EM test samples, for 200 hours of EM testing. The resistance change for EM-test only samples is small, which shows the immortality behavior. On the other hand, for SM+EM test samples, the voids start to nucleate and saturate, with 61% of the lines failing.
The last stressing condition is at $j=1\text{MA/cm}^2$, tested with a similar test structure, but a longer line $L = 40\mu\text{m}$, so that $(jL)=4000\text{A/cm} > (jL)_c$. As shown in Fig. 6.15, for EM-test only samples, when the back-stress disappears, the void nucleates within a much shorter time (10 hours), and then it grows very rapidly prior to open circuit failure. We can expect the failure times to be further shortened if these samples were subjected to the SM+EM test routine.

![Resistance evolution with time in fresh samples (non-SM stressed) for 200 hours of EM testing.](image)

Fig. 6.15: Resistance evolution with time in fresh samples (non-SM stressed) for 200 hours of EM testing. The stressing condition is at $j=1\text{MA/cm}^2$, tested with a longer line metal, $L = 40\mu\text{m}$. Since $(jL) > (jL)_c$ for this case, the void is observed to nucleate and grow very rapidly.

6.6 Summary

We have presented a detailed characterization study of the SM effect on EM degradation parameters, i.e., activation energy, current density exponent, dielectric permittivity and short length effects, as it is important for lifetime extrapolation, assessment of further technology scaling feasibility and exploration of alternative interconnect designs. It was found that samples which were subjected to SM stress have $E_a=0.71\text{eV}$ and $n=1.76$, almost similar to that of the control samples.
$E_a=0.79\text{eV}$ and $n=1.88$, for the lower metal line structure. Correspondingly, the E_a and n values for the upper metal structure for SM+EM test sample and EM-test only samples are $E_a=0.929$ and 0.937eV and $n=1.8$ and 2, respectively. These activation energy values represent diffusion at the Cu/cap top interface of the metal line. There is no change in the dominant diffusion mechanism for the samples which have been subjected to additional SM stress.

The observation of a relatively constant E_a and n value for the SM+EM stressed samples and EM-only samples suggest that the failure mechanism for these two test conditions is similar. Therefore, we consider it to be valid to still use the Black’s equation to extrapolate the failure time obtained from accelerated tests to use condition. In order to include the impact of SM on the lifetime, we propose to include the AF term which we define to be the ratio of $(t_{50})_{SM+EM}$ to $(t_{50})_{EM}$.

The effect of SM on EM parameters was further investigated by characterizing the interaction for different ILD materials. This study has far reaching implications for the assessment of future interconnects technology scaling. Accelerated life tests show that no degradation occurred for Cu interconnects with FTEOS dielectric under SM+EM test. From the finite element simulation results, we find interfacial hydrostatic stress gradients to be high for the case of low-κ materials ($\kappa < 3$), making them more vulnerable to SM effect, as compared to FTEOS.

Lastly, we studied the effect of SM on EM for short length metal lines, to understand the interaction among mechanical stress gradient, electron wind force, and the back stress gradient. We found that the immortal behavior of short length interconnects may be non-existent if the stress built-up due to SM can interact with
a sufficiently strong electron wind force to exceed the critical stress for void saturation. This study clearly highlights the need for considering the multiple dependent failure mechanisms and their associated driving forces while assessing the overall reliability of any interconnect structure.
CHAPTER 7

STRESS MIGRATION RISK ON ELECTROMIGRATION RELIABILITY IN ADVANCED NARROW LINE COPPER INTERCONNECTS

7.1 Introduction

In this chapter, we extend our study on the area effect of SM on EM reliability in Cu interconnects, to present a comprehensive investigation comparing wide and narrow Cu line-width test structures. The focus of our study is only for lower metal line, because as discussed in chapter 5, it is the weakest link determining the overall back-end chip lifetime. In the first part of this work, we present the results of experimental studies in the very fine lines, followed by the discussion on the degradation mechanism. In the subsequent part, a method to estimate the EM void nucleation and growth time using Monte Carlo simulation technique is discussed.

In recent years, SM is studied from the perspective of “stress gradient”, active diffusion volume, vacancy flux and Cu grain boundary effects [23, 108, 111, 112]. Geometrical effects in terms of the width and length of the wide metal line are also found to have a significant influence on SM [32, 95, 113]. It is reported that SM failure is more rampant in wider metal lines because the larger metal plates serve as a better vacancy reservoir within one diffusion length of the via. Voiding in narrow lines appears to occur only at extremely long stressing time of 12,000 hours (>1 year) [113]. Therefore, the current understanding is that SM is a risk factor in large metal plates and not so much of a critical concern for further downscaled structures.
Chapter 7: Stress Migration Risk on Electromigration Reliability in Advanced Narrow Line Copper Interconnects

The SM reliability of Cu interconnects for narrow line width structures is seldom reported.

It is to be noted that most of the previous studies on SM failure are only based on the void growth phenomenon, causing resistance increase of the metal lines, which may gradually affect the functionality of the circuit. However, beside this SM void-growth risk, the influence of SM on the EM reliability has to be considered since SM and EM are expected to co-exist concurrently at normal operating conditions. SM might be prevalent all the time when the chip is working, typically at temperatures around 100-125°C. At the same time, EM failures can be triggered by the electron wind force through the interconnect and further enhanced due to the SM effect.

7.2 Experiment

The test structures design used in this study is basically similar with the previous experiment, as discussed in Chapter 5. Figure 7.1 shows the schematic diagram of the test structure used in this study, which consists of an arrangement of serial interconnects. The cross sectional area of the test structures was 0.07×0.14 µm² (width×height). The via diameter was 0.07 µm. The ILD material was a carbon-doped oxide, SiCOH (κ~2.7).

All the SM/EM tests were carried out at the package level. Firstly, the samples were subjected to SM stress through a thermal bake at 200°C for 1000 hours. Immediately after the SM stress, the samples were transferred from an oven to an EM tester with a temperature of 300°C and a stressing current of 0.8 MA/cm². The failure criterion used was the standard 10% increase in resistance.
7.3 Electrical Characterization

A lognormal plot of the failure times for the lower metal structure samples under SM+EM test and EM test-only, as a control sample, is shown in Fig. 7.2. The statistical data fitting for the failure distribution of both samples is best represented by a monomodal distribution. The EM-t_{50} for the samples under the SM+EM test is degraded by $\sim38\%$ than the control sample (EM test-only), and the lognormal failure distribution shows a shallower spread with shape parameter, σ, dropping from 0.548 to 0.193. In order to confirm this electrical result, other narrow test structures were also tested. The basic configuration is the same, but the metal cross section area is slightly larger. The width \times height of the metal lead is $0.14 \times 0.25 \, \mu\text{m}^2$ and the via diameter is $0.14 \, \mu\text{m}$. The ILD has a higher permittivity value of $\kappa \sim 3.0$. As shown in Fig. 7.3, a similar trend was observed, where both samples showed a monomodal trend and the t_{50} for the samples under SM+EM test was degraded by $\sim24\%$.

Fig. 7.1: Schematic showing the basic unit of the via-chain test structure used for the SM-EM interaction study in the narrow lines. The width of both metal levels are $0.07 \, \mu\text{m}$. By keeping the upper metal short, EM failure is induced in the lower metal line only.
Statistical fitting results indicate that the median time-to-failure for samples subjected to SM+EM is \(~38\\%\) lower than that of the EM-only test samples.

Fig. 7.3: Lognormal probability plot of time to failure for samples under SM+EM test compared to EM-test only samples for M1-structures with line-width = 0.14 µm, height=0.25µm encapsulated with a low-\(\kappa\) dielectric material (\(\kappa\)\sim 3.0). Statistical fitting results indicate that the median time-to-failure for samples subjected to SM+EM is \(~24\%\) lower than that of the EM-only test samples.
The effect of SM on EM was further examined by characterizing the current density exponent of the Black’s equation (n). It has been established through previous studies that the n value, which is obtained from the EM test, can be correlated to the failure mechanism of the metal interconnects. In theory, a value of n=1 corresponds to the void-growth-limited EM failure, while void-nucleation-limited failure is represented by n=2 [16]. Interestingly, the experimental work showed that a current density exponent value for samples under EM-test only often falls in between 1 and 2, i.e., 1.3 – 1.7 [110, 114, 115]. This suggests that within a set of data, there are sub-populations which undergo void-growth-limited and void-nucleation-limited failures [110].

In this study, the samples which had been subjected to SM-test, were stressed at three different EM current density values, j_{EM}, ranging from 0.6 - 1 MA/cm^2 with T = 300°C. From the slope of the median lifetime versus current applied (see Fig. 7.4), it can be deduced that the current density exponent in Black’s equation for the SM+EM stressed samples is ~1, which clearly indicates a void-growth limited failure. As a result, we suspect that in SM+EM samples, the void has been nucleated in the line prior to the EM test due to the SM effect, causing significant EM lifetime degradation, resulting in a shallower distribution spread.
Fig. 7.4: Logarithmic plot of the variation of the median time to failure (t_{50}) with inverse current density ($1/J$). The linear fit to the data on this scale provides the value of the current exponent, n. Our analysis results in a value of $n \approx 1$.

7.4 The effect of SM on EM for narrow Cu interconnects

The electrical stress results above demonstrate that SM has a serious wear-out effect on narrow metallization systems too, in the form of causing void nucleation in the line, thereby accelerating the EM failure. It is different from current understanding that SM is not a concern for narrow line width structures. The reliability assessment study using a standard SM-test, which involves 1000-hours of sample baking, is generally not so effective in understanding the SM effect because it only causes a negligible increase in the resistance of the narrow lines, which is hard to detect and quantify. However, it does not imply no risk is posed by SM; rather it only suggests that no void has grown large enough to cause a measurable drift in the resistance. A tiny void formation is hard to detect since Cu is a very conductive material. Unlike in the wide line where there are lots of vacancies which can contribute to the void growth, the source for vacancy supply in narrow line is limited by the width dimensions. The growth of the void would be very slow,
because it requires vacancies to diffuse from a longer distance to coalesce and form the void.

The widely accepted SM failure model is proposed by Ogawa et al. [23] in which voiding is postulated to occur by vacancy diffusion in the Cu line driven by the local tensile stress gradient around the vias. However, not all the vacancies in the line participate in the voiding process; only those vacancies within an ADV can do so. In this model, the ADV is defined as a circle centered on the via with a radius of the diffusion length \(x_D \) and approximated by \(\sim 2x_Dwh \), where \(w \) and \(h \) correspond to the width and thickness of metal line, respectively. The parameter \(x_D \) is defined as \(\sqrt{D\cdot t} \), where \(D \) is a diffusion coefficient and \(t \) is the bake time. The proposed theory implies that the active diffusion volume changes linearly with respect to the metal width, as narrow lines have a much limited supply of vacancies than the wider ones.

For our current experimental results, the EM degradation due to SM-voiding still occurs even in the very narrow line. We propose another mechanism to play a role because if the void nucleation is caused by the vacancy accumulation only, the narrow line should show no or almost negligible effect. We hypothesize that the critical void nucleation stress for SM is determined by stress developed due to accumulation of vacancies (\(\sigma_{SM} \)) and the intrinsic hydrostatic stress (\(\sigma_0 \)).

\[
\sigma_{nuc} = \sigma_{SM} + \sigma_0
\]

(Eq. 7.1)

This \(\sigma_0 \) arises from the coefficient of thermal expansion (CTE) mismatch between Cu and the substrate/dielectrics. C.J. Wilson et al. [116] reported that the intrinsic hydrostatic stress in the line increases as the interconnect line-width is scaled,
because in the narrow lines, the grains become pinned in the linewidth reducing stress relaxation through grain growth or reorder. Based on synchrotron x-ray measurements at room temperature, when the line is scaled down by a factor of 10X, from 500 nm to 50 nm, the stress increases ~2.3X from 150 MPa to 400 MPa.

The correlation between the line-width and intrinsic hydrostatic stress and ADV is plotted in Fig. 7.5 to provide further insight into the SM failure. As can be seen, when the line-width is scaled, the intrinsic hydrostatic stress increases while the vacancy supply in the line decreases linearly. Since the σ_0 for the narrow line is high, it is easier to reach the critical void nucleation stress. This implies that failure in the wide line is vacancy-dominated ($\sigma_{SM} > \sigma_0$) while, in the narrow line, it is stress controlled ($\sigma_0 > \sigma_{SM}$). Since σ_0 and vacancies are always present in Cu interconnects, SM constantly becomes a reliability concern and needs to be evaluated for every generation of chip technology (i.e., for both wide and narrow line structures). Intrinsic hydrostatic stress is inevitable due to CTE mismatch, while considerable amount of vacancies always tend to exist in crystalline microstructure materials, predominantly in the interface / grain boundaries.

![Fig. 7.5: The intrinsic stress and active diffusion volume as a function of the line-width. For narrow lines, the intrinsic stress effect is dominant causing SM failure. While in the wide line, SM failure may be attributed to the accumulation of vacancies due to the stress gradient.](image-url)
7.5 Approximation of Electromigration void nucleation and growth time

Electromigration failure by void formation comprises the additive sequential processes of nucleation and growth. As a result, the failure due to EM in dual damascene Cu interconnects is not adequate to be represented by a single current density term because the time to nucleation (t_{nucl}) is governed by a j^{-2} dependence, while the time to growth (t_{grow}) by a j^{-1} dependence. The failure time expression should therefore follow an expression of the form [117]

$$t_{\text{failure}} = t_{\text{nucl}} + t_{\text{grow}} = \left(\frac{A k T}{j^2} + \frac{B k T}{j}\right) \exp\left(\frac{E_a}{kT}\right) \quad (\text{Eq. 7.2})$$

where j is the current density, E_a is the activation energy, A and B are constants, k is the Boltzmann’s constant and T is the temperature. This nucleation and growth EM model has significant implications for projecting lifetimes obtained at stress conditions to chip operating conditions. A method to extract the t_{nucl} or $t_{\text{incubation}} (t_{\text{inc}})$ was proposed by R.G. Fillippi et al. where a three-parameter fitting for the EM lognormal failure distribution was used [114]. It was found that the t_{inc} is much smaller than t_{grow} and a constant t_{inc} exists for the entire set of samples. In this study, we propose an alternative approach to estimate the t_{nucl} and t_{grow} by utilizing our electrical stress results above.

As shown in Fig. 7.2, the SM+EM test samples have a lower t_{50} compared to the EM-test only samples and from previous discussions, the additional degradation is believed to be caused by the small void nucleation during SM-test (prior to EM-test). Therefore, it means that the EM failure time of SM+EM stressed samples is
approximately the EM void growth time \(t_{grow} \). It is a period of time required for the void to grow in size and cause a resistance increase of \(\sim 10\% \), corresponding to the set resistance failure criterion. If the failure time is the summation of void nucleation time and the growth time, the nucleation time can be easily found from the difference of \(t_{failure} \) and \(t_{grow} \).

\[
 t_{nuc} = t_{failure} - t_{grow} \tag{Eq. 7.3}
\]

Assuming that the failure distribution of SM+EM test samples is the \(t_{grow} \) distribution (i.e., void already nucleated at SM test) and the failure distribution of EM test samples is the \(t_{failure} \) distribution (i.e., in EM test only cases, the voids need to both nucleate and then grow), the nucleation time distribution can be estimated by taking the difference of the \(t_{failure} \) and \(t_{nuc} \) distributions. We developed a Monte Carlo simulation routine, where a random number generator was used to simulate the failure times corresponding to the \((t_{50}, \sigma)\) values for \(t_{grow} \) and \(t_{failure} \), determined previously from the statistical analysis in Fig. 7.2. The block diagram showing the algorithm of Monte Carlo simulation is shown in Fig. 7.6. Using equation (7.3), we can extract the distribution for \(t_{nuc} \), as illustrated in the statistical simulation plot shown in Fig. 7.7. The nucleation time distribution is not a simple lognormal distribution because the difference of two lognormal distributions is in general, no longer lognormal unless the shape parameter, \(\sigma \), is the same for the two distributions [118]. Note that the MC approach we apply here is based on the assumption that nucleation and growth are independent mechanisms, which is certainly valid for the SM and EM failure mechanisms, considering their different dependencies on current stress [117].
Fig. 7.6: Block diagram showing the algorithm of Monte Carlo simulation used in this study.

Fig. 7.7: Monte Carlo simulation to determine the nucleation time distribution, given the growth and overall failure time distribution parameters, obtained from the SM+EM and EM-only test results. At very low percentiles, the overall failure time is mainly growth dominated while for very high percentile failures, overall failure time is nucleation dominated.
From a physical perspective, the results suggest that the t_{nucl} for any given test structure is not a single value. This observation supports the hypothesis that the critical stress for void nucleation may differ for different interconnects [119]. Although identical test interconnects may be fabricated on the same chip using the same process flow, they possess different granular microstructures with each grain possessing its own diameter, orientation, diffusivity, and possibly other stochastic parameters such as adhesion strength and certain elastic properties. In addition, the distribution plot of Fig. 7.7 provides a new insight that the EM failure time could actually be separated into two regions. The first region is at low percentile failures, where the failure is mainly growth dominated ($t_{grow} > t_{nucl}$) and the second region is at high percentile failures, where the failure is nucleation dominated ($t_{nucl} > t_{grow}$). Based on the analysis here, it can be inferred that the SM phenomenon can have a severe effect because it eliminates the void nucleation time in EM, even in the absence of an electron flow.

For future technology nodes, as the intrinsic hydrostatic stress keeps increasing when the line-width is scaled down, a solution to reduce the σ_0 in the line is required to enhance the advanced interconnect technology reliability. Several approaches can be considered to reduce the interconnect stress. The literature reports suggest low temperature post-plating anneals or shorter anneals as one possible option to have a lower stress in the Cu line [120]. In addition, the residual stress can be reduced by engineering the capping layer, such as replacing SiC$_x$N$_y$H$_z$ with CoWP [121].
7.5 Summary

In this chapter, the SM and EM interaction was investigated in a very narrow line, with a line width of 0.07 µm, encapsulated in a low-κ dielectric foundation, with κ~2.7. The SM effect was introduced in the metal lines by baking the samples at 200°C for 1000-hours prior to EM stress. It was found that the failure time distribution of both samples is monomodal, where the t_{50} of SM+EM stressed samples is degraded by ~38% and the shape parameter ν lowered from 0.548 to 0.193, implying a lower spread of the failure data. Detailed investigations on current-dependent EM behavior revealed that the current density exponent for the SM+EM stressed samples is $n \sim 1$. Therefore, we suspect that void tends to nucleate even in the narrow line due to the SM driving force of high intrinsic hydrostatic stress.

We attributed the nucleation of void in the metal line during SM to be due to the high intrinsic mechanical stress and the stress developed due to accumulation of vacancies during SM test. As the intrinsic stress of the narrow line is high, it is easier to reach the critical void nucleation stress. This means that the failure in the narrow line is stress controlled ($\sigma_0 > \sigma_{SM}$) while in the wide line, it is vacancy diffusion limited ($\sigma_{SM} > \sigma_0$). The SM reliability lifetime in narrow line interconnects can be enhanced by reducing the process-induced stress in the narrow line.

In the second part of this chapter, we tried to decode the individual t_{nucl} and t_{grow} times for the EM process, considering that they show different power law dependencies for the current density so that the EM lifetime could be predicted more accurately. The EM void growth time is approximated by the EM failure time
of SM+EM stressed samples, as it has been proved earlier that the void already nucleates prior to electrical stressing, due to SM. Therefore, the nucleation time can be found from the difference of t_{failure} and t_{grow}. Using this concept, the nucleation time distribution was simulated using a simple Monte Carlo approach. It was found that at very low percentiles, the overall failure time is mainly growth dominated while at very high percentile failures, overall failure time is nucleation dominated. In summary, our study reveals that SM has a detrimental effect on EM reliability in narrow line Cu interconnects as well and its role cannot be ignored as the SM helps to provide nucleation of void, even in the absence of an electron flow.
CHAPTER 8

CONCLUSION AND RECOMMENDATIONS

8.1 Conclusion

This project was carried out to study the interaction between SM and EM in dual-damascene Cu/low-κ interconnects. The dependency and combined effect of these two key failure mechanisms are important for technology, as these effects are prominent in the chip operation at nominal use conditions. The typical accelerated EM testing conditions are at a relatively high temperature close to the stress free temperature at which the effect of intrinsic thermal stress is not evident and accounted for.

The effect of the SM on EM behavior in Cu interconnects was analyzed from a statistical, electrical and physical perspective. It is found that both mechanisms are not independent to each other; statistical analysis shows that the EM failure time of Cu interconnects is accelerated by the presence of residual stress induced by SM. This effect was observed to be more severe in the lower metal, where the EM t_{50} for the majority of samples could be degraded by 30-60%. For the upper metal of Cu interconnects, the EM t_{50} was only degraded by about 10%. The reliability implication of the residual stress in copper interconnects on the EM was further investigated with various failure analysis techniques and three-dimensional finite element simulation. It is proposed that SM can influence EM when there is a significant amount of vacancy accumulation due to SM in the cathode area during
the EM stress, causing the metal line to become more tensile and thereby shortening the nucleation time \(t_{\text{nucl}} \) for the cathode end to reach \(\sigma_{\text{crit}} \) much earlier during the EM test. In the case of the \(M_X \) structure, our experimental results show that SM and EM interaction occurs exactly below the via over the \(M_X \) cathode side, leading to abrupt failures. On the other hand, in \(M_{X+1} \) structure, vacancies are likely to accumulate at the edge of upper metal lead during SM test. Unlike the lower metal structure, after a void has nucleated at the Cu/Si\(_3\)N\(_4\) interface of the \(M_{X+1} \) structure, the void still needs to grow to span the whole thickness of the metal line before it causes the resistance of the line to increase.

The study was further expanded by quantifying the influence of SM on EM activation energy and current density exponent. We found that for samples which were subjected to SM stress (i.e., SM+EM test sample) have activation energy of 0.71eV almost similar to that of the control sample (i.e., EM test only) of 0.79eV, for lower metal structure, whereas the corresponding \(E_a \) for upper metal structure are 0.929eV and 0.937eV. These values represent diffusion at the Cu/Si\(_3\)N\(_4\) interface on top of the metal line. Similarly, it was found that there is no change in the current density exponent for the samples which were subjected to SM stress. The observation of a relatively constant \(E_a \) and \(n \) value for the SM+EM stressed samples and EM-only samples suggest that the failure mechanism for these two test conditions is similar. A simple empirical method to extrapolate the interconnect lifetime accounting for the effect of both SM and EM was proposed.

The influence of SM on the permittivity scaling and short length effect was further investigated, as it is important for the assessment of further technology scaling and interconnects design. Accelerated life tests showed that no degradation
occurred for Cu interconnects with FTEOS dielectric under SM+EM test. From the finite element simulation results, we found interfacial hydrostatic stress gradients to be high for the case of low-κ materials ($\kappa < 3$), making them more vulnerable to SM effect, as compared to FTEOS. For short length interconnects, we found that the immortal behavior may be non-existent if the stress built-up due to SM can interact with a sufficiently strong electron wind force to exceed the critical stress for void nucleation.

Lastly, we presented a comprehensive study comparing wide and narrow Cu line-width test structures. It was found that the failure time distribution of both sets of the samples was monomodal, in which the t_{50} of SM+EM stressed samples was degraded by $\sim 38\%$ and the shape parameter was lowered from 0.548 to 0.193, implying a lower spread of the failure data. The current density exponent of Black’s equation for the SM+EM stressed samples was found ~ 1, suggesting that void has already been nucleated due to the SM test. We attributed the nucleation of void in the metal line during SM to be due to the high intrinsic mechanical stress and the stress developed due to accumulation of vacancies during SM test. As the intrinsic stress of the narrow line is high, it is easier to reach the critical void nucleation stress. In addition, we developed a Monte Carlo simulation model to estimate the void nucleation and growth time using the EM-only and SM+EM degradation tests. Stress migration was found to shorten the nucleation time for all the samples.

8.2 Recommendations

We believe that this project could be further extended. Some possible directions for future investigations and studies are given as follows:

1. Study the influence of residual vacancy concentrations and thermal stress on backend reliability.

 As discussed in Chapter 7, the mechanical stress can accelerate EM failure either due to the intrinsic hydrostatic stress (σ_0) or vacancy diffusion towards the via. However, the dominant failure mechanism has not been identified. Further studies should address this issue as it would be important for the process optimization. In order to decouple these two factors, we can vary post-plating annealing condition as it will affect the amount of vacancies and residual stresses in the material (Table 8.1) [106].

Table 8.1: Post-plating anneals conditions and indication of postulated residual vacancy and stress gradients [106].

<table>
<thead>
<tr>
<th></th>
<th>Short period and low temperature annealing condition</th>
<th>Long period and low temperature annealing condition</th>
<th>Long period and high temperature annealing condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacancies</td>
<td>\uparrow</td>
<td>\rightarrow</td>
<td>\downarrow</td>
</tr>
<tr>
<td>Stress</td>
<td>\downarrow</td>
<td>\rightarrow</td>
<td>\uparrow</td>
</tr>
</tbody>
</table>

2. In-situ study of SM and EM interaction

 In addition to statistically relevant standard reliability tests and lifetime analysis, in-situ study of the void evolution in Cu interconnects is always a subject of interest to understand kinetics of the degradation process. Literature has shown
in-situ study of individual SM and EM, but the **in-situ** observation on the interaction between these two failure mechanisms has not been reported. Our experimental findings will be further established if other researchers can achieve the same results with **in-situ** observation method.

3. Study the reliability of Cu-TSV

As discussed in Chapter 1, the interconnect signal RC delay becomes a critical limiting factor in chip performance budgeting. When the dimensions of nanodevices shrink, the total interconnect resistance increases rapidly due to the reduced line cross-section and increased length of interconnects. For that reason, the development of an alternate technology to design and fabricate a three-dimensional (3D) circuit system is essential, to decrease in the overall wire length and reduce the RC delay.

Through-silicon via (TSV) is considered to be the most promising technology for 3D integration. It was forecast that 3D-TSV wafers could account for as much as 6% of the total semiconductor industry and 25% of the memory market by 2015 [122]. While current efforts are focused on the development and improvement of various TSV fabrication process steps, in-depth study of the associated new yield and reliability issues in TSV is still limited. Ensuring adequate TSV reliability is essential in order to commercialize 3D technology.

As SM and EM is an inherent wear-out mechanism in conductors, the void formation process in TSV under SM and EM test should be investigated experimentally to understand the physical mechanisms responsible for various
failures modes of TSV. The dominant transport mechanisms, effect of electron flux, metal migration routes, and activation energies needs detailed investigation. An initial work has been carried out for SM study and the results are shown in Appendix 1. We observed SM occurs in the TSV because large stress gradient develop across the TSV and as a result, Cu atoms diffuse from the compressive to tensile regions of the TSV to achieve stress relaxation and reach lowest system energy configuration. Lastly, future research should also be carried out in order to investigate the SM and EM interaction in the TSV.
AUTHOR’S PUBLICATIONS

4 Available: http://upload.wikimedia.org/wikipedia/commons/0/00/Transistor_Count_and_Moore%27s_Law_-_2011.svg

APPENDIX A

MICROSTRUCTURAL EVOLUTION OF COPPER TSV DURING ANNEALING AND ITS EFFECT ON THE VIA PROTRUSION FOR TSV WAFER FABRICATION

A.1. Introduction

Chip interconnect resistance has always been one of the key challenges identified by the International Technology Roadmap for Semiconductors (ITRS) [1]. When the dimensions of nanodevices shrink, the total interconnect resistance increases rapidly due to the reduced line cross-section and increased length of interconnects. Consequently, the interconnect signal RC delay continues to increase and becomes a critical limiting factor in chip performance budgeting. Therefore, the development of an alternate technology to design and fabricate a three-dimensional (3D) circuit system becomes essential, as adherence to Moore’s law gets increasingly difficult with conventional planar downscaling, solely by transistor design and fabrication innovations. 3D integrated-circuit (IC) is a developing technology that vertically stacks multiple dies with a high density die-to-die interconnect. This results in a decrease in the overall wire length, providing a reduction in wire delay.

3D stack packages were initially developed for memory packages for cellular phones with wire bonding used as an interconnection between the stacked devices and the circuit board [2]. However, wire bonding is not appropriate for high performance and has several disadvantages such as limitation of the size reduction
Appendix A: Microstructural Evolution of Copper TSV During Annealing and its Effect on the Via Protrusion for TSV Wafer Fabrication

and drop in high frequency characteristics [3,4]. A 3D technology with through-silicon vias (TSVs) aligned on a tight pitch was one of the new technologies to meet that challenge [5,6]. TSV technology can offer excellent electrical performance and possibility of advanced wafer-level 3D packaging or stacking of various types of microcomponents directly on a chip [7-9].

While current efforts are focused on the development and improvement of various TSV fabrication process steps, efforts to study in-depth the associated new yield and reliability issues in TSV are still limited [10]. Ensuring adequate TSV reliability is essential in order to commercialize 3D technology. Thermo-mechanical reliability is one of the top reliability concerns, because process conditions during subsequent back-end-of-line (BEOL) and die-stacking processes subject the Si wafers containing TSVs to repeated thermal loadings. Due to the mismatch in thermal expansion coefficients (CTEs) between the TSV material, surrounding dielectric and the Si substrate, thermal stresses can develop in the silicon and interconnect structures, causing several reliability concerns such as cracking, delamination and voiding.

It has been reported that the performance of the transistor device is degraded due to its sensitivity to stresses induced by the integration of TSV in the chip. A stress of 100 MPa can change by over 7% the carrier mobility in MOSFET devices [11]. In addition, the interface between the TSV and the Si substrate can be delaminated due to the shear stress concentration at the edge of the TSV [12]. Another reliability concern is the TSV extrusion or TSV pumping problem. During TSV manufacturing processes, Cu TSVs were found to extrude of the Si wafer surface, causing fracture of the overlaying dielectric material. This is a potential
threat to the IC interconnection layer, particularly for low-κ materials, since it can lead to cracking of the dielectric layer in the BEOL structure.

Protrusion studies of the TSV have recently been reported in the literature [12-14]. It was observed that if the TSV does not receive a proper thermal treatment prior to BEOL processing (with some steps reaching 400°C), it will bulge upwards and deform the metal/dielectric stack on top [13]. Further studies have reported that the initial heat treatment at 420ºC for 20 minutes could solve this problem of TSV protrusion [14]. The hypothesis is that during the first thermal cycling, the Cu-film undergoes material transformation, such as grain growth and recrystallization, thus resulting in an open hysteresis loop. The succeeding cycles after the first cycle are found to have closed hysteresis loops that are similar in shape, size and position. This means that the material behavior of Cu-film becomes stable after the first cycle to the maximum thermal cycling condition.

Since TSV protrusion has a huge potential impact on the reliability of the final 3D stack, further in-depth physical analysis investigations are needed. It is important to correlate the Cu protrusion to the microstructural changes during thermal annealing, so that the fabrication process can be further optimized. In this paper, TSV protrusions at various annealing conditions have been characterized. The grain size distribution is evaluated using the electron backscatter diffraction (EBSD) method, following which, the material properties are evaluated using the nano-indentation technique. Finally, possible solutions for further process optimization are discussed.
A.2. Test Structure Design and Process Methodology

Figure A.1 shows the schematic diagram of the test structure used in this study, which consists of a 10 x 10 array of TSVs. The diameter of TSV is 5 μm, with a pitch ratio of 1:2. The 50 μm depths of vias (aspect ratio 1:10) were formed by a deep-reactive-ion-etching (DRIE) process on 300 mm silicon wafers. To avoid shorting to the silicon, the etched vias were deposited with an insulating layer of oxide (dielectric) before being filled with metal. The chemical vapor deposition (CVD) technique with high inherent conformality was used for the dielectric lining. After that, a thin layer of Ta-based diffusion barrier was deposited on the via sidewalls for Cu TSVs using a physical vapor deposition (PVD) process. This is followed by a conformal Cu seed layer deposited on via sidewalls/via bottom, followed by electrodeposition of the via with copper. Lastly, any overplated Cu from the via on the wafer top surface was removed by the chemical-mechanical polishing (CMP) process.

Fig. A.1: Schematic diagram of the (a) top view of an array of TSVs (10x10) and (b) TSV cross section used in this study. The via diameter is 5 μm, with a pitch ratio of 1:2 and a depth of 50 μm.
In this sample, there was no overlaying material on top of the TSVs. As a result, the Cu-TSVs are free to expand in the out-of-plane direction and the Cu-extrusion can be characterized. The influence of the annealing process on TSV-protrusion was studied, in which the samples were subjected to a range of annealing conditions, from $T_{\text{ANN}} \sim 250-450^\circ\text{C}$ with 50°C step. In these experiments, the temperature ramp rate was set to $100^\circ\text{C}/\text{min}$ and annealing temperature was maintained for 30 minutes. The furnace temperature stability is $\pm 1^\circ\text{C}$. The annealing processes were performed under nitrogen gas ambient.

A.3. Results and Discussion

A. Protrusion Characterization

The Cu-TSV protrusion was characterized using scanning electron microscopy (SEM), 3D surface profilometer and atomic force microscopy (AFM), to observe the morphology and size of Cu protrusion. Figure A.2 shows SEM micrographs of one of the protruding TSVs for various annealing conditions. It shows that the shape of the protrusion depends on the annealing temperature. The Cu protrusion can be visually observed starting from $T_{\text{ANN}} = 350^\circ\text{C}$ and it may occur at either the center or the outer edge of the TSV (Figs. 2(c) and (d)). It may bulge upwards as well, as shown in Fig. A.2(e).

In order to observe a variation of the TSV protrusion morphology across the die, a 3D surface profilometer was employed. It is a noncontact optical profiler system that uses two technologies to measure a wide range of surface heights: phase-shifting interferometry (PSI) mode, which allows for measurement of smooth
surfaces and small steps, and vertical scanning interferometry (VSI) mode which allows for the measurement of rough surfaces and steps up to several millimeters high. In both techniques, the light reflected from a reference mirror interferes with the light reflected from a sample to produce interference fringes, where the best-contrast fringe occurs at best focus [15]. Figure A.3 shows the 3D images of an array of TSV, which consist of 100 vias. As can be seen in Figs. 3(c)-(e), the morphology of TSVs under the same annealing condition vary across the dies.

![Fig. A.2: Top down SEM micrographs of one of the TSVs, showing the extent of protrusion at various annealing conditions, ranging from $T_{\text{ANN}} \sim 250 - 450^\circ C$.](image-url)
Fig. A.3: 3D surface profilometer images showing TSV array after (a) 250°C, (b) 300°C, (c) 350°C, (d) 400°C and (e) 450°C annealing condition.
The amount of the extruded Cu-TSV was further characterized with AFM to obtain an accurate, sub nanometer protrusion height measurement. Figure A.4 shows the relationship between T_{ANN} and the average protrusion height (obtained from 4 measured Cu-TSVs for each value of T_{ANN}). It shows that the protrusion height increases with the annealing temperature. A TSV, which has not been optimized prior to BEOL processing poses a serious yield and reliability threat considering the micrometer level pumping. It will expand in the out-of-plane direction and push against the overlaying layer, if the wafer is exposed to high temperature cycles up to 400°C. The AFM measurement reveals that a 400°C annealing process for 30 minutes may cause 0.67 μm Cu protrusion.

![Figure A.4: Plot of protrusion height extracted from AFM measurements versus annealing temperature (T_{ANN}). It shows that the protrusion height increases linearly with annealing temperature.](image)

From this protrusion characterization, it is clearly shown that plastic deformation occurs in the Cu-TSV. When the Cu-TSV is heated up, it will expand...
vertically only, because the Cu-TSV is constrained by the surrounding silicon substrate. Unlike Cu interconnect line (BEOL) which shows elastic behavior [16] because it is very thin (< 0.5 μm), the TSV tends to deform plastically because its large thickness (up to 50 μm). The strengthening mechanism of thin films has been explained using the Hall-Petch relation and dislocation theory [17]. Therefore, when the TSV is elongated beyond its elastic limit, it will cause a permanent, irreversible, deformation. Consequently, when the sample is cooled down to room temperature, the irreversible plastic deformation of TSVs which do not return to its original length, leads to Cu protrusion. Higher annealing temperatures causes increased plastic elongation (protrusion).

B. EBSD Analysis

The microstructure of the Cu-TSV at various annealing conditions was characterized by the EBSD technique. The EBSD patterns were collected with the specimen tilted to about 70° to increase the signal-to-noise ratio. EBSD enables grain sizes and crystallographic grain orientations of individual grains to be obtained with high accuracy. Because the diffracted electrons originate in the top few nanometres of the surface, sample preparation is a key factor to obtaining good-quality EBSD results. Any contamination or deformation of the surface will seriously degrade the EBSD patterns. In this study, we used a focused ion beam (FIB) - SEM system, which equips with an EBSD system for the analysis. The sample preparation was done with the FIB to obtain a smooth surface, immediately after that, the microstructure was mapped by EBSD without breaking the vacuum.
Figure A.5 shows EBSD images of Cu-TSV for $T_{ANN} \sim 250-450^\circ$C. In the literature, it is reported that there is a strong correlation between stress and preferential crystallographic orientation of the grains in the electroplated Cu film [18]. However in this case, no preferred texture is observed under the various annealing conditions. The grain sizes are seen to be uniformly distributed, which means that it exhibits a normal grain growth pattern. This grain growth pattern is basically driven by the reduction of the total grain boundary area and the corresponding reduction in the total grain boundary energy that accompanies the area decrease [19].
From the EBSD analysis, the grain size distribution before and after annealing are calculated and presented in Fig. A.6. It can be seen that an increase in \(T_{\text{ANN}} \) results in an increase in the Cu grain size due to grain growth. For the fresh sample, the mean grain size is estimated to be 0.84 \(\mu \text{m} \), and increases to 1.26 \(\mu \text{m} \) for the sample annealed at 450°C. It is observed that for \(T_{\text{ANN}} \leq 300^\circ\text{C} \), there is insignificant increment of the grain size. Therefore, in order to increase the grain size for Cu-TSV, it is necessary to have \(T_{\text{ANN}} > 300^\circ\text{C} \). In addition, the plating chemistry is reported to be able to control the grain size of the deposited copper [19].

Comparing the protrusion height (Fig. A.4) and average grain size plot (Fig. A.6), we note that the incremental trend of protrusion height plot is much steeper. Therefore, there is no evidence that grain growth has direct contribution to the Cu-TSV protrusion.

![Fig. A.6: Plot of average grain size vs. annealing temperature. An increase in the annealing temperature resulted in an increase in the Cu grain size.](image-url)
C. Nanoindentation Measurements

Nanoindentation is a widely used technique to characterize the mechanical properties of materials on the micrometer scale. In this study, the material properties of TSV, i.e., elastic modulus (E), hardness (H) and yield strength (σ_y), were measured using a nano-indentation tester (NanoTest 550, Micro Materials Limited, U.K.) at room temperature. A three-sided pyramidal diamond Berkovich tip was used. During indentation, the load and displacement were continuously monitored by a displacement transducer. The indentation depth was set to 150 nm; as a result we can obtain the indentation size ~1.7 µm. This is much smaller than the TSV diameter, and hence boundary effects from the silicon substrate are negligible. Figure A.7 shows an SEM micrograph of a Cu-TSV after indentation, in which the Berkovich tip was aligned to perform an indent at the center of the TSV.

![Indent Mark](image)

Fig. A.7: SEM micrograph of an indent left by a Berkovich tip in a Cu TSV after nano-indentation test.

As it has been reported earlier that the initial heat treatment at 400ºC can solve the problem of Cu protrusion [13], therefore in this test, we compare the material properties of the samples before and after annealing. Nanoindentation is a
surface sensitive test, therefore the annealed samples were mechanically polished to remove the Cu protrusion and smooth the surface prior to testing. Figure A.8 shows a typical nanoindentation load-penetration depth curves. Using the Oliver-Pharr relation [20], the hardness and elastic modulus of the Cu-TSV can be extracted from the load-penetration curves.

Fig. A.8: Typical load-displacement curve of nano-indentation test on the Cu-TSV.

Figures A.9 and A.10 show the hardness and elastic modulus of the TSV, respectively, for fresh and annealed samples. As shown in Fig. A.9, the median value of the sample hardness decreases from 1418 MPa for the fresh TSV samples, to about 962 MPa for the annealed TSV samples at 400°C for 30 minutes. The trend of the decrease in hardness with increasing grain size, as observed by EBSD (Section-III.B), is in agreement with the Hall-Petch relationship although the hardness correlates to an exponent of about $d^{-0.8}$ rather than $d^{-0.5}$ [21]. The yield
Appendix A: Microstructural Evolution of Copper TSV During Annealing and its Effect on the Via Protrusion for TSV Wafer Fabrication

Strength can be determined through the equation $H \approx 3\sigma_y$ [22], therefore the yield strength for the fresh and annealed TSV can be estimated to be 473 and 321 MPa, respectively.

![Image of hardness graph](image1.png)

Fig. A.9: Plot of the hardness of Cu-TSV, before and after annealing process.

![Image of elastic modulus graph](image2.png)

Fig. A.10: Plot of the elastic modulus of Cu-TSV, before and after annealing process.
Kumon et al. [23] reported that residual stresses affect the elastic stiffness constant of a material. This means that the change in the E-modulus with T_{ANN} in Fig. A.9 might be linked to the presence of the residual stresses. Hence, it may be inferred that the annealed sample having median E-modulus of 91.77 GPa has lower residual stresses than that of the as-deposited sample with an E-modulus of 116.28 GPa. These lower residual stresses could be due to stress relaxation caused by plastic deformation. This result correlates well with the study by A.S. Budiman for the direct stress measurement with synchrotron X-ray [24]. He found that when sample was annealed at 200°C for one hour, the residual stress dropped from 233.8 to 166 MPa. The reduction of the residual stress is good to reduce the corresponding stress induced to silicon.

D. Solution to Minimize Protrusion Effect

It has been reported earlier that Cu anneal, before CMP, will stabilize it to a low-stress condition that will not result in extrusion during subsequent thermal steps [13]. Therefore, in this case, the TSV samples were annealed at 400°C for 30 minutes, followed by a CMP process to remove the excess Cu protrusion and smooth the surface. In order to assess whether the Cu protrusion will occur again in the future thermal step, we re-annealed the samples at different conditions. Type-A condition is the annealing process which is set to be the same with the first one, i.e., 400°C for 30 minutes ($\text{temp}_2 = \text{temp}_1$ and $\text{time}_2 = \text{time}_1$). Type-B condition is the annealing process which is set to be longer, i.e., 400°C for 60 minutes ($\text{temp}_2 = \text{temp}_1$ and $\text{time}_2 > \text{time}_1$). Type-C condition is the annealing process which is set to be higher temperature, i.e., 450°C for 30 minutes ($\text{temp}_2 > \text{temp}_1$ and $\text{time}_2 = \text{time}_1$).
The Cu protrusion was quantified again using AFM measurements. Figure A.11 shows the AFM micrographs of TSV samples for Type-A annealing condition. As can be seen, the Cu protrusion problem is significantly minimized. From nine measurements, there were a few TSVs which do not show any protrusion at all, e.g. numbers 1 and 2. However, there were TSVs with small protrusions of about 195 nm. As compared to the first anneal (Fig. A.4), in which the displacement is ~ 671 nm, the protrusion magnitude is much smaller. It seems that the annealing process could not eliminate the problem completely. Moreover, if the samples are annealed longer (i.e., Type-B) or at higher temperature (i.e., Type-C), the Cu protrusion occurs again as shown in Figs. 12 and with a corresponding displacement of 736.32 nm, and 564.46 nm, respectively.

Fig. A.11: Top-down AFM image and topography measurements of TSV samples after second annealing at 400°C for 30 minutes (i.e., Type-A). The measured peak displacement is 195.38 nm.
Appendix A: Microstructural Evolution of Copper TSV During Annealing and its Effect on the Via Protrusion for TSV Wafer Fabrication

Fig. A.12: Top-down AFM image and topography measurements of TSV samples after second annealing at 400°C for 60 minutes (i.e., Type-B). The measured peak displacement is 736.32 nm.

Fig. A.13: Top-down AFM image and topography measurements of TSV samples after second annealing at 450°C for 30 minutes (i.e., Type-C). The measured peak displacement is 564.46 nm.
E. Proposed Mechanism of Cu Protrusion

From the experimental results, a possible mechanism of the Cu protrusion is proposed as follows (Fig. A.15). When a change in the temperature occurs from 25°C to 400°C, the Cu in the TSV expands in the radial (σ_{xx}) and axial (σ_{yy}) directions. However, due to the much higher thermal expansion of copper (17.6 ppm/°C) as compared to silicon (2.6 ppm/°C), the radial and bottom axial expansion of copper is constrained by the silicon substrate, resulting in the Cu-TSV’s expansion only in the vertical upward direction.

We propose that diffusive creep is also likely to happen in the system during thermal annealing due to different stress distribution in the TSV. To study stress profile generated in the TSV during thermal annealing, finite element analysis (FEA) modeling was performed using ANSYS®. The simulation model was developed to follow test structure shown in Fig. 1, where TSV diameter and depth are 5um and 50um, respectively. Symmetric boundary condition was applied and the bottom left corner node was fixed in all direction to avoid rigid body movement. The material properties used are given in Table I and the loading temperature was set to 400°C. For the Cu material, bilinear plastic model was used with the yield stress 294.5 MPa. Fig. A.14 shows the simulated stress profile in the TSV. It reveals that the region at the bottom of TSV has the lowest compressive stress and the highest tensile stress location is near the surface.
Fig.A.14: Simulation of stress distribution along TSV during temperature ramp up. It is seen that compressive stress is concentrated in the bottom, while tensile stress is developed on top of TSV.

The elongation per unit length of material, strain, may take two forms; elastic (ε_{el}) and plastic strain (ε_{pl}). Elastic strain is a transitory dimensional change that exists only while the initiating stress is applied and disappears immediately upon removal of the stress. On the other hand, plastic strain (or plastic deformation) is a dimensional change that does not disappear when the initiating stress is removed. The Cu protrusion is a sign of plastic deformation of Cu material because after the system is cooled down to room temperature from thermal annealing, the Cu-TSV expansion could not be reversed to the original shape. The elastic strain disappears, while the plastic strain remains causing permanent dimensional change. In addition, we propose that diffusive creep also occurs in the system during thermal annealing. As seen in Fig. A.14, the stress distribution in the TSV is not uniform, therefore it induces large stress gradients in the system. Based on the
Nabarro-Herring creep model, the Cu atoms will diffuse from the compressive to tensile regions, in order to release compressive stress in TSV.

The plastic deformation due to the thermal expansion is clearly shown from the experimental results (Fig. A.4), in which the amount of Cu protrusion depends on the temperature. As the thermal load rises, the residual permanent deformation of the Cu TSV increases. Assuming that in the initial condition, the via volume is \(V_1 \) and mass density is \(\rho_1 \), after the first thermal cycle, the via volume will increase due to protrusion. Since there is an increment in the via volume (\(V_2 > V_1 \)), while from the cross-sectional SEM analysis, there is no void formation in the via, and it means that the mass density of via decreases (\(\rho_2 < \rho_1 \)). This argument is supported by the nano-indentation measurement, in which the hardness of the annealed TSV is lower compared to the fresh sample.

After the CMP process, the via volume reverts to the initial volume because the excess Cu is removed (\(V_3 = V_1 \)). It is hypothesized that the Cu protrusion problem is minimized during the second annealing (Fig. A.11), because the reduction in the mass density induces a smaller thermal expansion. In addition, due to the plastic deformation of Cu at the first annealing process, the Cu deformation at the second annealing is much smaller.

Unfortunately, diffusive creep still occurs due to different stress concentration along the TSV. As a result, a much smaller Cu protrusion is still found in the TSV after the second annealing is completed. This diffusive creep mechanism becomes dominant when the samples are annealed for longer, because more Cu atoms will diffuse out of the plane to release the compressive stress in TSV. The AFM characterization, shown in Fig. A.12, supports this hypothesis.
Furthermore, the Cu-protrusion problem will also re-occur if the second annealing temperature is larger than the preceding annealing process (Fig. A.13), because a greater thermal load induces a further plastic deformation of the TSV. Therefore, in order to minimize Cu protrusion effect, the subsequent thermal load should be less than the initial T_{ANN}. The copper annealing after electroplating process also helps to reduce the diffusive creep, because an increase in the grain size will degrade the creep mechanism [25]. As shown in Fig. A.5 by the EBSD measurements, higher annealing conditions result in an increase in the grain size and thus help to reduce the creep.
Appendix A: Microstructural Evolution of Copper TSV During Annealing and its Effect on the Via Protrusion for TSV Wafer Fabrication

A.4 Summary

We have presented a detailed physical characterization study of the Cu protrusion effect with its microstructural evolution. It was observed that annealing a silicon wafer with copper TSVs causes high stresses in the copper and may cause a “pumping” phenomenon in which the copper is forced out of the blind TSV to form a protrusion. From the AFM results, the protrusion height increases linearly with the annealing temperature. Furthermore, EBSD analysis was employed to study the grain size evolution for different annealing temperatures. It shows that higher annealing temperature causes an increase in the grain size, due to the grain growth process. When the sample was annealed from 25 °C to 450°C, the protrusion displacement increased from 36 nm to 958 nm, while the grain size increased only marginally from 0.84µm to 1.26µm.
Nano-indentation technique was used to study the effect of annealing temperature with respect to the material properties of Cu-TSV. From the measurement results, it shows that the hardness, yield strength and elastic modulus decrease when the samples were annealed at high temperature. The statistical result shows that the hardness of Cu-TSV dropped to 962 MPa from 1418 MPa, the yield strength fell to 321 MPa from 473 MPa and the elastic modulus decreased to 91.77 GPa from 116.28 GPa.

Based on these experimental results, we attributed the Cu protrusion phenomenon to two possible mechanisms. The first mechanism is due to plastic deformation of Cu material. When the Cu-TSV is heated up, it will expand only vertically due to lateral constraints by the surrounding Si substrate. If the TSV is elongated beyond its elastic limit, it will cause a permanent plastic deformation (irreversible). The second mechanism is due to diffusive creep. As the stress distribution in the TSV is not uniform, large stress gradients tend to develop across the TSV and as a result, Cu atoms diffuse from compressive to tensile regions to achieve stress relaxation and reach lowest system energy configuration.

Therefore, in order to minimize Cu protrusion effect, it is necessary to anneal the samples after electroplating process with the highest thermal budget to avoid further plastic deformation. The copper annealing after electroplating process also helps to reduce the diffusive creep, because an increase in the grain size will reduce the driving force for creep. However, over long test / operating duration, diffusive creep still occurs and its cumulative effect could still be a critical reliability issue, which deserves further in-depth studies.
Appendix A: Microstructural Evolution of Copper TSV During Annealing and its Effect on the Via Protrusion for TSV Wafer Fabrication

References

APPENDIX B

Resistance Degradation Trends

The resistance degradation and sorted data on the TTF in the main chapters are shown in this part.

Chapter 4

Figure 4.8

<table>
<thead>
<tr>
<th>No.</th>
<th>TTF (Hours)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Dielectric Slot</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12.41</td>
<td>13.89</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18.48</td>
<td>16.96</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>23.54</td>
<td>18.78</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>24.75</td>
<td>26.63</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>26.77</td>
<td>29.25</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>30.84</td>
<td>31.25</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>32.01</td>
<td>31.34</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>36.14</td>
<td>34.36</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>42.46</td>
<td>41.1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>43.38</td>
<td>41.64</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>47.13</td>
<td>43.2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>47.38</td>
<td>45.15</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>47.93</td>
<td>47.09</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>50.72</td>
<td>47.91</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>55.88</td>
<td>51.21</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>55.91</td>
<td>53.07</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>59.8</td>
<td>55.04</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>67.07</td>
<td>56.91</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>67.67</td>
<td>62.09</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>71.35</td>
<td>69.72</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>75.4</td>
<td>70.05</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>76.02</td>
<td>76.1</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>77.24</td>
<td>81.27</td>
<td></td>
</tr>
</tbody>
</table>

Sample size 23
Fig.B.1. Resistance-time degradation trends for (a) normal and (b) dielectric slot structure.

Chapter 5

Figure 5.4

The typical resistance trends for both FM-I and FM-II groups of the SM+EM samples show a catastrophic resistance shoot-up trend, as seen in Figure B.2, where open-circuit failures occur abruptly. On the other hand, the resistance trend for the majority of the control sample is a staircase-like gradually increasing
trace which indicates that multiple, small random voids in the via-chain structure nucleate and grow (Fig.B.3).

<table>
<thead>
<tr>
<th>No</th>
<th>Time (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SM+EM</td>
</tr>
<tr>
<td>1</td>
<td>38.08</td>
</tr>
<tr>
<td>2</td>
<td>41.75</td>
</tr>
<tr>
<td>3</td>
<td>42.18</td>
</tr>
<tr>
<td>4</td>
<td>43.32</td>
</tr>
<tr>
<td>5</td>
<td>44.31</td>
</tr>
<tr>
<td>6</td>
<td>44.4</td>
</tr>
<tr>
<td>7</td>
<td>55.08</td>
</tr>
<tr>
<td>8</td>
<td>55.94</td>
</tr>
<tr>
<td>9</td>
<td>57.22</td>
</tr>
<tr>
<td>10</td>
<td>58.06</td>
</tr>
<tr>
<td>11</td>
<td>58.72</td>
</tr>
<tr>
<td>12</td>
<td>58.94</td>
</tr>
<tr>
<td>13</td>
<td>60.43</td>
</tr>
<tr>
<td>14</td>
<td>61.39</td>
</tr>
<tr>
<td>15</td>
<td>63.65</td>
</tr>
<tr>
<td>16</td>
<td>63.76</td>
</tr>
<tr>
<td>17</td>
<td>64.87</td>
</tr>
<tr>
<td>18</td>
<td>65.5</td>
</tr>
<tr>
<td>19</td>
<td>66.37</td>
</tr>
<tr>
<td>20</td>
<td>69.47</td>
</tr>
<tr>
<td>21</td>
<td>69.63</td>
</tr>
<tr>
<td>22</td>
<td>69.75</td>
</tr>
<tr>
<td>23</td>
<td>71.87</td>
</tr>
<tr>
<td>24</td>
<td>72.69</td>
</tr>
<tr>
<td>25</td>
<td>77.88</td>
</tr>
<tr>
<td>26</td>
<td>79.48</td>
</tr>
<tr>
<td>27</td>
<td>82.2</td>
</tr>
<tr>
<td>28</td>
<td>87.02</td>
</tr>
<tr>
<td>29</td>
<td>101.76</td>
</tr>
<tr>
<td>30</td>
<td>119.36</td>
</tr>
<tr>
<td>31</td>
<td>125.81</td>
</tr>
<tr>
<td>32</td>
<td>159.45</td>
</tr>
</tbody>
</table>

Sample size 32 23
Appendix B: Resistance Degradation Trends

Fig. B.2. Resistance-time degradation trends for SM+EM test in lower interconnect. It shows that most of the samples (FM-1 and FM-II) under SM+EM test show abrupt resistance jump which indicates that a fatal void is formed.

Fig. B.3. (a) Resistance-time degradation trends for the “EM-test only” samples. It shows that most of the samples have a step-like resistance characteristic which indicates occurrence of multiple failures. (b) Focusing on the observed trend in one of the degraded samples in (a).
Figure 5.6

<table>
<thead>
<tr>
<th>No</th>
<th>SM+EM (Hours)</th>
<th>EM-test only (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>87.34</td>
<td>90.02</td>
</tr>
<tr>
<td>2</td>
<td>88.68</td>
<td>95.18</td>
</tr>
<tr>
<td>3</td>
<td>93.35</td>
<td>96.55</td>
</tr>
<tr>
<td>4</td>
<td>96.51</td>
<td>103.41</td>
</tr>
<tr>
<td>5</td>
<td>99.61</td>
<td>107.18</td>
</tr>
<tr>
<td>6</td>
<td>100.65</td>
<td>110.05</td>
</tr>
<tr>
<td>7</td>
<td>105.43</td>
<td>112.04</td>
</tr>
<tr>
<td>8</td>
<td>107.29</td>
<td>113.33</td>
</tr>
<tr>
<td>9</td>
<td>109.34</td>
<td>114.49</td>
</tr>
<tr>
<td>10</td>
<td>109.72</td>
<td>116.64</td>
</tr>
<tr>
<td>11</td>
<td>117.31</td>
<td>118.93</td>
</tr>
<tr>
<td>12</td>
<td>119.23</td>
<td>119.52</td>
</tr>
<tr>
<td>13</td>
<td>119.97</td>
<td>122.1</td>
</tr>
<tr>
<td>14</td>
<td>125.71</td>
<td>129.43</td>
</tr>
<tr>
<td>15</td>
<td>126.16</td>
<td>130.45</td>
</tr>
<tr>
<td>16</td>
<td>127.2</td>
<td>131.45</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>136.2</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>139.52</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>146.32</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>154.75</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>156.84</td>
</tr>
</tbody>
</table>

Sample size: 16 21

Fig.B.4. Resistance-time degradation trends for SM+EM test and EM test-only in upper interconnect.
Chapter 6

Figure 6.1

| No | 300°C Time (Hours) | | 300°C Time (Hours) | | 325°C Time (Hours) | | 325°C Time (Hours) |
|----|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|
| | SM+EM | EM-test only | SM+EM | EM-test only | SM+EM | EM-test only |
| 1 | 194 | 298 | 80.2 | 117 | |
| 2 | 197 | 313 | 103 | 122 | |
| 3 | 201 | 322 | 107 | 138 | |
| 4 | 217 | 329 | 115 | 154 | |
| 5 | 229 | 343 | 145 | 157 | |
| 6 | 285 | 371 | 167 | 174 | |
| 7 | 322 | 374 | 174 | 186 | |
| 8 | 336 | 397 | 176 | 194 | |
| 9 | 361 | 398 | 191 | 196 | |
| 10 | 364 | 441 | 197 | 204 | |
| 11 | 365 | 197 | 233 | 197 | |
| 12 | 383 | 202 | 251 | 202 | |

Sample Size: 12 10 12 12

Figure 6.3

| No | 0.6MA/cm² Time (Hours) | | 0.6MA/cm² Time (Hours) | | 1MA/cm² Time (Hours) | | 1MA/cm² Time (Hours) |
|----|------------------------|------------------|------------------------|------------------------|------------------------|------------------------|
| | SM+EM | EM-test only | SM+EM | EM-test only | SM+EM | EM-test only |
| 1 | 146 | 105 | 52.4 | 61 | |
| 2 | 164 | 179 | 59.4 | 64.4 | |
| 3 | 174 | 187.02 | 67.5 | 67.8 | |
| 4 | 188 | 222 | 75.6 | 68.2 | |
| 5 | 195 | 225 | 76.7 | 69.3 | |
| 6 | 196 | 229 | 79 | 70.2 | |
| 7 | 197 | 233 | 80.2 | 72.1 | |
| 8 | 200 | 240 | 80.8 | 72.3 | |
| 9 | 238 | 243 | 82.4 | 77.4 | |
| 10 | 239 | 246 | 86.3 | 79.8 | |
| 11 | 241 | 250 | 91 | 81.9 | |
| 12 | 244 | 258 | 94.6 | 83.3 | |
| 13 | 261 | 96.8 | 88 | |
| 14 | 262 | 90.6 | |
| 15 | 275 | 91.4 | |
| 16 | 282 | | |

Sample Size: 12 16 13 15
The resistance trend is similar with Figs. B.2 and B.3.
Chapter 7

Figure 7.2

<table>
<thead>
<tr>
<th>No.</th>
<th>SM+EM (Hours)</th>
<th>EM-test only (Hours)</th>
<th>SM+EM (Hours)</th>
<th>EM-test only (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.32</td>
<td>3.27</td>
<td>49.82</td>
<td>54.51</td>
</tr>
<tr>
<td>2</td>
<td>3.33</td>
<td>3.47</td>
<td>55.23</td>
<td>68.38</td>
</tr>
<tr>
<td>3</td>
<td>3.54</td>
<td>4.3</td>
<td>62.36</td>
<td>77.92</td>
</tr>
<tr>
<td>4</td>
<td>3.69</td>
<td>4.34</td>
<td>62.58</td>
<td>89.81</td>
</tr>
<tr>
<td>5</td>
<td>3.83</td>
<td>4.8</td>
<td>68.55</td>
<td>99.9</td>
</tr>
<tr>
<td>6</td>
<td>3.9</td>
<td>5.4</td>
<td>70.56</td>
<td>102.49</td>
</tr>
<tr>
<td>7</td>
<td>3.91</td>
<td>5.89</td>
<td>72.29</td>
<td>112.06</td>
</tr>
<tr>
<td>8</td>
<td>4.04</td>
<td>6.5</td>
<td>72.67</td>
<td>119.54</td>
</tr>
<tr>
<td>9</td>
<td>4.11</td>
<td>7.67</td>
<td>82.02</td>
<td>140.54</td>
</tr>
<tr>
<td>10</td>
<td>4.25</td>
<td>8.14</td>
<td>89.31</td>
<td>143.82</td>
</tr>
<tr>
<td>11</td>
<td>4.54</td>
<td>9.4</td>
<td>91.69</td>
<td>148.84</td>
</tr>
<tr>
<td>12</td>
<td>4.89</td>
<td>12.9</td>
<td>92.4</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4.89</td>
<td>12.97</td>
<td>99.17</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4.97</td>
<td>14.9</td>
<td>104.71</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5.42</td>
<td>18.8</td>
<td>105.25</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>6.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample Size</td>
<td>15</td>
<td>18</td>
<td>15</td>
</tr>
</tbody>
</table>

Fig.B.5: Resistance degradation of SM+EM test and EM test-only for narrow advanced interconnects.
APPENDIX C

Procedure to determine \(E_a\) and \(n\)

The block diagram showing the procedure to determine \(E_a\) and \(n\) is shown below.

\[
 t_{50} = \frac{A}{j^n} \exp \left(\frac{E_a}{kT} \right)
\]

Black’s Equation

\[
 \ln t_{50} = E_a \cdot \frac{1}{kT} + \ln \frac{A}{j^n}
\]

Obtain linear equation

\[
 \ln t_{50} = -n \cdot \ln j + \left(\ln A + \frac{E_a}{kT} \right)
\]

Plot \(\ln t_{50}\) against \(1/kT\) and \(\ln(1/j)\) separately to determine \(E_a\) and \(n\) respectively

Select 3 stress temperatures and 3 stress current densities.

Construct log-normal probability plot to obtain \(t_{50}\).

Conduct experiment to obtain TTF