SYNTHETIC STUDIES TOWARDS

BISTRAMIDE D

BY

KALPANA PALANI

SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES

DEPARTMENT OF CHEMISTRY AND BIOLOGICAL CHEMISTRY

A thesis submitted to the Nanyang Technological University
in partial fulfillment of the requirement for the degree of
Doctor of Philosophy

2010
Acknowledgements

First and foremost, I would like to express sincere gratitude to my doctoral advisor, Dr. Roderick W. Bates, for his valuable guidance, constant support and enthusiasm throughout this work. His deep knowledge in the subject, passion for research, accumulated wisdom in the literature is truly inspirational. It has been a great experience to work under his supervision, through which I have learnt a lot.

I am thankful to Mark, my fellow PhD student from UK, who has been my online English dictionary to clarify all my vocabulary doubts. Thank you Mark, you made the lab time more interesting.

I extend my gratitude to all my lab colleagues for providing a friendly environment to work. I thank Dr. Wai Ching, Post doc in our research group for her help during this write-up.

I must thank my project students, Melody, Asyikin and Ron for their assistance. It was really great fun to work with you all.

I have to acknowledge our technical staffs for their assistance; Eeling for NMR spectroscopy, SiewPing and Wenwei for Mass spectroscopy. I also extend my sincere appreciation to teaching lab staffs Dr. Linda and Ai Hua for their valuable support during my teaching.

Financial support from SPMS-NTU is greatly acknowledged.

I would like to thank all my friends, especially Magesh and Deepa for cheering me up and providing help whenever required. My special thanks reserved for Boontawee for her suggestions and encouragements during my good and bad times in Singapore.
My deepest gratitude goes to all my family members, especially my parents, Palani and Devagi for their love and support and constant encouragement. Words are not enough to thank my husband, Vijay, for his unconditional love, patience and enduring support, without which I could have not achieved this.
Table of Contents

Abstract 6

Abbreviations 8

Chapter I:

Introduction to the bistramide family

- Isolation and structural determination 12
- Solladie’s synthesis of bistramide D 16
- Kitching’s access to bistramides 17
- Wipf’s bistramide C analysis 20
- Kozmin’s approach to bistramide A 27
- Crimmins synthesis of bistramide A 30
- Panek’s access to bistramide A 35
- Yadav’s synthesis of bistramide A 40
- Piva’s approach to THP 44
- Conclusion 45

Chapter II:

Synthesis of the THP fragment of bistramide D

- Retrosynthetic analysis 46
- Fragment A synthesis 49
- Model studies towards the THP fragment 69
- Fragment B synthesis 71
- Synthesis of the THP 87
- Conclusion 93
Chapter III:

Synthetic studies to amino acid and spiroketal of bistramide D

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to amino acid fragment</td>
<td>95</td>
</tr>
<tr>
<td>Results and discussion</td>
<td>98</td>
</tr>
<tr>
<td>Introduction to spiroketals</td>
<td>120</td>
</tr>
<tr>
<td>Results and discussion</td>
<td>123</td>
</tr>
<tr>
<td>Conclusion</td>
<td>129</td>
</tr>
<tr>
<td>Experimental section</td>
<td>130</td>
</tr>
<tr>
<td>References</td>
<td>192</td>
</tr>
</tbody>
</table>
Abstract

Bistramide D is a member of new class of bioactive molecule isolated from the marine ascidian *Lissoclinum bistratum* in New Caledonia. Bistramides (A, B, C, D and K) show a broad spectrum of biological activity which includes antiproliferative, immunomodulatory, neurotoxic, cytotoxic and antiparasitic properties; the recent studies also show that bistramides bind to Actin. Bistramide A was reported to be very potent for the P388/dox, B16, HT29, and NSCLC-N6 cell lines. Bistramide D has similar activity in the NSCLC-N6 cell line but is comparatively less toxic *in vivo*. There has been no total synthesis of bistramide D reported till now to our knowledge. These intriguing biological profiles and challenging molecular architecture of bistramides motivated us to synthesize bistramide D.

![Bistramide-D](attachment:image)

Bistramides incorporate a tetrahydropyran and a spiroketal moiety linked via an amino acid unit. We have successfully synthesised the THP fragment starting from readily available (S)-epichlorohydrin. The key steps in the synthesis were the iodolactonisation, selective cross metathesis and an intramolecular Michael addition under kinetic control.

![Synthesis Steps](attachment:image)

The precursor of the amino acid was synthesised from inexpensive and readily available (+)-dimethyl-L-tartrate by converting to (R)-malic acid followed by a
stereoselective methylation, then a regioselective reduction afforded the desired precursor in very good yield and high selectivity.

\[
\text{MeO} \quad \text{OH} \quad \text{O} \quad \text{OMe} \quad \text{OH} \quad \text{O} \quad \text{OMe} \quad \text{MeO} \quad \text{OH} \quad \text{O} \quad \text{OMe} \quad \text{MeO}
\]

Modified Staudinger conditions were established to directly couple the azide with THP fragment in an efficient manner without using the protecting/deprotecting strategy.

\[
\text{BOMO} \quad \text{H} \quad \text{H} \quad \text{O} \quad \text{OH} \quad \text{O} \quad \text{OMe} \quad \text{Me} \quad \text{OMe} \quad \text{O} \quad \text{OMe} \quad \text{O} \quad \text{OMe}
\]

Our results for the THP part showed that the combination of cross-metathesis and intramolecular Michael addition is a viable pathway to complex tetrahydropyrans, even to produce the less stable isomer, and even in the presence of other alkenes. We have also developed a highly cost effective and efficient synthesis of the amino acid fragment.
Abbreviations:

Ac Acetyl
AIBN Azobisisobutyronitrile
ABCN 1,1'-azobiscyclohexane-carbonitrile
Ar Aryl
App Apparent
aq aqueous
Bn Benzyl
BOC di-tert-butyl dicarbonate
BOM Benzyloxymethyl
Bz Benzooyl
Bu Butyl
BBN 9-Borabicyclo[3.3.1]nonane
CSA Camphor sulfonic acid
CBS Corey-Bakshi-Shibata
CM Cross metathesis
Cbz Carbobenzyloxy
DHP Dihydropyran
DMP Dess-Martin periodinane
DMAP 4-N,N-Dimethylamino pyridine
DBU 1,8-Diazabicyclo[5.4.0]undecane
DIBAL Diisobutylaluminium hydride
DMF N,N-Dimethyl formamide
DCC 1,3-dicyclohexylcarbodiimide
DET Diethyl tartrate
DMSO Dimethyl sulfoxide
DDQ Dichlorodicyanoquinine
DIAD Diisopropylazodicarboxylate
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMPU</td>
<td>1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone</td>
</tr>
<tr>
<td>DIPEA</td>
<td>N,N-Diisopropylethylamine</td>
</tr>
<tr>
<td>DBTO</td>
<td>Di-n-butyltin oxide</td>
</tr>
<tr>
<td>EA</td>
<td>Ethyl acetate</td>
</tr>
<tr>
<td>EDC</td>
<td>N-Ethyl-N'-(3-dimethylaminopropyl)-carbodiimide</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ee</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>eq.</td>
<td>equivalent</td>
</tr>
<tr>
<td>Et</td>
<td>Ethyl</td>
</tr>
<tr>
<td>Fmoc</td>
<td>Fluorenlymethyoxycarbonyl</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HMDS</td>
<td>Hexamethyldisilazide</td>
</tr>
<tr>
<td>HMPA</td>
<td>Hexamethylphosphoramide</td>
</tr>
<tr>
<td>HPLC</td>
<td>High pressure liquid chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>High resolution mass spectroscopy</td>
</tr>
<tr>
<td>IBX</td>
<td>2-Iodoxybenzoic acid</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant</td>
</tr>
<tr>
<td>LAH</td>
<td>Lithium aluminium hydride</td>
</tr>
<tr>
<td>LDA</td>
<td>Lithium diisopropyl amide</td>
</tr>
<tr>
<td>m</td>
<td>multiplet</td>
</tr>
<tr>
<td>MAO</td>
<td>Methylalumoxane</td>
</tr>
<tr>
<td>mCPBA</td>
<td>3-Chloroperoxybenzoic acid</td>
</tr>
<tr>
<td>Me</td>
<td>Methyl</td>
</tr>
<tr>
<td>NBS</td>
<td>N-Bromosuccinimide</td>
</tr>
<tr>
<td>NCS</td>
<td>N-Chlorosuccinimide</td>
</tr>
<tr>
<td>NIS</td>
<td>N-Iodosuccinimide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NMM</td>
<td>N-methylmorpholine</td>
</tr>
<tr>
<td>NMP</td>
<td>N-methyl-2-pyrrolidone</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>NOESY</td>
<td>Nuclear Overhauser effect spectroscopy</td>
</tr>
<tr>
<td>Nu</td>
<td>Nucleophile</td>
</tr>
<tr>
<td>PCC</td>
<td>Pyridinium chlorochromate</td>
</tr>
<tr>
<td>PDC</td>
<td>Pyridinium dichromate</td>
</tr>
<tr>
<td>PPTS</td>
<td>Pyridinium p-toluene sulfonate</td>
</tr>
<tr>
<td>PMB</td>
<td>p-methoxybenzyl</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PTSA</td>
<td>p-toluensulfonic acid</td>
</tr>
<tr>
<td>Pr</td>
<td>Propyl</td>
</tr>
<tr>
<td>Pv</td>
<td>Pivaloyl</td>
</tr>
<tr>
<td>Py</td>
<td>Pyridine</td>
</tr>
<tr>
<td>PyBOP</td>
<td>Benzotriazol-1-yl-oxytritylphosphonium hexafluorophosphate</td>
</tr>
<tr>
<td>q</td>
<td>quartet</td>
</tr>
<tr>
<td>R</td>
<td>undefined alkyl group</td>
</tr>
<tr>
<td>RCM</td>
<td>Ring closing metathesis</td>
</tr>
<tr>
<td>Red Al</td>
<td>Sodium bis(2-methoxyethoxy)aluminium hydride</td>
</tr>
<tr>
<td>ROM</td>
<td>Ring opening metathesis</td>
</tr>
<tr>
<td>s</td>
<td>singlet</td>
</tr>
<tr>
<td>sat.</td>
<td>saturated</td>
</tr>
<tr>
<td>t</td>
<td>triplet</td>
</tr>
<tr>
<td>TBAF</td>
<td>Tetra-(n)-butylammonium fluoride</td>
</tr>
<tr>
<td>TBAI</td>
<td>Tetra-(n)-butylammonium iodide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>TBDPS</td>
<td>tert-butylidiphenyl silyl</td>
</tr>
<tr>
<td>TBS</td>
<td>tert-butylidimethyl silyl</td>
</tr>
<tr>
<td>TEMPO</td>
<td>2,2,6,6-Tetramethylpiperidine-1-oxyl</td>
</tr>
<tr>
<td>tert or t</td>
<td>tertiary</td>
</tr>
<tr>
<td>Tf</td>
<td>Triflate</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>THP</td>
<td>Tetrahydropyran</td>
</tr>
<tr>
<td>TIPS</td>
<td>Triisopropyl silyl</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer Chromatography</td>
</tr>
<tr>
<td>TMG</td>
<td>Tetramethyl guanidine</td>
</tr>
<tr>
<td>TMS</td>
<td>Trimethyl silyl</td>
</tr>
<tr>
<td>TPAP</td>
<td>Tetra-n-propylammonium perruthenate</td>
</tr>
<tr>
<td>Ts</td>
<td>Tosyl</td>
</tr>
</tbody>
</table>
Chapter I: Introduction to Bistramides

Isolation and biological activities:

Bistramide D is a marine natural product isolated from a marine ascidian *lissoclinum bistratum* sluiter, in New Caledonia. Until now, six members of the bistramide family have been discovered, namely bistramides A, B, C, D, K with the recent addition oxobistamide-K. All of these compounds are metabolites showing attractive biological activities, such as antiproliferative, neurotoxic, and immunomodulating properties. Most interestingly, they exhibit cytotoxic properties against a variety of human cancer cells including the human non-small cell lung carcinoma (NSCLC-N6), P388/dox and HL60 cell lines. Considerable efforts have been expended in the mechanistic study of these molecules.

Kozmin *et al.*, studying the biotin conjugates of bistramide A (1.69) (Figure 2), showed that Actin is the primary cellular receptor for bistramide A. This is contrary to the previous suggestion that activation of the protein kinase C, (PKC) δ by bistramide A leads to the antiproliferative effect. Kozmin suggested that the antiproliferative activity of this molecule arises from binding with the monomeric G-actin. This suggestion was unambiguously proved by a crystal structure of the actin-bistramide A complex. Though Actin is a globular protein which plays a vital role in the maintenance of cell shape and other important cellular processes, drugs that directly modulate actin have not progressed yet. So, studies “to develop new synthetic analogues as useful probes for studying the actin cytoskeleton and as potential therapeutic leads” are still in progress. However, the high toxicity of bistramides currently prevents their therapeutic use. Kozmin demonstrated that “the enone moiety of bistramide A is responsible for covalent modification of the protein in vitro and in A549 cells, which results in
further increase in the cytotoxicity of the natural product”. However, bistramides D and K are less toxic as they hold a hydroxy functionality instead of the enone. Riou showed that only the least toxic bistramides D and K possess antitumor activity against NSCLC-N6 cell lines. Riou’s study showed that these two substances could be administered as a continuous treatment which would induce terminal differentiation of stem cells at their entry into the cell cycle, thereby causing their destruction.

Bistramide A-Biotin conjugate:

![Chemical structure of Bistramide A-Biotin conjugate](image)

Figure 2

Structural Elucidation:

From the discovery of the bistramides, extensive efforts have been expended on the determination of their structures. Bistramides are structurally complex molecules having 11 to 12 stereo centers, which leads to a huge number of possible stereo isomers. “Assigning the absolute configuration of a complex natural product with multiple stereo centers is not only laborious but also error prone.” However in 1988, the first carbon backbone structure of bistramide A was reported by Gouiffes’s group. Later Ireland’s detailed 2D NMR studies allowed an unambiguous structural determination of bistramide A. In 2004, Kozmin’s stereocontrolled synthesis of bistramide A reconfirmed the structural predictions, and also explored the previously unknown C-37 stereochemistry. Similarly, Wipf and coworkers proposed the structure of bistramide C and
confirmed it by a total synthesis.10,14,15 Solladié \textit{et al.} employed a semi synthetic approach to construct bistramide D from bistramide A, which in turn allowed them to determine the absolute and relative configuration of bistramide D through the crystal structure of the product.16,17

Bistramides A, B, C, D have very similar structures consisting of a tetrahydropyran (THP) unit and a spiroketal moiety connected via an amino acid unit (Figure 1). Unlike the others, bistramide K and oxobistramide K do not have a THP ring. The members of the bistramide family are well differentiated by their oxidation level, the difference between bistramide A and C is at the C-39 position; if a hydroxyl group is attached at carbon-39, it is known as bistramide A, if it is a carbonyl group then it is called bistramide C. For bistramide B there is no double bond between C2-C3 while the rest of the family have a double bond in that position. Bistramide D, K and oxobistramide K have a hydroxyl group at the C4 position while rest of the group have a ketone.
Members of bistramide family and their distinguishing features:

![Bistramide-A](image1)

![Bistramide-B](image2)

![Bistramide-C](image3)

![Bistramide-D](image4)

![Bistramide-K](image5)

![39-oxobistramide-K](image6)

Figure 1
Previous Synthetic Studies of Bistramides:

1. Solladié’s semisynthesis of bistramide D:

Solladié et al. reported a semi synthesis of bistramide D by stereoselective reduction of bistramide A, which allowed them to partially determine the absolute and relative configurations of bistramide D. After exploring the conditions with various reducing reagents they found that LiBHEt₃ affords, bistramide D in good yield with a high diastereomeric ratio (95:5) (Scheme 1). The Mosher's method was utilised to assign the absolute configuration at carbon-4 of bistramide D, via an esterification of the C-4 hydroxyl group with the two enantiomers of 2-methoxy-2-phenyl-2-trifluoromethyl acetyl chloride (MPTA-Cl). Detailed NMR studies of the two resulting diastereomers revealed the stereochemistry of the C₄ position as (R).

Solladié’s stereoselective reduction of bistramide A to bistramide D:

![Scheme 1](image)

Reagents and conditions: (i) Ac₂O, pyridine, 96 %; (ii) LiBHEt₃, THF, 73 % (95 : 5) mixture; (iii) LAH, 81 %.

Solladié’s detailed NMR studies with the diacetylated bistramide A allowed him to assign the relative configurations of the tetrahydropyran and spiroacetal parts as (6R*, 9S*, 11S*) and (22R*, 23S*, 27S*, 31S*) respectively. Scheme 2,
below, shows the NOESY interactions of diacetylated bistramide A. In early 2006, he reported the absolute and relative configuration of bistramide D from a crystalline derivative of bistramide D.

![Diagram of bistramide A and bistramide D configurations]

Scheme 2

2. Kitching’s substructure synthesis of bistramides:

Followed by Solladié’s structural determination of bistramide D, Kitching reported a synthesis of a bistramide substructure. Kitching established the synthesis of the three fragments namely, the THP ring, amino acid and the spiroacetal unit (Scheme 3). His structural assignments revised the previously proposed relative stereochemistry of bistramides.

For the synthesis of the C1-C13 fragment of the bistramides, Kitching used two different methods. In the first method, Kitching started with a known epoxide (1.1), which on THP protection followed by Wittig reaction, provided the α, β-unsaturated ester (1.3). Compound (1.3), on debenzylation followed by LAH reduction, afforded the alcohol (1.4). TPAP oxidation of the alcohol (1.4) to aldehyde, which on second Wittig reaction provided the precursor (1.5) for cyclisation. The cyclisation reaction was achieved via an Oxymercuration reaction with Hg(II) to afford compound (1.6) with the other three possible stereo isomers. All of these isomers were separated and their NMR spectra were
compared with that of bistramide A. The spectrum of the isomer (1.7) shown below was the closest match.

Reagents and conditions: (i) 1,3-Dithiane, BuLi, 70 %; (ii) DHP, PPTS, CH₂Cl₂; (iii) Mel, CaCO₃, 65 %; (iv) Ph₃P=CH(CH₃)COOEt; (v) H₂, Pd/C; (vi) DMP, H⁺; (vii) LiAlH₄, 72 %; (viii) TPAP, NMO; (ix) Ph₃P=CHCO₂Et, 80 %; (x) H⁺, MeOH; (xi) Hg(OAc)₂, H⁺, NaBH₄, 55 %; (xii) TPAP, NMO; (xiii) In, allyl bromide; (xiv) TPAP, NMO, Al₂O₃ (neutral), 95 %.

In turn, his second method (Scheme 4), started with the known aldehyde ²² (1.8) which on allylation followed by cyclisation with Hg (II) afforded compound (1.10) and the other three possible diastereomers as expected. Compound (1.10) on ozonolysis, subsequent allylation and Swern oxidation yielded the desired C1-C13 fragment of bistramide A (1.11).
Reagents and conditions: (i) Ally bromide, Zn, THF-H$_2$O, 85 % (ii) PdCl$_2$.2MeCN, CuCl$_2$, MeOH, CO (1 atm), 81 %; (iii) O$_3$, CH$_2$Cl$_2$, Me$_2$S, -78 °C; (iv) In, allyl bromide; (v) Swern oxidation-isomerisation, 62 % (3 steps).

The synthesis of spiroketal (1.15) was achieved by the chain elongation of hydrazone (1.12) followed by an acid mediated cyclisation of the resulting ketone (1.13). The spiroketal (1.14) on Swern oxidation followed by Wittig olefination and further transformations afforded spiroketal (1.15) in 55 % yield over 3 steps.

Reagents and conditions: (i) BuLi, THF, HMPA, 2,2-diethyl-4-(S)-(2-iodo-1-(R)-methylethyl)-[1.3]dioxolane; (ii) SiO$_2$, 48 % (2 steps); (iii) THF, H$_2$O, conc. HCl, 59 %; (iv) Swern oxidation, Ph$_3$P=CHCO$_2$Et; (v) H$_2$, Pd/C, 47 % (3 steps); (vi) LiAlH$_4$, 55 %.

As with the THP fragment, Kitching synthesized the amino acid fragment by two different methods. In method (1) he used an aldol strategy using a boron enolate (7Bu$_2$BOTf) to obtain a 2.5:1 mixture of syn and anti aldol products.
Alternatively in method (2) he used a highly regio-selective Zn-mediated α-methylallylation reaction of aldehyde (1.19) followed by oxidation to obtain the desired amino acid (1.22) in racemic form.

Kitting’s synthesis of amino acid fragment method (1):

\[
\begin{align*}
\text{(1.16)} & \quad \text{(i)} \rightarrow \text{(1.17)} \rightarrow \text{(1.18)} \\
\end{align*}
\]

Scheme 6

Reagents and conditions: (i) iPr₂NEt, CH₂Cl₂, 7Bu₂BOTf, 0°C, PhthNCH₂CHO, 65 %; (ii) NaOMe, MeOH, 75 %; (iii) Ac₂O, pyridine; (iv) NH₂NH₂·xH₂O, EtOH, 50 %.

Kitting’s synthesis of amino acid fragment method (2):

\[
\begin{align*}
\text{(1.19)} & \quad \text{(i)} \rightarrow \text{(1.20)} \rightarrow \text{(1.21)} \rightarrow \text{(1.22)} \\
\end{align*}
\]

Scheme 7

Reagents and conditions: (i) CH₃CH=CHCH₂Cl, Zn, THF-H₂O, NH₄Cl, 87 %; (ii) Ac₂O, Py, 81 %; (iii) KMnO₄/H₂O-C₆H₆, AcOH, TBAI; (iv) CH₂N₂, ether, 52 % (2 steps); (v) HPLC, hexane-EtOAc.

Synthesis of each fragment and comparison with the natural product helped Kitching contribute to the assignment of the relative stereochemistry of bistramide A.

3. Wipf’s total synthesis and structural elucidation of bistramide C:

Inspired by the potential biological features of the bistramides, Wipf expended extensive efforts to establish the absolute configuration of bistramide C, which led to the first total synthesis of bistramide C. It was a great challenge to find the absolute stereochemistry as bistramide C contains 10 stereogenic centres.
with 1024 possible stereo isomers. However, extensive use of previous NMR investigations \(^{12}\) and Solladié’s synthetic studies helped Wipf to narrow the search to 32 isomers. \(^{16}\) In spite of the valuable supporting data, the absolute stereostructure of the bistramides still remained elusive. To further simplify the stereochemical puzzle Wipf started a synthesis of one possible isomer of bistramide C (Scheme 8). \(^{14}\) Elucidation of the structure was finally achieved by a combination of both synthetic and chiroptical tools. \(^{10}\) (Chiroptical spectroscopy is an advanced tool to determine the optical activity of a chiral compound in which the optical rotation is measured at a fixed wavelength using a spectropolarimeter).

Wipf’s structural analysis of bistramide C:

Initially Wipf began the proposed THP synthesis of bistramide C from D-glucose, which following functional group transformations, afforded the dihydropyran (1.23) (Scheme 9). The stereochemistry at C-4 was installed by a Lewis acid mediated allylation to obtain the trans disubstituted product (1.24). Dihydroxylation of (1.24) with AD-mix-β and treatment with 2,2-dimethoxypropane gave compound (1.24a) in 96 % yield over two steps. Wittig olefination followed by a face selective addition of H\(_2\) and side chain extension
with tris(trimethylthio)methyl lithium afforded the expected C1-C13 fragment (1.24c) in 17 steps.

Wipf’s synthetic studies towards the THP fragment of bistramide C:

![Scheme 9]

Reagents and conditions: (i) ADNmixNβ; (ii) Me$_2$C(OMe)$_2$, PPTS, 96 %; (iii) PtO$_2$, H$_2$, 71 %; (iv) NaOMe, MeOH; (v) TBSCI, Et$_3$N, 97 %; (vi) SO$_3$.Py, DMSO, Et$_3$N; (vii) Ph$_3$P=CH$_2$, 70 %; (viii) H$_2$, PtO$_2$; (ix) TBAF; (x) Tf$_2$O, Py; (xi) (MeS)$_3$CLi; (xii) Phl(OTFA)$_2$, MeOH-H$_2$O; (xiii) PPTS, MeOH, 59 %; (xiv) KIO$_4$, Et$_2$O-H$_2$O, 74 %; (xv) (E)-CH$_3$CH=CHBr, tBuLi, (xvi) TBSCI, imidazole, 56 %; (xvii) Bu$_4$NOH, 84 %.

The synthesis of the spiroketal fragment evolved from the previously used intermediate (1.24). Treatment of (1.24) with Me$_2$CuLi displaced the allylic acetate, methanolysis followed by protection of the alcohol afforded (1.25) in 58 % yield over 3 steps. Regioselective hydroboration-oxidation of the terminal alkene, a protection and deprotection sequence provided (1.26) (Scheme 10). Activation of the alcohol (1.26) as a triflate followed by a Grignard reaction with allyl magnesium bromide, a second hydroboration-oxidation, followed by TPAP oxidation afforded aldehyde (1.27). Reformatsky reaction of aldehyde (1.27) with Evans alkyl bromide (1.28) under Nozaki-Hiyama-Kishi conditions installed
the secondary hydroxyl group with the desired stereochemistry in a 3:1 ratio. Chiral auxiliary removal and introduction of a pivaloyl group allowed separation of the isomers (1.29). Compound (1.29), on oxidative spirocyclisation with iodobenzene diacetate and iodine under UV irradiation, gave spiroketales (1.30) and (1.31) in a 3.5:1 ratio. Compound (1.30) on further chain elongation afforded the C19-C40 fragment (1.32) in 28 steps.

Wipf’s synthesis of spiroacetal fragment:

\[
\begin{align*}
\text{(1.24)} & \xrightarrow{(i-iii)} \text{(1.25)} & \xrightarrow{(iv-vi)} \text{(1.26)} & \xrightarrow{(vii-x)} \\
\text{(1.27)} + \text{(1.28a)} & \xrightarrow{(xi-xiii)} \text{(1.29)} & \xrightarrow{(xiv-xvi)} \\
\text{(1.30)} + \text{(1.31)} & \xrightarrow{(xvii-xix)} \text{(1.32)}
\end{align*}
\]

Reagents and conditions: (i) Me₂CuLi; (ii) NaOMe, MeOH; (iii) PvCl, pyridine, 58 % (3 steps); (iv) 9-BBN, H₂O₂, NaOH; (v) TIPSCI, DMAP; (vi) LiAlH₄, 79 % (3 steps); (vii) Tf₂O, pyridine; (viii) allylMgBr CuBr_SMe₂, 64 % (2 steps); (ix) 9-BBN, H₂O₂, NaOH; (x) TPAP, NMO, 65 % (2 steps); (xi) oxazolidinone (1.28a), CrCl₂, NaI, 68 %; (xii) LiBH₄; (xiii) PvCl, pyridine, 76 % (2 steps); (xiv) Phl(OAc)₂, I₂, hv; (xv) LiAlH₄, 54 % (2 steps); (xvi) Bu₃SnH, AIBN, 94 %; (xvii) PCC, NaOAc, 82 %; (xviii) Phosphonoester (1.28b), i-
Pr₂NEt, LiCl, 92 %; (xix) H₂, Pt/C, 63 %; (xx) NaHMDS, Mel, 73 %; (xxi) LiBH₄, 89 %; (xxii) Dess-Martin oxidation, 80 %; (xxiii) Ph₃P=CMeCO₂Et, 66 %; (xxiv) LiAlH₄; (xxv) Dess-Martin oxidation; (xxvi) MeMgBr, 87 % (3 steps); (xxvii) TBAF; (xxviii) MsCl, i-Pr₂NEt; (xxix) NaN₃, 74 % (3 steps).

The anti-isomer (1.35) was synthesised from (S)-malic acid (1.33) as shown in the (Scheme 11) and this was coupled with the THP fragment (1.27) using PyBOP (Scheme 12). The resulting peptide on similar coupling with spiroketal fragment (1.32) gave the tentative target structure of bistramide C (1.36) (scheme 11). Extensive study of the NMR data and applying Van’t Hoff’s principle of molar rotation angles to the segments (1.24c), (1.32) and (1.35) allowed deduction of the absolute configuration of bistramide C. ¹⁰

Wipf’s aminoacid synthesis:

Reagents and conditions: (i) EtOH, Conc.HCl, reflux, 92 %; (ii) LDA, Mel, THF, 64 % (6:1); (iii) (a) BH₃·SMe₂, NaBH₄, THF; (b) DBTO, TsCl, Et₃N, CH₂Cl₂, 46 % (2 steps); (vi) NaN₃, DMF, 70 °C, 74 %; (v) TBSCI, imidazole, CH₂Cl₂, 87 % (vi) LiOH, EtOH (vii) TIPSCI, Et₃N, (viii) H₂, Pd/C.
Coupling of THP, amino acid and spiroketal:

\[(1.24c) + (1.32) + (1.35) \rightarrow \text{Scheme 12}\]

A few years later Wipf reported the total synthesis of bistramide C which reconfirmed his structural assignment. For the synthesis of the C1-C13 fragment (enantiomer of 1.27) with the correct stereochemistry, he started from 1-pentene-5-ol and the key steps were the asymmetric methylalumination using Erker's chiral zirconocene (1.45), Wittig-Horner reaction, Sharpless asymmetric epoxidation followed by allylation provided the THP in 5:1 diastereomeric ratio. Further functional group transformations provided the C1-C13 fragment (1.44) of bistramide C.
Wipf's modified approach for THP with corrected stereo chemistry:

\[\text{Scheme 13} \]

Reagents and conditions: (i) AlMe$_3$, Zr catalyst (1.45) 2.8 mol %, MAO, CH$_2$Cl$_2$ then O$_2$, 78 %; (ii) NaOCl, TEMPO, KBr, NaHCO$_3$, Na$_2$CO$_3$, CH$_2$Cl$_2$, 92 %; (iii) trimethyl phosphonoacetate, LiCl, DBU, MeCN, 91 %; (iv) DIBAL-H; (v) TBHP, D(-)-DIPT, Ti(O-iPr)$_4$, CH$_2$Cl$_2$, -20 °C, 96 %; (vi) Red-Al, quantitative; (vii) NaH, BnBr, TBAI, THF, 87 %; (viii) TBAF, 98 %; (ix) TESOTf, 2,6-lutidine, quantitative; (x) AcOH-H$_2$O-THF, 79 %; (xi) Dess-Martin periodinane, NaHCO$_3$, CH$_2$Cl$_2$, 81 %; (xii) CH$_2=CHCH_2TMS$, BiBr$_3$, CH$_3$CN, 72 %, 5:1 dr; (xiii) O$_3$/O$_2$, methyl pyruvate, CH$_2$Cl$_2$, then PPh$_3$, 65 %; (xiv) (E) CH$_3$CH=CHLi; (xv) TBSCl, imidazole, 82 %; (xvi) NaOMe, MeOH, 90 %; (xvii) TBAF, 98 %; (xix) TESOTf, 2,6-lutidine, quantitative; (x) AcOH-H$_2$O-THF, 79 %; (xi) Dess-Martin periodinane, NaHCO$_3$, CH$_2$Cl$_2$, 90 %; (xviii) NaClO$_2$, NaH$_2$PO$_4$, 2-methyl-2-butene, t-BuOH, 67 %.
The spiroketal (1.47) was derived from D-glucal and the amino acid (1.46) was synthesised from (R)-malic acid in a similar way used for the enantiomer synthesis. Finally Wipf achieved the stereoselective synthesis of bistramide C as the stereochemistry and spectroscopic properties of synthetically obtained bistramide C matched those of the natural product (Scheme 14)

Wipf’s synthesis of bistramide C with corrected stereochemistry:

![Chemical Structure]

Scheme 14

4. Kozmin’s synthesis of bistramide A:

The first total synthesis of bistramide A was achieved by Kozmin et al. in 2004, this not only served as an unambiguous support to the earlier structural determinations, but also revealed the previously unknown CN37 stereochemistry. Furthermore, his synthesis supported Wipf’s stereochemical assignment of bistramide C.

Kozmin started the C1-C13 fragment (1.56) from the aldehyde (1.48) which on Brown crotylboration afforded (1.50) (Scheme 15). The alcohol (1.50) on reaction with acryloyl chloride afforded the acylated diene (1.51) in 55 % yield. The diene (1.51) on ring closing metathesis with the Grubbs II catalyst and
subsequent hydrogenation of the double bond furnished the lactone (1.52). DIBAL reduction of the lactone followed by acetylation yielded (1.53). ZnCl₂ Promoted C-glycosidation of (1.53) with silyl dienol ether (1.54), afforded the desired enone (1.55) with high diastereoselectivity (92:8). The stereoselectivity was explained by the axial attack of the nucleophile on the oxonium ion intermediate having a pseudo uatorial siloxyethyl substituents and an axial methyl substituent.¹³ Deprotection of the TBS group followed by the oxidation of the resulting alcohol afforded the carboxylic acid which was then activated with N-hydroxysuccinimide to afford the THP fragment (1.56) of bistramide A.

Kozmin’s synthesis of C1-C13 fragment:

![Chemical Diagram](image)

Scheme 15

Reagents and conditions: (i) Borane reagent; H₂O₂, NaOH, 63 %; (ii) CH₂=CHCOCl, Et₃N, DMAP, 55 % (2 steps); (iii) Grubbs II, CH₂Cl₂, reflux; (iv) H₂, Pd/C, 72 % (2 steps); (v) DIBAL-H, CH₂Cl₂; (vi) Ac₂O, pyridine; (vii) ZnCl₂, alkene (1.54), 60 % (3 steps); (viii) HF, CH₃CN; (ix) H₃IO₆, CrO₃ (x) DCC,THF, N-hydroxy succinimide.
Kozmin devised an impressive method for the synthesis of the spiroketal fragment (1.63) (Scheme 16). The synthesis started with a ring opening metathesis (ROM) reaction, a rarely used metathesis reaction in organic synthesis, driven by ring strain, to open the cycloprop-2-enone derivative (1.58) with the alkene (1.57). Removal of the acetal was achieved with 1M H₂SO₄, and the resulting dienone on cross metathesis with the second partner (1.60) afforded the spiroketal precursor (1.61) in 68% yield. The precursor (1.60) is attractive as it was designed to have a single protecting group (Bn), subsequent deprotection of the all three benzyl groups and removal of the two double bonds could be achieved in one step by catalytic hydrogenation. Thus hydrogenation of (1.61) followed by Dess-Martin oxidation afforded the spiroketal (1.62) as a single diastereomer. The elongation of the chain was achieved via a Cr-mediated olefination followed by Itsuno-Corey reduction with oxazaborolidine (1.64) to afford the spiroketal (1.63). The C-37 (R) diastereomer was obtained by using the antipode of the oxazaborolidine (1.64) reagent.
Kozmin’s synthesis of spiroacetal fragment:

Reagents and conditions: (i) cyclopropene acetal (1.58), Grubbs II, C₆H₆, 60 °C; (ii) 1M H₂SO₄, MeCN, 63 % (2 steps); (iii) Grubbs II, alkene (1.60), 68 %; (iv) H₂ (80 psi), Pd(OH)₂/C; (v) Dess-Martin oxidation, 53 % (2 steps); (vi) CrCl₂, THF, CH₃COClBr₂CH₃; (vii) (1.64) catechol borane, toluene; (viii) MeNH₂, MeOH, 65 °C, 40 % (3 steps).

For the synthesis of amino acid fragment (1.68), Kozmin et al. utilised the Brown crotylboration ²⁴ once again, this time to get the anti product (1.66). Their amino acid synthesis started from the Boc protected amino aldehyde (1.65), which on crotylboration with (+)-(Ipc)₂BOMe, provided (1.66) in 93 % ee. The alkene (1.66), on subsequent protection and oxidation afforded (1.67). Compound (1.67) on acid hydrolysis followed by protection as the Fmoc derivative provided compound (1.68).
Kozmin’s synthesis of amino acid fragment:

\[
\text{BocHN} \quad \text{(1.65)} \quad \text{(i)} \quad \text{Me} \quad \text{O} \quad \text{BocHN} \quad \text{(1.66)} \quad 93 \% \text{ ee} \quad \text{(ii,iii)} \quad \text{BocN} \quad \text{Me} \quad \text{O} \quad \text{OH} \quad \text{(1.67)}
\]

\[
\text{FmocHN} \quad \text{Me} \quad \text{O} \quad \text{OH} \quad \text{(1.68)} \quad \text{(iv)} \quad \text{Scheme 17}
\]

Reagents and conditions: (i) borane reagent, NaOH, H\textsubscript{2}O\textsubscript{2}, 93% ee; (ii) (Me\textsubscript{2}C(OMe)\textsubscript{2}; TsOH, acetone; (iii) NaIO\textsubscript{4}, RuCl\textsubscript{3}; (iv) 3N HCl, EtOAc; (v) FmocOSu, Na\textsubscript{2}CO\textsubscript{3}, Dioxane-H\textsubscript{2}O.

The highlight of the Kozmin synthesis is the use of a novel strategy for the spiroketal synthesis which was achieved via ring opening and cross metathesis reactions. The right choice of protecting groups allowed them to minimise the number of steps.

5. Crimmins Synthesis of Bistramide A:

At the end of 2005, Crimmins reported an enantioselective synthesis of bistramide A,28 which was the second stereoselective synthesis reported for this molecule. Crimmins started the THP fragment synthesis from a known aldehyde (1.70)29 which on aldol reaction with the N-propionyl thiazolidinethione enolate (1.71) (Scheme 18), afforded the \textit{syn} product (1.72) with excellent diastereoselectivity (98:2). Reductive cleavage of the chiral auxiliary followed by Wittig reaction gave the corresponding \(\alpha,\beta\)-unsaturated ester (1.73) in 78 % yield in two steps. Hydrogenation of the resulting ketone, lactonisation followed by reductive acylation gave compound (1.74), which is similar to the Kozmin’s
The stereochemistry was installed by treating the acetate (1.74) with 2-trimethylsilyloxy-1,3-pentadiene \(^{30}\) to obtain (1.75) in 9:1 diastereomeric ratio. After deprotection of the TIPS ether, similar to Kozmin, Crimmins also used the chromium catalysed oxidation of the primary alcohol to the acid followed by esterification with \(N\)-hydroxysuccinimide to afford the THP fragment (1.56) over 10 steps.

Crimmin's synthesis of the THP fragment of bistramide A:

\[
\begin{align*}
\text{(1.70)} & \xrightarrow{(i)} \text{(1.71)} & \rightarrow \text{(1.72)} \\
\text{(1.73)} & \xrightarrow{(iv, v)} \text{(1.74)} \\
\text{(1.75)} & \xrightarrow{(ix, x)} \rightarrow \text{(1.76)}
\end{align*}
\]

Scheme 18

Reagents and conditions: (i) \(\text{TiCl}_4\), NMP, (-)-sparteine, \(\text{CH}_2\text{Cl}_2\), -78 °C, chiral auxiliary (1.71), 87 %; (ii) \(i\)-Bu\(_2\)AlH, THF, -78 °C; (iii) \(\text{Ph}_3\text{P}=\text{CHCO}_2\text{Et}\), \(\text{CH}_2\text{Cl}_2\), 78 % (2 steps); (iv) \(\text{H}_2\), Raney Ni, \(\text{EtOH}\); (v) PPTS, \(\text{CH}_2\text{Cl}_2\), 40 °C, 81 % (2 steps); (vi) \(i\)-Bu\(_2\)AlH, pyridine, DMAP, \(\text{Ac}_2\text{O}\), \(\text{CH}_2\text{Cl}_2\), -78 to -20 °C, 96 %; (vii) \(\text{Et}_3\text{N}\), TMSOTf, 3-penten-2-one, \(\text{CH}_2\text{Cl}_2\), 0°C to -78 °C, acetate, 87 %, 9:1 dr; (viii) \(\text{H}_2\text{SiF}_6\), \(\text{CH}_3\text{CN}\), 0 °C, 75 %; (ix) \(\text{H}_3\text{O}_6/\text{CrO}_3\), \(\text{CH}_3\text{CN}\), 77 %; (x) \(N\)-hydroxysuccinimide, EDC.HCl, \(\text{CH}_2\text{Cl}_2\), 100 %.
Crimmins started his aminoacid synthesis with the commercially available diol (1.76) which on PMB protection followed by Sharpless asymmetric epoxidation afforded the epoxide (1.77) in high yield (Scheme 19). Methylation with lithium dimethylcuprate, yielded the 1,3-diol (1.78) in a 6:1 ratio with its regioisomeric 1,2-diol. The undesired diol was removed by treatment with NaIO₄. TBS protection of both free hydroxyls of (1.78) followed by removal of the PMB ether provided alcohol (1.79) in 95 % yield over two steps. The free primary alcohol was displaced by azide via a Mitsunobu reaction, subsequent deprotection of the primary TBS ether provided (1.80). One pot TEMPO oxidation of the alcohol to carboxylic acid followed by deprotection of the TBS ether yielded (1.81). Hydrogenation of the azide provided the primary amine which on in situ Fmoc protection afforded the aminoacid fragment (1.68).

Crimmins synthesis of amino acid fragment:

\[
\begin{align*}
\text{HO} & \rightarrow \text{PMBO} \rightarrow \text{Me} \\
(1.76) & \rightarrow (1.77) & \rightarrow (1.78) \\
\text{Me} & \rightarrow \text{N₃} \\
\text{OTBS} & \rightarrow (1.79) & \rightarrow (1.80) & \rightarrow (1.81) \\
\text{FmocHN} & \rightarrow \text{OH} \rightarrow \text{O} \\
(1.68)
\end{align*}
\]

Scheme 19

Reagents and conditions: (i) NaH, p-methoxybenzylchloride, DMF, 71 %; (ii) L-(+)-DET, Ti(OiPr)₄, BuOOH, CH₂Cl₂, 4 Å sieves, -20 °C, 95 %, 98 % ee; (iii) (a) Me₂CuLi, Et₂O, -50 °C to -25 °C, 6:1 of 1,3- to 1,2-diol; NaIO₄, H₂O, 71 %; (b) TBSOTf, 2,6-lutidine,
The spiroacetal fragment synthesis began with a stereoselective allylation of the enolate (1.82), derived from an Evans chiral oxazolidinone to give the allylated acyl oxazolidinone in 98:2 diastereomeric ratio (Scheme 20). Chiral auxiliary removal followed by Swern oxidation of the resulting alcohol afforded the aldehyde (1.83). Aldehyde (1.83) upon modified Julia reaction with sulfone (1.84) yielded the diene (1.85) as a 60:40 mixture of $E:Z$ isomers. The terminal alkene (1.85) on cross metathesis with methyl acrylate resulted in the unsaturated methyl ester, which on hydrogenation followed by acid treatment gave the desired lactone (1.86) in 70% yield. Addition of the lactone (1.86) to the lithium acetylide of alkyne (1.87) afforded the spiroketal precursor (1.88) which on hydrogenation afforded the trihydroxy ketone which concomitantly cyclised to give the desired spiroketal (1.89) as a single stereoisomer in 83% yield. The side chain of (1.89) was extended to obtain the spiroketal fragment (1.90) in five steps, including Mitsunobu reaction, deprotection of the silyl ether, Dess-Martin oxidation followed by Horner-Wadsworth-Emmons olefination and then Corey’s stereoselective reduction of the C-39 carbonyl group.
Crimmins synthesis of spiroacetal fragment:

![Chemical structure](image)

Scheme 20

Reagents and conditions: (i) NaHMDS, allyl iodide, THF, PhMe, -78 to -45 °C, 81 %; (ii) LiBH₄, MeOH, Et₂O, 98 %; (iii) Et₃N, DMSO, (COCl)₂, CH₂Cl₂, -78 to 25 °C, 98 %; (iv) LiHMDS, THF, sulfone (N), then aldehyde, -78 to -20 °C, 87 %; (v) Grubbs II, methyl acrylate, CH₂Cl₂, 40 °C, 87 %; (vi) H₂, Pd/C, EtOAc; (vii) p-TSA, benzene, 80 °C, 70% (2 steps); (viii) alkyne, "BuLi, -78 °C, then lactone; (ix) H₂, Pd/C, MeOH, EtOAc, 83 % (2 steps); (x) PPh₃, DEAD, phthalimide, THF, 0 °C; (xi) HF/pyridine, THF, 84 % (2 steps); (xii) Dess-Martin periodinane, CH₂Cl₂, pyridine, 92 %; (xiii) Ba(OH)₂, THF, MeCOCH(Me)P(O)(OEt)₂, 58 %; (xiv) (R)-CBS, catecholborane, toluene, -78 °C, 65 %, >98:2 dr.

Similar to Kozmin, Crimmins also coupled the three fragments namely THP (F), amino acid (K) and the spiroketal (S) using a PyBOP mediated condensation to afford bistramide A. In summary, Crimmins achieved the total synthesis of bistramide A in 18 (longest) linear steps, the key steps are the aldol, Sharpless asymmetric epoxidation and the modified Julia reaction.
6. Panek’s bistramide A synthesis:

Developing novel methodologies and applying them to synthesise natural products and biologically active compounds are well known in organic synthesis. Similarly, bistramide A was synthesised \(^{31}\) by Panek in 2006, by an application of his [4+2] annulation protocol. \(^{32}\) Initially Panek developed the [4+2] annulation strategy mainly for the synthesis of dihydropyran, later it was utilised for the synthesis of number of natural products including bistramide A. The best part of his bistramide A synthesis, was the construction of 8 out of 11 stereogenic centers exclusively from three different organosilanes (Scheme 21).

Organosilanes approach to bistramide A:

![Organosilanes approach to bistramide A](image)

The synthesis of the THP fragment began with (Z)-crotylsilane (1.91) which on annulation with aldehyde (1.92) gave the desired dihydropyran (1.93) in a 12:1 diastereomeric ratio (Scheme 22). The stereochemistry of the cyclisation was controlled by the silicon bearing carbon. \(^{32}\) Hydrogenation of (1.93) using
Adam’s catalyst resulted in the reduction of the double bond as well as the deprotection of the benzyl ether. The alcohol was protected as its TBDPS ether; LiBH₄ reduction of the methyl ester afforded compound (1.94) in 74% yield over 3 steps. The primary alcohol obtained from the methyl ester was converted into the corresponding iodide which on displacement with the lithium anion of 2-propenyl-dithiane afforded compound (1.95). Deprotection of the TBDPS ether was achieved by treatment with HF. Similar to Kozmin ¹³ and Crimmins, ²⁸ Panek also used the chromium catalysed oxidation of alcohol to obtain the acid (1.96).

Panek’s synthesis of the THP fragment of bistramide A:

![Scheme 22](attachment:image.png)

Reagents and conditions: (i) TMSOTf, CH₂Cl₂, -50 °C, 61% dr 12:1; (ii) H₂, PtO₂, MeOH; (iii) TBDPSCI, Et₃N, CH₂Cl₂; (iv) LiBH₄, Et₂O, 74% (3 steps); (v) (CH₃O)₃P⁺CH₃⁻; (vi) 2-propenyl-dithiane, “BuLi, HMPA, THF, 86% (2 steps); (vii) Dess-Martin; (viii) HF, CH₂CN, 69% (2 steps); (ix) CrO₃, H₃IO₄, CH₃CN/H₂O, 85%.

For the amino acid synthesis, Panek started with a known homoallylic alcohol (1.97) (Scheme 23), as the enantiomer was prepared by his group as part of their Callipeltoside synthesis. ³³ TBS protection of the secondary alcohol (1.97) followed by ozonolysis and concomitant reduction of the resulting aldehyde provided the primary alcohol, which on protection as its TBS ether gave (1.98).
Debenzylation of the alcohol was achieved by hydrogenation, the free alcohol was then displaced by azide under Mitsunobu conditions to afford (1.99). The selective deprotection of the TBS group followed by oxidation to acid (1.100) were achieved in the similar way to Crimmins. Acid (1.100) on esterification with TIPSCI followed by the reduction of azide afforded the C14-C18 fragment (1.101) of bistramide A.

Panek’s synthesis of amino acid fragment:

![Scheme 23](image)

Reagents and conditions: (i) TBSOTf, 2,6-lutidine, CH₂Cl₂, 99 %; (ii) O₃, MeOH, pyridine, NaBH₄, 92 %; (iii) TBSCl, imidazole, DMF, 99 %; (iv) H₂, Pd/C, EtOAc, 84 %; (v) PPh₃, DIAD, THF, (C₆H₅O)₂P(O)N₃, 93 %; (vi) CSA, MeOH, CH₂Cl₂, 90 %; (vii) NaOCl, NaClO₂, TEMPO; (viii) TIPSCI, CH₂Cl₂, Et₃N, 76 % (2 steps); (ix) H₂, Pd/C, THF.

Panek used the second [4+2] annulation strategy for the spiroketal fragment (1.111) synthesis (Scheme 23). The synthesis started with [4+2] annulations of syn-(E)-crotylsilane reagent (1.103) with the aldehyde (1.104) providing the desired dihydropyran (1.105) as a single diastereomer in excellent yield. Isomerisation of the double bond followed by treatment with CSA in methanol afforded methyl glycoside (1.106). The aldehyde (1.107) was derived from the ester (1.106) via a DIBAL reduction. The second key step in Panek’s strategy was the olefination of the aldehyde (1.107) with phosphonium salt (1.108) which...
afforded a single olefin isomer (1.109) in 86 % yield. Regioselective hydrogenation of the double bond at C28-C29 was achieved using Wilkinson’s catalyst, removal of PMB ether using DDQ in pyridine resulted in spiroacetal formation (1.110). Deprotection of the benzylated alcohol was achieved by Birch reduction, the alcohol on displacement with azide followed by treatment with Me₃P afforded the spiroacetal fragment (1.111).

Panek’s synthesis of spiroacetal fragment:

\[
\begin{align*}
\text{(1.103)} & \xrightarrow{\text{(i)}} \text{(1.104)} & \xrightarrow{\text{(ii, iii)}} \text{(1.105)} & \xrightarrow{\text{(vi, vii)}} \text{(1.109)} \\
\text{(1.107)} & \xrightarrow{\text{(iv)}} \text{(1.106)} & \xrightarrow{\text{(v)}} \text{(1.108)} & \xrightarrow{\text{(viii-x)}} \text{(1.110)} & \xrightarrow{\text{(vii)}} \text{(1.111)}
\end{align*}
\]

Scheme 24

Reagents and conditions: (i) TMSOTf, CH₂Cl₂, BnO(CH₂)₃CHO, -50 °C, 97 %; (ii) "Bu₄NOH, THF, 96 %; (iii) CSA, MeOH, 81 %; (iv) DIBAL-H, Et₂O, 94 %; (v) "BuLi, THF, 0 °C, 86 %; (vi) H₂, (Ph₃P)₃RhCl, benzene, 75 %; (vii) DDQ, pyridine, CH₂Cl₂, 76 %; (viii) Na, NH₃(l), THF, 91 %; (ix) PPh₃, DIAD, (PhO)₂P(O)N₃, THF, 86 %; (x) PMe₃, THF/H₂O.

Similar to the previous syntheses, Panek also used the PyBop mediated coupling of the three fragments (1.96), (1.101) and (1.111) to obtain bistramide.
A. The highlight of the synthesis is the extensive use of enantioenriched silanes to control the stereochemistry. Recently Panek et al. illustrated the synthesis of 35 isomers of bistramide A, by extensive use of their organosilane methodology.25

7. Yadav’s synthesis of bistramide A:

The latest total synthesis of bistramide A was reported by Yadav in 2007.34 He depicted a slightly different approach to synthesise the spiroketal fragment by using a TosMIC derivative (tosylmethyl isocyanide) (1.119).35 TosMIC is considered to be the most versatile synthon of the methyl isocyanide family, the chemistry of which was extensively explored by Van Leusen.36 An attractive feature of this chemical is due to the 3 functional groups namely the isocyano group which undergoes facile α-addition reactions, an acidic α-carbon atom which can be dialkylated and hydrolysed to give a ketone thus acting as a carbonyl umpolung synthetic equivalent, and a sulfonyl group which serves as a good leaving group as well as helping to increase the acidity of the α-carbon.37 Yadav started his THP synthesis from a known cis epoxy alcohol (1.112)38 (Scheme 25) which was converted into γ,δ-epoxy acrylate using conventional procedures. On subsequent methylation using Miyashita’s protocol39 the syn product (1.113) was obtained with high stereo and regio selectivity. Treatment of (1.113) with Raney-nickel resulted in the concomitant deprotection of the benzyl ether and the removal of double bond. Yadav et al. utilised a similar strategy to Crimmins28 to construct the pyran ring (1.75) while the side chain was extended by a method similar to Kozmin’s approach.13
Yadav's synthesis of THP fragment of bistramide A.

\[
\text{BnO} - \text{OH} \xrightarrow{(i-iii)} \text{BnO} - \text{H}^2\text{O} - \text{Et} \xrightarrow{(iv-vi)} \text{Me} - \text{TBSO} - \text{O} \xrightarrow{(vii,viii)} \text{O}
\]

\[
\text{OH} \quad \text{Me} \quad \text{OEt} \quad \text{O} \quad \text{Me} \quad \text{O} \quad \text{Me} \quad \text{OH} \quad \text{Me} \quad \text{HO} \quad \text{Me} \quad \text{O}
\]

Scheme 25

Reagents and conditions: (i) (COCl\(_2\)), DMSO, Et\(_3\)N, CH\(_2\)Cl\(_2\) (ii) Ph\(_3\)PCHCO\(_2\)Et, benzene, 92 % (2 steps); (iii) Me\(_3\)Al, CH\(_2\)Cl\(_2\), H\(_2\)O, 92 %; (iv) Raney Ni, H\(_2\), EtOH; (v) PPTS, CH\(_2\)Cl\(_2\), 78 % (2 steps); (vi) TBSCl, imidazole, CH\(_2\)Cl\(_2\), 93 %; (vii) DIBAL-H, CH\(_2\)Cl\(_2\), pyridine, DMAP, Ac\(_2\)O, 78 %; (viii) TMSOTf, Et\(_3\)N, CH\(_2\)Cl\(_2\), 3-penten-2-one, 62 %; (ix) H\(_5\)IO\(_6\)/CrO\(_3\), CH\(_3\)CN.

Yadav utilized the aldol reaction to fix the stereochemistry in the construction of aminoacid fragment (1.101) (Scheme 26). Aldehyde (1.115) on treatment with Evans enolate (1.114) afforded the anti aldol adduct (1.116) in 90 % de. The aldol (1.116) was then converted to the Weinreb amide; TBS protection of the alcohol followed by an ozonolysis of the double bond with reductive workup provided the primary alcohol (1.117). Mitsunobu displacement of the alcohol to the corresponding azide and deprotection/protection sequence resulted in TIPS ester (1.118). Hydrogenation of the azide (1.118) afforded the desired amino acid fragment (1.101).
Yadav's synthesis of amino acid fragment of bistramide A.

\[
\text{Yadav's synthesis of amino acid fragment of bistramide A.}
\]

\[
\begin{align*}
\text{(1.114)} & \quad \text{S N S} & \quad \text{O Me Bn} \\
\text{(1.115)} & \quad \text{H} & \quad \text{Ph} \\
\text{(1.116)} & \quad \text{Me} & \quad \text{OH} \\
\text{(1.117)} & \quad \text{MeO Me} & \quad \text{TBS} \\
\end{align*}
\]

\[
\begin{align*}
\text{(1.118)} & \quad \text{O TBS} & \quad \text{Me} & \quad \text{Me} & \quad \text{N}_3 \\
\text{(1.101)} & \quad \text{TIPSO} & \quad \text{O TBS} & \quad \text{Me} & \quad \text{NH}_2 \\
\end{align*}
\]

Scheme 26

Reagents and conditions: (i) MgBr\(_2\)·OEt\(_2\), Et\(_3\)N, TMSCl, EtOAc; (ii) MeO(H)NMe.HCl, Imidazole, CH\(_2\)Cl\(_2\), 84 %; (iii) TBSOTf, 2,6-lutidine, CH\(_2\)Cl\(_2\), 95 %; (iv) O\(_3\), CH\(_2\)Cl\(_2\), PPh\(_3\), MeOH, NaBH\(_4\), 75 %; (v) PPh\(_3\), (C\(_6\)H\(_5\)O)\(_2\)P(O)N\(_3\), DIAD, THF, 80 %; (vi) KO\(_t\)Bu, THF, H\(_2\)O (vii) TIPSOTf, CH\(_2\)Cl\(_2\), Et\(_3\)N, 72 %, (2 steps); (viii) H\(_2\), Pd/C, THF.

Yadav started the synthesis of spiroketal fragment (1.127) (Scheme 27) by alkylating TosMIC (1.119) with the alkyl iodide (1.120) to obtain (1.121). Compound (1.121) on second alkylation with (1.122) yielded the dialkylated TosMIC (1.123) which on treatment with aq. HF afforded the desired spiroketal (1.124) in 85 % yield.\(^{35}\) Swern oxidation of the primary alcohol yielded the corresponding aldehyde, which on Horner-Wadsworth-Emmons olefination, provided (1.125). The stereoselective reduction of the ketone was achieved using a CBS reagent to obtain (1.126) which on subsequent conversions afforded the spiroacetal fragment (1.127).
Yadav's synthesis of spiroketal fragment of bistramide A:

Reagents and conditions: (i) nBuLi, HMPA, THF, $-78 \, ^\circ\text{C}$ to rt, 90%; (ii) nBuLi, HMPA, THF, compound (1.122), $-78 \, ^\circ\text{C}$ to rt, 83%; (iii) aq. HF, MeOH, THF (1:1:1), 85%; (iv) (COCl)$_2$, DMSO, Et$_3$N, CH$_2$Cl$_2$, $-78 \, ^\circ\text{C}$; (v) MeCOCH(Me)P(O)(OEt)$_2$, Ba(OH)$_2$, THF, 63%, (2 steps); (vi) (R)-CBS, catecholborane, toluene, 93%; (vii) TBSOTf, 2,6-lutidine, CH$_2$Cl$_2$, 91%; (viii) Na, NH$_3$(l), THF, 89%; (ix) PPh$_3$, (C$_6$H$_5$O)$_2$P(O)N$_3$, DIAD, THF, 85%; (x) PMe$_3$, THF/H$_2$O.
The highlight of Yadav’s bistramide synthesis is the use of TosMIC intermediate to obtain the spiroketal. The advantage of using TosMIC over the dithiane is due to the presence of the sulphonyl group which not only enhances the acidity of the α-carbon but also acts as sulphinyl leaving group.

8. Piva’s synthetic approach to bistramide A’s THP fragment:

After our report on the synthesis of normethyl THP of bistramide D, Piva reported a similar approach for the synthesis of the THP of bistramide A, using Sharpless asymmetric epoxidation, a cross metathesis and an intramolecular Michael addition.\(^{40-42}\) Piva’s synthesis started from 1-hexenol (1.128), which on Swern oxidation and Wittig olefination provided the α,β-unsaturated ester (1.129) in 88% yield. DIBAL reduction of the ester followed by Sharpless asymmetric epoxidation provided the epoxide (1.131) in high yield. Reduction of the epoxide followed by the selective protection of the primary alcohol and cross metathesis with methyl acrylate afforded the α,β-unsaturated ester (1.132) with a 97:3 E/Z ratio. Michael addition of the ester (1.132) under Banwell’s conditions afforded the tetrahydropyran (1.133) as a 1.5:1 mixture of trans and cis isomers.\(^{43}\) The side chain was then elaborated in a further four steps to give (1.134).
Piva's approach to normethyl THP of bistramide A:

\[\text{HO} \quad \text{EtO} \quad \text{HO} \]

\[\text{HO} \quad \text{O} \quad \text{OH} \quad \text{OTBS} \quad \text{COOMe} \]

\[\text{O} \quad \text{OTBS} \quad \text{CO} \quad \text{Me} \]

\[\text{O} \quad \text{CO} \quad \text{Me} \]

\[\text{O} \quad \text{CO} \quad \text{Me} \]

Scheme 28

Reagents and conditions: (i) DMSO, \((\text{COCl})_2, \text{CH}_2\text{Cl}_2, -78 \, ^\circ\text{C}\); 15 min then -78 °C to 0 °C, \(\text{Ph}_3\text{P}=\text{CHCO}_2\text{Me}\), rt, 88 %; (ii) DIBAL-H, toluene, 85 %, (iii) \((-\text{D-DET, Ti(OCi-Pr)}_4, \text{^tBuOOH, CH}_2\text{Cl}_2, -20 \, ^\circ\text{C}, 81 \%\) (iv) Red-Al, THF, 0 °C, 94 %; (v) TBSCl, imidazole, DMF, 0 °C, 78 %; (vi) methyl acrylate, Grubbs II, \(\text{CH}_2\text{Cl}_2\), reflux, 99 %, \(E/Z=97:3\), (vii) NaH, THF, -78 °C to rt, 90 %, \(\text{trans/cis}=1.5:1\); (viii) TBAF, THF, 79 %; (ix) Dess-Martin periodinane, \(\text{CH}_2\text{Cl}_2\); (x) allyl bromide, zinc, THF (xi) DMSO, \((\text{COCl})_2, \text{CH}_2\text{Cl}_2, -78 \, ^\circ\text{C}\), 40 % (3 steps).

Conclusion:

In summary, bistramides are very attractive targets due to their important biological activities. Inspired by the biological activities and molecular architecture of bistramides, we are interested in the synthesis of bistramide D; not only because of its lower toxicity compared with the other congeners, but also that there has been no total synthesis of bistramides D reported to our knowledge.
Chapter II: Synthesis of THP unit of bistramide D

Retrosynthetic approach to THP Fragment:

\[
\begin{align*}
\text{OPG} & \quad \text{OMe} \\
\text{XMg} & \quad \text{Me} \\
\end{align*}
\]

Scheme 29

Our retrosynthetic analysis starts with disconnection of the C-O bond in the tetrahydropyran ring (2.1), for which we planned to utilise an intramolecular Michael addition as it is a facile method for constructing heterocyclic rings and has recently been used for the synthesis of Diospongin A (2.7) in our group. In the Diospongin synthesis an alcohol (2.6) undergoes nucleophilic addition to an enone moiety (Scheme 30). The product, the cis and therefore bis-equatorial isomer, is clearly the more stable of the two possible epimers, and it appears likely that the reaction is under thermodynamic control. On the other hand, Banwell has shown that the corresponding reaction of an alcohol under careful conditions can yield the product of kinetic control, the trans isomer, the one we required for bistramide D synthesis.
Banwell showed that the stereoselectivity of the Michael addition is influenced by the geometry of the carbon-carbon double bond, while the (Z)-acrylate (2.8) proceeded to give the 2,6-cis tetrahydropyran (2.9), and the (E)-acrylate (2.10) provided the 2,6-trans tetrahydropyran (2.11) as the main product (scheme 31).

![Scheme 31](image)

Reagents and conditions: NaH, THF, -78 °C to rt.

For the synthesis of the α,β-unsaturated ester (2.2), we planned to use a regioselective cross metathesis of the terminal alkene (2.3) with methyl acrylate. In recent years, olefin cross metathesis (CM) has emerged as a powerful and convenient synthetic technique in organic chemistry. The prominence is due to the availability of catalysts with varied activities, such as (2.12), (2.13) and (2.14) (Figure 3) and these catalysts have expanded the variety of functional groups compatible with CM and have demonstrated the ability to prepare highly substituted olefins by CM.
For the synthesis of the C1-C14 fragment of tetrafibricin, Cossy used an iterative sequence of chemoselective CM reactions (Scheme 32). \(^{48,49}\) Alkene (2.15), on treatment with excess acrolein (3 eq.) in the presence of 5 mol\% of catalyst (2.14) exclusively afforded the aldehyde (2.16). Cossy explained that the observed selectivity is due to the presence of the bulky tertbutyldimethylsilyl protecting group. This steric effect in the chemoselective CM reaction has been extensively studied. \(^{50}\) We also hoped to achieve our regioselective CM by making use of this concept.

Reagents and conditions: (i) Hoveyda-Grubbs II (5 mol %), Acrolein, CH\(_2\)Cl\(_2\); (ii) Hoveyda-Grubbs II (5 mol %), CH\(_2\)Cl\(_2\), 40 °C.

It was planned that the CM precursor (2.3) would be obtained from the epoxide ring opening of fragment A (2.4) by the Grignard reagent of fragment B (2.5).
Synthesis of fragment A (2.4):

Retrosynthetic approach to Fragment A:

\[
\text{OH} \quad \text{O} \quad \text{O} \quad \text{I} \\
(2.4) \quad (2.19) \quad (2.20)
\]

\[
\text{OH} \quad \text{OH} \\
(2.21)
\]

Scheme 33

The synthesis of epoxide (2.4) could be achieved by a hydrolysis of the iodo carbonate (2.19). 1,3-Asymmetric induction of the homoallylic alcohol (2.21) was planned to be achieved via an iodocyclisation reaction, a convenient method to obtain a syn 1,3 diol, also used for the Diospongin A synthesis in our laboratory.

The iodocyclisation reaction is well known for functionalizing double bonds in a regio and stereoselective manner. Cardillo and Bartlett studied in detail the applicability of this reaction towards primary, secondary, and tertiary allylic and homoallylic alcohols. The functionalisation of the double bond is highly regioselective; while allylic alcohols give five-membered rings, homoallylic alcohols give six membered rings.

A number of iodine electrophiles are available for iodocyclisation reactions; however elemental iodine is the most commonly used electrophile for the iodocyclisation reactions. Iodine monochloride, and iodine monobromide have been used for specific cases to achieve higher reactivity than iodine (Scheme 34). N-Iodosuccinimide (2.22), iodonium acetate and bispyridine iodonium tetrafluoroborate (2.23) and other chiral iodonium variants have also been synthesised and used in appropriate reactions.
The general reaction mechanism starts with the addition of the iodine to the alkene (2.25), to form an active iodonium intermediate (2.26) which is then attacked by the nucleophile (Scheme 35). The stereo and regiochemistry of the product mostly depends upon the structure of the starting material.

The iodo carbonates are versatile with regard to their hydrolytic reactions. Bartlett showed that, depending on the vigour of alkaline methanolysis, iodo carbonate (2.30) can be converted to iodohydrin methyl carbonate (2.31), epoxy methyl carbonate (2.32), epoxy alcohol (2.33) or the diol (2.33a) in good to excellent yields (scheme 36). These interesting features impressed us to opt for iodocyclisation to obtain the 1, 3 asymmetric induction.
Iodolactone transformations:53

\begin{align*}
\text{(2.31)} \\
\xrightarrow{1 \text{ eq. } K_2CO_3, \text{MeOH}} \xrightarrow{0^\circ \text{ C, 1 hr, 60 \%}} \\
\text{(2.32)} \\
\xrightarrow{1.1 \text{ eq. } K_2CO_3, 70 \% \text{MeOH/H}_2\text{O}} \xrightarrow{21^\circ \text{ C, 30 min, 92 \%}} \\
\text{(2.30)} \\
\xrightarrow{2 \text{ eq. } K_2CO_3, \text{MeOH}} \xrightarrow{21^\circ \text{ C, 7 hr, 67 \%}} \\
\text{(2.33)} \\
\xrightarrow{n\text{-BuSH}} \xrightarrow{98 \%} \\
\text{(2.33a)} \\
\xrightarrow{\text{LiAlH}_4} \xrightarrow{97 \%} \\
\text{(2.33b)}
\end{align*}

Scheme 36

Results and discussion:

Before proceeding to the iodo cyclisation of the chiral alcohol, a model study was carried out to determine the cyclisation selectivity of the homoallylic double bond over the allylic double bond (scheme 37). The iodo cyclisation precursor (2.35) was synthesised from crotonaldehyde, which on reaction with allyl bromide under modified Luche conditions afforded the desired alcohol (2.34) in good yield.55 The alcohol (2.34) was then treated with di-\textit{tert}-butyl dicarbonate under standard conditions to obtain the iodo cyclisation precursor (2.35) in 95 % yield. The iodo cyclisation of alkene (2.35) with elemental iodine under Bartlett’s conditions provided a mixture of two diastereomers. However careful 1H NMR analysis of the crude reaction mixture revealed that the reaction yielded mainly
the five membered lactone (2.36), by cyclisation onto the allylic double bonds. The desired six membered cyclic carbonate (2.37) was formed as a minor product. This result was not surprising as five membered ring formation is faster than the six membered ring formation and also the disubstituted alkene is more reactive. Iodocyclisation is a reversible reaction, so equilibration of the five membered cyclic carbonate (2.36) to the desired six membered cyclic carbonate (2.37) was attempted using NaI. To our disappointment no change was observed in the reaction, however, even after a prolonged period of time.

\[\text{Desired product (2.37)} \quad \xrightarrow{\text{NaI, CH}_3\text{CN}} \quad \text{Major product (2.36)}\]

Scheme 37

Reagents and conditions: (i) Allyl bromide, Zn, aq. NH\textsubscript{4}Cl, THF, 56 %; (ii) (Boc\textsubscript{2})O, DMAP, CH\textsubscript{3}CN, imidazole, EtOH, 95 %; (iii) I\textsubscript{2}, CH\textsubscript{3}CN, -40 °C, DMF; (iv) NaI, CH\textsubscript{3}CN.

\(N\)-iodosuccinamide was used as an alternative iodine electrophile to improve the selectivity of the cyclisation as Taylor reported that NIS selectively lactonised the homo allylic bond in the presence of an allylic bond (Scheme 38). However our trials with NIS resulted in a complex mixture of products.
As Iodocyclisation turned to be very selective towards the allylic double bond we moved our focus to try other alternatives to get the selective functionalisation of the homo allylic double bond. Epoxidation was our next reaction. Recently a remarkable number of stereoselective epoxidations been achieved for various allylic and homoallylic alkenes but we were unaware of any experiments to compare the two. As our first trial we opted for Mihelich’s and Sharpless’s vanadium catalysed epoxidation (Scheme 39), using VO(acac)₂ with tert-butyl hydroperoxide in anhydrous dichloromethane. \(^5^8 \) \(^1\)H NMR results showed that, epoxidation is highly selective for the allylic bond \((2.41)\) forming a ratio of 7:2 diastereomers and no epoxide formation at the homo allylic bond \((2.40)\) was observed. This once again confirmed the strong preference for the allylic double bond over the homo allylic bond. Moving on from epoxidation, we also explored the selectivity of dihydroxylation of the homoallylic bond over the allylic bond. Tsuji’s osmium tetroxide catalysed vicinal hydroxylation was carried out (Scheme 39). \(^5^9 \) Despite the literature precedent, the reaction was not selective; giving a number of components by TLC and no attempt was taken to purify the reaction mixture.
Scheme 39

Reagents and conditions: (i) VO(acac)$_2$, Na$_2$HPO$_4$, 1BuOOH, CH$_2$Cl$_2$; (ii) K$_2$OsO$_4$.2H$_2$O, K$_3$FeCN$_6$, K$_2$CO$_3$, 1BuOH, H$_2$O, no product.

New Retrosynthetic Approach to Fragment A:

Since our approach for selective functionlisation of homo allylic double bond in presence of highly reactive allylic double bond did not proceed, we therefore turned to the “right-to-left” option, constructing the required homoallylic alcohol (2.45) first and introducing the allylic double bond later as shown in retrosynthesis. (Scheme 40)

Scheme 40

The new retrosynthesis starts from the methanolysis of cyclic carbonate (2.43) to obtain the hydroxy epoxide (2.4a). The dehydroiodination reaction of (2.44) was planned to be achieved using Reich’s iodoso elimination procedure, since the normal base induced elimination may lead to the unwanted alkene (2.46) formation (Scheme 41).
Reich's iodoso elimination is a rare kind of elimination process where the alkyl iodide has been oxidised \((2.47)\) to an iodoso intermediate \((2.48)\) (Scheme 42). Similar to sulfoxide and selenoxide eliminations, the iodoso intermediate also undergoes a \(\text{syn}\) elimination to afford the desired olefin \((2.49)\). The iodocarbonate \((2.44)\) can be prepared from Bartlett's Iodocyclisation of the hydroxyl heptene \((2.45)\), which was planned to be prepared from the appropriate butene organometallics and the TBS protected (racemic) epichlorohydrin.\(^60\)

Michelot's procedure was used for the synthesis of 1-butenylbromide.\(^{61,62}\) Knoevenagal condensation, following Doebner's modification, of propanaldehyde with malonic acid in the presence of pyridine afforded \(\text{trans}\)-2-pentenoic acid \((2.50)\) in excellent yield, which on treatment with bromine in dichloromethane provided the corresponding \(\alpha,\beta\)-dibromo acid \((2.51)\) in high yield.\(^{63}\) However, attempts for debromination and decarboxylation to obtain the desired butenyl bromide were not successful despite several attempts.
Reagents and conditions: (i) pyridine, reflux, 97 %; (ii) Br₂, CH₂Cl₂, 0 °C to RT, 95 %; (iii) NaHCO₃, DMF, no product.

Since this route did not give satisfactory results, Corey and Fuchs's method was used to synthesise the dibromobutene (2.52), as a source of lithio butyne for the epoxide ring opening reaction. ⁶⁴ Treatment of propanal with carbon tetrabromide and triphenyl phosphine afforded the desired dibromobutene (2.52) in moderate yield (Scheme 44). However the lithiobutyne generated from the dibromobutene (2.52) did not undergo the nucleophilic ring opening of the epoxide even in the presence of a Lewis acid, BF₃·Et₂O, instead, the bromohydrin (2.54) was obtained as the sole product.

Reagents and conditions: (i) CBr₄, PPh₃, Zn, CH₂Cl₂, 40 %; (ii) 2 eq. "BuLi, BF₃·Et₂O, THF, -78 °C.

After encountering difficulties in generating appropriate butene organometallics, we chose lithio-butyne, as our next alternative. While waiting for the arrival of 1-
butyne gas, model studies were carried out with 1-hexyne, as it is a liquid and more convenient to work with. Epoxide ring opening with lithiohexyne worked well in the presence of BF$_3$.Et$_2$O in THF at -78 °C to afford the desired product (2.55) in 98 % yield (Scheme 45). However trials to introduce tert-butoxycarbonyl (Boc) group on alcohol (2.55) under standard conditions were not successful. The *in situ* generation of Boc group using carbonyldiimidazole and tert-butyl alcohol resulted in the formation of acyl imidazole derivative (2.58) as the only isolated product, which we presume to be derived from the direct attack of the alcohol on the carbonyldiimidazole without participation of the tBuOH.

![Scheme 45](image)

Reagents and conditions: (i) tBuLi, BF$_3$.Et$_2$O, THF, -78 °C, 98 %; (ii) H$_2$, Pd (Pb, poisoned), pyridine, THF, 99 %; (iii) Boc$_2$O, DMAP, CH$_3$CN, no product; (iv) tBuOH, DMAP, THF.

Since the attempts to introduce the Boc group were unsuccessful, carbomylation was carried out with dimethylcarbamyl chloride under standard conditions (Scheme 46). Disappointingly there was no product formation and the starting
material was recovered. Our last trial was the reaction with carbobenzyloxy chloride (Cbz-Cl) to obtain the Cbz precursor (2.60) for the iodocyclisation. To our frustration that reaction also did not result in the product (2.60) formation, even under forcing conditions.

\[
\text{OTBS} \quad \begin{array}{c}
\text{HO} \\
(2.56)
\end{array} \quad + \quad \begin{array}{c}
\text{N} \\
\text{O} \\
\text{Cl}
\end{array} \
\xrightarrow{(i)} \\
\text{OTBS} \quad \begin{array}{c}
\text{HO} \\
(2.59)
\end{array}
\]

\[
\text{OTBS} \quad \begin{array}{c}
\text{HO} \\
(2.56)
\end{array} \quad + \quad \begin{array}{c}
\text{O} \\
\text{Cl}
\end{array} \
\xrightarrow{(ii)} \\
\text{OTBS} \quad \begin{array}{c}
\text{O} \\
(2.60)
\end{array}
\]

Scheme 46

Reagents and conditions: (i) Et₃N, CH₂Cl₂, 0 °C to RT, no product; (ii)(a) Et₃N, CH₂Cl₂, 0 °C to RT, no product; (b) Et₃N, toluene, reflux, no product; (c) Et₃N, DMAP, toluene, reflux, no product.

From the above experimental results we presumed that this reluctance of the alcohol (2.56) may be due to the steric hindrance of the bulky TBS group, which is prohibiting the neighbouring oxygen, from reacting with a comparatively large Boc group. To confirm the steric effect, Boc substitution was carried out with the less hindered alcohol (2.61) under the identical conditions used for the alcohol (2.56). Unsurprisingly, the model alcohol (2.61) afforded the Boc substituted product (2.62) in 90 % yield.
Reagents and conditions: tBuOH, DMAP, THF, 90 %.

At one time during the hydrogenation of the alkyne (2.55) under Lindlar's conditions, the diol (2.63) was obtained unexpectedly, which was the desired cis alkene, but without the protecting (TBS) group. We planned to utilise this diol (2.63) to make the Boc derivative (2.64) and then to try an iodocyclisation reaction to check the selectivity. The reaction of diol (2.63) with Boc₂O under standard conditions afforded the desired product (2.64) in moderate yield but the reaction also yielded an equal amount of the five membered cyclic carbonate (2.65) as side product. Surprisingly there was not even a trace amount of mono Boc substituted product was observed. Iodocyclisation was carried out with the diBoc derivate (2.64), using iodine under Bartlett conditions. The reaction proceeded smoothly in good yield but with moderate selectivity affording (3:1) mixture of the desired syn product (2.66) and the corresponding anti isomer (2.67).
Scheme 48

Reagents and conditions: (i) (a) H₂, Pd (Pb, poisoned), pyridine, THF, 64 % (b) PPTS, MeOH, 98 %; (ii) Boc₂O, DMAP, THF 0 °C to RT, 21%; (iii) I₂, CH₃CN, 0 °C to RT, 80 % (3 :1).

A simultaneous approach for the cyclisation reaction was carried out using aryl sulfonyl chloride (2.69) as other alternative for the halogen electrophiles. The aryl sulfonyl chloride (2.69) was synthesised from arylthiol (2.68), by reacting with N-chlorosuccinimide in dichloromethane (Scheme 49). Reaction of the alkene (2.64) with arylsulfonyl chloride in dichloromethane at -78 °C resulted in the formation of more than 3 components in TLC. The crude ¹H NMR analysis showed, the disappearance of the double bond protons at 5.6 and 5.3 ppm and appearance of the new protons in the aryl region 7.1 and 7.3 ppm, however, peaks consistent with the formation of the desired product (2.70) were observed. We suspect this result may be due to the too high reactivity of ArSCI which is undergoing the unwanted side reactions.
The above experiments clearly showed that the bulky TBS and Boc groups at the terminal positions are not suitable for the synthesis of fragment-A (2.4), so we modified our synthetic approach by using epichlorohydrin instead of the TBS protected epoxy propane (Scheme 50). Considering that the chlorine atom is relatively small, it would not cause any problem during the Boc substitution and also it can be easily transformed when required. The model study was continued with 1-hexyne and racemic epichlorohydrin as it is cheap and obtaining it in its optically pure form is also easy via a kinetic resolution using Jacobsen’s strategy. 71

Ring opening of epichlorohydrin with lithiohexyne proceeded well under the same conditions used for the TBS protected epoxide, yielding the chlorohydrin (2.71) in 88% yield (Scheme 51). Attempts to introduce the Boc group on the secondary alcohol (2.71) under standard conditions resulted in the formation of large amount of the cyclic carbonate (2.73) and only a small amount of the
desired product (2.72) in (9:1) ratio. This may be because of the nucleophilic oxygen next to the tert-butyl group is displacing the chlorine atom; it’s not surprising, as chloride is expected to be a good leaving group. In order to prevent the formation of the cyclic carbonate (2.73), Boc substitution was carried out under mild conditions using carbonyldiimidazole in 1BuOH. To our disappointment, under this condition the reaction yielded the cyclic carbonate (2.73) as the sole product. However, subsequent optimisation reactions (Table 1) showed that the use of 1.5 eq. of Boc2O with 0.4 eq. of DMAP at low temperature affords the desired product (2.72) in 84% yield without any formation of the cyclic carbonate.

![Scheme 51](image)

Reagents and conditions: (i) Boc2O, DMAP, CH3CN, RT, (1:9) ratio; (ii) carbonyl diimidazole, 1BuOH, DMAP, THF.
Table 1: Optimisation conditions for the Boc substitution.

<table>
<thead>
<tr>
<th>Boc₂O (eq.)</th>
<th>DMAP (eq.)</th>
<th>Solvent</th>
<th>Temperature</th>
<th>Yield/ratio (2.72):(2.73)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>2.0</td>
<td>CH₃CN</td>
<td>RT</td>
<td>1:9</td>
</tr>
<tr>
<td>2.0</td>
<td>1.0</td>
<td>CH₃CN</td>
<td>RT</td>
<td>1:2</td>
</tr>
<tr>
<td>2.0</td>
<td>0.5</td>
<td>CH₃CN</td>
<td>RT</td>
<td>1:1<sup>a</sup></td>
</tr>
<tr>
<td>2.0</td>
<td>0.6</td>
<td>CH₃CN</td>
<td>0 °C</td>
<td>8:1</td>
</tr>
<tr>
<td>1.5</td>
<td>0.4</td>
<td>THF</td>
<td>-40 °C</td>
<td>78 %<sup>a,b</sup></td>
</tr>
<tr>
<td>1.5</td>
<td>0.6</td>
<td>THF</td>
<td>-40 °C to 0 °C</td>
<td>8:2<sup>a</sup></td>
</tr>
<tr>
<td>1.5</td>
<td>0.4</td>
<td>THF</td>
<td>-40 °C to 0 °C</td>
<td>84 %<sup>b</sup></td>
</tr>
</tbody>
</table>

^a: some starting material was recovered, ^b:(2.72) is the only product and no cyclic carbonate formation was observed

After identifying suitable conditions for the Boc substitution reaction, semi-hydrogenation of the alkyne was carried out using Lindlar’s catalyst, which afforded the cis alkene (2.74) in quantitative yield. However, the yield of the hydrogenation was capricious, older bottles of catalyst resulting in no product formation, even with a high loading of catalyst and extended reaction time. Due to this unpredictability of Lindlar’s catalyst, Brown’s nickel boride was used. Brown’s P2-Nickel was very efficient for the hydrogenation of alkyne (2.72) affording the desired alkene (2.74) in quantitative yield. In addition, the synthesis of the nickel boride is also very simple from readily available starting materials.
Scheme 52

Reagents and conditions: (a) H₂, Lindlar’s catalyst, pyridine, THF, 0-99 %; (b) H₂, P₂-Nickel, EtOH, 99 %.

Iodocyclisation of the alkene was carried out using Bartlett and Cardillo’s conditions.74,68 Our initial trials of the iodocyclisation under standard conditions did not give satisfactory selectivity. So, optimisation of the reaction using various halogen sources, solvents and temperatures were carried out (Table 2). To our delight, the treatment of alkene (2.74) with iodine in acetonitrile at -10 °C affords the desired syn cyclic carbonate (2.75) in moderate yield with good selectivity (4:1). The stereochemistry was clearly identifiable by ¹H NMR via the coupling constants (J) of the two axial protons Hₐ and Hₐ. The signal for Hₐ appeared at 4.37 ppm as (ddd, J = 3.1, 3.1, 11.7 Hz), but Hₐ appeared as a multiplet at 4.66-4.74 ppm. To simplify the multiplicity pattern, a homo nuclear decoupling experiment was carried out by irradiating the CH₂Cl protons, and the Jₐxₐ was found to be 11.6 Hz. It may be noted that these iodocarbonates (2.75), (2.76) are light sensitive, and decomposable at room temperature, so need to be stored at low temperature and in the dark.
Table 2: Optimisation conditions for the iodocyclisation.

<table>
<thead>
<tr>
<th>Reagent (additive)</th>
<th>Solvent</th>
<th>Temperature</th>
<th>Ratio (2.75):(2.76) Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iodine</td>
<td>Acetonitrile</td>
<td>-40 °C</td>
<td>50 (1.3:1)</td>
</tr>
<tr>
<td>Iodine</td>
<td>Acetonitrile</td>
<td>RT</td>
<td>15 (4:1)<sup>a</sup></td>
</tr>
<tr>
<td>Iodine</td>
<td>THF</td>
<td>-10 °C</td>
<td>52 (3:1)</td>
</tr>
<tr>
<td>Iodine (NaHCO<sub>3</sub>)</td>
<td>Ether</td>
<td>0 °C to RT</td>
<td>54 (3:1)</td>
</tr>
<tr>
<td>Iodine</td>
<td>Acetonitrile</td>
<td>0 °C</td>
<td>48 (4:1)</td>
</tr>
<tr>
<td>Iodine</td>
<td>THF</td>
<td>RT</td>
<td>0</td>
</tr>
<tr>
<td>Iodine (NaH<sub>2</sub>PO<sub>4</sub>)</td>
<td>Acetonitrile</td>
<td>RT</td>
<td>0</td>
</tr>
<tr>
<td>NBS</td>
<td>Acetonitrile</td>
<td>-78 °C</td>
<td>0°<sup>c</sup></td>
</tr>
<tr>
<td>NBS</td>
<td>Acetonitrile</td>
<td>-20 °C</td>
<td>0°<sup>c</sup></td>
</tr>
<tr>
<td>NBS</td>
<td>Acetonitrile</td>
<td>RT</td>
<td>0°<sup>c</sup></td>
</tr>
<tr>
<td>NIS<sup>b</sup></td>
<td>Acetonitrile</td>
<td>-20 °C</td>
<td>0°<sup>c</sup></td>
</tr>
<tr>
<td>Iodine</td>
<td>Acetonitrile</td>
<td>-10 °C</td>
<td>67 (4:1)</td>
</tr>
</tbody>
</table>

(a) Product decomposed at room temperature over prolonged time; (b) synthesised from NCS; (c) only starting material recovered.

Reich’s strategy was used for the dehydroiodination of the iodo carbonate (2.75).

Our initial attempt for dehydroiodination with 1.5 eq. of mCPBA in presence of satd. aq. NaHCO₃ solution in dichloromethane at room temperature did not proceed well. The crude ¹H NMR spectrum showed, a large amount of starting material and the presence of the desired alkene (2.77), clearly identifiable at 5.87 ppm as a double triplet and a double doublet at 5.48 ppm. To achieve complete conversion, the reaction mixture was stirred for a longer time (48 h). Frustratingly, it resulted in the formation of number of impurities and the reaction did not go to completion as the crude ¹H NMR spectrum was still showing the presence of starting material (2.75). However, our attempts to purify the crude
reaction mixture by flash column chromatography also failed as there is no
difference in the R\text{f} values of the starting material (2.75) and product (2.77).
Since increasing the reaction time gave many impurities, the amount of oxidant
was increased from 1.5 to 2.2 eq. and the reaction was repeated at lower
temperature (-30 °C). To our surprise, under the above conditions the desired
alkene (2.77) was obtained in high yield without any purification, other than
extraction, as the 1H NMR of the crude reaction mixture was very clean and no
epoxide formation was observed at the newly formed alkene. As anticipated
methanolation of the cyclic carbonate was efficient giving the epoxide (2.78) in 82
\% yield, showing that the choice of chloride was justified. 53

![Chemical Structures](image)

Scheme 54

Reagents and conditions: (i) (a) mCPBA (1.5 eq.), satd. aq. NaHCO\textsubscript{3}, CH\textsubscript{2}Cl\textsubscript{2}, RT; (b) mCPBA (2.2 eq.), NaHCO\textsubscript{3}, CH\textsubscript{2}Cl\textsubscript{2}, -30 °C to RT, 95 % (iii) MeOH, K\textsubscript{2}CO\textsubscript{3}, 0 °C to RT, 82 %.

After demonstrating the synthesis of fragment-A with the model (racemic
epichlorohydrin and 1-hexyne), the synthesis of fragment A (2.4) was started
with 1-butyne and (S)-epichlorohydrin (2.80) (Scheme 56). To obtain optically
pure (S)-epichlorohydrin, we adopted Jacobsen’s hydrolytic kinetic resolution
(HKR). 75 The racemic epichlorohydrin on treatment with the (R,R)-Jacobsen’s
catalyst (2.79) and water in THF afforded optically pure epichlorohydrin (2.80)
(Scheme 55) in 41% yield. HKR is an efficient way to synthesise optically pure
epichlorohydrin as the catalyst loading is low (5 mol %), use of water as the nucleophile makes the process more environmentally acceptable; and, notably, the separation of the product from the diol by-product (2.80a) was easy via a simple distillation. 1-Butyne is commercially available, but, it is difficult to handle and measure this chemical as it is a gas. The reaction was carried out by filling an evacuated round bottom flask with 1-butyne gas and calculating the amount of gas from the volume of the flask using the ideal gas law. Epoxide (2.80) ring opening was carried out by cooling the flask to – 78 °C and following the same procedure used for 1-hexyne, affording the alcohol (2.81) in quantitative yield, which was taken for the next step without further purification.

The rest of our synthesis including Boc substitution, hydrogenation, iodocyclisation, dehydroiodination and methanolysis worked well, as in the model (Scheme 56). Before proceeding to the epoxide ring opening reaction with the Grignard of fragment-B (2.5) we needed to protect the secondary alcohol (2.4a). The TBS group was our first choice to protect the alcohol as it is a versatile silyl protective group and can be easily introduced and removed. But our trials for TBS protection of the alcohol (2.4a) under standard conditions did
not give any of the desired product and the starting material was recovered. We assumed that this may be due to the steric hindrance of the large TBS group.

We assume that the BOM protected chlorohydrin (2.86) was arrived at from the chloride attack on the epoxide during the reaction.

Scheme 56

The next choice of our protecting group was the BOM group as it is less bulky than TBS, but equivalently versatile. Our initial attempts to protect the alcohol with BOMCl and DIPEA under Stork’s conditions, 1.2 eq. of BOMCl and 1.2 eq. of DIPEA in dichloromethane, gave a (1 : 1) mixture of desired product (2.85) and the BOM protected chlorohydrin (2.86) (Scheme 57). We assume that the BOM protected chlorohydrin (2.86) was arrived at from the chloride attack on the epoxide during the reaction.
To stop the epoxide ring opening by the chloride ion, the protection was carried out at lower temperature, but the reaction was very slow, showing very little of the desired product. When we used lutidine instead of DIPEA at RT there was no reaction. However, at elevated temperatures, the diprotected alcohol (2.87) was obtained as the sole product. Since our attempts to obtain the protected epoxide always yielded some amount of the BOM protected chlorohydrin (2.86), we simply re-converted the protected chlorohydrin (2.86) to the epoxide (2.85) by treatment with NaOH in THF.

Model studies towards the THP fragment (2.189):

Model studies were carried out with the Grignard reagent of commercially available 4-bromo butene and fragment (A) (2.85) (Scheme 58). The ring opening of the epoxide (2.85) with the Grignard reagent obtained from 4-bromo butene proceeded smoothly provided THF was used as solvent. In ether or ether-THF mixtures, products resulting from attack on the BOM group (2.89) by the Lewis acidic magnesium were also isolated along with the desired product (2.88) in equal amounts. ⁴⁰
Reagents and conditions: (i) CuI, Et₂O, THF, 1:1 mixture of (2.88) and (2.89); (ii) Mg, CuI, THF, 70 %.

With the diene (2.88) in hand we proceeded to the next step which is the cross metathesis reaction with the methyl acrylate using Grubbs II (2.12) catalyst (5 mol %) in dichloromethane at room temperature (Scheme 59). Our initial trials of cross-metathesis with methyl acrylate resulted in the formation of an inseparable mixture of two compounds. However, the products were identified, as the desired methyl ester (2.89) and its corresponding desmethyl compound (2.90), by extensive analysis of NMR data. It was apparent that cross-metathesis with the acrylate had occurred exclusively at the terminal alkene, but some cross-metathesis of the internal alkene had occurred with the ethylene byproduct of the first cross-metathesis, giving rise to desmethyl compound (2.90).
The above problem was easily solved by simply passing a stream of nitrogen through the reaction mixture to sweep away the ethylene as soon as generated. With this trivial modification the cross metathesis proceeded well to yield the desired product (2.89) in 76 % yield (Scheme 60).

![Scheme 60](image)

Reagents and conditions: Grubbs II (5 mol %), CH₂Cl₂, N₂ flow, 0 °C to rt, 76 %.

Finally, we turned to do the critical intramolecular Michael addition (Scheme 61). Following Banwell’s procedure we treated the ester (2.89) with sodium hydride in THF at -78 °C, the reaction was completed in few minutes at -78 °C, giving a separable mixture of isomers in favour of the desired one (2.90) with a similar ratio reported to that by Banwell for a simpler substrate. Comparison of the ¹H NMR data, particularly the chemical shifts of the ring protons α to the oxygen, with the data reported by Banwell for his simple THPs (2.9 and 2.11) and the data for the natural product allowed us to assign the stereochemistry (Table 3).

![Scheme 61](image)

Reagents and conditions: (a) NaH, THF, -78 °C, 87 % (7:3); (b) KO'Bu, THF, -78 °C, 98 % (8.5:1.5).
The cyclisation reaction was optimised to improve the selectivity of the desired \textit{trans} isomer, and found, use of THF solution of potassium-\textit{tert}-butoxide at -78 °C affords the desired isomer (2.90) in (8.5:1.5) ratio with excellent yield (Scheme 61). The enhanced selectivity and yield is due to the solubility of potassium-\textit{tert}-butoxide in THF, allowing the reaction to occur at a lower temperature, compared with the insoluble base NaH.

Table 3: 1H NMR chemical shifts (ppm) of the THP protons Ha and Hb.

<table>
<thead>
<tr>
<th>Protons</th>
<th>trans isomer (2.90)</th>
<th>trans THP (2.11)</th>
<th>bistramide D</th>
<th>cis isomer (2.91)</th>
<th>cis THP (2.9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ha</td>
<td>3.84</td>
<td>3.88</td>
<td>3.87</td>
<td>3.37</td>
<td>3.44</td>
</tr>
<tr>
<td>Hb</td>
<td>4.19</td>
<td>4.25</td>
<td>4.22</td>
<td>3.72</td>
<td>3.75</td>
</tr>
</tbody>
</table>

Synthesis of fragment-B:

The major challenge in asymmetric synthesis is to find good methodology for stereoselective bond construction. Though a number of impressive methods are available for the asymmetric synthesis including asymmetric catalysis, bio catalysis; the use of chiral auxiliary is still remains an attractive, reliable and predictable method for many enantioselective transformations. \cite{78} Since the pioneering work of Meyers and others remarkable improvements in the asymmetric induction using chiral auxiliaries have been developed. \cite{79} For the stereoselective alkylation of fragment-B (2.5) we opted to employ the Evans chiral oxazolidinone. \cite{80} Though there are several protocols available for stereoselective alkylation including Oppolzer’s camphor sultam, \cite{81} we preferred Evans chiral oxazolidinone due to its high levels of selectivity (Scheme 62) and the easy synthesis of the chiral auxiliary from readily available amino acids. \cite{78}
Evans suggested that the observed stereoselectivity of the chiral oxazolidinone is due to the complementary levels of diastereofacial selectivity by the chelated enolates structure ($Z > 100:1$) as well as the structure of electrophile, i.e., larger alkyl halides give higher stereocontrol than their sterically less demanding counterparts (BnBr vs. MeI) (Scheme 63).

The synthesis of the chiral oxazolidinone (2.88) was achieved by starting with D-phenylalanine (2.102), an inexpensive and readily available starting material with the desired stereocenter (Scheme 64). The amino acid reduction was achieved using $in situ$ generation of borane from sodium borohydride and boron trifluoride-
diethyletherate complex. The borane reduction is exceptionally convenient
giving the alcohol (2.103) in an excellent yield (95 %) with no perceptible
racemisation. Heating the amino alcohol (2.103) with diethyl carbonate in the
presence of anhydrous potassium carbonate at 135 °C provided the desired
oxazolidinone (2.104) in 93 % yield. Deprotonation of the oxazolidinone (2.104)
with “butyl lithium in THF at -78 °C followed by treatment with crotonyl chloride
afforded the desired crotonyl oxazolidinone (2.105) in 98 % yield. But, to our
surprise, our attempts to methylate the crotonyl oxazolidinone (2.105) with LDA
and Mel in THF at -78 °C provided the Michael adduct (2.107) as the sole
product and as a single diastereomer, although our studies to explore the
stereochemistry of the new chiral centre was unsuccessful. Though LDA is
commonly known as a non-nucleophilic base, and, is used for many
deprotonation reactions, a few examples of its nucleophilic addition to α,β-
unsaturated systems are also known (Scheme 65). 84,85

Reagents and conditions: (i) NaBH₄, BF₃·Et₂O, THF, 0 °C to RT, 95 %; (ii) diethyl
carbonate, K₂CO₃, 135 °C, 93 %; (iii) “BuLi, Crotonyl chloride, THF, -78 °C, 98 %; (iv)
LDA, Mel, THF, -78 °C.
After trying several methods for the stereoselective methylation, finally, it was found that use of KHMDS affords the methylated product (2.106) and its separable diastereomer (2.110) in good yield but with moderate selectivity, (2:1) ratio (Scheme 66). Trials with LiHMDS resulted in unexpected results, giving the dimer (2.111) of the starting material as a single diastereomer, but the reaction was capricious as the product formation was not consistent over several repetitions. However methylation with NaHMDS was found to be more efficient giving 9:1 selectivity with moderate yield.

The difference in the stereoselectivity of Li, Na and K may be explained by the cation size. The Li atom being small, the chelation is strong, resulting in the
powerful activation of the crotonyl moiety to Michael addition. However, potassium is larger and the chelation is not efficiently taking place which leads to the low selectivity on alkylation. Sodium being if the correct size forms tight chelation without high Lewis acidity and directs the electrophile efficiently.

Unsuccessful approaches to fragment B:
As our trials for methylation of the α,β-unsaturated system (2.105) with LDA did not afford the desired methylated product, we moved on to use the Evans proline derived chiral auxiliary (2.112) as it has been used in a number of diastereotopic alkylation reactions. Evans suggested that the stereoselectivity arises from the hydroxyl moiety of the prolinol which directs the alkylation process (Scheme 67).

The synthesis of chiral auxiliary was started from L-proline (2.116), which on reduction with borane afforded the desired prolinol (2.117) in 52 % yield. Crotylation of the prolinol (2.117) with triethyl amine afforded the isomerised terminal alkene (2.119) as the sole product. This is due to formation of a vinyl ketene by elimination of HCl from crotonyl chloride, followed by α-protonation of the enolate that subsequently formed. This small problem was solved by employing a weak base, sodium carbonate, and the reaction worked well, affording the desired alkene (2.118) in 98 % yield. Once we had the chiral amide in hand, we moved forward to the stereoselective methylation with LDA and MeI in the presence of DMPU, a less toxic alternative to HMPA, but unexpectedly it provided the O-methylated compound (2.121). Initially it was thought that this
may be due to moisture in the DMPU as we used the commercial grade. However the reaction with distilled DMPU and without DMPU, did not afford the desired product (2.120), only recovery of starting material.

\[
\text{(2.116)} \xrightarrow{(i)} \text{(2.117)} \xrightarrow{(ii)} \text{(2.118)} + \text{(2.119)}
\]

(iii) \[
\text{(2.120)} + \text{(2.121)}
\]

Scheme 68

Reagents and conditions: (i) NaBH\(_4\), BF\(_3\).Et\(_2\)O, THF, 0 °C to RT, 52 %; (ii) (a) Et\(_3\)N, crotonyl chloride, only (2.120) (b) 10% aq. Na\(_2\)CO\(_3\), crotonyl chloride, 98 %; (iii) (a) LDA, MeI, DMPU, THF, -78 °C, only (2.121); (b) LDA, MeI, THF, -78 °C, no product.

Our strategy for making fragment-B from the crotonyl oxazolidinone using LDA was frustrating as it was giving the Michael adduct (2.107) as the sole product and our attempts to perform the methylation using prolinol chemistry also did not proceed well. On careful consideration of these results, we concluded that the problem arose from the presence of the double bond. Hence we modified the strategy to introduce the alkene group later in the synthesis to avoid the unwanted side reactions during methylation.

There is an enormous number of protocols available for the synthesis of alkenes; such as Cope elimination, \(^87\) Wittig, Horner Wadsworth Emmons (HWE), \(^88\) Peterson olefination, \(^89\) twofold extrusion (of carbon dioxide or thio compounds),
sulphone elimination reactions and the sulfoxide elimination reactions. We intended to obtain the alkene using sulfoxide chemistry, as sulfoxides are easily prepared from readily available starting materials and convenient procedures are available to obtain an alkene either by a base induced β-elimination or a simple pyrolysis. Kingsbury showed that the elimination of sulfoxides proceeded by a concerted syn elimination (Scheme 69).

For the new strategy we started with Evans chiral oxazolidinone, but instead of coupling with crotonyl chloride, it was coupled with the acid chloride of the thio acid; by considering that the chiral auxiliary would direct the stereoselective methylation and the desired double bond could be generated via a dehydrosulfenation reaction.

The synthesis was started with thiocresol which on reaction with γ-butyrolactone using a modification of Reppe’s method afforded the arylthio butanoic acid in 98 % yield. This reaction is interesting as it appears to cleave the alkyl oxygen bond instead of usually anticipated acyl-oxygen bond. Traynelis explained that the selectivity for the alkyl oxygen fission involves a rapid but reversible ring opening by acyl-oxygen fission in competition with an irreversible alkyl-oxygen fission which gives the sodium salt of carboxylate (Scheme 70).
The acid chloride of the thioacid (2.129) was reacted with oxazolidinone to give the precursor (2.130) for methylation (Scheme 71). To our delight, methylation of the compound (2.130) with LDA in THF at -78 °C afforded the methylated compound (2.131) as a single diastereomer in 91 % yield. Our initial trial for chiral auxiliary removal with lithium aluminium hydride did not give the desired alcohol (2.132), instead giving a reduced compound, which we tentatively assigned as (2.133).

Reagents and conditions: (i) NaOEt, 98 %; (ii) (a) oxalyl chloride, CH₂Cl₂, DMF; (b) Oxazolidinone (2.104), "BuLi, THF, -78 °C, 84 %; (iii) LDA, MeI, THF, 78 °C, 91 %; (iv) LiAlH₄, THF, 5 °C, no product.

As an alternative for chiral auxiliary removal, Kanomata’s method was used to convert the chiral amide to the corresponding ester (2.135) with sodium ethoxide...
and diethyl carbonate, frustratingly this also did not result in product formation (Scheme 72). However, hydrolysing the chiral amide (2.131) with hydrogen peroxide and lithium hydroxide in THF afforded the carboxylic acid (2.136) in 65% yield, notable no oxidation at sulphur was observed.

Reagents and conditions: (i) NaOMe, CH₂Cl₂, no product; (ii) NaOEt, Diethyl carbonate, CH₂Cl₂, no product was observed; (iii) H₂O₂, LiOH, THF, H₂O, 65 %.

The reduction of the acid (2.136) to an alcohol (2.132) worked well with sodium borohydride or with LAH giving good to excellent yields (Scheme 73). Later, it was found that the direct reduction of the chiral amide (2.131) to the alcohol (2.132) can be achieved with LAH, this contrary result may be explained due to the different batches of LAH, as the old batch seemed to be partially decomposed therefore it could not complete the reduction.
Reagents and conditions: (i) (a) NaBH₄, BF₃•Et₂O, THF, 0 °C to RT, 83 %; (b) LiAlH₄, THF, 0 °C to RT, 99 % (ii) LiAlH₄, Et₂O, 0 °C to RT, 98 %.

After having the alcohol (2.132) in hand, oxidation was carried out using sodium metaperiodate to obtain the sulfoxide (2.137) (Scheme 74) but, the reaction resulted in a mixture of the desired product with some other impurities by ¹H NMR. The use of mCPBA in dichloromethane at low temperature afforded the desired sulfoxide (2.137) in quantitative yield. Despite the good yield and high stereoselectivity on the methylation with thio compound (2.130), several difficulties were faced during the sulfoxide elimination. The various conditions used for the elimination are tabulated (Table 4). Neat pyrolysis of the sulfoxide (2.137) at 60 °C did not give any product (2.138) except the starting material. Regrettably, at elevated temperatures the starting material decomposed (2.137). Heating the sulfoxide in dichloromethane at reflux for longer times did not provide anything other than the starting material. Elimination under thermal conditions in the presence of mild bases, including NaHCO₃, K₂CO₃ and CaCO₃ was also tried. To our disappointment none of the above conditions gave the desired product.
Reagents and conditions: (i) (a) NaIO₄, MeOH, no product; (b) m-CPBA, CH₂Cl₂, -78 °C to 0 °C, 99 %; (ii) conditions are tabulated.

Table 4: Reactions conditions for the sulfoxide elimination.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Base</th>
<th>Temperature</th>
<th>Time</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₂Cl₂</td>
<td>-</td>
<td>Reflux</td>
<td>48 h</td>
<td>No reaction⁹⁸a</td>
</tr>
<tr>
<td>CH₂Cl₂</td>
<td>NaHCO₃</td>
<td>Reflux</td>
<td>16 h</td>
<td>No reaction⁹⁸a</td>
</tr>
<tr>
<td>Toluene</td>
<td>K₂CO₃</td>
<td>110 °C⁹⁹b</td>
<td>36 h</td>
<td>No product⁹⁸c</td>
</tr>
<tr>
<td>Toluene</td>
<td>CaCO₃</td>
<td>Reflux</td>
<td>30 h</td>
<td>No product⁹⁸c</td>
</tr>
<tr>
<td>Neat</td>
<td>NaHCO₃</td>
<td>160 °C</td>
<td>3 h</td>
<td>No product⁹⁸c</td>
</tr>
</tbody>
</table>

⁹⁸a: only starting material recovered, b: reaction carried out in sealed tube, c: material decomposed.

Since the sulfoxide (2.137) was reluctant to undergo elimination reaction, even under forcing conditions, we chose sulfone elimination as our next option. Not only is the synthesis of sulphone (2.140) easy from the thioalcohol precursor (2.132) but also, the sulfone elimination is well known in the literature. Until now, three types of sulfone elimination reactions are known, namely (i) the Julia olefination (Scheme 75a) where the β-hydroxy sulphones reductively eliminated by sodium or lithium amalgam to give the desired alkene. (ii) Ramberg-Backlund reaction (Scheme 75b) which is a rearrangement of sulphone compounds with α-substituted leaving group to give rise to alkenes in a regioselective manner. (iii) The third and common type of sulfone elimination is base induced (Scheme 75c).
The oxidation of the sulphide (2.145) using mCPBA at 0 °C in dichloromethane was efficient giving sulfone (2.149) in quantitative yield (Scheme 76). To our disappointment there was no elimination reaction when the sulfone was treated with potassium tert-butoxide, despite literature precedent.\(^\text{103}\)

Reagents and conditions: (i) mCPBA, 0 °C, CH\(_2\)Cl\(_2\), 99 %; (ii)(a) KOtBu, DMSO, no product; (b) KOtBu, THF, no product.

As our anticipated elimination reactions with sulfoxide and sulfone did not work under standard conditions, we looked for alternatives in the literature; Matsuo and Ishibashi reported that mesitylene sulfonylhydroxylamine (MSH) (2.151), is
capable of inducing the elimination of aryl sulphides under mild conditions (Scheme 77). Matsuo showed that the sulfilimines (2.154) undergo elimination at very low temperatures (-78 °C) compared with their sulfoxide analogs (2.156) which need higher temperatures (100-150 °C). Matsuo suggested that, the difference in the reactivity between sulfilimine (2.154) and sulfoxide (2.156) was due to the enhanced basicity of the nitrogen compared to the oxygen atom.

We were really encouraged by Matsuo’s mild elimination procedure, since we knew from the previous experiments that, the sulfoxide (2.137) is not that stable under harsh conditions. For the synthesis of MSH we used Tamura’s procedure, treatment of mesitylenesulfonyl chloride (2.157) with ethyl \textit{N}-hydroxyacetimidate (2.158) in the presence of triethylamine in DMF (3.7 M) at 0 °C afforded the desired product (2.159) in quantitative yield. MSH (2.151) Was obtained from ethyl O-arylsulfonylhydroxamate, (2.159) by treating with 70% perchloric acid. Having the MSH (2.151) in hand, one pot elimination reaction
with aryl sulphide (2.132) was carried out (Scheme 78). To our disappointment the olefination reaction was unsuccessful under these conditions.

Reagents and conditions: (i) Et₃N, DMF (3.7 M), 99 % (ii) HClO₄, Dioxane, 95 %.

All our attempts to synthesise fragment B from sulphide, sulfoxide and sulfone analogs turned out to be unsuccessful. We then attempted our final trial with selenoxide chemistry, despite the toxicity of selenoxides; their instability makes them important as they are more easily decomposed into olefins. Moreover the β-elimination of selenoxides are known to be more efficient than their sulfoxide analogs; due to the greater polarization in the Se-O bond and longer Se-C, Se-O bond lengths. Similar to the sulfoxide, the nature of the selenoxide elimination has been shown to be syn (Scheme 79).
The selenoxide analog (2.164) was synthesised from diphenyldiselenide using a similar procedure to the sulfoxide derivative (Scheme 80). Butyrolactone (2.126) ring opening with diphenyl diselenide in presence of sodium borohydride in DMF under nitrogen was efficient, giving a quantitative yield of phenylselenylbutanoic acid (2.162). Coupling of the acid (2.162) with oxazolidinone (2.104) proceeded in a similar way to the sulfide analog affording the desired amide (2.163) in 99 % yield. Methylation of (2.163) with LDA and MeI in THF solvent afforded the desired product (2.164), as a single diastereomer in 82 % yield. Chiral auxiliary removal was achieved either by converting the amide into the corresponding methyl ester (2.165) and then reduction with LAH or the direct reduction of the chiral amide to desired alcohol (2.166).

Scheme 80

Reagents and conditions: (i) NaBH₄, DMF, 99 %; (ii) Oxalyl chloride, CH₂Cl₂; (iii) Oxazolidinone (2.104), "BuLi, THF, -78 °C, 98 %; (iv) LDA, MeI, THF, -78 °C to -40 °C, 82 %; (v) LiOMe, MeOH, 62 %; (vi) LAH, THF, 0 °C to rt, 99 %.

Ozonolysis of selenide (2.166) in dichloroethane at -20 °C afforded the selenoxide (2.167) in good yield, and it was surprisingly stable at room
temperature (Scheme 81). \footnote{110} To our delight, the pyrolysis of selenoxide in refluxing dichloroethane resulted in the formation of desired product (2.138), the data matched with the literature. \footnote{111}

\[
\begin{array}{c}
\text{HO} \text{-} \text{Me} \quad \text{SePh} \\
(2.166)
\end{array}
\xrightarrow{(i)}
\begin{array}{c}
\text{HO} \text{-} \text{Me} \quad \text{Se}^{-} \text{Ph} \\
(2.167)
\end{array}
\xrightarrow{(ii)}
\begin{array}{c}
\text{HO} \text{-} \text{Me} \\
(2.138)
\end{array}
\]

Scheme 81

Reagents and conditions: (i) O$_3$, dichloroethane, -20 °C, 99 % (ii) dichloroethane, reflux.

After having the alcohol (2.138) in hand, we moved on to convert it to the corresponding iodide (2.169) using iodine, triphenyl phosphine and imidazole under standard conditions. Disappointingly the reaction was unsuccessful despite several trials, only starting material was recovered. Finkelstein reaction was opted as the next approach, by converting the alcohol into the mesylate (2.168) then displacing it with halide. Treatment of the alcohol (2.138) with methanesulfonyl chloride in presence of triethyl amine in dichloromethane at 0 °C afforded the mesylate (2.168) in 99 % yield (Scheme 82). To our disappointment there was no reaction when the mesylate was heated with sodium iodide in acetone, even at elevated temperatures and extended reaction times, the starting material was recovered. Since the displacement reaction with NaI was unsuccessful, LiBr was used as a next alternative and the solvent was changed from acetone to THF. Since the pentenyl bromide (2.170) has low boiling point, complete removal of acetone from the reaction mixture would be difficult and the remaining acetone would cause problems for the subsequent Grignard reaction, so THF was chosen.
Synthesis of the THP ring:

After solving all the problems in the synthesis of precursor of fragment B (2.170), we proceeded to the next step, which is the epoxide ring opening reaction of fragment A (2.85) with the Grignard reagent of fragment B (2.171) (Scheme 83). Despite several attempts, the Grignard reaction under standard conditions resulted, only in the formation of the bromo compound (2.173) as the sole product and small amount of starting material (2.85) being recovered.

Since the Grignard reaction with fragment B (2.171) did not work, despite several attempts, the approach was modified by using the sulfone (2.175) instead of the proposed bromide (2.170) (Scheme 84). The sulfone (2.175) was synthesised from the corresponding sulphide (2.174) by oxidation, the use of H₂O₂ and a
molybdenum catalyst ensures no alkene oxidation. The sulphide (2.174) was obtained from the alcohol (2.138).

Reagents and conditions: (i) ArSH, NaH, THF, DMF, 70 °C; (ii) (NH₄)₆Mo₇O₂₄, H₂O₂, EtOH, 88 % (2 steps).

The epoxide ring opening reaction of fragment A (2.185) with the lithio derivative of the sulfone (2.175) in the presence of BF₃·Et₂O, resulted in a complex mixture of products (Scheme 85). However, detailed NMR studies showed that the reaction afforded the desired product (2.176) and its BOM migrated isomer (2.177). This migration of the BOM group may be explained by the Lewis acidity of BF₃·Et₂O, which makes the BOM group more labile. However, in the absence of BF₃·Et₂O, no reaction was observed. Nevertheless, the desired product (2.177) was obtained in good yield, without the migration of BOM group by simply reducing the amount of BF₃·Et₂O from 2.5 eq. to 1.1 eq. and quenching the reaction, soon after completion at -78 °C with a Lewis base, Et₃N.
Reagents and conditions: (a) "BuLi, BF₃·Et₂O (2.5 eq.), THF, -78 °C, aq. NaHCO₃; (b) "BuLi, THF, -78 °C, no product; (c) "BuLi, BF₃·Et₂O (1.1 eq.), THF, -78 °C, Et₃N, 85 %.

The next step was the reductive desulfonation for which we adopted Carpino’s method using Mg, which is a substitute for the conventional sodium amalgam. Mg was preferred due to the absence of toxicity compared to mercury, its ready availability, and ease of handling. To our disappointment, the desulfonation reaction under Carpino’s conditions resulted in the formation of a 1:1 mixture of the desired product (2.172) and the methylene acetal (2.178) (Scheme 86). We suspected that the formation of the methylene acetal arises due to the Lewis acidic Mg²⁺, which forms during the desulfonation reaction and activates the BOM group to acetal formation (Scheme 87).

Proposed mechanism for the methylene acetal formation:

To solve this problem, calcium was used instead of magnesium, due to its lower Lewis acidity. However, no reaction was observed with calcium, only the starting material was recovered. So, the approach was modified by using magnesium
but with a complexing agent, to sequester the Mg\(^{2+}\) ions in the reaction mixture. Though our initial trials with EDTA, a well known complexing agent, did not work; the reaction in the presence of TMEDA, worked well to afford the desired product (2.172) in 79 % yield without the formation of the methylene acetal (2.178) (Scheme 88). Though this reaction is rapid under sonication (∼ 30 min), the yield was superior under thermal conditions.

![Scheme 88](image)

Reagents and conditions: (a) Ca, MeOH, 55 °C, no product; (b) Mg, EDTA, MeOH, 55 °C, no product; (c) Mg, TMEDA, MeOH, 55 °C, 79 %. (d) Mg, TMEDA, MeOH, sonication, 57 %.

The next step is the cross metathesis of the terminal alkene (2.172) with methyl acrylate, which we expected to work in a similar way to the model (2.88), but, the reaction was comparatively slow, completing only after 8 h, unlike the model (2.88), which completed in 3 h. This may be due to the steric hindrance of the methyl group next to the terminal alkene. Regrettably, continuing the reaction for longer times resulted in the formation of inseparable mixture of the desired product (2.182) and an isomer (Table 5); detailed NMR studies clearly showed that the isomer is not from cis/trans isomerisation and must therefore be a C-4 epimer (Scheme 89). We suspect that this epimerisation is due to the Ru-H species, which are known catalyst degradation products formed during metathesis reactions with ruthenium catalysts. \(^{114}\) We presume that the epimerisation at C-4 arose from the Ru-H catalysed alkene isomerisation reaction as shown in the mechanism (Scheme 90). Grubbs reported that these
isomerisation reactions can be stopped by using 1,4-benzoquinone as additive to oxidise the Ru-H species. However, our trials with 1,4-benzoquinone did not suppress the epimerisation. It was observed that the epimerisation took place only when the reaction continued for longer time, as the build up of the Ru-H is gradual. The reaction was stopped after 3 h and the desired product (2.182) was obtained without any epimerisation; however, some starting material recovered as the reaction was stopped before completion.

![Scheme 89](image)

Table 5: Cross metathesis results:

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Yield (%)</th>
<th>Ratio (2.182):(2.183)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grubbs II</td>
<td>81</td>
<td>7 : 1</td>
</tr>
<tr>
<td>Hoveyda-Grubbs II</td>
<td>76</td>
<td>8 : 2</td>
</tr>
<tr>
<td>Hoveyda-Grubbs II<sup>c</sup></td>
<td>60</td>
<td>8 : 2</td>
</tr>
<tr>
<td>Hoveyda-Grubbs II<sup>b</sup></td>
<td>71<sup>b</sup></td>
<td>Only (2.182)</td>
</tr>
</tbody>
</table>

^a: all reactions were carried out in dichloromethane at 0 ºC to RT with nitrogen flow; ^b: reaction stopped in 3 h and 23 % of starting material was recovered, ^c: reaction was carried out with 1,4- benzoquinone.
After having the CM product (2.182), the intramolecular Michael addition was carried out using the same conditions optimised with the model, afforded the desired trans THP (2.189) in 9:1 ratio, a similar selectivity to the model (Scheme 91). The stereochemistry was determined by comparing with natural product and as well as with Banwell’s THPs (2.9 and 2.11). 43,1

Reagents and conditions: KOBu⁺, THF, -78 °C, 92 %, (9:1).

It is notable that the ratio of isomers is slightly improved compared to the model system (2.89 to 2.90 and 2.91). The additional methyl group appears to further destabilize the transition state leading to the minor isomer (2.190). The methyl ester (2.189) was then hydrolysed to the corresponding carboxylic acid (2.191) using lithium hydroxide (Scheme 92).
(Scheme 92)

Reagents and conditions: LiOH, MeOH, H$_2$O, THF (1:1:1), 98%.

Conclusion:

In summary, the synthesis of the THP fragment of bistramide D was achieved efficiently starting from readily available epichlorohydrin. Kinetic resolution of the racemic epichlorohydrin, 1,3 asymmetric induction using iodocyclisation, regioselective cross metathesis and stereoselective intramolecular Michael addition under kinetic condition to achieve the thermodynamically less stable trans isomer are the highlights of the synthesis. The synthesis of the THP fragment was achieved with a total of 11 steps (longest linear) with an overall yield of 14%. Our research continues in the suppression of C-4 epimerisation during cross metathesis.
Chapter III: Synthetic Approach to Amino acid and Spiroketal Units of Bistramide D

Introduction:

“Efficient and cost-effective syntheses of natural products are often important synthetic challenges in organic synthesis. For convenient and economic reasons, it is ideal if such syntheses can be achieved by selective manipulation of readily available and inexpensive starting materials.” Tartaric acid (3.1), is one such chiral resource, both enantiomers of which are readily available. In early years, tartaric acid (3.1) played an important role in the development of stereochemistry, as the term “enantiomerism” was introduced when Louis Pasteur (1848), achieved the first resolution of racemic tartrate from the tartar deposits in barrels of maturing wine. Hannesian has referred to the use of readily available natural chiral starting materials in synthesis as the “Chiron approach”. Unlike many other natural chiral sources such as amino acids and sugars, which are available only as one of the two enantiomeric forms, tartaric acid (3.1) is available in both enantiomeric forms. Over the years there have been an impressive number of communications dealing with the use of tartaric acid and its derivatives in stereoselective organic synthesis. Among the other contributors, Seebach et al. and Gawronski et al. employed tartrates extensively as chiral auxiliaries, resolving agents and starting materials for various reactions. To highlight the synthetic utility of tartaric acid (3.1), enantiomeric syntheses of two natural products Syringolide (3.2a and 3.2b) (Scheme 93) and Lentiginosine (3.8) (Scheme 94) are shown.

Synthesis of Syringolides: Syringolide 1 and 2 (3.2a and 2b) are compounds produced by Pseudomonas syringae pv. tomato and function as specific molecular signals which cause hypersensitive responses. Kuwahara synthesised
Syringolides 1 (3.2a) and 2 (3.2b) from diethyl D-tartrate. Starting from a known diol (3.4), mono protection with TBSCl followed by Swern oxidation and further functional group transformations afforded the β-keto ester (3.5). The lactone (3.6) was obtained from the β-keto ester (3.5) via a Knoevenagal condensation. The final cyclisation was achieved by treating the lactone (3.6) with Dowex-50-X8/Ambertlyst in dry methanol followed by treatment with p-TsOH in acetone/water mixture to provide Syringolides 1 (3.2a) and 2 (3.2b).

Synthesis of Syringolide 1 and 2:

\[
\begin{align*}
\text{EtO}_2\text{C} & \rightarrow \text{CO}_2\text{Et} \\
\text{OH} & \rightarrow \text{OMOM} \\
\text{OH} & \rightarrow \text{OMOM} \\
\text{SiO}_2 \text{hexane/EtOAc(8:1)} & \rightarrow \text{OTBS} \\
\text{R} & \rightarrow \text{R} \text{ n-C}_5\text{H}_{11}, \\
\text{H} & \rightarrow \text{H} \\
\text{HO} & \rightarrow \text{HO} \\
\text{H} & \rightarrow \text{H} \\
\end{align*}
\]

Scheme 93

Synthesis of Lentiginosine (3.3): The biosynthetic origin of Lentiginosine (3.3) is related to other polyhydroxylated indolizidine metabolites, and, like swainsonine and castanospermine it also has interesting biological activities which include glycosidase inhibitory and anti-HIV activities. Giovannini synthesised Lentiginosine (3.3) starting from L-(+)-tartaric acid (3.1) (Scheme 94). Protection of the two hydroxyl groups with MOM followed by condensation provided the nitrone intermediate (3.7), which on reaction with 4-
benzyloxybutylmagnesium bromide afforded the pyrrolidine ring (3.8a). Lentiginosine (3.3) was then obtained from the pyrrolidine (3.8) in four steps.

Synthesis of Lentiginosine:

\[
\text{L-tartaric acid} \quad (3.1) \\
\xrightarrow{\text{MOMOM}} \\
\text{BnO(CH}_2\text{)}_4\text{MgBr} \quad \text{THF, 82\%} \\
\xrightarrow{\text{MOMOM}} \\
\text{Lentiginosine} \quad (3.8)
\]

Scheme 94

Retrosynthesis of amino acid fragment:

The essential challenges in our approach to the synthesis of the amino acid fragment are the stereoselective methylation and the regioselective reduction of the diester, the retrosynthetic approach is shown in the (Scheme 95). Our target is to prepare the amino acid precursor azide (3.9). Similar to Wipf, we intended to start with malic acid, but with the (R) isomer, while the natural one is (S). Though naturally available (S)-malic acid is cheap and readily available, its unnatural isomer, (R)-malic acid is very expensive. Hence we decided make the unnatural malic acid from tartaric acid, as both enantiomers of tartaric acid are commercially available. By choosing L-(+)-tartaric acid (3.1) as starting material, one of the chiral centers is already available, through which we planned to induce the other chiral center via a stereoselective methylation. Notably it is a dicarboxylic ester, so one end of the amino acid fragment is also fixed and suitable functional group transformation of the other end should lead to the precursor to the amino acid (3.9).
Results and discussion:

Procedures are available for the conversion of \((R,R)\)-tartrate to \((R)\)-malate (Scheme 96).\(^{123}\) Inanaga demonstrated a reductive elimination of the \(\alpha\)-hydroxyl group of \((R,R)\)-tartrate to \((R)\)-malate using \(\text{SmI}_2\)-THF-ethylene glycol system.\(^{124}\) Though this is an impressive one step procedure to obtain \((R)\)-malate from \((R,R)\)-tartaric acid, samarium is too expensive and air sensitive. However, Gao’s one pot procedure of converting \((R,R)\)-tartrate to \((R)\)-malate via a cyclic sulfite intermediate was chosen, as the reagents are readily available.\(^{125}\) Our synthesis started from \((R,R)\)-diethyl tartrate (3.3), which on one pot reaction with thionyl chloride, LiBr and treatment with zinc provided the desired \((R)\)-malate (3.18). However, the yield of the reaction was very low, 40 \%, and regretfully our attempts to improve the yield were unsuccessful.
Methods for converting tartrates to malates:

\[
\text{R} \begin{array}{c}
\text{O} \\
\text{H} \\
\text{O} \\
\text{O}
\end{array}
\stackrel{\text{SmI}_2, \text{THF, ethylene glycol}}{\text{rt}}
\text{R} \begin{array}{c}
\text{O} \\
\text{H} \\
\text{O} \\
\text{O}
\end{array}
\]

(3.14)

\[
\text{EtO} \begin{array}{c}
\text{O} \\
\text{H} \\
\text{O} \\
\text{O}
\end{array}
\rightarrow
\text{EtO} \begin{array}{c}
\text{O} \\
\text{S} \text{O} \\
\text{Et}
\end{array}
\rightarrow
\text{EtO} \begin{array}{c}
\text{O} \\
\text{B} \text{r} \\
\text{O} \text{Et}
\end{array}
\]

(i) (ii)

(3.3) (3.15) (3.16) (3.17)

\[
\text{EtO} \begin{array}{c}
\text{O} \\
\text{H} \\
\text{O} \\
\text{O}
\end{array}
\]

(3.18)

Scheme 96

Reagents and conditions: (i) SOCl\textsubscript{2}, CH\textsubscript{2}Cl\textsubscript{2}, 50 °C (ii) LiBr, 0 to 50 °C (iii) Zn, water, 50 °C, 40 %.

Since the cyclic sulfite chemistry did not provide satisfactory results, a conventional procedure was adopted. Condensing diethyl tartrate (3.3) with benzaldehyde afforded the corresponding bezylidene derivative (3.19) in 98 % yield (Scheme 97).

For bromination of the benzylidene derivative (3.19), the Hanessian reaction was used, which is a NBS mediated regioselective bromination reaction of benzylidene acetals. Two different plausible mechanisms are available for this reaction (Scheme 98), under Hanessian conditions, which favor the ionic fragmentation; no product (3.20) formation was observed. Hence, Hullar conditions, free radical pathway, were employed by repeating the reaction with the free radical initiator ABCN. However no progress in the reaction was observed, and only starting material was recovered.
Radical and ionic pathways for benzylidene fragmentation:

Reagents and conditions: (i) PhCHO, PTSA, Toluene, 98 %; (ii)(a) NBS, Toluene, no product; (b) NBS, ABCN, CCl₄, no product.

As this route did not give the expected bromotartrate (3.20), we used Mori’s procedure. Brominating diethyl tartrate (3.3) with HBr/AcOH mixture afforded the desired bromohydrin (3.26) in 96 % yield (Scheme 99). Our next step was the removal of bromine and then stereoselective methylation, to achieve the better selectivity in the methylation, the bromohydrin was converted to epoxide (3.27). Ring closure of the bromohydrin (3.26) was achieved using DBU in diethyl ether in 89 % yield.
Reagents and conditions: (ii)(a) HBr/AcOH; (b) AcCl, EtOH, 96 % (two steps); (ii) DBU, Et₂O, 89 %.

For methylation reaction, epoxide ring opening with dimethylcopperlithium was tried under standard conditions (Scheme 101).¹³¹ There was no reaction as the starting material was recovered after the reaction. However, use of methyl magnesium bromide resulted in the formation of the mono methylated ketone (3.37) instead of the expected epoxide ring opening. Still showed that trimethyl aluminium selectively reacts with the epoxide (3.28) to give the methylated product (3.29), keeping the ester group intact (Scheme 100).¹³² Following the literature precedent, the epoxide (3.27) was treated with trimethyl aluminium in dichloromethane at -30 °C, disappointingly the reaction afforded the methyl ketone (3.32) as the sole product.³⁹

Still example for regio, stereoselective methylation with Me₃Al:
Scheme 101

Reagents and conditions: (i) CuI, MeLi, Et₂O, -70 °C, no product; (ii) MeMgCl, CuCN, THF, -78 °C; (iii) Me₃Al, CH₂Cl₂, RT.

As our attempts towards the methylation of the epoxide were unsuccessful we changed our scheme by reducing the epoxide (3.27) to alcohol (3.18), as a number of literature procedures are available for the α-alkylation of β-hydroxy esters using dianion chemistry (Scheme 102). The first stereoselective alkylation of β-hydroxy esters using the dianion chemistry was achieved by Frater in 1979 and in recent years, modified procedures with better selectivity and yield have become available.
For the reduction of the epoxide (3.27), palladium catalysed hydrogenation in MeOH was used. In 8 h the reaction showed (1H NMR) the presence of the desired product (3.18) and the starting material (3.27) in a 8:2 ratio. So the hydrogenation was continued for overnight, to our surprise the reaction afforded four different compounds with some starting material being left unreacted. Detailed NMR studies revealed that the compounds formed are the desired product (3.18), transesterified (methyl) epoxide (3.35) and transesterified alcohols (3.36) and (3.37) (Scheme 103). The unexpected transesterification during hydrogenation might be due to the relatively small amount of acid present in Pd/C, (the acid catalysed transesterification). This simple problem was solved just by switching the solvent from methanol to ethanol to obtain the desired product (3.18) in quantitative yield.

\[
\begin{align*}
\text{EtO} &\text{O} \\
(3.27) &\rightarrow \text{EtO} \text{O} \\
&\text{EtO} \text{O} \\
(3.18) &+ \text{EtO} \text{O} \\
&\text{EtO} \text{O} \\
(3.35) &+ \text{MeO} \text{O} \\
&\text{EtO} \text{O} \\
(3.36) &+ \text{MeO} \text{O} \\
(3.37)
\end{align*}
\]

Scheme 103

Reagents and conditions: (a) H\(_2\), Pd/C, MeOH; (b) H\(_2\), Pd/C, EtOH, quantitative.

The (R)-malate (3.18) can also be prepared from the bromohydrin (3.26) via zinc reduction (Scheme 104).
Reagents and Conditions: (i) DBU, Et₂O, 89 %; (ii) Pd/C (5 mol %), H₂ (balloon), MeOH, 20 h, 99 %; (iii) Zn, acetone, water, 50 °C/sonication, 99 %.

Methylation was promising with MeI and LDA at -78 °C to afford the methylated malate (3.30) in 78 % yield as a 9:1 mixture of diastereomers (Scheme 105). The product was clearly identifiable by ¹H NMR, showing the presence of the methyl group as a doublet at 1.30 ppm, the diastereomeric ratio was obtained by integrating methyl proton peaks. Comparison of the data with the literature confirmed that the desired stereochemistry was obtained.¹⁴,¹³⁵ However at this point the isomers were not separable by column chromatography, but further functional group modifications in subsequent steps allowed separation to be achieved.

Reagents and condition: LDA, MeI, THF, -78 to -5 °C, 78 %, (9:1).
The next step was the regioselective reduction of the diester. Saito136,137 and Keck138 have demonstrated very efficient protocols for the regioselective reduction of the diester. Saito reported that the Borane-dimethyl sulfide complex with a catalytic amount of sodium borohydride is capable of reducing the diester group selectively at the carbonyl which is α to the hydroxyl group (Scheme 106).

\begin{equation}
\begin{array}{c}
\text{EtOOC} \quad \text{COOEt} \\
\text{R-(3.18)}
\end{array}
\xrightarrow{\text{BH}_3\text{SMe}_2, \text{THF}}
\begin{array}{c}
\text{OH} \\
\text{EtOOC} \quad \text{COOEt}
\end{array}
\xrightarrow{\text{NaBH}_4 (5 \text{ mol} \%)}
\begin{array}{c}
\text{OH} \\
\text{OH}
\end{array}
= \begin{array}{c}
\text{EtOOC} \\
\text{COOEt}
\end{array}
+ \begin{array}{c}
\text{OH} \\
\text{OH}
\end{array}
\xrightarrow{\text{200:1}}
\begin{array}{c}
\text{MeO} \\
\text{HO}
\end{array}
\xrightarrow{\text{BH}_3\text{SMe}_2, \text{THF}}
\begin{array}{c}
\text{OH} \\
\text{O}
\end{array}
\xrightarrow{\text{NaBH}_4, 62 \%}
\begin{array}{c}
\text{MeO} \\
\text{O}
\end{array}
\xrightarrow{\text{THP}}
\begin{array}{c}
\text{HO} \\
\text{O}
\end{array}
\xrightarrow{\text{THP}}
\begin{array}{c}
\text{OMe}
\end{array}
\text{(3.40)}
\text{(3.38)}
\text{(3.39)}
\text{Scheme 106}

Saito and Moriwake suggested the regio selectivity arises from the activation energy difference between the two possible transitions states, namely the five (3.44) and six (3.45) membered ring systems (Scheme 107).137 Neighbouring group participation would be most favoured for five membered ring systems (3.44) than the six membered systems. Saito also added the concept of bond length for the selectivity, the shorter boron-oxygen (3.45) bond length, causes the severe 1,3 diaxial interaction between the ester alkoxy group and the hydrogen on the boron atom making the six membered transition state (3.45) less favourable.
Saito’s proposed mechanism for the regioselective reduction.

We chose to apply Saito’s reaction conditions for the reduction of methylated diethyl (R)-malate (3.30), but to our disappointment the reaction gave a complex mixture of products and large amount of starting material (3.30) being recovered (Scheme 108). Initially it was thought that it may be due to the presence of methyl group which was hindering the reduction, so the reduction was tried with diethyl malate (3.18), however there was no progress in the reduction. The reduction was also tried with dimethyl ester (3.11) to see any improvement in the reduction, but all our trials were unsuccessful under these conditions.
Trials for the methylation with diethyl malate.

\[
\begin{align*}
\text{(3.30)} & \rightarrow \text{(3.51)} \\
\text{(3.18)} & \rightarrow \text{R-(3.39)} \\
\text{(3.11)} & \rightarrow \text{(3.52)}
\end{align*}
\]

Scheme 108

Reagents and conditions: BH$_3$·SMe$_2$, NaBH$_4$, THF, no product.

Since our attempts for the regioselective reduction with borane did not work, we moved on to use Keck’s protocol, which is a chelation controlled reduction with MgBr$_2$·Et$_2$O (Scheme 109). Similar to Saito, Keck also suggested that the regioselective reduction of the ester α to the hydroxyl group is due to the marked preference of five membered bidentate complex (3.54) over the six membered ring (3.55).
Keck’s regioselective reduction:

Depending upon the need, Keck’s protocol can be used to prepare either the aldehyde (3.58) or the alcohol (3.56) by controlling the number of eq. of DIBAL-H and the reaction temperature (Scheme 110).

Reagents and conditions : (i) MgBr₂.Et₂O, DIBALH (1 eq.), CH₂Cl₂, -95 °C; (ii) MgBr₂.Et₂O, DIBALH (2 eq.), CH₂Cl₂, -40 °C.

Since the Keck strategy required the hydroxyl group to be protected, our first choice for the protection of hydroxyl group was the BOM group, since the hydroxyl group of the THP fragment (2.191) had already been protected with the BOM group. Hence it would be logical to use the same protecting group for
subsequent simultaneous deprotection. BOM protection of dimethyl malate (3.11) was achieved using BOMCl in presence of DIPEA in dichloromethane in 76 % yield (Scheme 111). The protected product (3.59) was clearly identifiable by 1H NMR, doublets at 4.46 and 4.71 ppm and the disappearance of the OH stretch at 3487 cm$^{-1}$ in the IR spectrum were observed. With the protected alcohol (3.59) in hand, we moved on to try the regioselective reduction, by following Keck’s procedure exactly. However, our trials for the regioselective reduction only afforded 20 % of the desired product (3.60) with 29 % of the aldehyde (3.61) and large amount of starting material being recovered.

$$\text{MeO} - \text{CO}_2\text{Me} \quad \text{(i)} \quad \text{MeO} - \text{CO}_2\text{Me} - \text{OBOM} \quad \text{(i)}$$

Scheme 111

Reagents and conditions: (i) BOMCl, DIPEA, CH$_2$Cl$_2$, 76%; (ii) MgBr$_2$,Et$_2$O, DIBALH, CH$_2$Cl$_2$, -40 °C, 20 %.

Since the BOM group was not giving satisfactory results, we changed the protecting group to benzyl, the one Keck used for a similar diester (Scheme 112). Our initial trail for benzylation with benzyl trichloroacetimidate using Bundle’s procedure did not proceed at all. However benzylation using benzyl chloride in the presence of silver oxide in ethyl acetate afforded the desired product (3.62) in 98 % yield. On the other hand this reaction was highly dependent on the purity of Ag$_2$O; since the yield of the reaction varied with different batches. Use of Dudley’s reagent, 2-Benzylxyo-1-methylpyridinium
triflate, provided the benzylated product in 96 % yield and the yield was consistent over several repetitions. Having the benzylated product (3.62) in hand, we moved on to the reduction under the same conditions reported by Keck, to our surprise, the desired alcohol (3.63) was obtained in 82 % yield with a small amount of the aldehyde (3.64) (9 %) as side product. The product was clearly identifiable by 1H NMR, showing one singlet at 3.69 ppm for the mono methyl ester and two new double double doublets at 3.73 and 3.78 ppm. This characteristic multiplicity pattern showed that the regioselective reduction was successful. Comparison of literature data with further conversions allowed us to confirm that the above characterisation was precise.

![Scheme 112](image)

Reagents and conditions: (i) (a) benzyl trichloroacetimidate, CF$_3$COOH, hexane, CH$_2$Cl$_2$, no product; (b) BnCl, Ag$_2$O, ethyl acetate, 98 %; (c) BnOPT, MgO, dichloroethane, 80 °C, 96 %; (ii) MgBr$_2$.Et$_2$O, DIBALH, CH$_2$Cl$_2$, -40 °C, 82 %.

Our next goal was to obtain the azide (3.67) from the alcohol (3.63) (Scheme 113). Mitsunobu conditions were chosen, as it is an one pot procedure compared with the conventional two step procedure, where the alcohol needs to be activated and then displaced with azide. Recently Rollin introduced a zinc azide mediated Mitsunobu reaction, which is considered to be an expedient one pot method for the synthesis of azides from alcohols. The desired azide
(3.67) was synthesised by using Rollin’s zinc azide/bispyridine complex (3.65) (Figure 4) with PPh\textsubscript{3} in toluene in the presence of DIAD in 62 % yield. The advantage of using Rollin’s complex (3.65) is its non hygroscopic nature, and there is no need to use an external H+ source, as Zn2+ serves as a Lewis acid. Though the reaction was simple the yield was not high and was not consistent over several repetitions. The conventional 2 step procedure was, therefore, adopted.

![Zinc azide/bispyridine complex](image)

Figure 4: zinc azide/bispyridine complex

Mesylation was achieved in quantitative yield by treating the alcohol with MsCl and triethylamine in dichloromethane. The product (3.66) was clearly identifiable by the loss of the hydroxyl stretch at 3434 cm-1 in the IR and a characteristic peak in the 1H NMR at 2.98 ppm as a singlet. Displacement of mesylate with azide was achieved by heating the mesylate (3.66) with NaN\textsubscript{3} in DMF, identifiable most evidently by the characteristic IR band at 2102 cm-1. From our observations, the azide (3.67) formation using the conventional procedure was more easily purified and better yielding (93 %, two steps) compared with the Mitsunobu reaction by using the zinc azide/bispyridine complex.
Reagents and Conditions: (i) Zn(N$_3$)$_2$Py$_2$, DIAD, PPh$_3$, Toluene, 62 %; (ii) MsCl, Et$_3$N, CH$_2$Cl$_2$, 99 %; (iii) NaN$_3$, DMF, 60 °C, 93 %.

It was anticipated that the reduction of azide (3.67) to amine (3.68) would be troublesome as the formation of amine (3.68) might lead to cyclisation to form a pyrolidinone derivative (3.69) (Scheme 114).

In order to prevent this unwanted cyclisation Wipf, Panek and Yadav protected the carboxylic end with a bulky TIPS group; Kozmin and Crimmins protected the amine end by Fmoc group (Scheme 115). In order to avoid the protection and deprotection steps, it was planned to couple the azide (3.67) directly to the carboxylic acid end of the THP fragment (2.191) via a modified Staudinger reaction (Scheme 116).
Common intermediates in the synthesis of bistramides:

Wipf, Panek and Yadav

Kozmin and Crimmins

Our proposed precursor

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{OH} \\
\text{TBSO} & \quad \text{O} \\
\text{HTIPS} & \\
\end{align*}
\]

(1.35)

\[
\begin{align*}
\text{FmocHN} & \quad \text{OH} \\
\text{OH} & \quad \text{Me} \\
\text{OMe} & \quad \text{OBn} \\
\end{align*}
\]

(1.68)

\[
\begin{align*}
\text{N}_3 & \quad \text{OBn} \\
\text{O} & \quad \text{OMe} \\
\text{O} & \\
\end{align*}
\]

(3.67)

Scheme 115

\[
\begin{align*}
\text{BOMO} & \quad \text{H} \\
\text{H} & \quad \text{O} \\
\text{N} & \quad \text{OMe} \\
\text{OBn} & \quad \text{O} \\
\text{Me} & \quad \text{OMe} \\
\end{align*}
\]

(3.70)

\[
\begin{align*}
\text{BOMO} & \quad \text{H} \\
\text{H} & \quad \text{O} \\
\text{N} & \quad \text{OMe} \\
\text{OBn} & \quad \text{O} \\
\text{Me} & \quad \text{OMe} \\
\end{align*}
\]

(2.191)

\[
\begin{align*}
\text{N}_3 & \quad \text{OBn} \\
\text{O} & \quad \text{OMe} \\
\end{align*}
\]

(3.67)

Scheme 116

Staudinger coupling of THP and Amino acid:

The Staudinger reaction, introduced by Hermann Staudinger in 1919, in which an azide (3.71) reacts with triarylphosphine to form an iminophosphorane (3.74), under mild conditions in good yield. \(^{143,144}\) Iminophosphoranes are often used for the reduction of azides to amines as it is a mild procedure for reduction. Due to the highly nucleophilic nitrogen atom in iminophosphoranes (3.74), they are able to react with many electrophiles, which has allowed them to find many applications in organic synthesis including alkylation, cyclisation, substitution, aza-Wittig reaction \(^{145}\) and Staudinger ligation. \(^{146}\) In the last few decades, a detailed mechanism for the formation of iminophosphoranes has been revealed (Scheme 117). \(^{143,147}\) The mechanism involves a four membered heterocyclic ring that extrudes N\(_2\) via an apparent retro-cycloaddition.
Mechanism for the formation of iminophosphorane.

In 1984 Vilarasa showed that the iminophosphoranes can react with carboxylic acids to obtain amides. Recently, Inazu postulated two different mechanisms for the amide formation (Scheme 118) depending upon the order of addition of the reagents and the reaction temperature. At higher temperatures, the trialkyl/aryl phosphine/phosphite reacts with the azide to form the iminophosphorane, which undergoes further rearrangement with the carboxylic acid to form the amide bond. At lower temperatures, the carboxylic acid is involved in the initial stage of the mechanism, before the iminophosphorane forms (Scheme 119).

Mechanism of amide formation at high temperature:

Scheme 118
Mechanism of amide formation at low temperature:

Before starting the Staudinger coupling with the THP fragment (2.191) and azide (3.67), a model study with cyclohexanecarboxylic acid (3.75) and the tert-butyl 2-azidoacetate (3.76) was carried out to establish suitable conditions for the amide bond formation (Scheme 120).

The various conditions tried for the Staudinger coupling are shown in table 6. The use of standard Staudinger conditions with PPh₃ in acetonitrile did not work with the model system. This implies that the reaction requires a more reactive phosphine; therefore Bu₃P was used instead of PPh₃, due to its higher reactivity. After trying various phosphines and solvent systems it was found that Bu₃P in dichloromethane at reflux gave the coupled product (3.77) in 80% yield.
Table 6: Optimisation conditions for the model Staudinger coupling.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Solvent</th>
<th>Temperature</th>
<th>Yield of (3.77) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph\textsubscript{3}P</td>
<td>CH\textsubscript{3}CN</td>
<td>RT</td>
<td>0a</td>
</tr>
<tr>
<td>Bu\textsubscript{3}P</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>-65 °C</td>
<td>30b</td>
</tr>
<tr>
<td>Ph\textsubscript{3}P</td>
<td>Toluene</td>
<td>70 °C</td>
<td>25b</td>
</tr>
<tr>
<td>Bu\textsubscript{3}P</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>RT</td>
<td>50b</td>
</tr>
<tr>
<td>Bu\textsubscript{3}P</td>
<td>Toluene</td>
<td>70 °C</td>
<td>50b</td>
</tr>
<tr>
<td>Ph\textsubscript{3}P</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>RT</td>
<td>0a</td>
</tr>
<tr>
<td>D</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>RT</td>
<td>0a</td>
</tr>
<tr>
<td>Bu\textsubscript{3}P</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>reflux</td>
<td>80</td>
</tr>
</tbody>
</table>

a: carboxylic acid (3.75) was recovered; b: yields were calculated from 1H NMR by comparing the ratio of product and starting material, D=trifuryl phosphine.

After optimising the conditions, a reaction with the model acid (3.75) and the real azide (3.67) was carried out (Scheme 121). As expected, the reaction worked well under identical conditions to give the desired product (3.78) in 69 % yield, the lower yield may be due to bulkier azide (3.67).

![Scheme 121](image)

Reagents and conditions: Bu\textsubscript{3}P, CH\textsubscript{2}Cl\textsubscript{2}, reflux, 69 %.

Employing the same conditions, coupling of the THP fragment (2.191) with the azide (3.67) was carried out. To our disappointment, under these conditions, the coupling did not give the desired product (3.70) and none of the starting materials were recovered. It was clear that the azide (3.67) reacts with the phosphine to give the iminophosphorane as evolution of nitrogen gas bubbles.
could be seen as soon as the Bu$_3$P was added. Suspecting that the intermediates might be thermally unstable, the reaction was tried at room temperature. Disappointingly there was no reaction but it was possible to recover the starting material (2.191).

![Scheme 122](image)

Reagents and conditions: (a) Bu$_3$P, CH$_2$Cl$_2$, reflux, no product; (b) Bu$_3$P, CH$_2$Cl$_2$, rt, no reaction.

Modified Staudinger procedures where the carboxylic acid is activated just before the coupling are known. Paul used acid chlorides to couple with the azide (3.79) and found that the reaction is efficient giving impressive yields and requiring less time compared with the reaction with carboxylic acid (Scheme 123).149

Staudinger reaction with an acid chloride:

![Scheme 123](image)

Reagents and conditions: PPh$_3$, CH$_2$Cl$_2$, rt, 90 %.
Later, Malkinson extended the modified Staudinger reaction by activating the carboxylic acid (3.82) using N,N-diisopropylcarbodiimide (DIC) and 1-hydroxy benzotriazole (HOBT). The coupling was achieved at low temperature in high yield (Scheme 124). 150

![Scheme 124](image)

Reagents and conditions: DIC, HOBT, PBu_3, THF, 0°C.

Impressed by these conditions, we activated the carboxylic acid part of the THP fragment (2.191) using PyBOP, a phosphonium type coupling reagent, and then reacted it with the azide (3.67) in presence of Bu_3P at -78°C (Scheme 125). To our regret there was no reaction at that low temperature but when the temperature was raised to -20°C there was the formation of new component observed by TLC. The stirring was continued until all the starting material had disappeared, and, after a simple purification, the desired amide (3.70) was obtained in 71 % yield. The product was clearly identifiable by ^1H NMR, a broad triplet at 6.79 ppm showing the presence of the amide proton (NH) and comparing the NMR data with the natural product.1
In summary, we were able to achieve the synthesis of the amino acid precursor (3.67) from a cheap and replenishable source, (R,R)-tartaric acid (3.1), via a stereoselective methylation and regioselective reduction. Coupling the azide (3.67) directly to the acid (2.191) saves the protection and deprotection steps. Using the Staudinger reaction for the coupling of THP fragment (2.191) and azide (3.67) to obtain the C1-C18 fragment of bistramide D is new for bistramide family, as all other groups coupled these fragments using the conventional acid-amine peptide bond formation.
Synthetic approaches to the Spiroketal Fragment

Introduction:

Spiroketalts are bicyclic ethers in which two rings are fused together by a single atom, called spiro atom. Spiroketalts are well known due to their presence in numerous natural products ranging from insect pheromones to antibiotics and are famous for their attractive biological properties.\(^{151}\)

Generally, the spiroketals have a structure in which the two oxygen atom are axial to each other, though it is often expected that substituents in a ring tends to prefer equatorial position over the axial position to avoid destabilising steric repulsions. However, in tetrahydropyrans and other related compounds substituents, (especially the electronegative groups) prefers the axial position; this is due to the anomeric effect.\(^{152}\)

The anomeric effect is the tendency of an electronegative substituent on a THP ring to take an axial rather than equatorial position despite the unfavourable steric interactions. There are number of explanations available for the anomeric effect including the molecular orbitals and dipole moment. However the most accepted explanation comes from molecular orbital theory. The stability of the axial substituents can be explained by the strong interactions between the lone pair of the oxygen in the ring and the antibonding \(\sigma^*\) orbital of the C-O bond (Scheme 126), which is possible only when the substituent is in the axial position.\(^{153}\)
Orbital interactions in axial, equatorial substituents:

Deslongchamps has provided a detailed conformational studies of [6,6]-spiroketals using 1,7-dioxaspiro[5.5]undecane (Scheme 127) as a model. He explained that four chair conformers of [6,6] spiroketals are possible and they are interconvertable with each other by inversion of each ring. The most stable conformer is the one wherein anomeric interactions are maximised and the unfavourable steric interactions between the substituents are minimised.

Four conformers of 2,8-disubstituted [6,6] spiroketal:

Most of the naturally available spiroketals, including the bistramides, possess the bisaxial form, where the C-O bond of one ring is axial to the C-O of the other ring.
(Scheme 128). Therefore the stereochemistry of the spiro carbon will be under thermodynamic control.

Naturally occurring bisaxial [6,6] spiroketals:

![Chemical structures of naturally occurring bisaxial [6,6] spiroketals](image)

Synthetic approach to spiroketal:

There are number of synthetic approaches to spiroketals available in the literature, and a selection of them are shown below (Scheme 129).

122
Results and discussion:

Though various approaches are available for the construction of spiroketals, we were interested in using an intramolecular Michael addition, related to the cyclisation for the left end (THP) of bistramide D. So far, few people have used the Michael strategy for the synthesis of spiroketals, Kishi was the first one to report the intramolecular Michael addition for a spiroketal synthesis.157,158 To prepare for the synthesis of spiroketal fragment (3.84), a model study with a much simpler version (3.85) was attempted (Scheme 130). Our strategy is to construct the spiroketal in one pot from the protected alcohol (3.86) via a tandem deprotection and cyclisation process, with installation of the Michael accepter by cross-metathesis (Scheme 131).
Michael strategy with the model spiroketal system.

Scheme 130

Tandem deprotection and cyclisation:

Scheme 131

The retrosynthesis is shown in Scheme 132 below. We chose a TBS protecting group, as it is a versatile protecting group and can be removed under a wide range of conditions, both acidic and basic, anticipating that the deprotecting reagent will also promote the proposed cyclisation reaction in one pot.

Retrosynthetic approach to model spiroketal:

The ketone (3.86) on tandem deprotection, cyclisation followed by Michael addition will provide the spiroketal (3.85). The ketone (3.86) can be prepared by a cross metathesis of the alkene (3.89) with methyl acrylate. The alkene can be arrived at from the TBS protected pentanal (3.90) and the bromide (3.91) via a Grignard reaction.
For the model cyclisation we started with 1,5-pentanediol, the mono protection of the symmetric diol was achieved by the procedure of Nicolaou. Reacting 1 eq. of TBSCI and 5 equivalents of the diol in the presence of imidazole in THF afforded the desired mono protected alcohol (3.92) in 89 % yield. This method is efficient; as there was no diprotection observed and the excess diol was easily removed by washing with water. The next step was oxidising the alcohol to aldehyde (3.90). Although a number of protocols available for this transformation, including Swern oxidation, oxidation with PDC (Pyridinium dichromate), PCC (Pyridinium chlorochromate) and using hypervalent iodine compounds such as o-iodoxybenzoic acid ((IBX) and the Dess-Martin periodinane (DMP). Each of the above method has their own advantages and disadvantages. We chose to use Tetra-n-propylammonium perruthenate (TPAP), which is a catalytic alternative to the above oxidants.

The alcohol (3.92) on treatment with 5 mol % of TPAP and the co-oxidant NMM (N-methyl morpholine) in dichloromethane afforded the desired aldehyde (3.90) in high yield. However, the reaction was not reliable as the yield varied with different batches (Scheme 133). The next trial for the oxidation was using IBX, as it is very efficient for the oxidation of alcohols and easy to use, can be readily
prepared from 2-iodobenzoic acid. Though IBX can only be used with very polar solvents such as DMSO, we adopted this method. The conversion of the alcohol (3.92) to aldehyde (3.90) was high yielding (90%).

Grignard reaction of the aldehyde (3.90) with 5-bromopentene (3.91) was accomplished using the established procedure, afforded the alcohol (3.89) in 88% yield. The product was clearly identifiable by 1H NMR, the terminal alkene was observed as two doublets at 4.95 and 5.01 ppm and a multiplet around 5.74-5.87.

![Chemical structure](image)

Scheme 133

Reagents and conditions: (i) (a) TPAP, NMO, CH$_2$Cl$_2$, 24-88 %; (b) IBX, DMSO, 90 %; (ii) 5-bromopentene, Mg, THF, 88 %.

Oxidation of the secondary alcohol (3.89) was also achieved using IBX in DMSO affording the desired ketone (3.93) in 63 % yield, the lower yield was due to carrying over impurities from the previous 3 steps, as no purification has been carried out before this step (Scheme 134). Cross metathesis was achieved with Grubbs II catalyst (2 mol %) with methyl acrylate in dichloromethane. Methyl acrylate proved to be a good partner for this metathesis providing the desired product (3.86) in 94 % yield. The product was clearly obtained, from analysis of its 1H and 13C NMR spectra.
With the ester in hand (3.86), we were ready to test whether our proposed tandem deprotection and intramolecular Michael addition for the spiroketal would be possible or not. A methanolic solution of the TBS protected alcohol (3.86) was treated with amberlyst 15, a polymer supported sulfonic acid. The advantage of using this reagent instead of a conventional acid is its simple workup procedure, as it can be removed just by filtration. As there was no reaction at room temperature, the mixture was heated at 70 °C for 8 h. TLC showed complete disappearance of starting material and formation of a new polar spot. Inspection of the NMR spectrum revealed that we had obtained the monocyclic product, hemi acetal (3.94). The product is clearly identifiable by a characteristic peak at 98.4 ppm in 13C NMR and the presence of double bond protons at 6.92 and 5.83 ppm as double triplets and a singlet for the methyl ester at 3.70 ppm as well as the disappearance of TBS group at -0.04 and 0.89 ppm. It was surprising that not even a small amount of the spiroketal (3.85) was observed. In parallel studies in these laboratories, it has been found that this method is very effective for addition to enones, but not to α,β-unsaturated esters (Scheme 134).
Scheme 135

Reagents and conditions: (i) Amberlyst 15, MeOH, 70 °C; (ii) Amberlyst 15, MeOH, 83 %.

Since the reaction using amberlyst 15 did not give the desired product, sodium methoxide was used. As there was no reaction at room temperature, the reaction mixture was heated at reflux for 8 h. A complex mixture was obtained by TLC and no attempt was taken to purify the reaction mixture. Finally, TBAF in THF at room temperature was used, to our delight the spiroketal (3.85) was obtained in 85 % yield as an 8:1 ratio, in favour of the thermodynamically stable bisaxial isomer (3.85), the one we aimed for, and an unknown isomer. The product is clearly identifiable by a characteristic peak for the acetal carbon at 96.1 ppm in 13C NMR and the disappearance of the alkenic protons in 1H NMR. The relative stereochemistry was determined by comparing the 1H NMR data with literature (Scheme 136).

Scheme 136

Reagents and conditions: (a) NaOMe, THF, reflux, no product; (b) TBAF, THF, 0 °C to rt, 85 %, (8:1) ratio of the desired isomer.
TBAF is extensively used for the deprotection of silyl protection groups, since its a good source of organic soluble fluoride ions.169,170 Nevertheless, TBAF has also used as a mild base in number of organic reactions including alkylation, halogenations, elimination, Michael addition and intramolecular cyclisation reactions.171-173

Conclusion:

In summary, the synthesis of the C1-C18 fragment of bistramide D was achieved via a modified Staudinger reaction of coupling the carboxylic acid of the THP fragment directly with the azide, which avoided the protection/deprotection steps. The amino acid fragment was synthesised by starting from an inexpensive and readily available chiral source, L-tartaric acid which on diastereoselective methylation and regioselective reduction provided the desired azide. The THP fragment was obtained starting from epichlorohydrin, asymmetric induction via iodolactonisation, regioselective crossmetathesis, intramolecular Michael addition under kinetic conditions to achieve the thermodynamically less stable \textit{trans} isomer are the highlights of the synthesis. The model cyclisation of spiroketal was achieved in one pot via a tandem deprotection and cyclisation strategy via Michael addition using TBAF. The model spirocyclisation gives a real insight to obtain the spiroketal fragment (3.84). Our research continues to achieve the total synthesis of Bistramide D.
EXPERIMENTAL SECTION

General Methods

When required, reactions were carried out under an inert atmosphere of nitrogen in oven dried glassware. Tetrahydrofuran was distilled from sodium-benzophenone; dichloromethane and acetonitrile were dried by distillation from CaH$_2$ immediately prior to use. Methanol was distilled from activated magnesium. All other solvents and reagents were used as received, or purified if required, using standard methods.1 1H NMR and 13C NMR (500 and 125 MHz respectively) were recorded in CDCl$_3$ solutions using a Bruker AV500. 1H-NMR and 13C-NMR (400 and 100 MHz respectively) were recorded in CDCl$_3$ solutions using a Jeol ECA 400, or on a Jeol ECA 400SL, or on a Bruker AV400. 1H-NMR and 13C-NMR (300 and 75 MHz respectively) were recorded in CDCl$_3$ solutions using a Bruker AV300. Chemical shifts are reported in δ units using CDCl$_3$ as an internal standard (δ 7.26 ppm 1H, δ 77.00 ppm 13C). Coupling constants J were recorded in Hz. The following abbreviations for the multiplicity of the peaks are s (singlet), d (doublet), t (triplet), q (quartet), qn (quintet), br (broad), m (multiplet) and app (apparent). Infrared spectra were recorded on a Bruker Alpha-E FT-IR, either neat or as nujol mulls. Melting points were obtained using a OptiMelt MPA100. Mass spectra were obtained on a Finnigan LCQ DECA XP MAX with ESI mode. High resolution mass spectra were obtained using a Waters Q-Tof premier also with ESI mode. Specific rotation, $[\alpha]_D$, were recorded on a Jasco P-1030 polarimeter. Enantiomeric excess were determined with chiral HPLC
analysis, performed on a Shimadzu HPLC and Daicel chemical industries Chiralcel OD-H column, eluting with IPA/hexane.

\[
\text{Br} \quad + \quad \text{H}_2\text{O} \quad \rightarrow \quad \text{OH}
\]

Synthesis of (E)-hepta-1,5-dien-4-ol (2.34): Allyl bromide (0.52 ml, 6.00 mmol) and zinc dust (0.39 g, 6.00 mmol) were added to a solution of crotonaldehyde (0.41 ml, 5.00 mmol) in a mixture of satd. aq. NH\(_4\)Cl (5 ml) and THF (1 ml). The mixture was stirred for 60 minutes at room temperature then filtered through a celite pad, washing with diethyl ether (10 ml). THF was evaporated in vacuo, the residue was extracted with diethyl ether (2 x 20 ml) and the combined organic layers were washed with brine, and dried over anhydrous MgSO\(_4\). The solvent was evaporated and the residue was purified by distillation under reduced pressure (45 °C at 5 mmHg) to give the title compound as a colourless oil (0.31 g, 56 %).

\(^1\text{H} \text{NMR} (300 \text{ MHz, CDCl}_3) \delta 1.70 \text{ (d, 3H, } J = 6.4 \text{ Hz)}, 2.20-2.37 \text{ (m, 2H)}, 4.08-4.14 \text{ (m, 1H)}, 5.12 \text{ (dd, 2H, } J = 6.0, 16.7 \text{ Hz)}, 5.51 \text{ (ddq, 1H, } J = 14.9, 6.7, 1.3 \text{ Hz)}, 5.64-5.88 \text{ (m, 2H)}.

\(^{13}\text{C} \text{ NMR (75 MHz, CDCl}_3): 17.6, 42.0, 71.8, 118.0, 127.0, 133.3, 134.4.

m/z: 113.74 (M+H)

HRMS calculated for C\(_7\)H\(_{12}\)ONa (M+Na): 135.0786; found: 135.0790.

IR: 2962, 2920, 2870, 1261, 1025, 965 cm\(^{-1}\).

The data are consistent with that of the literature.\(^{174}\)

\[
\text{OH} \quad \rightarrow \quad \text{OBoc}
\]

Synthesis of (E)-tert-butyl hepta-1,5-dien-4-yl carbonate (2.35): Di-tert-butylidicarbonate (4.1 g, 18.75 mmol) and DMAP (0.61 g, 5.00 mmol) were
added sequentially to a solution of alcohol (2.34) (1.42 g, 12.50 mmol) in CH$_3$CN (40 ml), with external cooling. The reaction mixture was warmed up to room temperature and stirred for 5 h. CH$_3$CN was evaporated under reduced pressure and the residue was taken up in EtOH (25ml), to this solution imidazole (4.3g, 63.75 mmol) was added, and the mixture was stirred for 15 minutes at room temperature. The mixture was diluted with dichloromethane (30 ml) the combined organic layers were then washed with 5% aq. HCl (3 x 5 ml) and then with water and brine, dried over anhydrous MgSO$_4$. Evaporation of the solvents in vacuo afforded the title compound as a colourless oil (2.5 g, 95 %).

1H NMR (400 MHz, CDCl$_3$) δ 1.47 (s, 9H), 1.69 (d, 3H, $J = 6.4$ Hz), 2.35-2.41 (m, 2H), 3.45-3.47 (m, 1H), 4.98-5.10 (m, 2H), 5.41-5.50 (m, 1H), 5.61-5.85 (m, 2H).

13C NMR (100 MHz, CDCl$_3$): 17.7, 27.8, 39.1, 78.0, 81.8, 117.8, 128.7, 129.8, 133.3, 152.9.

m/z: 236 (M+Na)$^+$, 190, 189.

HRMS calculated for C$_{12}$H$_{20}$O$_3$Na (M+Na)$^+$: 235.1310 found: 235.1311.

IR: 3081, 1737, 1248, 1160, 965 cm$^{-1}$.

Synthesis of (E)-pent-2-enoic acid (2.50): Pyridine (1.3 ml, 16.04 mmol) was placed in a 3 neck flask equipped with a condenser and solid addition funnel containing malonic acid (1.2 g, 12.34 mmol). Malonic acid was added portionwise to the flask, followed by dropwise addition of propanal (1 ml, 13.88 mmol). The reaction mixture was heated at reflux until carbon dioxide evolution ceased, then poured into an icebath and quenched with conc. H$_2$SO$_4$. The mixture was extracted with dichloromethane (3 x 40 ml), the combined organic
layers were washed with water and brine, dried over anhydrous MgSO$_4$. Evaporation of the solvent \textit{in vacuo} yielded the title compound as a colourless oil (1.20 g, 97%).

1H NMR (300 MHz, CDCl$_3$) δ 1.08 (t, 3H, $J = 7.5$ Hz), 2.20-2.30 (m, 2H), 5.83 (d, 1H, $J = 15.5$ Hz), 7.10 (dt, 1H, $J = 15.5$, 6.4 Hz), 8.63 (broad d, 1H, $J = 4.2$ Hz).

Data are consistent with that of literature.175

\[
\text{\begin{center}
\includegraphics[width=0.3\textwidth]{synthesis_diagram}
\end{center}}
\]

Synthesis of 2,3-dibromopentanoic acid (2.51): A solution of bromine (0.18 ml, 3.41 mmol) in dichloromethane (2 ml) was slowly added to a solution of acid (2.50) (0.33 g, 3.25 mmol) in dichloromethane (7 ml) at 0 °C. The reaction mixture was stirred for 1 hr at 0 °C and then warmed to room temperature and stirred for 5 h. The mixture was poured into cold aq. NaHCO$_3$ solution (10%) and extracted with dichloromethane (2 x 25 ml). The combined organic layers were washed with water and brine. The solvent was evaporated \textit{in vacuo} to afford the dibromo compound (2.51) as a colourless oil (0.8 g, 95%).

1H NMR (300 MHz, CDCl$_3$) δ 1.10 (t, 3H, $J = 7.3$ Hz), 1.82-1.97 (m, 1H), 2.23-2.36 (m, 1H), 4.33-4.40 (m, 2H), 10.78 (broad s, 1H).

Data are consistent with that of literature.175

\[
\text{\begin{center}
\includegraphics[width=0.3\textwidth]{synthesis_diagram}
\end{center}}
\]

Synthesis of 1,1-dibromobut-1-ene (2.52): Carbon tetrabromide (9.22 g, 27.76 mmol), triphenyl phosphine (7.3 g, 27.76 mmol) and zinc dust (1.83 g, 27.76 mmol) were stirred in dry dichloromethane (40 ml) at 0 °C under nitrogen for 24
h. Propanaldehyde (1 ml, 13.88 mmol) was added dropwise and the mixture was stirred for a further 2 h at 0 °C, then warmed up to room temperature. The solvents were removed under reduced pressure, the residue was extracted with hexane (4 X 20 ml) and filtered. Hexane was evaporated in vacuo to give the title compound as a pale yellow oil (1.19 g, 40 %).

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 1.03 (t, 3H, \(J = 7.6\) Hz), 2.06-2.16 (m, 2H), 6.39 (t, 1H, \(J = 7.2\) Hz).

Data are consistent with that of literature.\(^{176}\)

![Synthesis of (S,E)-1-(2-(hydroxymethyl) pyrrolidin-1-yl) but-2-en-1-one](attachment:image.png)

Synthesis of (S,E)-1-(2-(hydroxymethyl) pyrrolidin-1-yl) but-2-en-1-one (2.118):\(^{177}\) Crotonyl chloride (0.1 ml, 0.99 mmol) was added to a solution of L-prolinol (2.117) (0.1 g, 0.99 mmol) in THF (5 ml) and aq. Na\(_2\)CO\(_3\) (10 % soln., 2 ml). The mixture was stirred for 1 h. THF was evaporated under reduced pressure; the residue was extracted with ethyl acetate (2 x 10 ml). The combined organic layers were washed with water and brine then dried over anhydrous Na\(_2\)SO\(_4\). Removal of solvent under reduced pressure afforded the title compound as a pale yellow oil (0.16 g, 98 %).

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 1.56-1.68 (m, 2H), 1.83-2.09 (m, 5H), 3.57-3.69 (m, 4H), 4.26-4.33 (m, 1H), 5.28 (dd, 1H, \(J = 2.5, 7.6\) Hz), 6.14 (dq, 1H, \(J = 15.0, 1.6\) Hz), 6.97 (dq, 1H, \(J = 13.9, 7.0\) Hz).

HRMS calculated for C\(_9\)H\(_{16}\)NO\(_2\) (M+H)\(^+\): 170.1181; found: 170.1187.
Synthesis of 1-(tert-butyldimethylsilyloxy)non-4-yn-2-ol (2.55): tBuLi (1.6M in hexane, 1.25 ml, 2.00 mmol) was added dropwise at -78 °C to a solution of 1-hexyne (0.23 ml, 2.00 mmol) in THF (3 ml) under nitrogen. The mixture was stirred at -78 °C for another 30 minutes then a solution of the epoxide (94 mg, 0.50 mmol) in THF (1 ml) followed by BF$_3$.Et$_2$O 178 (0.32 ml 2.50 mmol) was added. The reaction mixture was stirred for 30 min at -78 °C then quenched with satd. aq. NH$_4$Cl solution. The mixture was extracted with ethyl acetate (2 x 20 ml), and the combined organic layers were washed with water and brine, dried over anhydrous Na$_2$SO$_4$. Solvent was evaporated under reduced pressure to afford the title compound as a colourless oil (132 mg, 98 %).

1H NMR (300 MHz, CDCl$_3$) δ 0.08 (s, 6H), 0.86-0.96 (m, 12H), 1.35-1.50 (m, 4H), 2.13-2.18 (m, 2H), 2.35-2.41 (m, 2H), 2.43 (d, 1H, J = 5.0 Hz), 3.59 (dd, 1H, J = 6.0, 9.8 Hz), 3.70 (dd, 1H, J = 4.4, 9.9 Hz), 3.68-3.75 (m, 1H).

13C NMR (75 MHz, CDCl$_3$): 86.0, 75.6, 70.5, 65.7, 31.0, 29.7, 25.9, 23.4, 22.0, 18.4, 13.6, -5.4.

m/z: 272 (M+H)$^+$, 271 (M)$^+$.

HRMS calculated for C$_{15}$H$_{31}$O$_2$Si (M+H)$^+$: 271.2093; found: 271.2093.

IR : 3485, 2931, 1255, 1118 cm$^{-1}$.

Synthesis of (Z)-1-(tert-butyldimethylsilyloxy)non-4-en-2-ol (2.56): A solution of the alkyne (2.55) (100mg, 0.37 mmol) in THF (2 ml) containing Lindlar's
catalyst (5 mg, 5% by Wt.) and a drop of pyridine was stirred under hydrogen (balloon) for 6 h. The reaction mixture was filtered and the filtrate was evaporated to give the title compound as a colourless oil (100 mg, 99 %), which was used in the next step without purification.

1H NMR (300 MHz, CDCl$_3$) δ 0.07 (s, 6H), 0.86-0.96 (m, 12H), 1.29-1.35 (m, 4H), 2.04 (dd, 2H, $J = 7.0, 13.1$ Hz), 2.30-2.21 (m, 2H), 2.40 (s, 1H), 3.44 (dd, 1H, $J = 7.1, 9.9$ Hz), 3.64 (dd, 1H, $J = 3.6, 9.1$ Hz), 3.65-3.71 (m, 1H), 5.35-5.55 (m, 2H).

m/z: 297 (M+Na)$^+$, 273 (M)$^+$, 247, 219.

HRMS calculated for C$_{15}$H$_{33}$O$_2$Si (M+H)$^+$: 273.2250; found: 273.2255

IR: 2956, 1253, 1164, 1102 cm$^{-1}$.

Synthesis of (Z)-non-4-ene-1,2-diol (2.63): Pyridinium p-toluenesulfonate (49 mg, 0.193 mmol) was added to a solution of TBS protected alcohol (2.56) (520 mg, 1.93 mmol) in methanol (10 ml). The reaction mixture was stirred for 24 h at room temperature. The solvent was removed under reduced pressure; the residue was diluted with ethyl acetate (50 ml) and washed with water. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (2 x 30 ml). The combined organic layers were washed with brine and then dried over anhydrous Na$_2$SO$_4$. Solvent was evaporated under reduced pressure to give the title compound as a colourless oil (299 mg, 98 %).

1H NMR (400 MHz, CDCl$_3$) 0.90 (t, 3H, $J = 7.1$ Hz), 1.33-1.50 (m, 4H), 2.16 (tt, 2H, $J = 2.2, 6.9$ Hz), 2.41 (dt, 2H, $J = 5.7, 2.3$ Hz), 3.58 (dd, 1H, $J = 6.4, 11.2$ Hz), 3.73 (dd, 1H, $J = 3.5, 11.3$ Hz), 3.80-3.85 (m, 1H).
\(^{13}\)C NMR (75 MHz, CDCl\(_3\)): 13.6, 18.4, 22.0, 23.9, 31.0, 65.7, 70.4, 75.2, 83.6.
m/z: 181 (M+Na)\(^+\), 156.9 (M)\(^+\), 149, 107.
HRMS calculated for C\(_9\)H\(_{17}\)O\(_2\) (M+H): 157.1229; found: 157.1224
IR: 3358, 2929, 1080, 1034 cm\(^{-1}\).

![Structure of 2.63 and 2.65]

Synthesis of (Z)-tert-butyl non-4-ene-1,2-diyl dicarbonate (2.64): DMAP (0.39 g, 3.21 mmol) and Boc\(_2\)O (0.92 ml, 4.01 mmol) were added to a solution of diol (2.63) (0.25 g, 1.60 mmol) in acetonitrile (10 ml). The reaction mixture was stirred for 5 h at room temperature. The solvent was evaporated under reduced pressure, the residue was diluted with dichloromethane (40 ml), washed with water. The organic layer was separated and the aqueous layer was extracted with dichloromethane (2 x 10 ml). The combined organic layers were washed with brine and then dried over anhydrous Na\(_2\)SO\(_4\). The solvent was evaporated and the residue was purified by flash column chromatography (hexane: ethyl acetate = 90:10) on silica gel (8 g) to give the title compound (0.12 g, 21%) and the cyclic carbonate (2.65) as by-product (0.07 g, 24 %)

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 0.89 (t, 3H, \(J = 6.9\) Hz), 1.27-1.34 (m, 4H), 1.47 (s, 9H), 1.48 (s, 9H), 2.03 (dd, 2H, \(J = 7.0, 13.4\) Hz), 2.40 (broad t, 2H, \(J = 6.9\) Hz), 4.04 (dd, 1H, \(J = 6.8, 11.7\) Hz), 4.21 (dd, 1H, \(J = 3.5, 11.7\) Hz), 4.83-4.90 (m, 1H), 5.33 (dt, 1H, \(J = 10.8, 7.5\) Hz), 5.53 (dt, 1H, \(J = 10.8, 7.4\) Hz).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)): 13.9, 22.3, 27.0, 27.7, 27.7, 28.7, 31.7, 66.8, 74.0, 82.2, 82.3, 122.5, 133.9, 153.0, 153.3.
m/z: 361(M+H)\(^+\), 360(M)\(^+\).
HRMS calculated for C\(_{19}\)H\(_{35}\)O\(_6\) (M+H): 359.2434; found: 359.2433.
IR: 2932, 1740, 1248, 1157, 1095 cm⁻¹.

Data for 4-(hept-2-ynyl)-1,3-dioxolan-2-one (2.65):

\(^1\)H NMR (300 MHz, CDCl₃) δ 0.90 (t, 3H, J = 7.3 Hz), 1.31-1.50 (m, 4H), 2.14 (tt, 2H, J = 7.0, 2.3 Hz), 2.67-2.63 (m, 2H), 4.35 (dd, 1H, J = 8.6, 6.1 Hz), 4.54 (broad t, 1H, J = 8.0 Hz), 4.74-4.82 (m, 1H).

\(^{13}\)C NMR (100 MHz, CDCl₃): 13.5, 18.2, 21.8, 24.2, 30.6, 68.3, 71.2, 74.1, 84.8, 154.7.

m/z: 205 (M+Na), 183 (M+H), 153, 107.

HRMS calculated for C₁₀H₁₅O₃ (M+H): 183.1021; found: 183.1021.

IR: 2933, 1789, 1163, 1077 cm⁻¹.

![Structural formula](image)

Synthesis of 1-chloronon-4-yn-2-ol (2.71): ⁹BuLi (1.6M in hexane, 2.7 ml, 4.30 mmol) was added dropwise at -78 °C to a solution of 1-hexyne (0.55 ml, 4.73 mmol) in THF (8 ml) under nitrogen. The mixture was stirred for 10 minutes at -78 °C, then BF₃·Et₂O (0.6 ml, 4.73 mmol) followed by a THF solution (2 ml) of epichlorohydrin (0.17 ml, 2.15 mmol) were added dropwise. The mixture was stirred for 30 min at -78 °C, and then quenched with satd. aq. NH₄Cl solution. The mixture was extracted with ethyl acetate (3 x 25 ml). The combined organic layers were washed with water and brine, and dried over anhydrous MgSO₄. The solvents were removed under reduced pressure and the residue was purified by flash chromatography (hexane: ethyl acetate = 92:8) on silica gel (6 g) to give the title compound as a colourless oil (0.31g, 88%).
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 0.91 (t, 3H, \(J = 6.8\) Hz), 1.34-1.51 (m, 4H), 2.16 (tt, 2H, \(J = 2.5, 6.9\) Hz), 2.34 (s, 1H), 2.46-2.58 (m, 2H), 3.62 (dd, 1H, \(J = 6.1, 11.1\) Hz), 3.71 (dd, 1H, \(J = 4.5, 11.1\) Hz), 3.91-3.96 (m, 1H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): 13.4, 18.2, 21.8, 24.5, 30.8, 48.2, 69.9, 74.3, 83.6.

\(m/z\): 198 (M+Na)+, 174 (M)+, 155.

HRMS calculated for C\(_9\)H\(_{16}\)O\(^{35}\)Cl (M+H)+: 175.0890 found: 175.0896.

IR: 2924, 1249, 907, 732 cm\(^{-1}\).

Synthesis of tert-butyl 1-chloronon-4-yn-2-yl carbonate (2.72): DMAP (15 mg, 0.12 mmol) was added to a solution of alcohol (2.71) (50 mg, 0.31 mmol) in THF (1.6 ml) at -40 °C followed by dropwise addition of a solution of Boc\(_2\)O (0.1 ml, 0.46 mmol) in acetonitrile (1 ml). The reaction mixture was stirred overnight at 0 °C, and the solvent was evaporated under reduced pressure. The residue was diluted with dichloromethane (20 ml), and then the organic layer was washed with water and brine and dried over anhydrous Na\(_2\)SO\(_4\). The solvent was evaporated in vacuo and the residue was purified by flash chromatography (hexane: ethyl acetate = 95:5) on silica gel (2 g) to give the title compound (68 mg, 84 %).

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 0.90 (t, 3H, \(J = 7.1\) Hz), 1.32-1.46 (m, 4H), 1.50 (s, 9H), 2.14 (tt, 2H, \(J = 2.3, 6.9\) Hz), 2.61 (dt, 2H, \(J = 6.3, 2.3\) Hz), 3.73 (dd, 1H, \(J = 5.5, 11.7\) Hz), 3.81 (dd, 1H, \(J = 4.5, 11.7\) Hz), 4.84-4.92 (m, 1H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): 13.6, 18.4, 21.9, 22.0, 27.7, 30.9, 44.5, 73.6, 74.2, 82.9, 83.5, 152.6.

\(m/z\): 297 (M+Na)+, 275 (M)+, 223, 195.
HRMS calculated for $\text{C}_{14}\text{H}_{24}\text{O}_3^{35}\text{Cl}$ (M+H)$^+$: 275.1424 found: 275.1414.

IR: 2933, 1789, 1163, 1077 cm$^{-1}$.

Synthesis of (Z)-tert-butyl 1-chloronon-4-en-2-yl carbonate (2.74): The title compound (100 mg, 99 %), was obtained from the previous compound (2.72) by the method described for (2.56) to give a colourless oil, which was used in the next step without purification.

1H NMR (400 MHz, CDCl$_3$) δ 0.87 (t, 3H, $J = 7.0$ Hz), 1.29-1.32 (m, 4H), 1.46 (s, 9H), 2.01 (dd, 2H, $J = 6.9$, 13.9 Hz), 2.39-2.51 (m, 2H), 3.55 (dd, 1H, $J = 5.7$, 11.6 Hz), 3.61 (dd, 1H, $J = 4.6$, 11.7 Hz), 4.77-4.82 (m, 1H), 5.27-5.35 (m, 1H), 5.49-5.58 (m, 1H).

13C NMR (100 MHz, CDCl$_3$): 13.9, 22.2, 27.0, 27.6, 29.4, 31.6, 44.8, 75.4, 82.3, 122.2, 134.2, 152.7.

m/z: 301 (M+Na)$^+$, 279 (M(37Cl))$^+$, 277 (M(35Cl))$^+$, 264, 222.

HRMS calculated for $\text{C}_{14}\text{H}_{26}\text{O}_3^{35}\text{Cl}$ (M+H)$^+$: 277.1570 found: 277.1570.

IR: 2930, 1742, 1278, 1255, 1098, 836, 793 cm$^{-1}$.

Synthesis of (4S*,6R*)-4-(chloromethyl)-6-((R*)-1-iodopentyl)-1,3-dioxan-2-one (2.75): The literature53 procedure was modified as follows: iodine (300 mg, 1.18 mmol) was added to a solution of alkene (2.74) (100 mg, 0.38 mmol) in
acetonitrile (10 ml) at -40 °C under nitrogen. The reaction mixture was warmed to -10 °C and stirred overnight. DMF (30 µl, 1.18 mmol) was added to the mixture and stirring was continued for one hour. The reaction mixture was diluted with ethyl acetate (30 ml), washed with water. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (2 x 10 ml). The combined organic layers were washed with aq. Na₂S₂O₃, aq. NaHCO₃ solution and then brine. They were dried over anhydrous MgSO₄, and the solvents were evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane: ethyl acetate = 85:15) on silica gel (4 g) to give the title compound as a pale yellow oil (71 mg, 54 %) and the trans isomer (2.76) as minor product (13 mg, 12 %)

¹H NMR (300 MHz, CDCl₃) δ 0.93 (t, 3H, J = 6.9 Hz), 1.28-1.45 (m, 2H), 1.47-1.67 (m, 2H), 1.77-1.94 (m, 2H), 2.04-2.16 (m, 1H), 2.49 (ddd, 1H, J = 3.1, 3.1, 14.1 Hz), 3.66 (dd, 1H, J = 6.4, 11.7 Hz), 3.75 (dd, 1H, J = 4.3, 11.8 Hz), 4.14 (dt, 1H, J = 9.8, 4.2 Hz), 4.37 (ddd, 1H, J = 3.1, 3.1, 11.7 Hz), 4.66-4.74 (m, 1H).

¹³C NMR (75 MHz, CDCl₃): 13.9, 21.8, 29.1, 31.7, 34.4, 34.5, 44.6, 77.2, 80.3, 147.5.

m/z: 361(M+Na)$^+$, 347.0 (M+H)$^+$, 328, 319.

HRMS calculated for C₁₀H₁₇IO₃35Cl (M+H)$^+$: 346.9911 found: 346.9914.

IR: 1725, 1258, 1072, 852, 750 cm⁻¹.

Data for (4S*,6S*)-4-(chloromethyl)-6-((S*)-1-iodopentyl)-1,3-dioxan-2-one (2.76):

¹H NMR (300 MHz, CDCl₃) δ 0.93 (t, 3H, J = 7.3 Hz), 1.27-1.46 (m, 2H), 1.50-1.67 (m, 2H), 1.76-2.02 (m, 2H), 2.29-2.50 (m, 2H), 3.67 (dd, 1H, J = 7.9, 11.7 Hz), 3.80 (dd, 1H, J = 4.6, 11.7 Hz), 4.13 (dt, 1H, J = 10.2, 3.9Hz), 4.35 (dt, 1H, J = 9.9, 3.8 Hz), 4.75-4.83 (m, 1H).
\[^{13}\text{C NMR (75 MHz, CDCl}_3\text{): 13.9, 21.8, 27.5, 31.7, 35.0, 35.4, 43.6, 75.2, 77.4, 147.8.} \]

\[\text{Synthesis of (E)-(4S^*,6R^*)-4-(chloromethyl)-6-(R^*)-(pent-1-enyl)-1,3-dioxan-2-one (2.77):} \] The literature procedure\(^{68}\) was modified as follows: mCPBA (180 mg, 0.57 mmol) and NaHCO\(_3\) (109 mg, 1.30 mmol) was added to a solution of iodo carbonate (2.75) (70 mg, 0.26 mmol) in dichloromethane (4 ml) at -30 °C. The reaction mixture was slowly warmed up to room temperature and stirred for 6 h. The reaction mixture was diluted with dichloromethane (20 ml), the organic layer was washed with aq. NaHSO\(_3\) and aq. NaHCO\(_3\) solution, and dried over anhydrous MgSO\(_4\). The solvent was removed under reduced and the crude was used in the next step without purification.

\[^1\text{H NMR (300 MHz, CDCl}_3\text{): } \delta 0.90 (t, 3H, } J = 7.4 \text{ Hz), 1.29-1.47 (m, 2H), 1.87-2.11 (m, 3H), 2.27 (ddd, 1H, } J = 3.2, 3.2, 14.2 \text{ Hz), 3.57-3.74 (m, 2H), 4.64-4.72 (m, 1H), 4.88 (ddd, 1H, } J = 2.7, 7.0, 7.0 \text{ Hz), 5.48 (ddt, 1H, } J = 15.4, 7.1, 1.4 \text{ Hz), 5.87 (dt, 1H, } J = 15.0, 6.8 \text{ Hz).} \]

\[\text{Synthesis of (R^*,E^*)-1-((S^*)-oxiran-2-yl)hept-3-en-2-ol (2.78):} \] The literature procedure\(^{53}\) was modified as follows: Potassium carbonate (108 mg, 0.78 mmol) was added to a solution of cyclic carbonate (2.77) (50 mg, 0.26 mmol) in methanol (2 ml). The reaction mixture was stirred for 2 h at room temperature. Methanol was evaporated in vacuo and the residue was extracted with diethyl
ether (5 ml x 2), the combined organic layers were washed with water and brine solution, dried over anhydrous Na$_2$SO$_4$. The solvent was removed in vacuo, the residue was purified by flash column chromatography (hexane: ethyl acetate = 80:20) on silica gel (1.5 g) to give the title compound as a colourless oil (27 mg, 82 %).

1H NMR (300 MHz, CDCl$_3$) δ 0.90 (t, 3H, $J = 7.3$ Hz), 1.34-1.46 (m, 2H), 1.67 (dt, 1H, $J = 14.3$, 7.2 Hz), 1.83 (dt, 1H, $J = 14.1$, 4.7 Hz), 1.93 (broad s, 1H), 2.01 (dd, 2H, $J = 7.2$, 14.2 Hz), 2.52 (dd, 1H, $J = 2.7$, 4.9 Hz), 2.77 (dd, 1H, $J = 4.6$, 4.6 Hz), 3.01-3.06 (m, 1H), 4.29-4.36 (m, 1H), 5.51 (ddt, 1H, $J = 15.4$, 7.1, 1.5 Hz), 5.71 (dt, 1H, $J = 15.4$, 6.7 Hz).

Synthesis of (S)-1-chlorohept-4-yn-2-ol (2.81): The title compound (98 %) was obtained from the previous compound (2.80) by the method described for (2.55) to give colourless oil.

1H NMR (400 MHz, CDCl$_3$) δ 1.08 (t, 3H, $J = 7.5$ Hz), 2.13 (qt, 2H, $J = 7.5$, 2.3 Hz), 2.52-2.40 (m, 2H), 2.66 (br. s, 1H), 3.57 (dd, 1H, $J = 6.0$, 11.1 Hz), 3.66 (dd, 1H, $J = 4.5$, 11.1 Hz), 3.92-3.86 (m, 1H).

13C NMR (100 MHz, CDCl$_3$): δ 12.3, 13.9, 24.5, 48.2, 69.9, 73.8, 85.0.

m/z: 147 (M), 129, 125, 107.

HRMS calculated for C$_7$H$_{12}$O35Cl (M+H)$^+$: 147.0577 found: 147.0581.

IR: 3487, 1438, 1200, 1007 cm$^{-1}$.

$[\alpha]^{22}$D = +10.2 (CHCl$_3$, c = 1.5).
Synthesis of (S)-tert-butyl 1-chlorohept-4-yn-2-yl carbonate (2.82a): The title compound (92 %) was obtained from the previous compound (2.81) by the method described for (2.72) to give a colourless oil.

1H NMR (400 MHz, CDCl$_3$) δ 1.11 (t, 3H, $J = 7.6$ Hz), 1.49 (s, 9H), 2.15 (qt, 2H, $J = 7.5, 2.4$ Hz), 2.61 (dt, 2H, $J = 6.4, 2.4$ Hz), 3.73 (dd, 1H, $J = 5.5, 11.7$ Hz), 3.81 (dd, 1H, $J = 4.5, 11.7$ Hz), 4.85-4.91 (m, 1H).

13C NMR (100 MHz, CDCl$_3$): δ 12.3, 14.0, 22.0, 27.7, 44.4, 72.1, 74.1, 82.9, 84.8, 152.6.

m/z: 247 (M)$^+$, 191, 128, 91.

HRMS calculated for C$_{12}$H$_{20}$O$_3$Cl (M+H)$^+$: 247.1101 found: 247.1101.

IR: 1818, 1743, 1433, 1277, 1157, 789 cm$^{-1}$.

[α]$^{22}_D$ = +12.0 (CHCl$_3$, c = 1.0).

Synthesis of (S,Z)-tert-butyl 1-chlorohept-4-en-2-yl carbonate (2.82):

A solution of NaBH$_4$ (190 mg, 5.00 mmol) in ethanol (4.8 ml) and water (0.3 ml) were added dropwise to a stirred suspension of nickel acetate (1.24 g, 5.00 mmol) in a mixture of ethanol (47.5 ml) and water (2.5) cautiously. The mixture was stirred until gas evolution ceased (~ 30 minutes). A solution of alkyne (2.82a) (10.17 g, 41.32 mmol) in EtOH (5 ml) was then added to the mixture; the flask was placed under hydrogen (balloon). The mixture was stirred for 2 h then filtered through a sandwich of silica gel/celite. The solvent was removed under reduced pressure to give the title compound as a colourless oil (10.2 g, 99 %).
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 0.91 (t, 3H, \(J = 7.5\) Hz), 1.42 (s, 9H), 1.98-2.05 (m, 2H), 2.36-2.47 ((m, 2H), 3.52 (dd, 1H, \(J = 5.7, 11.7\) Hz), 3.59 (dd, 1H, \(J = 4.6, 11.7\) Hz), 4.73-4.79 (m, 1H), 5.24 (dt, 1H, \(J = 10.1, 7.4\) Hz), 5.49 (dt, 1H, \(J = 10.6, 7.6\) Hz).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 13.9, 20.5, 27.5, 29.2, 44.7, 75.3, 82.1, 121.6, 135.7, 152.7.

\(m/z\) : 271 (M+Na), 249 (M), 214, 196.

HRMS calculated for C\(_{12}\)H\(_{22}\)O\(_3\)Cl (M+H): 249.1257; found: 249.1262.

IR: 2969, 1737, 1368, 1156, 1007, 836 cm\(^{-1}\).

\([\alpha]\)\(^{22}\)D = +15.0 (CHCl\(_3\), c = 1.0).

\[\begin{align*}
\text{OBoc} & \quad \text{Cl} \\
\longrightarrow & \quad + \\
\text{I} & \quad \text{Cl}
\end{align*}\]

Synthesis of (4S,6R)-4-(chloromethyl)-6-((R)-1-iodopropyl)-1,3-dioxan-2-one (2.83): The title compound (540 mg, 68 %) and the \emph{anti} isomer (141 mg, 17 %) were obtained as a pale yellow oils from the previous compound (2.82) by the method described for (2.75). The isomers were separated by a flash column chromatography (hexane: ethyl acetate = 80:20, \textit{cis}; 75:25, \textit{trans}) on silica gel (15 g).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.06 (t, 3H, \(J = 7.3\) Hz), 1.85-1.95 (m, 2H), 2.09 (ddd, 1H, \(J = 11.4, 11.4, 13.8\) Hz), 2.42 (ddd, 1H, \(J = 3.2, 3.2, 14.2\) Hz), 3.68 (dd, 1H, \(J = 4.6, 11.9\) Hz), 3.72 (dd, 1H, \(J = 5.5, 11.9\) Hz), 4.06 (ddd, 1H, \(J = 3.2, 5.5, 11.9\) Hz), 4.34 (ddd, 1H, \(J = 3.2, 3.2, 11.9\) Hz), 4.70-4.76 (m, 1H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 14.3, 28.4, 29.2, 37.2, 44.7, 76.4, 79.9, 147.7.

\(m/z\) : 341 (M+Na), 319 (M), 260, 223.

HRMS calculated for C\(_8\)H\(_{13}\)O\(_3\)\(^{35}\)Cl (M+H): 318.9598; found: 318.9608.
IR: 2970, 1746, 1264, 1051, 1010, 790, 737 cm\(^{-1}\).
\[\alpha\]\(^{22}\)\(D = +18.0\) (CHCl\(_3\), c = 0.5).

Data for (4S,6S)-4-(chloromethyl)-6-((S)-1-iodopropyl)-1,3-dioxan-2-one (2.83a):

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 1.10 (t, 3H, \(J = 7.2\) Hz), 1.85-2.00 (m, 2H), 2.34 (ddd, 1H, \(J = 6.1, 10.0, 16.0\) Hz), 2.47 (ddd, 1H, \(J = 4.1, 4.1, 14.5\) Hz), 3.68 (dd, 1H, \(J = 8.0, 11.7\) Hz), 3.80 (dd, 1H, \(J = 4.5, 11.7\) Hz), 4.07 (ddd, 1H, \(J = 3.8, 9.8\) Hz), 4.37 (ddd, 1H, \(J = 4.0, 4.0, 10.0\) Hz), 4.77-4.82 (m, 1H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 14.3, 27.4, 28.8, 37.6, 43.6, 76.7, 77.3, 147.8.

m/z: 341 (M+Na)\(^+\), 319 (M)\(^+\), 260, 223.

HRMS calculated for C\(_8\)H\(_{13}\)O\(_3\)I\(_{3}\)Cl: 318.9598 found: 318.9602.

IR: 1746, 1264, 1051, 1010, 790, 737 cm\(^{-1}\).
\[\alpha\]\(^{22}\)\(D = -10.0\) (CHCl\(_3\), c = 0.5).

Synthesis of (4S,6R)-4-(chloromethyl)-6-((E)-prop-1-enyl)-1,3-dioxan-2-one (2.84): The title compound (90 %) was obtained as a colourless oil from the previous compound (2.83) by the method described for (2.77).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.75 (d, 3H, \(J = 6.5\) Hz), 1.93 (ddd, 1H, \(J = 5.9, 5.9, 11.7\) Hz), 2.26 (ddd, 1H, \(J = 3.0, 3.0, 14.3\) Hz), 3.64 (dd, 1H, \(J = 6.1, 11.7\) Hz), 3.71 (dd, 1H, \(J = 4.2, 11.7\) Hz), 4.65-4.71 (m, 1H), 4.87 (ddd, 1H, \(J = 2.8, 7.3, 11.0\) Hz), 5.51 (ddq, 1H, \(J = 15.1, 7.3, 1.8\) Hz), 5.90 (dq, 1H, \(J = 15.1, 6.4, 0.9\) Hz).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 17.6, 30.9, 44.8, 76.8, 78.8, 127.0, 132.1, 148.1.
m/z: 213 (M+Na)^+, 193 (M(^{37}\text{Cl}))^+, 191 (M(^{35}\text{Cl}))^+, 129.

HRMS calculated for C_8H_{11}O_3^{35}\text{ClNa} (M+Na)^+: 213.0294 found: 213.0297.

IR: 2968, 1745, 1397, 1195, 760 cm^{-1}.

\[\alpha\]_D^{22} = -26.0 (CHCl_3, c = 1.0).

Synthesis of (R,E)-1-((S)-oxiran-2-yl) pent-3-en-2-ol (2.4a): The title compound (95 %) was obtained as a colourless oil from the previous compound (2.84) by the method described for (2.78).

^1H NMR (400 MHz, CDCl_3) δ 1.59 (d, 3H, J = 7.3 Hz), 1.70-1.74 (m, 2H), 2.43 (dd, 1H, J = 2.8, 4.6 Hz), 2.68 (dd, 1H, J = 4.1, 4.7 Hz), 2.92-2.97 (m, 1H), 3.43 (d, 1H, J = 5.5 Hz), 4.17-4.22 (m, 1H), 5.44 (dd, 1H, J = 7.3, 15.1 Hz), 5.64 (dq, 1H, J = 14.2, 6.9 Hz).

^13C NMR (100 MHz, CDCl_3): δ 17.5, 39.8, 46.7, 49.8, 70.8, 127.1, 133.1.

m/z: 141 (M+Na)^+, 129 (M+H)^+.

HRMS calculated for C_7H_{13}O_2 (M+H)^+: 129.0916, found: 129.0917

IR: 3395, 2920, 1510, 1031, 967 cm^{-1}.

\[\alpha\]_D^{22} = +7.0 (CH_2Cl_2, c = 0.8).

Synthesis of (2S,4R,E)-4-(benzyloxymethoxy)-1-chlorohept-5-en-2-ol (2.86):
DIPEA (2.2 ml, 12.60 mmol) and BOMCl (1.8 ml, 12.60 mmol) were added sequentially to a solution of alcohol (2.4a) (1.1 g, 8.40 mmol) in dichloromethane (150 ml) at -40 °C. The mixture was warmed to room temperature and stirred for
14 h. The reaction mixture was quenched with aq. NH₄Cl solution and extracted with dichloromethane (2 x 50 ml). The combined organic layers were washed with water and brine and dried over anhydrous MgSO₄. The solvent was evaporated under reduced pressure. The residue was purified by flash chromatography (hexane: ethyl acetate = 94:6) on silica gel (20 g) to give the epoxide (2.85) (228 mg, 11%) and the title compound (2.86) (hexane: ethyl acetate = 90:10) as a colourless oil (1.63 g, 68%).

1H NMR (400 MHz, CDCl₃) δ 1.71 (dd, 3H, $J = 1.4, 6.9$ Hz), 1.78-1.88 (m, 2H), 3.38 (d, 1H, $J = 3.2$ Hz), 3.53 (dd, 1H, $J = 5.5, 11.0$ Hz), 3.57 (dd, 1H, $J = 5.0, 11.0$ Hz), 3.96-4.02 (m, 1H), 4.31(dt, 1H, $J = 5.5, 8.3$ Hz), 4.53 (d, 1H, $J = 11.8$ Hz), 4.66 (d, 1H, $J = 6.9$ Hz), 4.70 (d, 1H, $J = 11.3$ Hz), 4.83 (d, 1H, $J = 6.9$ Hz), 5.31 (ddq, 1H, $J = 15.4, 8.5, 1.5$ Hz), 5.74 (dq, 1H, $J = 15.3, 6.5$ Hz), 7.27-7.37 (m, 5H).

13C NMR (100 MHz, CDCl₃): δ 17.7, 39.7, 49.4, 69.8, 70.3, 76.1, 91.0, 127.8, 127.9, 128.4, 129.8, 130.8, 137.6.

m/z: 309 (M+Na)$^+$, 284 (M)$^+$, 225, 198.

HRMS calculated for C₁₅H₂₂O₃Cl (M+H)$^+$: 285.1257, found: 285.1263

![Chemical structure](image)

Synthesis of (S)-2-((R,E)-2-(benzyloxymethoxy)pent-3-enyl)oxirane (2.85):

The title compound (98 %) was obtained as a colourless oil from the previous compound (2.86) by following a literature procedure. 179

1H NMR (400 MHz, CDCl₃) δ 1.73 (d, 3H, $J = 6.6$ Hz), 1.76-1.89 (m, 2H), 2.49 (dd, 1H, $J = 2.7, 4.8$ Hz), 2.74 (dd, 1H, $J = 4.8, 4.8$ Hz), 2.97-3.04 (m, 1H), 4.25-4.30 (m, 1H), 4.55 (d, 1H, $J = 11.8$ Hz), 4.70 (d, 1H, $J = 6.9$ Hz), 4.71 (d, 1H, $J = 6.9$ Hz), 4.72 (d, 1H, $J = 6.9$ Hz), 7.26-7.31 (m, 5H).
11.5 Hz), 4.83 (d, 1H, J = 6.9 Hz), 5.38 (dd, 1H, J = 8.4, 15.3 Hz), 5.75 (dq, 1H, J = 15.2, 6.4 Hz), 7.27-7.36 (m, 5H).

13C NMR (100 MHz, CDCl$_3$): 17.6, 38.7, 46.6, 49.4, 69.3, 74.7, 91.1, 127.5, 127.7, 128.3, 130.0, 130.1, 137.9.

m/z: 271 (M+Na), 219, 153.

HRMS calculated for C$_{15}$H$_{20}$O$_3$Na (M+Na)$^+$: 271.1310, found: 271.1306

IR: 2942, 1453, 1025, 968 cm$^{-1}$.

[α]$^{22}_D$ = +85.0 (CHCl$_3$, C = 1).

![Chemical Structure](attachment:image.png)

Synthesis of (6R, 8R, E)-8-(benzyloxymethoxy)undeca-1,9-dien-6-ol (2.88):

CuCN (15 mg, 0.17 mmol) was added to a solution of epoxide (2.85) (0.42 g, 1.70 mmol) in THF (5 ml). The reaction mixture was cooled to -40 °C, and but-3-enylmagnesium bromide (2.50 mmol) was added dropwise. The reaction mixture was stirred for 1 h by slowly warming to -20 °C, quenched with aq. satd. NH$_4$Cl solution. The mixture was extracted with diethyl ether (10 ml x 3); the combined organic layers were washed with water, brine and dried over anhydrous MgSO$_4$ to provide the title compound as a colourless oil (0.36 g, 70%).

1H NMR (300 MHz, CDCl$_3$) δ 1.41-1.78 (m, 9H), 2.07 (dd, 2H, J = 6.4, 12.9 Hz), 3.20 (br d, 1H, J = 1.9 Hz), 3.78-3.83 (m, 1H), 4.31 (dt, 1H, J = 8.9, 4.9 Hz), 4.53 (d, 1H, J = 11.7 Hz), 4.67 (d, 1H, J = 7.0 Hz), 4.72 (d, 1H, J = 11.7 Hz), 4.83 (d, 1H, J = 7.0 Hz), 4.95 (d, 1H, J = 10.2 Hz), 5.01 (d, 1H, J = 17.3 Hz), 5.29 (ddq, 1H, J = 15.3, 8.7, 1.5 Hz), 5.70 (dq, 1H, J = 14.9, 6.4 Hz), 5.76-5.86 (m, 1H), 7.27-7.36 (m, 5H).
13C NMR (100 MHz, CDCl3): 17.6, 24.7, 33.7, 37.0, 42.6, 69.7, 70.8, 77.3, 90.9, 114.5, 127.7, 127.9, 128.4, 130.2, 130.3, 137.6, 138.7.

m/z: 327 (M+Na)⁺.

HRMS calculated for C19H2O3 (M+H)⁺: 305.2117, found: 305.2114.

HRMS calculated for C21H3O5 (M+H)⁺: 363.2171, found: 363.2165.

Synthesis of (2E, 7R, 9R, 10E)-methyl 9-(benzyloxymethoxy)-7-hydroxy dodeca-2,10-dienoate (2.89): Methyl acrylate (26 µl, 0.29 mmol) was added to a solution of diene (2.88) (44 mg, 0.15 mmol) in dichloromethane (5 ml). Grubbs II catalyst (3 mg, 0.02 mmol) was added to the reaction mixture with continuous nitrogen flow. The reaction mixture was stirred for 3 h at room temperature with continuous nitrogen bubbling. The solvent was evaporated under reduced pressure, the residue was purified by column chromatography (hexane: ethyl acetate = 82:18) on silica gel (1.5 g) to give the title compound as a colourless oil (76 %, 40 mg).

1H NMR (400 MHz, CDCl3) δ 1.40-1.76 (m, 9H), 2.22 (dd, 2H, J = 7.0, 13.6 Hz), 3.25 (d, 1H, J = 1.8 Hz), 3.72 (s, 3H), 3.76-3.82 (m, 1H), 4.30 (dt, 1H, J = 8.9, 4.2 Hz), 4.52 (d, 1H, J = 11.9 Hz), 4.67 (d, 1H, J = 7.0 Hz), 4.70 (d, 1H, J = 11.7 Hz), 4.83 (d, 1H, J = 6.8 Hz), 5.28 (ddq, 1H, J = 15.3, 8.5, 1.7 Hz), 5.70 (dq, 1H, J = 15.1, 6.5 Hz), 5.83 (dt, 1H, J = 15.7, 1.6 Hz), 5.97 (dt, 1H, J = 15.5, 6.9 Hz), 7.27-7.36 (m, 5H).

13C NMR (100 MHz, CDCl3): 17.6, 23.9, 32.1, 36.9, 42.6, 51.4, 69.8, 70.7, 77.4, 90.9, 121.1, 127.8, 127.9, 128.4, 130.2, 130.3, 137.6, 149.3, 167.1.
Synthesis of methyl 2-((2R,6R)-6-((R,E)-2-(benzyloxymethoxy)pent-3-enyl)tetrahydro-2H-pyran-2-yl)acetate-trans isomer (2.90) (Major): A solution of the ester (2.89) (20 mg, 0.06 mmol) in THF (0.5 ml) was added dropwise to a solution of potassium tert-butoxide (6 mg, 0.06 mmol) in THF (1 ml) under nitrogen at -78 °C. The mixture was stirred for 20 minutes at -78 °C, then quenched with aq. satd. NH₄Cl solution. The mixture was extracted with diethyl ether (10 ml x 2). The combined organic layers were washed with water, brine and then dried over anhydrous MgSO₄. The solvents were removed in vacuo. The residue was purified by flash column chromatography (hexane: ethyl acetate = 93:7) on silica gel (1 g) to give the cis isomer (2.91) (3 mg, 15 %) and the title compound (hexane: ethyl acetate = 90:10) as a colourless oil (16 mg, 76 %).

¹H NMR (500 MHz, CDCl₃) δ 1.39-1.31 (m, 2H), 1.47 (ddd, 1H, J = 13.6, 8.8, 4.9 Hz), 1.68-1.57 (m, 4H), 1.71 (dd, 3H, J = 6.5, 1.3 Hz), 2.14 (ddd, 1H, J = 13.8, 8.8, 5.0 Hz), 2.44 (dd, 1H, J = 14.8, 5.7 Hz), 2.56 (dd, 1H, J = 14.8, 8.2 Hz), 3.66 (s, 3H), 3.84 (m, 1H), 4.22-4.12 (m, 2H), 4.54 (d, 1H, J = 11.8 Hz), 4.68 (d, 1H, J = 7.0 Hz), 4.68 (d, 1H, J = 11.7 Hz), 4.81 (d, 1H, J = 6.9 Hz), 5.27 (ddq, 1H, J = 15.3, 8.5, 1.3 Hz), 5.67 (dq, 1H, J = 15.3, 6.5 Hz), 7.37-7.28 (m, 5H).

¹³C NMR (75 MHz, CDCl₃) δ 171.8, 138.2, 130.7, 130.0, 128.3, 127.9, 127.5, 91.6, 74.5, 69.4, 68.4, 67.6, 51.6, 39.5, 38.4, 30.0, 29.5, 18.4, 17.7.

m/z: 241 (M-BOM)⁺, 157, 125.

HRMS calculated for C₁₃H₂₁O₄ (M-BOM)⁺: 241.1434; found 241.1434.
IR: 2930, 1736, 1380, 1097, 1024 cm\(^{-1}\).

\([\alpha]^{22}_D = +42.6\) (MeOH, c = 0.6).

Data for methyl 2-((2S,6R)-6-((R,E)-2-(benzyloxymethoxy)pent-3-enyl) tetrahydro-2H-pyran-2-yl)acetate-cis isomer (2.91):

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 1.27-1.19 (m, 2H), 1.50 (ddd, 1H, \(J = 13.5, 8.9, 4.7\) Hz), 1.62-1.55 (m, 3H), 1.72 (dd, 3H, \(J = 6.5, 1.5\) Hz), 1.83-1.80 (m, 1H), 1.88 (ddd, 1H, \(J = 13.6, 8.8, 5.2\) Hz), 2.38 (dd, 1H, \(J = 14.8, 5.2\) Hz), 2.53 (dd, 1H, \(J = 14.9, 8.3\) Hz), 3.34-3.40 (m, 1H), 3.69 (s, 3H), 3.74-3.69 (m, 1H), 4.23-4.19 (m, 1H), 4.50 (d, 1H, \(J = 11.8\) Hz), 4.65 (d, 1H, \(J = 6.6\) Hz), 4.66 (d, 1H, \(J = 11.9\) Hz), 4.79 (d, 1H, \(J = 6.9\) Hz), 5.26 (ddq, 1H, \(J = 15.4, 8.6, 1.4\) Hz), 5.65 (dq, 1H, \(J = 15.3, 6.6\) Hz), 7.35-7.27 (m, 5H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 172.0, 138.1, 130.7, 130.0, 128.3, 127.9, 127.5, 91.4, 74.6, 74.4, 74.2, 69.3, 51.5, 42.0, 41.6, 31.2, 31.2, 23.4, 17.8.

m/z: 241 (M-BOM)\(^+\), 157, 125.

HRMS calculated for C\(_{13}\)H\(_{21}\)O\(_4\) (M-BOM)\(^+\): 241.1434; found 241.1434.

IR: 2935, 1736, 1380, 1097, 1026 cm\(^{-1}\).

\([\alpha]^{22}_D = 6.7\) (CHCl\(_3\), c = 0.5).

\[
\begin{align*}
\text{Synthesis of (4R)-4-benzyl-3-(3-(diisopropylamino)-2-ethylbutanoyl) oxazolidin-2-one (2.107): Lithium diisopropylamide (LDA) was generated by reacting diisopropylamine (90 µl, 0.61 mmol) in THF (4 ml) with }^\circ\text{BuLi (1.6M in }
\end{align*}
\]
hexane, 0.36 ml, 0.57 mmol) under nitrogen at -78 °C for 30 minutes. A solution of oxazolidinone (2.105) (100 mg, 0.41 mmol) in THF (2 ml) was added dropwise at -78 °C to the LDA solution, the mixture was stirred for 30 min, then iodomethane (0.13 ml, 2.04 mmol) was added dropwise and the temperature was slowly warmed to -40 °C. The mixture was stirred for 4 h, and then quenched with satd. aq. NH₄Cl solution. The reaction mixture was warmed to room temperature; the solvents were evaporated under reduced pressure and the residue was extracted with ethyl acetate (20 ml x 2). The combined organic layers were washed with water, aq. NaHCO₃ solution and brine, dried over anhydrous Na₂SO₄. The residue was purified by flash column chromatography (hexane: ethyl acetate = 95:5) on silica gel (3 g) to give the title compound as a colourless oil (103 mg, 70 %).

¹H NMR (400 MHz, CDCl₃): δ 1.06 (d, 6H, J = 4.6 Hz), 1.07 (d, 6H, J = 4.6 Hz), 1.12 (d, 3H, J = 6.5 Hz), 1.23 (d, 3H, J = 6.8 Hz), 2.65 (dd, 1H, J = 10.5, 13.1 Hz), 3.13-3.25 (m, 3H), 3.44(dd, 1H, J = 3.2, 13.1 Hz), 3.94-4.02 (m, 1H), 4.13-4.20 (m, 2H), 4.68-4.74 (m, 1H), 7.26-7.38 (m, 5H).

¹³C NMR (100 MHz, CDCl₃): 17.0, 18.9, 22.1, 37.9, 42.2, 44.7, 52.3, 55.4, 65.8, 127.3, 128.9, 129.4, 135.3, 153.2, 178.2.

m/z : 384 (M+Na)⁺, 362 (M+H)⁺.

HRMS calculated for C₂₁H₃₃N₂O₃ (M+H)⁺: 361.2491 found: 361.2485.
Synthesis of \((R)-4\text{-}benzyl\text{-}3\text{-}((R)-2\text{-}methyl\text{-}but\text{-}3\text{-}enoyl)oxazolidin\text{-}2\text{-}one (2.106)\): \(^{180}\)

NaHMDS (1M solution in THF, 0.45 ml, 0.45 mmol) was added dropwise to a solution of chiral imide (2.105) (100 mg, 0.41 mmol) in THF (5 ml) under nitrogen at -78 °C. The mixture was stirred for 1 h at -78 °C, and a solution of Mel (0.13 ml, 2.04 mmol) in THF (1 ml) was added. The mixture was warmed to -40 °C and stirred for 2 h. The reaction mixture was quenched by addition of water (0.5 ml). The mixture was extracted with ethyl acetate and the organic layer was washed with water and brine and dried over anhydrous Na\(_2\)SO\(_4\). The solvents were removed under reduced pressure and the residue was purified by column chromatography (hexane: ethyl acetate = 95:5) on silica gel (3 g) to give the minor isomer (2.110) (8 mg, 7 %) and the title compound (hexane: ethyl acetate = 92:8) as a colourless oil (67 mg, 63 %).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.35 (d, 3H, \(J = 6.9\) Hz), 2.77 (dd, 1H, \(J = 9.6, 13.4\) Hz), 3.29 (dd, 1H, \(J = 3.1, 13.4\) Hz), 4.15-4.22 (m, 2H), 4.41-4.50 (m, 1H), 4.62-4.68 (m, 1H), 5.13 (d, 1H, \(J = 10.2\) Hz), 5.20 (d, 1H, \(J = 17.2\) Hz), 5.98 (ddd, 1H, \(J = 8.0, 10.3, 17.7\) Hz), 7.20-7.35 (m, 5H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): 17.2, 37.9, 41.7, 55.5, 66.1, 116.6, 127.3, 128.9, 129.4, 135.2, 136.9, 152.9, 174.8.

HRMS calculated for C\(_{15}\)H\(_{18}\)NO\(_3\) (M+H): 260.1287; found 260.1288.

\([\alpha]^{22}_D = -88.0\) (CHCl\(_3\), c = 0.5).

IR: 1782, 1719, 1459, 1212, 1109 cm\(^{-1}\).
Data for \((R)-4\text{-benzyl-3-}((S)-2\text{-methylbut-3-enoyl})\) oxazolidin-2-one

\((2.110)\): \(^{180}\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.32 (d, 3H, \(J = 6.8\) Hz), 2.75 (dd, 1H, \(J = 9.6, 13.4\) Hz), 3.26 (dd, 1H, \(J = 2.9, 13.2\) Hz), 4.14-4.23 (m, 2H), 4.45-4.53 (m, 1H), 4.65-4.72 (m, 1H), 5.19 (d, 1H, \(J = 10.3\) Hz), 5.26 (d, 1H, \(J = 17.6\) Hz), 6.02 (ddd, 1H, \(J = 7.6, 10.2, 17.6\) Hz), 7.19-7.35 (m, 5H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): 16.7, 37.7, 41.5, 55.2, 66.0, 116.7, 127.3, 128.9, 129.5, 135.2, 136.9, 153.0, 174.6.

\([\alpha]_{D}^{22} = -26.0\) (CHCl\(_3\), \(c = 0.5\))

HRMS calculated for C\(_{15}\)H\(_{18}\)NO\(_3\) (M+H)\(^+\): 260.1287; found 260.1286.

IR: 1782, 1719, 1459, 1212, 1109 cm\(^{-1}\).

Synthesis of \((R)-(2\text{-methylbut-3-enyl})(p\text{-tolyl})sulfane (2.174)\): NaH (0.18 g, 4.57 mmol) was added to a solution of \(p\)\,-thiocresol \((2.128)\) (0.5 g, 4.02 mmol) in a mixture of dry DMF (2 ml) and THF (2 ml) at room temperature. The mixture was stirred for 5 minutes then a solution of mesylate \((2.168)\) (0.3 g, 1.83 mmol) in THF (2 ml) was added dropwise via a cannula. The mixture was heated to 70 °C for 12 h, then quenched with aq. NaOH solution (5 ml), extracted with diethyl ether (3 x 30 ml). The combined organic layers were washed with water and brine and dried over anhydrous MgSO\(_4\). The solvents were removed under reduced pressure to give the title compound as a colourless oil (0.35 g, 86 %) which was used in next step without purification.
1H NMR (400 MHz, CDCl$_3$) δ 1.12 (d, 3H, $J = 6.9$ Hz) 2.31 (s, 3H), 2.37-2.43 (m, 1H), 2.80 (dd, 1H, $J = 7.3$, 12.8 Hz), 2.92 (dd, 1H, $J = 6.8$, 12.8 Hz), 5.02 (ddd, 2H, $J = 1.4$, 1.8, 10.6 Hz), 5.79 (ddd, 1H, $J = 7.3$, 10.6, 17.9 Hz), 7.09 (d, 2H, $J = 8.2$ Hz), 7.25 (d, 2H, $J = 8.2$ Hz).

13C NMR (100 MHz, CDCl$_3$): 19.3, 21.0, 37.2, 41.1, 114.0, 129.6, 129.9, 133.1, 135.9, 142.4.

m/z: 215 (M+Na)$^+$, 193 (M+H)$^+$, 173.

HRMS calculated for C$_{12}$H$_{17}$S (M+H)$^+$: 193.1051 found: 193.1048.

IR: 3076, 2962, 1091, 799 cm$^{-1}$.

$[^{22}]$D = +14 (CHCl$_3$, c=0.5).

Synthesis of (R)-1-methyl-4-(2-methylbut-3-enylsulfonyl) benzene (2.175):

Ammonium heptamolybdate 18 (1.54 g, 1.25 mmol) was added to a solution of hydrogen peroxide (30% in water, 2.5 ml, 24.79 mmol) at 0 °C, the mixture was stirred for 10 minutes, then 1 ml of the mixture was added to a solution of sulphide (2.174) (0.1 g, 0.52 mmol) in ethanol (5 ml) at 0 °C. The mixture was stirred for 4 h at 0 °C, then diluted with ethyl acetate (25 ml). The organic layer was washed with water and brine, dried over anhydrous Na$_2$SO$_4$. Solvents were evaporated in vacuo, the residue was purified by column chromatography (hexane: ethyl acetate = 95: 5) on silica gel (3 g) to give the title compound as a colourless oil (0.12 g, 98 %).

1H NMR (400 MHz, CDCl$_3$) δ 1.16 (d, 3H, $J = 6.9$ Hz), 2.44 (s, 3H), 2.71-2.82 (m, 1H), 3.00 (dd, 1H, $J = 7.3$, 14.2 Hz), 3.13 (dd, 1H, $J = 5.9$, 14.2 Hz), 4.94-5.01
(m, 2H), 5.71 (ddd, 1H, \(J = 7.3, 11.4, 17.5\) Hz), 7.34 (d, 2H, \(J = 7.2\) Hz), 7.77 (d, 2H, \(J = 8.2\) Hz).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): 19.9, 21.6, 32.7, 62.0, 114.5, 128.0, 129.8, 137.0, 140.7, 144.5.

m/z: 247 (M+Na)\(^+\), 225 (M+H)\(^+\).

HRMS calculated for C\(_{12}\)H\(_{17}\)O\(_2\)S (M+H)\(^+\): 225.0949 found: 225.0942.

IR: 3066, 1313, 1288, 1145, 766 cm\(^{-1}\).

\([\alpha]\)\(^{22}\)\(_D\) = +4.1 (CHCl\(_3\), c=1.05).

\[
\begin{array}{c}
\text{O} \\
+ \\
\text{HS} \\
\downarrow \\
\text{O} \\
\rightarrow \\
\text{HO} \\
\text{O} \\
\text{S} \\
\end{array}
\]

Synthesis of 4-(\(p\)-tolylthio)butanoic acid (2.129):

\(^{96}\) Thio cresol (2.128) (2.89 g, 23.34 mmol) was added portionwise to a solution of sodium ethoxide (1.59 g, 23.34 mmol) in ethanol (10 ml) under nitrogen. The mixture was stirred for 20 minutes then \(\gamma\)-butyrolactone (2 ml, 24.52 mmol) was added in one portion. The mixture was heated at reflux for 4 h. Ethanol was removed under reduced pressure; the residue was dissolved in water and filtered through a silica plug. The filtrate was acidified with dil.HCl to obtain a precipitate which was separated from the filtrate by careful filtration, and then dried under reduced pressure to afford the title compound as a colourless solid (4.8 g, 98%).

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta 1.86-1.96\) (m, 2H), 2.31 (s, 3H), 2.50 (t, 2H, \(J = 7.2\) Hz), 2.92 (t, 2H, \(J = 7.1\) Hz), 7.10 (d, 2H, \(J = 7.9\) Hz), 7.25 (d, 2H, \(J = 7.9\) Hz).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)): 20.0, 23.2, 29.9, 32.7, 128.7, 129.3, 131.0, 135.4, 206.1.

m/z: 211, 208.

HRMS calculated for C\(_{11}\)H\(_{15}\)O\(_2\)S (M+H)\(^+\): 211.0793 found: 211.0793.
IR: 2914, 1698, 1453, 1248, 1198 cm$^{-1}$.

Synthesis of (R)-4-benzyl-3-(4-(p-tolylthio) butanoyl) oxazolidin-2-one (2.130): Oxalyl chloride (88 µl, 1.02 mmol) was added dropwise to a solution of acid (2.129) (142 mg, 0.68 mmol) in dichloromethane (3 ml), with external cooling, followed by a drop of DMF. The mixture was stirred for 30 minutes at room temperature; the volatiles were evaporated under reduced pressure. nBuLi (1.6M in hexane, 0.36 ml, 0.57 mmol) was added dropwise to a flask containing a solution of the oxazolidinone (100 mg, 0.57 mmol) in THF (3 ml) at -78 °C. The acid chloride was redissolved in THF (2 ml), transferred to the mixture dropwise and the mixture was stirred for 2 h at -78 °C. It was quenched with satd. aq. NH$_4$Cl solution, warmed to room temperature. The solvents were removed under reduced pressure; the residue was extracted with dichloromethane (15 ml x 3). The combined organic layers were washed with 2M aq. NaOH solution, water and then with brine solution. Dichloromethane was evaporated and the residue was purified by flash column chromatography (hexane: ethyl acetate = 92:8) on silica gel (3 g) to give the title compound as a colourless oil (175 mg, 84 %).

1H NMR (400 MHz, CDCl$_3$) δ 1.97-2.04 (m, 2H), 2.32 (s, 3H), 2.75 (dd, 1H, $J = 9.6, 13.3$ Hz), 2.98 (t, 2H, $J = 7.1$ Hz), 3.08 (dt, 2H, $J = 7.2, 4.7$ Hz), 3.28 (dd, 1H, $J = 3.3, 13.4$ Hz), 4.15-4.22 (m, 2H), 4.65 (ddd, 1H, $J = 3.3, 6.9, 13.0$ Hz), 7.11 (d, 2H, $J = 7.9$ Hz), 7.20 (d, 2H, $J = 7.6$ Hz), 7.28-7.35 (m, 5H).

IR: 2973, 1776, 1690, 1387, 1211, 1104 cm$^{-1}$.

$[\alpha]^{22}_D = -46.6$ (CH$_2$Cl$_2$, c = 1).
m/z: 392 (M+Na)⁺, 279, 223.
HRMS calculated for C_{21}H_{24}NO_3S (M+H)⁺: 370.1477 found: 370.1477.

Synthesis of (R)-4-benzyl-3-((R)-2-methyl-4-(p-tolylthio)butanoyl)oxazolidin-2-one (2.131): The literature procedure was modified as follows, Lithium diisopropylamide (LDA) was generated by reacting diisopropylamine (0.1 ml, 0.71 mmol) in THF (3 ml) with "BuLi (1.6M in hexane, 0.41 ml, 0.65 mmol) under nitrogen at -78 °C for 30 minutes. A solution of oxazolidinone (2.130) (200 mg, 0.54 mmol) in THF (2 ml) was added dropwise at -78 °C to the LDA solution, the mixture was stirred for 30 min, then iodomethane (0.17 ml, 2.71 mmol) was added dropwise and the mixture was slowly warmed to -40 °C. The mixture was stirred overnight, and then quenched with satd. aq. NH₄Cl solution. The reaction mixture was warmed to room temperature; the solvents were evaporated under reduced pressure and the residue was extracted with ethyl acetate (30 ml x 2). The combined organic layers were washed with water, aq. NaHCO₃ solution and brine, dried over anhydrous Na₂SO₄. The residue was purified by flash column chromatography (hexane: ethyl acetate = 95:5) on silica gel (4 g) to give the title compound as a colourless oil (191 mg, 91 %).

¹H NMR (400 MHz, CDCl₃) δ 1.25 (d, 3H, J = 6.9 Hz) 1.68-1.79 (m, 1H), 2.08-2.21 (m, 1H), 2.32 (s, 3H), 2.78 (dd, 1H, J = 9.5, 13.4 Hz), 2.82-3.02 (m, 2H), 3.26 (dd, 1H, J = 3.3, 13.3 Hz), 3.82-3.96 (m, 1H), 4.17 (d, 2H, J = 5.1 Hz), 4.57-4.71 (m, 1H), 7.05-7.38 (m, 9H).
\[^{13}\text{C}\ \text{NMR}\ (75\ \text{MHz},\ \text{CDCl}_3)\ :\ 17.7,\ 21.0,\ 32.0,\ 32.8,\ 37.0,\ 37.9,\ 55.3,\ 66.1,\ 127.4,\ 129.0,\ 129.5,\ 129.7,\ 130.1,\ 132.3,\ 135.2,\ 136.2,\ 152.9,\ 176.3.\]

m/z: 384.9 (M+H)^+.

HRMS calculated for C_{22}H_{26}NO_3S (M+H)^+: 384.1633 found: 384.1629.

\[
\left[\alpha\right]_{D}^{22} = -70.4\ (\text{CHCl}_3,\ C = 0.7).
\]

Synthesis of (R)-2-methyl-4-(p-tolylthio)butanoic acid (2.136): The literature procedure \(^{98}\) was modified as follows: \(\text{H}_2\text{O}_2\) solution (30% in water, 38 \(\mu\)l, 0.42 mmol) and LiOH (7 mg, 0.17 mmol) were added in sequence to a solution of imide (2.131) (40 mg, 0.10 mmol) in a mixture of THF (4 ml) and water (1 ml) with external cooling. The mixture was stirred for 3 h, and then quenched with aq. \(\text{Na}_2\text{SO}_3\) solution. The reaction mixture was washed with dichloromethane (5 ml x 2). The aqueous layer was cooled to 0 °C, acidified with dil. HCl to pH 1 and extracted with ethyl acetate (10 ml x 3). The combined organic layers were washed with water and brine solution. Evaporation of the solvent afforded the title compound as a colourless oil (15 mg, 65%).

\[^1\text{H}\ \text{NMR}\ (400\ \text{MHz},\ \text{CDCl}_3)\ \delta\ 1.19\ (d,\ 3\text{H},\ J = 7.0 \text{Hz})\ 1.70-1.79\ (m,\ 1\text{H}),\ 1.98-2.04\ (m,\ 1\text{H}),\ 2.31\ (s,\ 3\text{H}),\ 2.60-2.68\ (m,\ 1\text{H}),\ 2.81-2.92\ (m,\ 2\text{H}),\ 7.09\ (d,\ 2\text{H},\ J = 8.0 \text{Hz}),\ 7.25\ (d,\ 2\text{H},\ J = 8.1 \text{Hz}),\ 10.60\ (\text{broad}\ s,\ 1\text{H}).\]

\[^{13}\text{C}\ \text{NMR}\ (100\ \text{MHz},\ \text{CDCl}_3)\ :\ 16.8,\ 21.0,\ 32.0,\ 32.7,\ 38.3,\ 129.8,\ 130.2,\ 132.2,\ 136.3,\ 182.5.\]
Synthesis of (R)-2-methyl-4-(p-tolylthio)butan-1-ol (2.132): LiAlH₄ (285 mg, 7.50 mmol) was added portionwise to a solution of acid (2.136) (280 mg, 1.25 mmol) in THF (10 ml) under nitrogen at 0 °C. The mixture was stirred for 1 h with slow warming to room temperature, and then quenched with 5% aq. NaHCO₃ and aq. NaOH solutions; the mixture was stirred for 5 minutes, and then filtered through celite. The filtrate was extracted with ethyl acetate (20 ml x 3), the combined organic layers were washed with water and brine. The residue was used in the next step without purification.

¹H NMR (400 MHz, CDCl₃) δ 0.94 (d, 3H, J = 6.6 Hz) 1.42-1.50 (m, 1H), 1.73-1.84 (m, 2H), 1.86 (broad s, 1H), 2.32 (s, 3H), 2.88-2.98 (m, 2H), 3.42-3.50 (m, 2H), 7.09 (d, 2H, J = 7.8 Hz), 7.25 (d, 2H, J = 7.9 Hz).

¹³C NMR (100 MHz, CDCl₃): 16.4, 21.0, 32.1, 32.7, 35.0, 67.7, 129.7, 129.9, 132.7, 136.0.

m/z: 211 (M+H)+, 193, 178.

HRMS calculated for C₁₂H₁₈OS (M+H)+: 211.1157 found: 211.1150.

IR: 3370, 2952, 1091, 804, 701 cm⁻¹.

[α]D²² = +27.2 (CH₂Cl₂, c = 0.8).

Synthesis of (2R)-2-methyl-4-(p-tolylsulfinyl)butan-1-ol (2.137): mCPBA (70 mg, 0.20 mmol) was added to a solution of the sulfide (2.132) (40 mg, 0.19 mmol) in dichloromethane (4 ml) at -78 °C. The solution was slowly warmed to 0
°C, and stirred for 10 minutes. The reaction mixture was diluted with dichloromethane (20 ml), washed with aq. NaHCO₃ and then dried with anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure to get the title compound as a colourless oil (42 mg, 99%), which was used in the next step without purification.

¹H NMR (400 MHz, CDCl₃) δ 0.88-0.92 (m, 3H), 1.41-1.79 (m, 3H), 2.34 (s, 3H), 2.74-2.81 (m, 2H), 3.32-3.40 (m, 2H), 7.21-7.45 (m, 4H).

¹³C NMR (100 MHz, CDCl₃), 1:1 mixture of diastereomers: 16.45, 16.54, 21.4, 25.5, 25.6, 34.95, 35.0, 54.58, 54.63, 67.07, 67.12, 124.15, 124.19, 130.0, 140.1, 141.6.

m/z: 249 (M+Na), 227 (M+H)⁺, 203.

HRMS calculated for C₁₂H₁₉O₂S (M+H)⁺: 227.1106 found: 227.1112

IR: 3399, 1288, 1144, 1038 cm⁻¹.

Synthesis of (R)-2-methyl-4-tosylbutan-1-ol (2.149): mCPBA (360 mg, 1.04 mmol) was added to a solution of sulphide (2.132) (109mg, 0.52 mmol) in dichloromethane (5 ml) with external cooling. The mixture was stirred for 2 h at room temperature, then poured into a beaker containing 50 ml of diethyl ether and 20 ml of aqueous sodium sulphite solution. The organic layer was separated and washed twice with satd. aq. NaHCO₃ solution. Solvents were removed under reduced pressure to afford the title compound as a colourless solid (122 mg, 99%).

¹H NMR (400 MHz, CDCl₃) δ 0.87 (d, 3H, J = 6.7 Hz), 1.53-1.55 (m, 1H), 1.62-1.68 (m, 1H), 1.74-1.89 (m, 1H), 2.03 (broad s, 1H), 2.44 (s, 3H), 3.07-3.20 (m,
2H), 3.41 (dd, 1H, J = 5.6, 10.7 Hz), 3.48 (dd, 1H, J = 6.4, 10.7 Hz), 7.35 (d, 2H, J = 8.0 Hz), 7.77 (d, 2H, J = 8.2 Hz).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): 16.3, 21.6, 26.1, 34.5, 54.3, 67.2, 128.1, 129.9, 133.6, 144.8.

m/z: 265 (M+Na)^+, 243 (M+H)^+, 225

HRMS calculated for C\(_{12}\)H\(_{19}\)O\(_3\)S (M+H)^+: 243.1055 found: 243.1049

IR: 3507, 1284, 1140, 1039 cm\(^{-1}\).

\[\text{Synthesis of 4-(phenylselenyl)butanoic acid (2.162):} \quad 109 \]

Diphenyl diselenide (312 mg, 1.0 mmol) was dissolved in dry DMF (5 ml), which had been deoxygenated by bubbling nitrogen over 20 min. Sodium borohydride (86 mg, 2.25 mmol) was added to the solution and the reaction was heated to 100 °C. \(\gamma\)-Butyrolactone (0.14 ml, 1.85 mmol) was then added and the temperature was further increased to 120 °C and stirring was continued for 2 h. The mixture was cooled to room temperature and diluted with diethyl ether (50 ml). The organic layers were washed with water and brine and dried over anhydrous MgSO\(_4\). The solvent was removed in vacuo to afford the title compound (242 mg, 99 %) as yellow solid.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 1.96-2.04 (m, 2H), 2.50 (t, 2H, J = 7.3 Hz), 2.94 (t, 2H, J = 7.3 Hz), 7.20–7.28 (m, 3H), 7.47–7.50 (m, 2H).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)): 24.9, 26.8, 33.6, 127.0, 129.1, 129.6, 132.8, 179.2.

m/z: 268 (M+Na)^+, 246 (M+H)^+.

HRMS calculated for C\(_{10}\)H\(_{13}\)O\(_2\)Se (M+H)^+: 245.0081 found: 245.0082.

IR: 3058, 1688, 1180, 728 cm\(^{-1}\).
Synthesis of \((R)-4\text{-benzyl-3-(4-(phenylselanyl)butanoyl)}\)oxazolidin-2-one (2.163): The title compound (328 mg, 98 %) was obtained from the previous compound (2.162) by the method described for (2.130) to give a colourless oil.

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 1.97-2.02 (m, 2H), 2.67 (dd, 1H, \(J = 9.6, 13.3\) Hz), 2.93 (t, 2H, \(J = 7.2\) Hz), 3.01 (dt, 2H, \(J = 1.2, 7.1\) Hz), 3.19 (dd, 1H, \(J = 3.2, 13.4\) Hz), 4.03-4.14 (m, 2H), 4.56 (ddd, 1H, \(J = 3.6, 6.9, 13.2\) Hz), 7.11-7.28 (m,8H), 7.43-7.46 (m, 2H).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)): 24.7, 27.0, 35.3, 37.9, 55.1, 66.2, 126.9, 127.4, 129.0, 129.1, 129.4, 130.0, 132.8, 135.2, 153.4, 172.4.

m/z: 426 (M+Na\(^+\)), 404 (M+H\(^+\)), 306, 210, 178.

HRMS calculated for C\(_{20}\)H\(_{21}\)NO\(_3\)Se (M+H\(^+\)): 403.0681 found: 403.0660

IR: 1778, 1695, 1386, 1212, 737 cm\(^{-1}\).

\([\alpha]\)\(^{22}_D\) = -45.2 (CHCl\(_3\), c = 0.7).

Synthesis of \((R)-4\text{-benzyl-3-((R)-2-methyl-4-(phenylselanyl) butanoyl)}\)oxazolidin-2-one (2.164): The title compound (203 mg, 82 %) was obtained from the previous compound (2.163) by the method described for (2.131) to give a colourless oil.
H NMR (300 MHz, CDCl₃) δ 1.23 (d, 3H, J = 6.9 Hz) 1.75-1.86 (m, 1H), 2.16-2.28 (m, 1H), 2.76 (dd, 1H, J = 9.4, 13.3 Hz), 2.85-3.01 (m, 2H), 3.23 (dd, 1H, J = 3.3, 13.4 Hz), 3.79-3.90 (m, 1H), 4.15 (d, 2H, J = 5.2 Hz), 4.61 (ddd, 1H, J = 3.4, 5.1, 14.5 Hz), 7.18-7.36 (m, 8H), 7.48-7.51 (m, 2H).

13C NMR (100 MHz, CDCl₃): 17.5, 25.1, 33.7, 37.8, 38.0, 55.1, 66.0, 126.7, 127.3, 128.9, 129.0, 129.4, 130.1, 132.5, 135.2, 152.8, 176.1.

m/z: 418(M+H)+, 372, 308, 260, 178.

HRMS calculated for C₂₁H₂₃NO₃Se (M+H)+: 417.0838 found: 417.0857

IR: 1777, 1697, 1383, 1102, 912 cm⁻¹.

[α]²²D = -49.8 (CHCl₃, c = 1.1).

Synthesis of (R)-methyl 2-methyl-4-(phenylselanyl)butanoate (2.165): The literature procedure was modified as follows: A solution of LiOMe (30 mg, 0.78 mmol) in methanol (1 ml) was added dropwise to a solution of imide (2.164) (100 mg, 0.26 mmol) in methanol (1 ml) at -40 °C. The mixture was stirred for 2 h then warmed to -5 °C, stirred for another 20 minutes then quenched with aq. satd. NH₄Cl solution. The reaction mixture was extracted with ethyl acetate (10 ml x 3), the combined organic layers were washed with water and brine. The solvents were removed in vacuo and the residue was purified by column chromatography (hexane: ethyl acetate = 90:10) on silica gel (1 g) to give the title compound as a colourless oil (38 mg, 62%)
Synthesis of \((R)-2\)-methyl-4-(phenylselanyl) butan-1-ol (2.166): The title compound (31 mg, 99%) was obtained from the previous compound (2.165) by the method described for (2.132) to give a colourless oil.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 0.93 (d, 3H, \(J = 6.7\) Hz) 1.50-1.59 (m, 1H), 1.71-1.88 (m, 2H), 1.99 (broad s, 1H), 2.91 (ddd, 1H, \(J = 6.5, 9.5, 15.9\) Hz), 3.00 (ddd, 1H, \(J = 5.7, 9.5, 15.1\) Hz), 3.45 (ddd, 2H, \(J = 5.9, 10.8, 16.9\) Hz), 7.20-7.31 (m, 3H), 7.47-7.50 (m, 2H).

\(^1^3\)C NMR (100 MHz, CDCl\(_3\)): 16.1, 25.4, 33.5, 35.8, 67.5, 126.6, 128.9, 130.3, 132.7.

m/z: 266 (M+Na)\(^+\), 244 (M+H)\(^+\), 210, 178.

HRMS calculated for C\(_{11}\)H\(_{16}\)O\(^{78}\)SeNa (M+Na)\(^+\): 265.0272 found: 265.0268.

IR: 3426, 2929, 1242, 1023, 736 \text{ cm}^{-1}.

\([\alpha]_{D}^{22} = +31.1\) (CH\(_2\)Cl\(_2\), c = 0.4).

Synthesis of \((R)-2\)-methylbut-3-en-1-ol (2.138): An aq. 30% solution of Hydrogen peroxide\(^{182}\) (0.66 ml, 8.23 mmol) was added to a solution of selenide (2.166) (200 mg, 0.82 mmol) and pyridine (0.15 ml, 1.65 mmol) in dichloroethane.
(2 ml). The reaction mixture was stirred for 15 minutes then transferred to a refluxing mixture of dichloroethane (3 ml) and pyridine (0.15 ml, 1.65 mmol). The reaction mixture immediately turned to yellow and was heated for 15 min. The solvents were evaporated carefully under reduced pressure. The crude product was used in the next step without further purification.

\[^{1}H \text{NMR (500 MHz, CDCl}_3 \delta 1.02 (d, 3H, } J = 6.8 \text{ Hz), 2.34-2.42 (m, 1H), 3.43 (ddd, 1H, } J = 4.7, 7.5, 10.5 \text{ Hz), 3.53 (ddd, 1H, } J = 5.4, 7.1, 10.3 \text{ Hz), 5.12 (m, 2H), 5.71 (ddd, 1H, } J = 7.6, 10.4, 17.6 \text{ Hz).} \]

\[[\alpha]^{22}_D = + 30.0 \text{ (c=0.8, CH}_2\text{Cl}_2 \]

IR: 2926, 1457, 1035.

All data are consistent with literature. 111,183

Synthesis of (R)-2-methylbut-3-enyl methanesulfonate (2.168): Et\(_3\)N (0.72 ml, 5.16 mmol) and MsCl (0.4 ml, 5.16 mmol) were added in sequence to a solution of the crude alcohol (2.138) (0.25 g, 2.88 mmol) in dichloromethane (7 ml) with external cooling. The mixture was stirred for 1 h at room temperature, quenched with aq. satd. NH\(_4\)Cl (1 ml) solution. The reaction mixture was extracted with dichloromethane (20 ml x 2); the combined organic layers were then washed with aq. NaHCO\(_3\) solution, water and brine and dried over anhydrous Na\(_2\)SO\(_4\). The solvent was removed under reduced pressure. The residue was purified by column chromatography (hexane: ethyl acetate = 90:10) on silica gel (7 g) to give the title compound as a colourless oil (300 mg, 63%).

\[^{1}H \text{NMR (300 MHz, CDCl}_3 \delta 1.10 (d, 3H, } J = 6.7 \text{ Hz) 2.55-2.69 (m, 1H), 3.00 (s, 3H), 4.05 (dd, 1H, } J = 6.6, 9.6 \text{ Hz), 4.12 (dd, 1H, } J = 6.6, 9.7 \text{ Hz), 5.12 (dd, 1H,} \]
$J = 1.2, 10.4 \text{ Hz}$, 5.15 (dd, 1H, $J = 1.3, 17.3 \text{ Hz}$), 5.74 (ddd, 1H, $J = 7.0, 10.4, 17.4 \text{ Hz}$).

$^{13}\text{C NMR (75 MHz, CDCl}_3$: 16.0, 37.2, 37.4, 73.3, 116.3, 138.4

m/z: 187 (M+Na)†, 165 (M+H)†, 117, 102.

HRMS calculated for $\text{C}_6\text{H}_{13}\text{O}_3\text{S} (\text{M+H})^\dagger$: 165.0585 found: 165.0581

IR: 3085, 1350, 1171, 957 cm$^{-1}$.

$[^\alpha]^{22}_D$ = +5.0 (CHCl$_3$, c=0.6).

![Chemical structure](attachment:image.png)

Synthesis of (R)-4-bromo-3-methylbut-1-ene (2.170): LiBr (60 mg, 0.69 mmol) was added to a solution of mesylate (2.168) (75 mg, 0.48 mmol) in THF (2 ml). The mixture was heated at reflux overnight, then cooled to room temperature and filtered through celite. The solvent was evaporated in vacuo to provide the title compound as a colourless oil (68 mg, 99 %), which was used in the next step without further purification.

$^1\text{H NMR (300 MHz, CDCl}_3$: δ 1.14 (d, 3H, $J = 6.7 \text{ Hz}$) 2.49-2.62 (m, 1H), 3.31 (dd, 1H, $J = 6.6, 9.8 \text{ Hz}$), 3.38 (dd, 1H, $J = 6.0, 9.8 \text{ Hz}$), 5.10 (dd, 1H, $J = 1.2$, 10.4 Hz), 5.08 (dd, 1H, $J = 1.3, 17.3 \text{ Hz}$), 5.76 (ddd, 1H, $J = 7.0, 10.4, 17.3 \text{ Hz}$).

m/z: 151 (M+H)†, 147, 127.

HRMS calculated for $\text{C}_5\text{H}_{10}^{81}\text{Br} (\text{M+H})$: 150.9945 found: 150.9950.
Synthesis of (3R, 6S, 8R, E)-8-(benzyloxymethoxy)-3-methyl-4-tosylundeca-1,9-dien-6-ol (2.176): nBuLi (1.6 M in hexane, 0.17 ml, 0.27 mmol) was added dropwise to a solution of sulfone (2.175) (60 mg, 0.27 mmol) in THF (1.5 ml) at -78 °C. The mixture was stirred at -78 °C for 30 minutes then BF$_3$.Et$_2$O (35 µl, 0.27 mmol) and a solution of the epoxide (2.85) (55 mg, 0.22 mmol) in THF (1 ml) were added. The reaction mixture was stirred for 2 h at -78 °C, then quenched with triethyl amine (80 µl, 0.58 mmol) and warmed to room temperature. The mixture was diluted with diethyl ether (20 ml), the organic layers were washed with water, aq. NaHCO$_3$ and finally with brine. After removal of the solvent under reduced pressure, the residue was purified by column chromatography (hexane: ethyl acetate = 88:12) on silica gel (2 g) to give the title compound as a colourless oil (88 mg, 85%).

1H NMR (400 MHz, CDCl$_3$) δ 1.05 (d, 3H, J = 9.3 Hz, major), 1.21(d, 3H, J = 9.3 Hz, minor), 1.53-1.71 (m, 7H, major and minor), 1.76-2.07 (m, 2H, major and minor), 2.41 (s, 3H, major), 2.44 (s, 3H, minor), 2.72-2.78 (m, 1H, major), 2.92-2.99 (m, 1H, minor), 3.75-3.95(m, 1H, major and minor), 4.18-4.26 (m, 1H, major and minor), 4.47 (d, 1H, J = 11.2 Hz, major and minor), 4.62 (d, 1H, J = 6.2 Hz, major and minor), 4.65 (d, 1H, J = 12.5 Hz, major and minor), 4.77 (d, 1H, J = 6.2 Hz, major), 4.79 (d, 1H, J = 6.8 Hz, minor), 5.00 (d, 1H, J = 18.5 Hz, major), 5.09 (d, 1H, J = 10.6 Hz, minor), 5.19-5.26 (m, 1H, minor and major), 5.63-5.71 (m, 1H, major and minor), 5.85 (ddd, 1H, J = 6.1, 10.4, 16.2 Hz,
minor), 6.01 (ddd, 1H, $J = 6.1, 10.6, 16.3$ Hz, major), 7.30-7.37 (m, 7H, major and minor), 7.79 (d, 2H, $J = 9.5$ Hz, major and minor).

13C NMR (100 MHz, CDCl$_3$, major isomer): 17.6, 21.5, 32.5, 35.8, 42.9, 64.8, 68.4, 69.6, 76.6, 90.8, 114.8, 115.9, 127.8, 127.9, 128.4, 128.6, 129.9, 130.0, 130.4, 136.0, 137.5, 140.8, 144.4.

13C NMR (100 MHz, CDCl$_3$, minor isomer): 17.7, 21.5, 32.0, 35.3, 42.8, 64.8, 67.5, 69.5, 76.6, 90.9, 114.8, 115.9, 127.7, 127.9, 128.4, 128.5, 129.7, 129.9, 130.5, 135.6, 137.7, 140.8, 144.4.

m/z: 495 (M+Na)$^+$, 473 (M+H)$^+$, 365, 335, 317.

HRMS calculated for C$_{27}$H$_{37}$O$_5$S (M+H)$^+$: 473.2358 found: 473.2362.

IR: 3513, 3031, 1454, 1298, 1143, 1085, 1025 cm$^{-1}$.

Synthesis of (4R,6R)-4-((S)-3-methylpent-4-enyl)-6-((E)-prop-1-enyl)-1,3-dioxane (2.178): The literature procedure113 was modified as follows: Activated magnesium (11 mg, 0.04 mmol) was added to a solution of sulfone (2.176) (70 mg, 0.15 mmol) in methanol (5 ml). The mixture was heated at 55 °C for 1 h, after all the magnesium granules had dissolved, additional Mg (11 mg, 0.04 mmol) was added and the mixture was continuously stirred at 55 °C for 5 h. The methanol was removed under reduced pressure, the residue was diluted with ethyl acetate (50 ml), washed with water and brine. The organic layer was dried over anhydrous MgSO$_4$, the solvent was evaporated in vacuo and the residue
was purified by column chromatography (hexane: ethyl acetate = 95: 5) on silica
gel (2 g) to give the title compound as a colourless oil (22 mg, 69 %).

1H NMR (400 MHz, CDCl$_3$) δ 0.99 (d, 3H, J = 6.8 Hz), 1.29-1.62 (m, 6H),
1.71 (dd, 3H, J = 0.9, 7.3 Hz), 2.08-2.15 (m, 1H), 3.52-3.57 (m, 1H), 4.01 (ddd,
1H, J = 2.8, 6.6, 9.6 Hz), 4.73 (d, 1H, J = 6.5 Hz), 4.93 (dd, 2H, J = 11.0, 16.9
Hz), 5.09 (d, 1H, J = 6.0 Hz), 5.50 (ddq, 1H, J = 15.4, 6.2, 1.4 Hz), 5.67 (ddd,
1H, J = 7.8, 10.1, 17.9 Hz), 5.74 (dq, 1H, J = 15.6, 6.9 Hz).

13C NMR (100 MHz, CDCl$_3$): 17.8, 20.2, 31.6, 33.5, 37.7, 37.8, 76.4, 77.2, 93.4,
112.9, 127.9, 130.9, 144.3.
m/z: 211 (M+H)$^+$, 181, 163.

HRMS calculated for C$_{13}$H$_{23}$O$_2$ (M+H)$^+$: 211.1698 found: 211.1704.

$[\alpha]^2_D$ = +16.2 (CH$_2$Cl$_2$, c = 0.8).

Synthesis of (3S,6R,8R,E)-8-(benzyloxymethoxy)-3-methylundec-1,9-dien-6-ol (2.172): Activated magnesium (53 mg, 2.20 mmol) was added to a solution of sulfone (2.176) (260 mg, 0.55 mmol), TMEDA (1.7 ml, 11.02 mmol) in methanol (7 ml). The mixture was heated at 55 °C for 2 h, after all the magnesium granules had dissolved, additional Mg (72 mg, 2.98 mmol) and TMEDA (2.5 ml, 16.21 mmol) were added and the mixture was continuously stirred at 55 °C for 6 h. The methanol was removed under reduced pressure, the residue was diluted with ethyl acetate (50 ml), washed with water, dil. HCl and
brine then dried over anhydrous MgSO$_4$. The solvent was evaporated in vacuo and the residue was purified by column chromatography (hexane: ethyl acetate = 92: 8) on silica gel (7 g) to give the title compound as a colourless oil (120 mg, 95 %).

1H NMR (400 MHz, CDCl$_3$) δ 1.00 (d, 3H, $J = 6.8$ Hz), 1.21-1.76 (m, 6H), 1.71 (dd, 3H, $J = 1.8, 6.4$ Hz), 2.09-2.17 (m, 1H), 3.22 (br. s, 1H), 3.78-3.80 (m, 1H), 4.30 (dt, 1H, $J = 4.6, 9.2$ Hz), 4.52 (d, 1H, $J = 11.9$ Hz), 4.67 (d, 1H, $J = 6.9$ Hz), 4.72 (d, 1H, $J = 11.9$ Hz), 4.83 (d, 1H, $J = 6.9$ Hz), 4.90-4.98 (m, 2H), 5.28 (ddq, 1H, $J = 15.6, 8.7, 1.8$ Hz), 5.64-5.74 (m, 2H), 7.27-7.34 (m, 5H).

13C NMR (100 MHz, CDCl$_3$): 17.6, 20.3, 32.2, 35.2, 37.8, 42.6, 69.7, 71.1, 77.4, 90.9, 112.7, 127.7, 127.9, 128.4, 130.2, 130.4, 137.7, 144.5.

m/z: 341 (M+Na)$^+$. HRMS calculated for C$_{20}$H$_{30}$O$_3$Na (M+Na)$^+$: 341.2093 found: 341.2096.

IR: 3504, 2938, 1165, 1098, 1025 cm$^{-1}$

$[\alpha]^{22}_D = +81.3$ (CHCl$_3$, c=1.1).

Synthesis of (2E,4S,7R,9R,10E)-methyl 9-(benzyloxymethoxy)-7-hydroxy-4-methyl dodeca-2,10-dienoate (2.182): Hoveyda-Grubbs II catalyst (2.14) (4 mg, 0.005 mmol) was added to a solution of diene (2.172) (30 mg, 0.09 mmol) and methyl acrylate (17 µl, 0.19 mmol) in dichloromethane (2 ml). The system was maintained under a continuous nitrogen flow while stirring for 3 h at room
temperature. The TLC showing 3:1 of product and starting material and the reaction was stopped at this point, to prevent the unwanted epimerisation. Solvent was removed under reduced pressure and the residue was purified by column chromatography (hexane: ethyl acetate = 85: 15) on silica gel (1 g) to give the title compound as a colourless oil (29 mg, 81 %, calculated according to the starting material recovered).

1H NMR (400 MHz, CDCl$_3$) δ 1.05 (d, 3H, $J = 6.7$ Hz), 1.39-1.78 (m, 6H), 1.70 (dd, 3H, $J = 1.6, 6.6$ Hz), 2.27-2.34 (m, 1H), 3.26 (br. s, 1H), 3.72 (s, 3H), 3.74-3.78 (m, 1H), 4.29(dt, 1H, $J = 4.4, 9.0$ Hz), 4.52 (d, 1H, $J = 11.2$ Hz), 4.67 (d, 1H, $J = 7.0$ Hz), 4.71 (d, 1H, $J = 11.1$ Hz), 4.83 (d, 1H, $J = 7.0$ Hz), 5.21-5.31 (m, 1H), 5.69 (dq, 1H, $J = 15.6, 6.5$ Hz), 5.78 (d, 1H, $J = 15.1$ Hz), 6.86 (dd, 1H, $J = 15.1, 8.0$ Hz), 7.27-7.37 (m, 5H).

13C NMR (100 MHz, CDCl$_3$): 17.6, 19.5, 31.6, 35.0, 36.5, 42.6, 51.4, 69.7, 70.9, 77.4, 90.9, 119.5, 127.8, 127.9, 128.4, 130.2, 130.4, 137.6, 154.6, 167.2.

m/z: 399.16 (M+Na)$^+$. HRMS calculated for C$_{22}$H$_{33}$O$_5$ (M+H)$^+$: 377.2328 found: 377.2326.

IR: 2924, 1720, 1272, 1169, 1098, 1025 cm$^{-1}$

[α]$^{22}_{D}$ = +109.2 (CHCl$_3$, c = 0.9).

Synthesis of methyl 2-((2S,3S,6R)-6-((R,E)-2-(benzyloxymethoxy) pent-3-enyl)-3-methyltetrahydro-2H-pyran-2-yl)acetate (2.189): The title compound (46 mg, 83 %, major) and the cis isomer (5 mg, 9%) were obtained from the ...
previous compound (2.182) by the method described for (2.90). The isomers were separated by column chromatography (hexane: ethyl acetate = 94: 6 for cis (2.190) and 93: 7 for trans isomer (2.189) on silica gel (2 g).

1H NMR (400 MHz, CDCl$_3$) δ 0.82 (d, 3H, $J = 7.0$ Hz), 1.24-1.32 (m, 2H), 1.49 (ddd, 1H, $J = 4.4$, 8.3, 13.3Hz), 1.61-1.70 (m, 2H), 1.71 (dd, 3H, $J = 0.9$, 6.2 Hz), 1.86-1.98 (m, 2H), 2.35 (dd, 1H, $J = 4.4$, 14.7 Hz), 2.63 (dd, 1H, $J = 9.7$, 14.9 Hz), 3.62-3.72 (m, 1H), 3.66 (s, 3H), 4.09-4.17 (m, 1H), 4.29-4.33 (m, 1H), 4.52 (d, 1H, $J = 11.8$ Hz), 4.66 (d, 1H, $J = 6.5$ Hz), 4.67 (d, 1H, $J = 11.6$ Hz), 4.78 (d, 1H, $J = 6.5$ Hz), 5.20-5.31 (m, 1H), 5.66 (dq, 1H, $J = 12.6$, 6.1 Hz), 7.28-7.35 (m, 5H).

13C NMR (100 MHz, CDCl$_3$): 16.3, 17.8, 26.6, 30.1, 32.7, 33.2, 41.1, 51.7, 66.7, 69.3, 73.2, 74.2, 91.4, 127.5, 127.9, 128.3, 129.8, 130.8, 138.1, 172.4.

m/z: 400 (M+Na), 239, 221, 171.

HRMS calculated for C$_{22}$H$_{32}$O$_6$Na (M+Na)$^+$: 399.2147 found: 399.2141.

IR: 2956, 1739, 1437, 1073, 1021 cm$^{-1}$.

$[^2]$$\alpha$$^{22}_D = +46.2$ (CHCl$_3$, c = 0.13).

Data for Methyl 2-((2R,3S,6R)-6-((R,E)-2-(benzyloxymethoxy)pent-3-enyl)-3-methyltetrahydro-2H-pyran-2-yl)acetate (2.190): 1H NMR (400 MHz, CDCl$_3$) δ 0.82 (d, 3H, $J = 6.5$ Hz), 1.14-1.25 (m, 1H), 1.29-1.40 (m, 2H), 1.45-1.59 (m, 2H), 1.73 (dd, 3H, $J = 1.3$, 6.3 Hz), 1.66-1.79 (m, 1H), 1.83-1.92 (m, 1H), 2.36 (dd, 1H, $J = 10.0$, 14.6 Hz), 2.61 (dd, 1H, $J = 3.1$, 14.4 Hz), 3.28-3.41 (m, 2H), 3.62 (s, 3H), 4.19 (dt, 1H, $J = 5.2$, 8.8 Hz), 4.53 (d, 1H, $J = 9.4$ Hz), 4.65 (d, 1H, $J = 7.1$ Hz), 4.67 (d, 1H, $J = 10.2$ Hz), 4.78 (d, 1H, $J = 6.9$ Hz), 5.25 (dd, 1H, $J = 10.0$, 17.3 Hz), 5.66 (dq, 1H, $J = 15.1$, 6.4 Hz), 7.27-7.35 (m, 5H).
\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): 17.6, 17.8, 32.0, 32.7, 35.4, 39.4, 41.8, 51.6, 69.3, 74.2, 74.4, 80.3, 91.3, 127.5, 127.9, 128.3, 130.1, 130.6, 138.2, 172.6.

m/z: 400 (M+Na)\(^+\), 239, 221, 171.

HRMS calculated for C\(_{22}\)H\(_{32}\)O\(_5\)Na (M+Na)\(^+\): 399.2147 found: 399.2143.

IR: 2956, 1739, 1437, 1073, 1021 cm\(^{-1}\).

\([\alpha]^{22}_D = +9.6\) (CHCl\(_3\), c = 0.5).

Synthesis of 2-(2S,3S,6R)-6-(R,E)-2-(benzoyloxy-methoxy)pent-3-enyl)-3-methyl tetrahydro-2H-pyran-2-yl)acetic acid (2.191): LiOH (17 mg, 0.40 mmol) was added to a solution of ester (2.189) (50 mg, 0.13 mmol) in a (1:1:1) mixture of THF (0.5 ml), water (0.5 ml) and methanol (0.5 ml). The mixture was stirred for 6 h at room temperature, and then acidified to pH 2 with dil. HCl. The mixture was extracted with ethyl acetate (10 ml x 2), the combined organic layers were washed with water and brine and dried over anhydrous MgSO\(_4\). The solvents were removed in vacuo to obtain the title compound as a colourless oil (48 mg, 99 %), which was used in the next step without purification.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 0.84\) (d, 3H, \(J = 6.9\) Hz), 1.19-1.36 (m, 3H), 1.52 (ddd, 1H, \(J = 4.9, 7.7, 13.6\) Hz), 1.62-1.76 (m, 1H), 1.70 (d, 3H, \(J = 6.5\) Hz), 1.87-2.01 (m, 2H), 2.36 (dd, 1H, \(J = 3.9, 15.5\) Hz), 2.65 (dd, 1H, \(J = 10.3, 15.3\) Hz), 3.66-3.76 (m, 1H), 4.14 (dt, 1H, \(J = 14.0, 7.6\) Hz), 4.26-4.32 (m, 1H), 4.53 (d, 1H, \(J = 11.9\) Hz), 4.66 (d, 1H, \(J = 7.0\) Hz), 4.67 (d, 1H, \(J = 11.5\) Hz), 4.78 (d, 1H, \(J = 6.9\) Hz), 5.20-5.30 (m, 1H), 5.68 (dq, 1H, \(J = 15.2, 6.1\) Hz), 7.27-7.35 (m, 5H).
13C NMR (100 MHz, CDCl$_3$): 16.0, 17.8, 26.3, 29.7, 30.9, 32.7, 40.7, 67.5, 69.4, 72.8, 74.4, 91.4, 127.6, 127.9, 128.4, 130.4, 130.6, 138.0, 174.0.

m/z : 363 (M)$^+$, 279, 210.

IR: 2922, 1711, 1025, 969, 734 cm$^{-1}$.

HRMS calculated for C$_{21}$H$_{31}$O$_5$ (M+H)$^+$: 363.2171 found: 363.2177.

Synthesis of (4R,5R)-diethyl 2-phenyl-1,3-dioxolane-4,5-dicarboxylate (3.19): A procedure reported in the literature was modified as follows: Benzaldehyde (4.93 ml, 48.54 mmol) and few crystals of p-TsOH were sequentially added to a solution of diethyl tartrate (3.18) (4 g, 19.42 mmol) in toluene (25 ml). The mixture was heated at reflux for 12 h with a Dean-Stark trap to remove water. The mixture was cooled to room temperature, diluted with diethyl ether (50 ml), washed with aq. NaHCO$_3$ solution and brine. The organic layer was dried over anhydrous MgSO$_4$, the solvents were removed under reduced pressure to afford the title compound as a pale yellow solid (5.7 g, 99%), which was used in the next step without purification.

1H NMR (300 MHz, CDCl$_3$) δ 1.31 (t, 3H, J = 7.1 Hz), 1.35 (t, 3H, J = 7.1 Hz), 4.28 (q, 2H, J = 7.1 Hz), 4.33 (q, 2H, J = 7.1 Hz), 4.83 (d, 1H, J = 4.0 Hz), 4.95 (d, 1H, J = 4.0 Hz), 6.16(s, 1H), 7.39-7.59 (m, 5H).

13C NMR (100 MHz, CDCl$_3$) δ 14.0, 14.1, 62.0, 62.0, 77.3, 77.6, 106.7, 127.2, 128.3, 129.9, 135.5, 169.0, 169.6.

m/z: 317 (M+Na)$^+$, 295 (M)$^+$, 260, 242.
HRMS calculated for C_{15}H_{19}O_{6} (M+H)^+: 295.1182 found: 295.1187.

IR: 2985, 1739, 1643, 1460, 1372, 1217, 1026 cm\(^{-1}\)

\([\alpha]^{22}_D = -31.5\) (CH\(_2\)Cl\(_2\), c = 1).

All data are consistent with that of literature. \(^{126}\)

Synthesis of (2S, 3S)-dimethyl 2-bromo-3-hydroxysuccinate (3.26a): A solution of HBr (45 % in acetic acid, 42.1 ml, 337.08 mmol) was added dropwise to L-dimethyl tartrate (3.13) (15 g, 84.30 mmol) with external cooling. The mixture was slowly warmed to room temperature and stirring was continued for 12 h, and then poured onto crushed ice. The mixture was extracted with diethyl ether (3 x 200 ml), the organic layers were washed with water, brine and dried over anhydrous MgSO\(_4\). The solvent was removed \emph{in vacuo}, the residue was diluted with methanol (200 ml) and acetyl chloride (3 ml, 42.14 mmol) was added. The mixture was heated at reflux for 4 h, and then cooled to room temperature. The methanol was removed under reduced pressure. The residue was passed through a silica gel column (40:60 Ethyl acetate/Hexane) to give the title compound as a colourless oil (16.3 g, 80%).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.53 (d, 1H, J = 11.6 Hz), 3.81 (s, 3H), 3.82 (s, 3H), 4.66 (dd, 1H, J = 4.5, 7.5 Hz), 4.70 (d, 1H, J = 4.5 Hz).

m/z : 263 (M+Na)^+, 241 (M)^+, 205, 173.

HRMS calculated for C\(_9\)H\(_{10}\)O\(_5\)\(^{81}\)Br (M+H)^+: 278.9695 found: 278.9691.

IR: 3474, 2945, 1301, 1022, 736, 698 cm\(^{-1}\).

\([\alpha]^{22}_D = -23.5\) (MeOH, c = 0.9).

All data are consistent with that of literature. \(^{130}\)
Synthesis of (R)-dimethyl 2-hydroxysuccinate (3.12): Activated zinc (81 mg, 1.25 mmol) and water (2 drops) were added to a solution of bromide (3.26a) (100 mg, 0.42 mmol) in acetone (2 ml). The mixture was heated to 50 °C for 1 h, then it was filtered through a celite pad. The filtrate was dried over anhydrous Na₂SO₄. The acetone was removed under reduced pressure to give the title compound as a colourless oil (68 mg, 99 %), which was used in the next step without purification.

¹H NMR (400 MHz, CDCl₃) δ 2.76 (dd, 1H, J = 5.0, 16.9 Hz), 2.84 (dd, 1H, J = 4.6, 17.0 Hz), 3.36 (br s, 1H), 3.67 (s, 3H), 3.77 (s, 3H), 4.48 (dd, 1H, J = 4.6, 4.6 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 38.3, 51.9, 52.7, 67.1, 170.9, 173.7.

m/z : 163 (M+H)⁺, 131.

HRMS calculated for C₆H₁₁O₅ (M+H)⁺: 163.0606 found: 163.0608.

IR: 1728, 1438, 1165, 1043 cm⁻¹.

[α]²²D = +8.8 (CH₂Cl₂, c = 2.2).

Data are consistent with that of literature.

Synthesis of (2R, 3S)-dimethyl 2-hydroxy-3-methylsuccinate (3.11) : Lithium diisopropylamide (LDA) was generated by reacting diisopropylamine (2.2 ml, 16.67 mmol) in THF (20 ml) with "BuLi (1.6M in hexane, 10.4 ml, 16.67 mmol) under nitrogen at -78 °C over 30 minutes. A solution of (R)-dimethyl malate (3.12) (1 g, 6.17 mmol) in THF (5 ml) was added dropwise to LDA at -78 °C, the
mixture was stirred for 30 min at -30 °C, then cooled to -78 °C once again. Iodomethane (1.9 ml, 30.86 mmol) was added dropwise to the mixture and it was slowly warmed to -10 °C. The mixture was stirred for 2 h, and then quenched with a solution of acetic acid (1.4 ml, 24.69 mmol) in diethyl ether (10 ml) at -40 °C. The reaction mixture was warmed to room temperature, and diluted with dichloromethane (80 ml). The solution was washed with water and aq. NaHCO₃, and dried over anhydrous Na₂SO₄. The solvents were evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane: ethyl acetate = 85:5) on silica gel (20 g) to give the title compound as a colourless oil (0.85 g, 78 %).

¹H NMR (300 MHz, CDCl₃) δ 1.30 (d, 3H, J = 7.3 Hz), 3.04 (dq, 1H, J = 3.6, 7.3 Hz), 3.14 (d, 1H, J = 6.6 Hz), 3.69 (s, 3H), 3.80 (s, 3H), 4.27 (dd, 1H, J = 3.7, 6.6 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 13.0, 43.1, 52.0, 52.7, 72.4, 173.4, 173.6.

m/z: 177 (M+H), 145.

HRMS calculated for C₇H₁₃O₅ (M+H)⁺: 177.0763 found: 177.0766.

IR: 3487, 1731, 1438, 1205, 1141 cm⁻¹.

[α]²₂ν = +6.3 (MeOH, c = 1.2).

Data are consistent with literature.¹³³

Synthesis of (2R, 3S)-dimethyl 2-(benzyloxy)-3-methylsuccinate (3.62): Bn-OPT (380 mg, 1.14 mmol) and MgO (46 mg, 1.14 mmol) were added to a
solution of alcohol (3.11) (100 mg, 0.57 mmol) in dichloroethane (1 ml). The mixture was heated at 80 °C for 20 h, cooled to room temperature and then filtered through celite washing with dichloromethane. The solvents were removed in vacuo, and the residue was purified by flash column chromatography (hexane: ethyl acetate = 90:10) on silica gel (3 g) to give the title compound as a colourless oil (147 mg, 96 %).

1H NMR (300 MHz, CDCl$_3$) δ 1.10 (d, 3H, $J = 7.2$ Hz), 2.94-3.04 (m, 1H), 3.66 (s, 3H), 3.73 (s, 3H), 4.16 (d, 1H, $J = 7.0$ Hz) 4.46 (d, 1H, $J = 11.7$ Hz), 4.71 (d, 1H, $J = 11.7$ Hz), 7.24-7.35 (m, 5H).

13C NMR (75 MHz, CDCl$_3$) δ 12.7, 42.7, 51.8, 51.9, 72.9, 79.7, 127.8, 128.0, 128.2, 137.0, 171.2, 173.2.

m/z= 289 (M+Na)$^+$, 267 (M)$^+$.

HRMS calculated for C$_{14}$H$_{19}$O$_5$ (M+H)$^+$: 267.1232 found: 267.1231.

IR: 2952, 1734, 1454, 1266, 1166, 1001 cm$^{-1}$.

$\left[\alpha\right]_D^{22}$ = +73.8 (MeOH, c = 1.0).

Synthesis of (2S, 3R)-methyl 3-(benzyloxy)-4-hydroxy-2-methyl butanoate (3.63): MgBr$_2$.Et$_2$O [prepared by heating dibromoethane (20 µl, 0.25 mmol) and Mg (6 mg, 0.25 mmol) in diethyl ether (4 ml)] was added to a solution of diester (3.62) (50 mg, 0.19 mmol) in dichloromethane (3 ml) at 0 °C. The mixture was stirred for 1 h at room temperature, and then cooled to -40 °C. DIBAL-H (1M in cyclohexane, 0.5 ml, 0.47 mmol) was added slowly over 2 h using a syringe pump. The mixture was stirred for 8 h at -40 °C. Methanol (4 ml) was
added dropwise, followed by an aqueous solution of Rochelle’s salt (2 ml). The mixture was warmed to room temperature, filtered through celite and extracted with dichloromethane (3 x 10 ml). The combined organic layers were washed with water and brine and dried over anhydrous MgSO$_4$. The solvents were removed \textit{in vacuo} and the residue was purified by flash column chromatography (hexane: ethyl acetate = 78:22) on silica gel (2 g) to give the title compound as a colourless oil (35 mg, 82 \%) and the aldehyde (3.64) (4 mg, 9\%).

1H NMR (400 MHz, CDCl$_3$) δ 1.17 (d, 3H, $J = 7.1$ Hz), 1.86 (dd, 1H, $J = 4.9, 7.4$ Hz), 2.88-2.94 (m, 1H), 3.60 (ddd, 1H, $J = 3.9, 7.4, 11.6$ Hz), 3.69 (s, 3H), 3.73 (ddd, 1H, $J = 3.9, 3.9, 7.9$ Hz), 3.78 (ddd, 1H, $J = 3.9, 7.8, 11.8$ Hz), 4.56 (d, 1H, $J = 11.4$ Hz) 4.60 (d, 1H, $J = 11.7$ Hz), 7.28-7.35 (m, 5H).

13C NMR (75 MHz, CDCl$_3$) δ 12.9, 41.1, 51.6, 60.7, 72.4, 81.2, 127.7, 127.8, 128.3, 137.9, 175.3.

m/z: 240 (M+H)$^+$, 219.

HRMS calculated for C$_{13}$H$_{19}$O$_4$ (M+H)$^+$: 239.1283 found: 239.1285.

IR: 3434, 2949, 1731, 1454, 1060, 1027 cm$^{-1}$

$[\alpha]^{22}_D = +46.6$ (MeOH, c = 0.8).

Data for (2S, 3R)-methyl 3-(benzyloxy)-2-methyl-4-oxobutanoate (3.64):

1H NMR (400 MHz, CDCl$_3$) δ 1.21 (d, 3H, $J = 7.2$ Hz), 2.97-3.00 (m, 1H), 3.70 (s, 3H), 3.85 (d, 1H, $J = 5.0$ Hz), 4.61 (d, 1H, $J = 11.9$ Hz) 4.71 (d, 1H, $J = 11.8$ Hz), 7.32-7.36 (m, 5H), 9.69 (br s, 1H)

13C NMR (75 MHz, CDCl$_3$) δ 12.7, 41.6, 52.0, 73.4, 84.2, 128.0, 128.1, 128.5, 136.7, 172.9, 202.6.

m/z: 259 (M+Na)$^+$, 237 (M+H)$^+$, 219.

HRMS calculated for C$_{13}$H$_{16}$O$_4$Na (M+Na)$^+$: 259.0946 found: 259.0940.

IR: 2923, 1720, 1687, 1031, 807 cm$^{-1}$.

181
Synthesis of (2S, 3R)-methyl 3-(benzyloxy)-2-methyl-4-(methylsulfonyloxy)butanoate (3.66): The title compound (94%) was obtained as a colourless oil from the previous compound (3.63) by the method described for (2.168).

1H NMR (300 MHz, CDCl$_3$) δ 1.19 (d, 3H, $J = 6.8$ Hz), 2.82-2.89 (m, 1H), 2.98 (s, 3H), 3.69 (s, 3H), 3.90 (ddd, 1H, $J = 2.7$, 4.1, 7.3 Hz), 4.25 (dd, 1H, $J = 4.6$, 11.0 Hz), 4.49 (dd, 1H, $J = 3.2$, 11.4 Hz), 4.56 (d, 1H, $J = 11.5$ Hz), 4.66 (d, 1H, $J = 11.0$ Hz), 7.27-7.36 (m, 5H).

m/z = 339 (M+Na)$^+$, 317 (M)$^+$, 239, 227, 131.

HRMS calculated for C$_{14}$H$_{21}$O$_6$S (M+H)$^+$: 317.1059 found: 317.1058.

$[\alpha]^{22}_D = +36.9$ (MeOH, c = 1.2).

Synthesis of (2S, 3R)-methyl 4-azido-3-(benzyloxy)-2-methylbutanoate (3.67): Sodium azide (21 mg, 0.33 mmol) was added to a solution of mesylate (3.66) (52 mg, 0.17 mmol) in DMF (1.5 ml). The mixture was heated at 60°C for
8 h. The mixture was diluted with ethyl acetate (20 ml), the organic layers were washed with water (2 x 5 ml) and brine, and dried over anhydrous MgSO₄. The solvents were removed in vacuo and the residue (42 mg, 93 %) was used in the next step without purification.

¹H NMR (300 MHz, CDCl₃) δ 1.14 (d, 3H, J = 7.2 Hz), 2.85-2.92 (m, 1H), 3.30 (dd, 1H, J = 5.7, 13.2 Hz), 3.44 (dd, 1H, J = 3.2, 13.2 Hz), 3.67 (s, 3H), 3.83 (ddd, 1H, J = 3.2, 5.7, 8.8 Hz), 4.57 (d, 1H, J = 11.2 Hz), 4.66 (d, 1H, J = 11.2 Hz), 7.29-7.35 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 12.7, 42.0, 51.2, 51.9, 72.9, 79.9, 127.8, 127.9, 128.4, 137.6, 174.6.

m/z: 286 (M+Na)⁺, 263 (M+H)⁺, 236.

HRMS calculated for C₁₃H₁₈N₃O₃(M+H)⁺: 264.1348 found: 264.1350.

IR: 3458, 2102, 1732, 1643, 1265, 1172 cm⁻¹

[α]²²_D = + 33.8 (CH₂Cl₂, c = 0.6).

All data are consistent with that of literature.¹³⁵

Synthesis of cyclohexanecarboxylic acid (3.75): The title compound (0.72 g, 99 %) was obtained as a colourless solid from the corresponding methyl ester by the method described for (2.191).

¹H NMR (400 MHz, CDCl₃): 1.19-1.34 (m, 3H), 1.40-1.50 (m, 2H), 1.62-1.66 (m, 1H), 1.74-1.78 (m, 2H), 1.91-1.96 (m, 2H), 2.33 (tt, 1H, J = 3.7, 11.5 Hz), 10.96 (br s, 1H).

¹³C NMR (100 MHz, CDCl₃): 25.3, 25.7, 28.8, 42.9, 182.7.

m/z: 151 (M+Na)⁺, 129 (M+H)⁺.
HRMS calculated for $C_7H_{13}O_2 (M+H)^+$: 129.0916 found: 129.0917.

IR: 3042, 1697, 1256, 1212, 894 cm$^{-1}$.

\[
\text{Br} \quad \text{O} \quad \text{O} \quad \text{N}_3 \quad \text{O} \quad \text{O}
\]

Synthesis of tert-butyl 2-azidoacetate (3.76): Sodium azide (1.34 g, 20.51 mmol) was added to a solution of tert-butyl-bromoacetate (2 g, 10.26 mmol) in DMF (34 ml). The mixture was heated at 80 °C for 2 h, cooled to room temperature and diluted with diethyl ether and hexane (1:1 mixture, 100 ml). The combined organic layers were washed with dilute HCl and water and dried over anhydrous Na$_2$SO$_4$. The solvents were removed in vacuo to give the title compound as a pale yellow oil (1.6 g, 99 %) which was used in the next step without purification.

1H NMR (500 MHz, CDCl$_3$): 3.74 (s, 2H), 1.50 (s, 9H).

13C NMR (125 MHz, CDCl$_3$): 28.0, 50.9, 83.0, 167.4.

m/z: 180 (M+Na)$^+$, 158 (M+H)$^+$, 130.

HRMS calculated for $C_6H_{12}N_3O_2 (M+H)^+$: 158.0930 found: 158.0930.

IR: 2983, 2103, 1737, 1223, 1148 cm$^{-1}$.

\[
\text{OH} \quad \text{O} \quad \text{N}_3 \quad \text{O} \quad \text{O} \quad \text{O} \quad \text{O} \quad \text{N} \quad \text{H} \quad \text{O} \quad \text{+}
\]

Synthesis of tert-butyl 2-(cyclohexanecarboxamido)acetate (3.77): A literature procedure was modified as follows: tri-n-butylphosphine (10 % soln. in hexane, 1.5 ml, 0.51 mmol) was added to a solution of azide (3.76) (61 mg, 0.39 mmol) in dichloromethane (4 ml). The mixture was stirred until gas (N$_2$) evolution ceased, then cyclohexanecarboxylic acid (3.75) (50 mg, 0.39 mmol) in
dichloromethane (1 ml) was added. The mixture was heated at reflux for 8 h. The solvents were removed in vacuo and the residue was purified by flash column chromatography (hexane: ethyl acetate = 80:20) on silica gel (1 g) to give the title compound as a colourless oil (75 mg, 80 %).

1H NMR (500 MHz, CDCl$_3$) δ 1.20-1.30 (m, 3H), 1.40-1.47 (m, 10H), 1.67-1.71 (m, 2H), 1.77-1.81 (m, 2H), 1.87-1.90 (m, 2H), 2.11-2.16 (m, 1H), 3.92 (t, 2H, $J = 4.9$ Hz), 5.96 (br s, 1H).

13C NMR (100 MHz, CDCl$_3$): 25.6, 25.7, 28.0, 29.5, 41.9, 42.2, 82.3, 169.4, 176.1.

m/z: 264 (M+Na)$^+$, 242 (M+H)$^+$, 186.

HRMS calculated for C$_{13}$H$_{24}$NO$_3$ (M+H)$^+$: 242.1756 found: 242.1756.

IR: 1704, 1644, 1538, 1156, 844 cm$^{-1}$.

Synthesis of (2S,3R)-methyl 3-(benzyloxy)-4-(cyclohexanecarboxamido)-2-methylbutanoate (3.78): The title compound (22 mg, 69 %) was obtained as a colourless oil from cyclohexanecarboxylic acid and the corresponding azide (3.67) by the method described for (3.75).

1H NMR (400 MHz, CDCl$_3$) δ 1.16 (d, 3H, $J = 7.4$ Hz), 1.22-1.39 (m, 6H), 1.55-1.68 (m, 2H), 1.71-1.81 (m, 2H), 1.96 (tt, 1H, $J = 3.2$, 15.1 Hz), 2.67-2.74 (m, 1H), 3.38 (ddd, 1H, $J = 3.8$, 3.8, 14.2 Hz), 3.50 (ddd, 1H, $J = 5.0$, 6.9, 14.2 Hz), 3.69(s, 3H), 3.73-3.79 (m, 1H), 4.52 (d, 1H, $J = 11.4$ Hz), 4.57 (d, 1H, $J = 11.5$ Hz), 5.64 (br s, 1H), 7.29-7.36 (m, 5H).
13C NMR (100 MHz, CDCl$_3$): 14.2, 22.7, 25.8, 29.8, 38.6, 42.3, 45.6, 51.9, 72.6, 79.9, 128.0, 128.1, 128.6, 138.1, 175.1, 176.5.
m/z: 370 (M+Na)$^+$, 348 (M+H)$^+$.

Synthesis of (2S,3R)-methyl 3-(benzyloxy)-4-(2-((2S,3S,6R)-6-((R,E)-2-(benzyloxy)methoxy)pent-3-enyl)-3-methyltetrahydro-2H-pyran-2-yl)acetamido)-2-methylbutanoate (3.70): The literature procedure was modified as follows: PyBOP (12 mg, 0.02 mmol) and NMM (5 µl, 0.04 mmol) were added to a solution of acid (2.191) (8 mg, 0.02 mmol) in dichloromethane (1 ml) at 0 °C. The mixture was stirred for 30 minutes, then added to a solution of azide (3.67) (10 mg, 0.04 mmol) and tributylphosphine (10% solution in hexane, 0.2 ml, 0.07 mmol) in dichloromethane (1 ml) under nitrogen at -78 °C. The above mixture was warmed to -20 °C and stirred for 4 h. The reaction mixture was diluted with ethyl acetate; the organic layers were washed with water, aq. NaHCO$_3$ solution and brine, dried over anhydrous Na$_2$SO$_4$. The solvents were removed *in vacuo*. The residue was purified by column chromatography on silica gel (0.5 g) (hexane: ethyl acetate = 80:20) to obtain the title compound as a colourless oil (9 mg, 71%).

1H NMR (400 MHz, CDCl$_3$): δ 0.83 (d, 3H, J = 7.3 Hz), 1.15 (d, 3H, J = 7.4 Hz), 1.40-1.48 (m, 2H), 1.49-1.65 (m, 2H), 1.67 (dd, 3H, J = 1.4, 6.5 Hz), 1.73-1.81 (m, 1H), 1.90-1.97 (m, 2H), 2.16 (dd, 1H, J = 2.7, 16.0 Hz), 2.56 (dd, 1H, J =
10.5, 15.6 Hz), 2.70-2.78 (m, 1H), 3.43-3.55 (m, 2H), 3.66 (s, 3H), 3.74-3.78 (m, 2H), 4.04-4.10 (m, 1H), 4.11-4.15 (m, 1H), 4.48 (d, 1H, J = 11.9 Hz), 4.52 (d, 1H, J = 11.4 Hz), 4.58 (d, 1H, J = 11.4 Hz), 4.61 (d, 1H, J = 6.9 Hz), 4.66 (d, 1H, J = 11.0 Hz), 4.74 (d, 1H, J = 11.9 Hz), 5.23 (ddq, 1H, J = 15.1, 8.2, 1.8 Hz), 5.61 (dq, 1H, J = 15.6, 6.9 Hz), 6.79 (br t, 1H, J = 3.9 Hz), 7.27-7.35 (m, 10H).

$	ext{^{13}C NMR (100 MHz, CDCl}_3$: 13.2, 13.6, 17.7, 26.4, 29.7, 32.9, 33.9, 38.7, 40.7, 42.1, 51.7, 66.8, 69.5, 72.4, 73.1, 74.1, 79.7, 91.5, 127.6, 127.7, 127.8, 127.9, 128.3, 128.4, 129.5, 131.0, 138.0, 171.8, 175.1.

m/z: 581.98 (M+H)$^+$.
HRMS calculated for C$_{34}$H$_{48}$NO$_7$ (M+H)$^+$: 582.3431 found: 582.3430.
IR: 2953, 1737, 1638, 1280, 1095, 1040 cm$^{-1}$.
$[\alpha]_D = +72.3$ (CHCl$_3$, c = 0.2).

Synthesis of 5-(tert-butyldimethylsilyloxy) pentan-1-ol (3.92): A solution of TBSCI (2.89 g, 19.20 mmol) in THF (10 ml) was added dropwise to a stirred solution of 1,5-pentanediol (10 g, 96.00 mmol) in THF (10 ml) under nitrogen at 0 °C. The reaction mixture was stirred for 3 h at room temperature then quenched by addition of satd. aq. NH$_4$Cl and subsequently extracted with diethyl ether (5 x 100 ml). The combined organic layers were washed with water, brine and dried over anhydrous Na$_2$SO$_4$. Solvents were removed under reduced pressure to give the title compound as colourless oil (3.7 g, 89%) which was used in next step without purification.

1H NMR (300 MHz, CDCl$_3$) δ 0.05 (s, 6H), 0.89 (s, 9H), 1.35-1.44 (m, 2H), 1.50-1.63 (m, 4H), 3.61 (t, 2H, J = 6.5 Hz), 3.65 (t, 2H, J = 6.5 Hz).

13C NMR (75 MHz, CDCl$_3$): -5.3, 18.4, 22.0, 26.0, 32.4, 32.5, 62.9, 63.1
m/z: 219 (M+H)⁺, 193.

HRMS calculated for C₁₁H₂₇O₂Si (M+H)⁺: 219.1780 found: 219.1780.

IR: 3401, 1253, 1096, 832, 773 cm⁻¹.

All data are consistent with that of literature.

Synthesis of 5-(tert-butyldimethylsilyloxy)pentanal (3.90): IBX (1.67 g, 5.96 mmol) was dissolved in DMSO (9 ml), and the mixture was stirred until a clear solution was obtained (~ 10 min). Alcohol (3.92) (1 g, 4.58 mmol) in DMSO (2 ml) was added to the mixture and stirred for 3 h. The mixture was diluted with ethyl acetate (50 ml) and the organic layers were washed with water (3 x 10 ml), aq. NaHCO₃ solution and brine, and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure and the residue was purified by a flash column chromatography (15:85 Ethyl acetate/Hexane) to give the title compound as a colourless oil (0.89 g, 90 %).

¹H NMR (300 MHz, CDCl₃) δ 0.04 (s, 6H), 0.88 (s, 9H), 1.50-1.61 (m, 2H), 1.63-1.75 (m, 2H), 2.38 (t, 1H, J = 7.5 Hz), 2.45 (dt, 1H, J = 1.7, 7.1 Hz), 3.62 (t, 2H, J = 6.2 Hz), 9.76 (br t, 1H, J = 1.7 Hz).

¹³C NMR (75 MHz, CDCl₃): -5.4, 18.6, 21.2, 25.9, 32.1, 43.6, 62.6, 202.8.

m/z: 240 (M+Na)⁺, 217 (M+H)⁺, 195.

HRMS calculated for C₁₁H₂₅O₂Si (M+H)⁺: 217.1624 found: 217.1624.

IR: 1734, 1254, 1200, 835 cm⁻¹.

All data are consistent with that of literature.

188
Synthesis of 1-{(tert-butyldimethylsilyloxy)dec-9-en-5-ol (3.89): A small amount of iodine crystals (~2 mg) were added to magnesium (67 mg, 2.77 mmol) in dry THF (4 ml) under nitrogen. The mixture was heated at reflux for 10 min. 5-Bromo-1-pentene (3.91) (0.25 ml, 2.08 mmol) was added dropwise and the mixture was heated at reflux for 30 minutes. The Grignard reagent was added dropwise (via a cannula) to a solution of aldehyde (3.90) (300 mg, 1.39 mmol) in THF (5 ml) at 0 °C. The mixture was stirred for 2 h at room temperature then quenched with satd. aq. NH₄Cl solution. The mixture was extracted with diethyl ether (3 x 20 ml), the combined organic layers were washed with water, brine and dried over anhydrous MgSO4. The solvents were removed in vacuo. The residue was purified by a silica gel column (5:95 Ethyl acetate/Hexane) to give the title compound as colourless oil (348 mg, 88 %).

\[^1\text{H} \text{NMR (300 MHz, CDCl}_3\text{)} \delta 0.04 \text{ (s, 6H), 0.89 (s, 9H), 1.37-1.64 (m, 10H), 2.07 (dt, 2H, J = 5.2, 5.2 Hz), 3.58-3.64 (m, 1H), 3.61 (t, 2H, J = 6.2 Hz), 4.95 (dd, 1H, J = 1.5, 10.2 Hz), 5.01 (dd, 1H, J = 1.7, 17.2 Hz), 5.74-5.87 (m, 1H).}

\[^{13}\text{C} \text{NMR (75 MHz, CDCl}_3\text{): -5.3, 18.4, 21.9, 24.9, 26.0, 32.7, 33.7, 36.8, 37.2, 63.1, 71.7, 114.6, 138.7.}

m/z: 287 (M+H)^+.

HRMS calculated for C_{16}H_{25}O_2Si (M+H)^+: 287.1624 found: 287.1621.

IR: 2930, 1253, 1097, 833 cm\(^{-1}\).
Synthesis of 1-(tert-butyldimethylsilyloxy)dec-9-en-5-one (3.93): The title compound (310 mg, 63 %) was obtained as a colourless oil from the alcohol (3.89) by the method described for (3.90).

1H NMR (400 MHz, CDCl$_3$) δ 0.04 (s, 6H), 0.89 (s, 9H), 1.47-1.54 (m, 2H), 1.59-1.70 (m, 4H), 2.03 (dt, 2H, $J = 5.6, 5.6$ Hz), 2.38-2.43 (m, 4H), 3.60 (t, 2H, $J = 5.1$ Hz), 4.97 (dd, 1H, $J = 1.5, 10.8$ Hz), 5.01 (dd, 1H, $J = 2.0, 18.0$ Hz), 5.72-5.80 (m, 1H).

m/z: 307 (M+Na)$^+$, 285 (M+H)$^+$, 233, 193.

HRMS calculated for C$_{16}$H$_{33}$O$_2$Si (M+H)$^+$: 285.2250 found: 285.2246.

IR: 2928, 1712, 1254, 1099, 908 cm$^{-1}$.

Synthesis of (E)-methyl 11-(tert-butyldimethylsilyloxy)-7-oxoundec-2-enoate (3.86): The title compound (260 mg, 94 %) was obtained as colourless oil from the alkene (3.93) by the method described for (2.89).

1H NMR (400 MHz, CDCl$_3$) δ -0.04 (s, 6H), 0.89 (s, 9H), 1.45-1.65 (m, 4H), 1.69-1.79 (m, 2H), 2.21 (dt, 2H, $J = 5.9, 5.9$ Hz), 2.41 (t, 2H, $J = 7.6$ Hz), 2.42 (t, 2H, $J = 7.3$ Hz), 3.60 (t, 2H, $J = 6.3$ Hz), 3.73 (s, 3H), 5.83 (dt, 1H, $J = 1.4, 15.6$ Hz), 6.92 (dt, 1H, $J = 7.1, 15.6$ Hz).

13C NMR (125 MHz, CDCl$_3$): -5.3, 20.3, 21.9, 26.0, 30.0, 31.4, 32.2, 41.6, 42.7, 51.5, 62.8, 121.6, 148.5, 167.1, 210.3.

m/z: 367 (M+Na)$^+$, 343 (M+H)$^+$, 229, 211.

HRMS calculated for C$_{18}$H$_{35}$O$_4$Si (M+H)$^+$: 343.2305 found: 343.2303.
IR: 1721, 1658, 1461, 1255, 1099, 731 cm\(^{-1}\).

Synthesis of methyl 2-((2S,6S)-1,7-dioxaspiro[5.5]undecan-2-yl)acetate (3.85): TBAF (1M soln. in THF, 0.1 ml, 0.10 mmol) was added dropwise to a solution of ester (3.86) (35 mg, 0.10 mmol) in THF (3 ml) at 0 °C. The mixture was stirred for 48 h at room temperature and quenched by addition of satd. aq. \(\text{NH}_4\text{Cl}\) solution. The mixture was extracted with diethyl ether (2 x 20 ml), washed with water, brine and dried over anhydrous \(\text{Na}_2\text{SO}_4\). The solvents were removed \textit{in vacuo}, the residue was purified by flash column chromatography (hexane: ethyl acetate = 80:20) using silica gel (1 g) to obtain the title compound as a colourless oil (20 mg, 85 %) as an inseparable (8:1) mixture with a minor unknown isomer.

\(^1\text{H}\) NMR (500 MHz, \(\text{CDCl}_3\)) \(\delta\) 1.07-1.92 (m, 12H), 1.99 (dd, 1H, \(J = 8.6, 14.5\) Hz), 2.42 (dd, 1H, \(J = 4.6, 14.6\) Hz), 3.58-3.61 (m, 1H), 3.65-3.68 (m, 1H), 3.65 (s, 3H), 3.97-4.04 (m, 1H).

m/z: 241 (M+Na\(^+\)), 229 (M+H\(^+\)).

HRMS calculated for \(\text{C}_{12}\text{H}_{21}\text{O}_4\) (M+H\(^+\)): 229.1440 found: 229.1441.

IR: 1704, 1361, 1223, 1090 cm\(^{-1}\).

Data are consistent with the literature.\(^{168}\)
REFERENCES:

