DEVELOPMENT OF ADVANCED PWM INVERTER
WITH SOFT SWITCHING TECHNIQUE FOR
BRUSHLESS DC MOTOR VARIABLE
SPEED DRIVES SYSTEMS

PAN ZHI YANG

SCHOOL OF ELECTRICAL & ELECTRONIC ENGINEERING
NANYANG TECHNOLOGICAL UNIVERSITY

2006
Development of Advanced PWM Inverter with Soft Switching Technique for Brushless DC Motor Variable Speed Drives Systems

Pan Zhi Yang

School of Electrical & Electronic Engineering

A Thesis submitted to Nanyang Technological University in fulfillment of the requirement for the degree of Doctor of Philosophy

2006
Acknowledgements

I wish to express my sincere gratitude to Nanyang Technological University (NTU) for giving me scholarship to pursue Ph. D degree. I will also express the sincere appreciation to my supervisor, Associate Professor Luo Fang Lin (DR), for his invaluable guidance, help and encouragement throughout my research work.

Thanks are also due to all research students in Electric Power Research Lab (EPRL), for their helpful advice and stimulative discussions. My gratitude is extended to the technicians in EPRL, Mr. Yeoh Tiow Koon, Mrs. Chew-Sim Annie and Mr. Lee Ting Yeng, for giving me effective technical support during the experiment.

Finally, I would like to give special thanks to my parents, who provide unceasing understanding, support and encouragement. To them I dedicate my work.
## Contents

Contents ........................................................................................................................................ i  
Summary ..................................................................................................................................... iv  
List of Figures ........................................................................................................................ vi  
List of Tables ........................................................................................................................... ix  
List of Abbreviations ................................................................................................................ x  
List of Principle Symbols .......................................................................................................... xii  

### Chapter 1 Introduction ........................................................................................... 1

1.1 Background .................................................................................................................. 1  
1.2 Conventional Voltage Source Inverter ................................................................. 2  
1.3 Introduction to Soft-switching Inverter ................................................................. 5  
1.4 Controller ................................................................................................................ 7  
1.5 Objectives and Major Contributions .................................................................... 8  
1.6 Organization of this thesis ................................................................................ 10  

### Chapter 2 Brushless DC Motor ........................................................................... 12

2.1 Operation Principle ............................................................................................. 12  
2.2 Controller ............................................................................................................... 16  
2.2.1 Controller .......................................................................................................... 16  
2.2.2 Speed sensor ..................................................................................................... 18  
2.2.3 Gate drive for IGBT .......................................................................................... 23  
2.3 12-switches Inverter to Reduce Torque Ripple ................................................ 26  
2.3.1 Commutation process with conventional inverter ......................................... 26  
2.3.2 Commutation process with 12-switches inverter ........................................... 29  
2.3.3 Simulation and experimental results ............................................................... 31  
2.4 Summary .............................................................................................................. 33  

### Chapter 3 Resonant DC Link Inverter ............................................................... 34

3.1 Literature Review ................................................................................................. 34  
3.1.1 Prototype of resonant DC link inverter ......................................................... 34  
3.1.2 Improved resonant DC link inverter .............................................................. 37  
3.1.3 Quasi resonant DC link inverter .................................................................... 40  
3.2 Transformer Based Resonant DC Link Inverter ................................................ 43
3.2.1 The structure of the transformer based resonant DC link inverter ..........43
3.2.2 Resonant circuit ..........................................................................................44
3.2.3 Design consideration ....................................................................................52
3.2.4 Control scheme ............................................................................................54
3.2.5 Simulation and experiment ...........................................................................57
3.3 Summary ..........................................................................................................61

Chapter 4 Resonant Pole Inverter ........................................................................63
4.1 Literature Review ...............................................................................................63
   4.1.1 Auxiliary resonant commutated pole inverter ..............................................63
   4.1.2 Y-configured auxiliary resonant snubber inverter ........................................66
   4.1.3 Delta-configured auxiliary resonant snubber inverter .....................................69
   4.1.4 Zero voltage transition resonant pole inverter ..............................................71
4.2 Special Design Resonant Pole Inverter for BDCM ............................................72
   4.2.1 Topology of the resonant pole inverter .........................................................72
   4.2.2 Operation principle ......................................................................................74
   4.2.3 Design considerations ..................................................................................81
   4.2.4 Simulation and experimental results ...............................................................85
4.3 Summary ............................................................................................................89

Chapter 5 Hybrid Control .......................................................................................91
5.1 Introduction .......................................................................................................91
5.2 Model of Drive System .....................................................................................93
5.3 Current Controller ............................................................................................95
5.4 Speed Controller .............................................................................................97
   5.4.1 PI controller for the speed loop .................................................................97
   5.4.2 Fuzzy logic controller for the speed loop ....................................................98
   5.4.3 Switching controller ..................................................................................103
5.5 Implementation and Experimental Results .....................................................105
   5.5.1 Structure of the experimental system .........................................................105
   5.5.2 Software introduction ..............................................................................106
   5.5.3 Experimental results ...............................................................................110
5.6 Summary ..........................................................................................................113

Chapter 6 SSRC Prediction Technique ...............................................................114
6.1 Introduction .....................................................................................................114
6.2 The Structure of the System ............................................................................116
6.3 Steady State Reference Current Estimator .....................................................118
6.3.1 The architecture of the SSRC estimator ......................................................... 118
6.3.2 Training the neural network ............................................................................ 122
6.4 Implementation and Experimental Results .................................................. 125
6.4.1 Structure of the experimental system .............................................................. 125
6.4.2 Software introduction ..................................................................................... 126
6.4.3 Experimental results ....................................................................................... 129
6.5 Summary ....................................................................................................... 134

Chapter 7 Conclusion and Recommendation ................................................... 135
7.1 Conclusion ................................................................................................... 135
7.2 Recommendation ............................................................................................. 137

Author’s Publications ............................................................................................... 139
Bibliography .............................................................................................................. 140
Appendix .................................................................................................................... 149
A. The ABEL Source Code for Commutation Logical Circuit ......................... 149
B. Implementation of QEP Generator Circuit ........................................................ 150
C. Main Drive Board for the Inverter ................................................................. 151
D. Solution of the Equation 3-5 .......................................................................... 153
E. Auxiliary Drive Board for Resonant DC Link Inverter .................................. 155
F. Solution of the Equation 4-6........................................................................... 157
G. Source Code of the Hybrid Controller ............................................................ 158
H. Novel Soft-Switching Inverter for Brushless DC Motor Variable Speed Drive System ................................................................. 170
I. Novel Resonant Pole Inverter for Brushless DC Motor Drive System ......... 179
J. Transformer Based Resonant DC Link Inverter for Brushless DC Motor Drive System ........................................................................................................... 188
Summary

Permanent magnet brushless DC motor (BDCM) has been widely used in industrial applications because of its low inertia, fast response, high power density, high reliability and less maintenance. It exhibits the operating characteristics of a conventional commutated DC permanent magnet motor but eliminates the mechanical commutator and brushes. Hence many problems associated with brushes are eliminated such as radio-frequency (RF) interference and sparking which is the potential source of ignition in inflammable atmosphere. BDCM is usually supplied by a hard-switching PWM inverter. However switching power losses increase with the increasing of switching frequency. In order to reduce the switching power losses, many soft switching inverters have been designed. Unfortunately, there are many drawbacks, such as high device voltage stress, large DC link voltage ripple, discrete pulse modulation, complex control scheme and so on. On the other hand, the majority of soft-switching inverters proposed in the recent decades have been aimed at the induction motor drive applications. So research on novel topologies of soft-switching inverter and special control circuit for BDCM drive systems is very important.

Soft switching operation of power inverter has attracted much attention in recent decades. In electric motor drive applications, soft-switching inverters are usually classified in three categories, namely resonant pole inverters, resonant DC link inverters and resonant AC link inverters. Resonant AC link inverter is not suitable to BDCM drives. Resonant DC link inverter and resonant pole inverter are all applicable to BDCM. In medium power applications, the resonant DC link concept offered a practical and reliable way to reduce commutation losses and to eliminate individual snubbers. Resonant pole inverter has the disadvantage containing more number of additional components than that of resonant DC link inverter, however there is no conduction path auxiliary switches and its normal operation is totally the same as hard switching inverter. In this thesis, two novel topologies of resonant DC link inverter and resonant pole inverter for BDCM drive system are proposed. These inverters possess the advantage of low switching power loss, low inductor power loss, low DC link voltage ripple, small device voltage stress, simple control scheme, eliminating a stiff DC link capacitor bank that is center-tapped.
The main idea of fuzzy logic control is to use the control ability of human being which includes experience and intuition so the nature of the controller has adaptive characteristics that can achieve robust response to a system with uncertainty, parameter variation, and load disturbance. PI controller has the advantage of fast response especially in motor starting but it will introduce overshoot and oscillation. The fuzzy logic controller can solve these problems while it is slower response than that of PI controller. To utilize the advantages of both PI and fuzzy logic controllers to provide better response than any one controller only, one hybrid controller with fuzzy logic and PI will be introduced in this thesis.

A variable speed electric drive system is normally controlled by a speed/current double closed-loop control system. In conventional control system, during starting, the current reaches its maximum value quickly which contributes to the fast response of the system as the motor runs with maximum acceleration. When the motor reaches the desired speed, the current can not be reduced to its steady state value immediately; it needs time to settle. Normally overshoot and oscillation are inevitable, settling time are multiple that of the starting time. If current reaches its maximum value immediately during starting and when the motor reaches desired speed, the current skips to its steady state value at the same time and the motor runs at the desired speed, the starting time is shortest and the settling time is only the starting time. If the motor reaches desired speed while the current can only skip to around the steady state value, there is oscillation too, but the oscillation is smaller than that of conventional control system and the settling time can be reduced greatly, too. To achieve fast starting, the key is to determine (predict) the steady state reference current (SSRC) during starting. An artificial neural network (ANN) is a computational network, consisting of a number of interconnected processing units (neurons), which is able to learn and represent the unknown dependency relationship between a set of input variables and a set of output variables of a system. By selecting the training patterns (acceleration, speed, current, DC link voltage, reference speed) which cover all conditions (i.e. various DC link voltage, various load, various moment of inertia, various reference speed) to train the neural network, the neural network is then possible to predict the SSRC according to the acceleration, speed, current, DC link voltage, reference speed of the drive system, although the predicted value may be not very accurate. Conventional controller combined with this technique holds the advantages of fast response, little overshoot, little oscillation, robust and so on.
List of Figures

Fig. 1-1. The structure of conventional voltage source three-phase inverter ............... 2
Fig. 1-2. The voltage and current waveforms of power semiconductor switch and freewheeling diode .................................................................................................................. 3
Fig. 1-3. Comparison of hard switching with soft switching ........................................ 5
Fig. 1-4. The structure of resonant DC link inverter ...................................................... 6
Fig. 1-5. The construction of resonant pole inverter ...................................................... 7
Fig. 2-1. The structure of brushless DC motor and PM DC commutator motor [78] ... 13
Fig. 2-2. BDCM with ideal waveforms of flux-density, back EMF and current [78] ... 15
Fig. 2-3. The structure of controller for BDCM drive .................................................. 17
Fig. 2-4. Quadrature encoder signals ......................................................................... 19
Fig. 2-5. A 4-bit absolute encoder disk ..................................................................... 20
Fig. 2-6. Hall signal for speed measurement ............................................................ 21
Fig. 2-7. Circuit for deriving QEP from Hall signal and waveforms ......................... 22
Fig. 2-8. Gate driver circuit for IGBT ........................................................................ 23
Fig. 2-9. Gate driver circuit for two switches in one phase leg with bootstrap supply ... 24
Fig. 2-10. Freewheeling path when switch S1 is turned off ......................................... 25
Fig. 2-11. Equivalent circuit during commutation .................................................... 27
Fig. 2-12. Waveforms of phase current, phase voltage and torque with conventional inverter .......................................................................................................................... 28
Fig. 2-13. The topology of 12-switches inverter ............................................................ 29
Fig. 2-14. Waveforms of back EMF, phase current and torque with 12-switches inverter .......................................................................................................................... 30
Fig. 2-15. Simulation result of conventional inverter versus that of 12-switches inverter .......................................................................................................................... 32
Fig. 2-16. Experimental result of conventional inverter versus 12-switches inverter ... 32
Fig. 3-1. Topology of resonant DC link inverter and its equivalent circuit ............... 35
Fig. 3-2. The topology of ACRDCLI and key waveforms ........................................ 37
Fig. 3-3. The topology of SVCRDCLI ................................................................. 39
Fig. 3-4. The topology of QPRDCLI I and its key waveforms .................................. 40
Fig. 3-5. The topology of QPRDCLI II and III ..................................................... 42
Fig. 3-6. The structure of the resonant DC link inverter for BDCM drive system
Fig. 3-7. The equivalent circuit of the inverter
Fig. 3-8. Key waveforms of the equivalent circuit
Fig. 3-9. Equivalent circuit of mode 0
Fig. 3-10. Equivalent circuit of mode 1
Fig. 3-11. Equivalent circuit of mode 2
Fig. 3-12. Equivalent circuit of mode 3
Fig. 3-13. Equivalent circuit of mode 4
Fig. 3-14. Equivalent circuit of mode 5
Fig. 3-15. Equivalent circuit of mode 6
Fig. 3-16. Equivalent circuit of mode 7
Fig. 3-17. $L_r$ and $C_r$ selection area
Fig. 3-18. Commutation logical circuit for main switches
Fig. 3-19. Control circuit for the auxiliary switches
Fig. 3-20. Waveforms of $u_{Cr}$, $i_{Lr}$, $i_{SL}/i_{DL}$, PWM, auxiliary switches gate signal under various load current
Fig. 3-21. Auxiliary switch $S_L$ gate signal generator
Fig. 3-22. Experiment results
Fig. 4-1. The equivalent circuit of one phase ARCPI
Fig. 4-2. The key waveform of ARCPI during $S_2 \rightarrow S_1$
Fig. 4-3. The structure of Y-configured auxiliary resonant snubber inverter
Fig. 4-4. The single phase version of auxiliary resonant snubber inverter
Fig. 4-5. The key waveform of auxiliary resonant snubber inverter
Fig. 4-6. The structure of $\Delta$-configured resonant snubber inverter
Fig. 4-7. The structure of resonant snubber inverter with bidirectional auxiliary switches
Fig. 4-8. The structure of the ZVT resonant pole inverter
Fig. 4-9. The resonant pole inverter for BDCM drive system
Fig. 4-10. The equivalent circuit
Fig. 4-11. Key waveforms of the equivalent circuit
Fig. 4-12. Equivalent circuit of mode 0
Fig. 4-13. Equivalent circuit of mode 1
Fig. 4-14. Equivalent circuit of mode 2
Fig. 4-15. Equivalent circuit of mode 3
Fig. 4-16. Equivalent circuit of mode 4 ................................................................. 79
Fig. 4-17. Equivalent circuit of mode 5 ................................................................. 80
Fig. 4-18. Equivalent circuit of mode 6 ................................................................. 80
Fig. 4-19. Gate signal generator circuit ................................................................. 83
Fig. 4-20. Gate signals $G_{\text{s}4,6,2}$ and $G_{\text{s}a,b,c}$ from $G_{\text{s}4,6,2}$ ...................... 84
Fig. 4-21. Boundary of $\Delta T_1$ and $\Delta T_2$ under various load current $I_0$ ......... 85
Fig. 4-22. Simulation waveforms of $i_{Lr}$, $u_{S6}$, PWM, $S_6$ and $S_b$ gate signal under various load current ................................................................. 86
Fig. 4-23. Experiment waveforms ......................................................................... 88
Fig. 4-24. Efficiency of hard switching and soft switching under various load torque (p.u.) ................................................................................................. 89
Fig. 5-1. The structure of control system ................................................................. 92
Fig. 5-2. The waveforms of back EMF and phase currents ..................................... 93
Fig. 5-3. The block diagram of the PM BDCM ...................................................... 94
Fig. 5-4. The current loop for the PM BDCM ......................................................... 95
Fig. 5-5. The simplified current loop for the PM BDCM ....................................... 96
Fig. 5-6. The speed loop for the PM BDCM ......................................................... 97
Fig. 5-7. The structure of fuzzy logic controller ..................................................... 98
Fig. 5-8. Membership function of fuzzy input variable ....................................... 100
Fig. 5-9. Membership function of fuzzy output variable $\Delta \tilde{u}$ ......................... 100
Fig. 5-10. Output of fuzzy controller $\Delta \tilde{u}$ ......................................................... 102
Fig. 5-11. Output variable $\Delta \tilde{u}$ membership function with crisp value .......... 103
Fig. 5-12. Switching speed controller ................................................................... 104
Fig. 5-13. Structure of the experimental system .................................................... 105
Fig. 5-14. Flowchart of software ........................................................................... 107
Fig. 5-15. Experimental waveforms of speed response and DC link current under PI controller only, fuzzy controller only and hybrid controller .................. 113
Fig. 6-1. Typical speed and current curve of a DC motor drive system ............... 115
Fig. 6-2. Ideal speed and current curve of a DC motor drive system .................... 115
Fig. 6-3. Near ideal speed and current curve of a DC motor drive system .......... 115
Fig. 6-4. The structure of the control system ....................................................... 117
Fig. 6-5. The architecture of SSRC estimator ....................................................... 119
Fig. 6-6. Structure of the experimental system ..................................................... 126
Fig. 6-7. Flowchart of software ........................................................................... 128
Fig. 6-8. Experimental waveforms of speed response and DC link current under PI and fuzzy control with or without SSRC prediction technique .................... 133
Fig. A-1. Schematic circuit .......................................................................................... 150
Fig. A-2. Implementation circuit ................................................................................. 150
Fig. A-3. Detail of the IC board in the main drive board............................................. 151
Fig. A-4. Main drive board for the inverter ................................................................. 152
Fig. A-5. Auxiliary drive board for resonant Dc link inverter .................................. 156

**List of Tables**

Table 2-1 Commutation logic of BDCM ................................................................. 17
Table 5-1 The fuzzy rule base .................................................................................. 101
# List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABEL</td>
<td>Advanced Boolean Equation Language</td>
</tr>
<tr>
<td>ACRDCLI</td>
<td>Actively Clamped Resonant DC Link Inverter</td>
</tr>
<tr>
<td>ADC</td>
<td>Analog to Digital Converter</td>
</tr>
<tr>
<td>AND</td>
<td>And logical gate</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>ARCPi</td>
<td>Auxiliary Resonant Commutated Pole Inverter</td>
</tr>
<tr>
<td>BDCM</td>
<td>Brushless DC Motor</td>
</tr>
<tr>
<td>CK</td>
<td>Synchronous Pulse between BDCM Commutation Circuit and Control Circuit</td>
</tr>
<tr>
<td>CPLD</td>
<td>Complex Programmer Logical Device</td>
</tr>
<tr>
<td>CSI</td>
<td>Current Source Inverter</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processor</td>
</tr>
<tr>
<td>E²PROM</td>
<td>Electrically Erasable Programmable Read-Only Memory</td>
</tr>
<tr>
<td>EMC</td>
<td>Electro Magnetic Compatibility</td>
</tr>
<tr>
<td>EMF</td>
<td>Electromotive Force</td>
</tr>
<tr>
<td>EMI</td>
<td>Electro Magnetic Interference</td>
</tr>
<tr>
<td>GAL</td>
<td>Gate Array Logic</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated Gate Bipolar Transistor</td>
</tr>
<tr>
<td>IPM</td>
<td>Intelligent Power Module</td>
</tr>
<tr>
<td>JEDEC</td>
<td>Joint Electron Device Engineering Council</td>
</tr>
<tr>
<td>LED</td>
<td>Light-emitting Diode</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal Oxide Semiconductor Field Effect Transistor</td>
</tr>
<tr>
<td>MRC</td>
<td>Multi-element Resonant Converter</td>
</tr>
<tr>
<td>NB</td>
<td>Negative big</td>
</tr>
<tr>
<td>NM</td>
<td>Negative medium</td>
</tr>
<tr>
<td>NOT</td>
<td>Not logical gate</td>
</tr>
<tr>
<td>NS</td>
<td>Negative small</td>
</tr>
<tr>
<td>OR</td>
<td>Or logical gate</td>
</tr>
<tr>
<td>PB</td>
<td>Positive big</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>PI</td>
<td>Proportional Integral</td>
</tr>
<tr>
<td>PM</td>
<td>Positive medium</td>
</tr>
<tr>
<td>PRC</td>
<td>Parallel-Resonant Converter</td>
</tr>
<tr>
<td>PS</td>
<td>Positive small</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>PM</td>
<td>Permanent Magnet</td>
</tr>
<tr>
<td>QEP</td>
<td>Quadrature Encoder Pulse</td>
</tr>
<tr>
<td>QRDCLI</td>
<td>Quasi Resonant DC Link Inverter</td>
</tr>
<tr>
<td>QPRDCLI</td>
<td>Quasi Parallel Resonant DC Link Inverter</td>
</tr>
<tr>
<td>QRC</td>
<td>Quasi-Resonant Converter</td>
</tr>
<tr>
<td>RAM</td>
<td>Random-access Memory</td>
</tr>
<tr>
<td>RDCLI</td>
<td>Resonant DC Link Inverter</td>
</tr>
<tr>
<td>RF</td>
<td>Radio frequency</td>
</tr>
<tr>
<td>RPI</td>
<td>Resonant Pole Inverter</td>
</tr>
<tr>
<td>SCI</td>
<td>Serial Communications Interface</td>
</tr>
<tr>
<td>SMPS</td>
<td>Switching Mode Power Supply</td>
</tr>
<tr>
<td>SPRC</td>
<td>Series-Parallel Resonant Converter</td>
</tr>
<tr>
<td>SRC</td>
<td>Series-Resonant Converter</td>
</tr>
<tr>
<td>SRM</td>
<td>Switch Reluctance Motor</td>
</tr>
<tr>
<td>SSRC</td>
<td>Steady State Reference Current</td>
</tr>
<tr>
<td>SSRS</td>
<td>Steady State Reference Speed</td>
</tr>
<tr>
<td>SVCRDCLI</td>
<td>Source Voltage Clamped Resonant DC Link Inverter</td>
</tr>
<tr>
<td>TG</td>
<td>Tachometer generator</td>
</tr>
<tr>
<td>UPS</td>
<td>Uninterruptible power supply</td>
</tr>
<tr>
<td>VSI</td>
<td>Voltage Source Inverter</td>
</tr>
<tr>
<td>Z</td>
<td>Zero</td>
</tr>
<tr>
<td>ZCS</td>
<td>Zero Current Switching</td>
</tr>
<tr>
<td>ZVS</td>
<td>Zero Voltage Switching</td>
</tr>
<tr>
<td>ZVT</td>
<td>Zero Voltage Transition</td>
</tr>
</tbody>
</table>
### List of Principle Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a$</td>
<td>Transformer turn ratio 1: $n$</td>
</tr>
<tr>
<td>$a_1(n) \sim a_5(n)$</td>
<td>Input of the neural network</td>
</tr>
<tr>
<td>$a_1A_1, a_2A_2$</td>
<td>Coil in BDCM</td>
</tr>
<tr>
<td>act</td>
<td>conventional controller active signal</td>
</tr>
<tr>
<td>$A_o(s)$</td>
<td>The transfer function of speed loop</td>
</tr>
<tr>
<td>$B$</td>
<td>Viscous friction coefficient</td>
</tr>
<tr>
<td>$b_1(n), b_2(n), b_3(n)$</td>
<td>Input of the neural network</td>
</tr>
<tr>
<td>$B_g$</td>
<td>Air gap flux density</td>
</tr>
<tr>
<td>$C_{bs}$</td>
<td>Bootstrap capacitor</td>
</tr>
<tr>
<td>$C_c$</td>
<td>Clamping capacitance in ACRDCL inverter</td>
</tr>
<tr>
<td>$C_r$</td>
<td>Resonant capacitance</td>
</tr>
<tr>
<td>$C_{r1} \sim C_{r6}$</td>
<td>Snubber capacitor</td>
</tr>
<tr>
<td>$C_{ra}, C_{rb}, C_{rc}$</td>
<td>Snubber capacitor</td>
</tr>
<tr>
<td>$D_1 \sim D_6$</td>
<td>Build in freewheeling diode of main switches in an inverter</td>
</tr>
<tr>
<td>$D_a, D_b$</td>
<td>Auxiliary diode in QPRDCL inverter I</td>
</tr>
<tr>
<td></td>
<td>Build in freewheeling diode of auxiliary switch $S_a$ and $S_b$</td>
</tr>
<tr>
<td>$D_{bs}$</td>
<td>Bootstrap diode</td>
</tr>
<tr>
<td>$D_{cl}$</td>
<td>Clamping diode</td>
</tr>
<tr>
<td>$D_{fg}, D_r$</td>
<td>Auxiliary diode in special design RPI</td>
</tr>
<tr>
<td>$D_L$</td>
<td>Build in freewheeling diode of auxiliary switch $S_L$</td>
</tr>
<tr>
<td>$E$</td>
<td>Back EMF of BDCM</td>
</tr>
<tr>
<td>$e$</td>
<td>Speed error in controller</td>
</tr>
<tr>
<td>$\bar{e}$</td>
<td>Speed error fuzzy variable</td>
</tr>
<tr>
<td>$\tilde{e}$</td>
<td>Acceleration error fuzzy variable</td>
</tr>
<tr>
<td>$e_1, e_2$</td>
<td>Speed error membership function boundary</td>
</tr>
<tr>
<td>$\dot{e}_1, \dot{e}_2$</td>
<td>Acceleration error membership function boundary</td>
</tr>
<tr>
<td>$e, e_a, e_b, e_c$</td>
<td>Instantaneous phase back EMF of BDCM</td>
</tr>
<tr>
<td>$e_{a1}, e_{a2}$</td>
<td>Instantaneous phase back EMF of coil $a_1A_1$ and $a_2A_2$</td>
</tr>
<tr>
<td>$e_h, e_l$</td>
<td>Speed error threshold</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>$e_i$</td>
<td>Current error</td>
</tr>
<tr>
<td>$e_{pu}$</td>
<td>Normalized speed error</td>
</tr>
<tr>
<td>$\dot{e}_{pu}$</td>
<td>Normalized acceleration error</td>
</tr>
<tr>
<td>$H_i(s)$</td>
<td>The transfer function of current loop</td>
</tr>
<tr>
<td>$G_1 \sim G_6$</td>
<td>The output of Monostable flip-flop $M_1 \sim M_6$</td>
</tr>
<tr>
<td>$G_i(s)$</td>
<td>Current controller</td>
</tr>
<tr>
<td>$G_{S1} \sim G_{S6}$</td>
<td>Gate signal for main switches $S_1 \sim S_6$</td>
</tr>
<tr>
<td>$G_{Sa}, G_{Sb}, G_{Sc}$</td>
<td>Gate signal for auxiliary switches $S_a, S_b, S_c$</td>
</tr>
<tr>
<td>$I_0$</td>
<td>Equivalent load current during resonant</td>
</tr>
<tr>
<td>$I_{0\text{max}}$</td>
<td>Maximum load current</td>
</tr>
<tr>
<td>$i, i_a, i_b, i_c$</td>
<td>Instantaneous phase current of BDCM</td>
</tr>
<tr>
<td>$i^*$</td>
<td>Reference current</td>
</tr>
<tr>
<td>$I_{\text{avg}}$</td>
<td>Average value of $i_{\text{sum}}$</td>
</tr>
<tr>
<td>$I_{\text{boost}}$</td>
<td>Preset current threshold in ARCP inverter</td>
</tr>
<tr>
<td>$i_{cr}$</td>
<td>Coarse reference current</td>
</tr>
<tr>
<td>$i_{cs}$</td>
<td>Coarse steady state reference current</td>
</tr>
<tr>
<td>$i_{cs}(n)$</td>
<td>Coarse steady state reference current calculated in one sample period</td>
</tr>
<tr>
<td>$i_{DL}$</td>
<td>Current of freewheeling diode $D_L$</td>
</tr>
<tr>
<td>$I_{\text{offset}}$</td>
<td>Current offset</td>
</tr>
<tr>
<td>$i_{Lr}$</td>
<td>Current of resonant inductor</td>
</tr>
<tr>
<td>$i_{LS}$</td>
<td>Secondary winding current</td>
</tr>
<tr>
<td>$i_{Lra}, i_{Lrb}, i_{Lrc}$</td>
<td>Current of resonant inductor $L_{ra}$, $L_{rb}$ and $L_{rc}$</td>
</tr>
<tr>
<td>$i_{Lr-m}$</td>
<td>Peak value of resonant inductor current</td>
</tr>
<tr>
<td>$I_{Lr0}, I_{Lr1}, I_{Lr2}$</td>
<td>Preset inductor current level</td>
</tr>
<tr>
<td>$I_M$</td>
<td>Current of load</td>
</tr>
<tr>
<td>$I_{PR}$</td>
<td>Peak reverse recovery current of freewheeling diode</td>
</tr>
<tr>
<td>$I_{PT}$</td>
<td>Turning on peak current of power semiconductor switch</td>
</tr>
<tr>
<td>$I_R$</td>
<td>Rated phase current</td>
</tr>
<tr>
<td>$i_{S1} \sim i_{S6}$</td>
<td>Current of main switch $S_1 \sim S_6$</td>
</tr>
<tr>
<td>$i_{SL}$</td>
<td>Current of auxiliary switch $S_L$</td>
</tr>
<tr>
<td>$i_{\text{sum}}$</td>
<td>Absolute sum of phase currents</td>
</tr>
<tr>
<td>$i^*_s$</td>
<td>Steady state reference current</td>
</tr>
<tr>
<td>$J$</td>
<td>Moment of inertia</td>
</tr>
</tbody>
</table>
\( k \) Armature constant \( 4N_{ph}/\pi \)

\( k_c \) Clamping factor in ACRDCL inverter

\( K_C \) Equivalent gain of the inverter for BDCM

\( K_I \) The gain of current sensor

\( K_{si} \) The gain of current controller

\( K_{so} \) The gain of speed controller

\( K_{eo} \) The gain of speed sensor

\( l \) Rotor axial length

\( L, L_{eq}, L_a, L_b, L_c \) BDCM phase inductance

\( L_{eq} \) Equivalent inductance \((L-M)/2\)

\( L_{d1} \) Primary winding leakage inductance

\( L_{d2} \) Secondary winding leakage inductance

\( L_r \) Resonant inductance

\( L_{ra}, L_{rb}, L_{rc} \) Branch resonant inductance in resonant pole inverter

\( M \) Mutual inductance of BDCM

\( M_1 \sim M_6 \) Monostable flip-flop

\( N_1 \) The turn number of full-pitch coils in BDCM

\( net_j^1 \) The input of the \( j^{th} \) node in the 1\(^{st}\) hidden layer

\( net_k^2 \) The input of the \( k^{th} \) node in the 2\(^{nd}\) hidden layer

\( net_1^3 \) The input of only neuron in the output layer

\( N_{ph} \) Number of turns in series per phase

\( p \) Derivational operator \( d/dt \)

\( P \) Power

\( r_1 \) Rotor radius

\( R, R_a, R_b, R_c \) BDCM phase resistance

\( R_{eq} \) Equivalent resistance \( R/2 \)

\( R_{LR} \) Resistance of resonant inductor

\( S_1 \sim S_6 \) Main switches in an inverter

\( S_a, S_b, S_c \) Auxiliary switch

\( S_c \) Clamp switch in ACRDCL inverter

\( sel \) Controller selection signal

\( S_h \) Upper switch in a phaseleg

\( S_l \) Lower switch in a phaseleg
$S_L$  Auxiliary switch in main conduction path  
$S_r$  Auxiliary switch in resonant DC link inverter  
$T, T_e$  Electromagnetic torque of BDCM  
$T_L$  Load torque  
$t_{on}$  Turn on time of a switch  
$t_{off}$  Turn off time of a switch  
$T_r$  Resonant period  
$T_w$  DC link voltage rising transition time  
$u_1, u_2, u_3$  Fuzzy controller output membership function boundary  
$u_{Cr}$  Voltage of resonant capacitor  
$u_{S6}$  Voltage drop of main switch $S_6$  
$v, v_a, v_b, v_c$  Instantaneous phase voltage of BDCM  
$v_{bs}$  Bootstrap capacitor voltage  
$v_{Cr1} \sim v_{Cr6}$  Snubber capacitor voltage  
$v_{dc}$  DC link voltage  
$v_o$  Output voltage  
$V_{FT}$  Conduction voltage drop of power semiconductor switch  
$V_{FD}$  Conduction voltage drop of freewheeling diode  
$V_R$  Rated voltage  
$V_S$  Voltage of DC power supplies  
$w_{ji}^1$  The weight between the $j^{th}$ node in the $1^{st}$ hidden layer and the $i^{th}$ node in the input layer  
$w_{kj}^2$  The weight between the $k^{th}$ node in the $2^{nd}$ hidden layer and the $j^{th}$ node in the $1^{st}$ hidden layer  
$w_{1k}^3$  The weight between the $k^{th}$ node in the $2^{nd}$ hidden layer and the only one neuron in the output layer  
$x_{1}(n) \sim x_{5}(n)$  Input of the neural network  
$y_j^1$  The output of the $j^{th}$ node in the $1^{st}$ hidden layer  
$y_k^2$  The output of the $k^{th}$ node in the $2^{nd}$ hidden layer  
$y_1^3$  The output of only neuron in the output layer  
$\alpha$  Momentum gain  
$\tau$  Resonant circuit time constant  
$\tau_e$  Electrical time constant
\( \tau_{em} \) Electromechanical time constant
\( \tau_m \) Mechanical time constant
\( \tau_{si} \) The integral time constant
\( \tau_{sto} \) The integral time constant of speed controller
\( \omega_{cs} \) Critical frequency
\( \dot{\omega}_{\text{max}} \) Possible maximum acceleration
\( \omega_r \) Natural angular resonance frequency
\( \omega^*, \omega* \) Reference speed
\( \dot{\omega}_r \) Motor acceleration
\( \omega_R \) Rated rotor speed
\( \theta_r \) Rotor position
\( \phi \) Flux
\( \varphi_{cs} \) Phase margin
\( \psi_1, \psi_2 \) Flux linkage
\( \psi_{\text{imax}} \) Maximum flux linkage
\( \delta \) PWM duty
\( \Delta t_1 \sim \Delta t_8 \) Duration of the operation mode 1 \(
\sim 8 \) in soft-switching inverter
\( \Delta T_u, \Delta T_h, \Delta T_d \) Pulse width of auxiliary switch control signal
\( \Delta T_1, \Delta T_2, \Delta T_3 \) Pulse width of auxiliary switch control signal
\( \Delta u \) Crisp incremental command
\( \Delta \tilde{u} \) Incremental command fuzzy variable
\( \Delta w \) Pulse width of Hall signal
\( \Delta \delta \) Incremental PI current control output
\( \mu(,) \) Membership function
\( \eta \) Learning rate of the neural network
Chapter 1 Introduction

1.1 Background

Permanent magnet (PM) brushless DC motor (BDCM) [78, 81] has been widely used in industrial applications because of its low inertia, fast response, high power density, high reliability and less maintenance. It exhibits the operating characteristics of a conventional DC motor but eliminates the mechanical commutator and brushes. The stator structure is similar to that of a polyphase AC induction motor but with PM mounted on the rotor for excitation. This has the advantage of eliminating the use of commutator and brushes which are present in conventional DC motor. Hence many problems associated with brushes are eliminated such as radio-frequency (RF) interference and sparking which is the potential source of ignition in inflammable atmosphere. The brushless configuration provides more cross sectional area for armature windings and produces greater torque and higher efficiency with the absence of brush friction. This also allows reduction of the motor length to provide greater torque/inertia ratio.

BDCM is usually supplied by a hard-switching Pulse-width-modulation (PWM) inverter. The performance of an inverter is dependent on the switching frequency as it determines the value and size of the reactive components in the inverter. Thus, high frequency operation of the inverter is desired. However, operation at high frequency results in higher switching power losses and higher switching stresses caused by the circuit parasitics (stray inductance, junction capacitance). In order to reduce the switching power losses, many soft switching inverters have been designed. Unfortunately, there are many drawbacks, such as high device voltage stress, large DC link voltage ripple, discrete pulse modulation, complex control scheme and so on. On the other hand, the majority of soft-switching inverters proposed in recent decades have been aimed at the induction motor drive applications. [98, 99, 101] So research on the novel topology of soft-switching inverter and special control circuit for BDCM drive systems is very important.
1.2 Conventional Voltage Source Inverter

DC-to-AC converters are known as inverters [63]. The function of the inverter is to change a DC input voltage to a symmetrical AC output voltage of desired magnitude and frequency. With the improvement of power semiconductor switches such as insulated gate bipolar transistors (IGBTs), metal oxide-semiconductor field effect transistors (MOSFETs), intelligent power module (IPM), conventional voltage source inverter (VSI) are widely used in industrial applications, e.g. variable speed AC motor drives, induction heating, standby power supplies, uninterruptible power supplies (UPS). In small to medium power ranges, the VSI is superior than current source inverter (CSI) in smaller size, lower power losses and higher efficiency. The construction of a conventional voltage source three-phase inverter is shown in Fig. 1-1. There is diode bridge rectifier connected to AC power supplies, electrolytic capacitor as filter component, six power semiconductor switches inverter (including build-in freewheeling diodes, snubber circuit), gate driver circuit and controller. The current, speed and/or position feedback signal of the motor is usually fed to the controller.

![Diagram of conventional voltage source three-phase inverter](image)

Fig. 1-1. The construction of conventional voltage source three-phase inverter

Power semiconductor switches have non-zero turn-on and turn-off times and thus there is a finite time during the transitions wherein the switches are carrying a significant current while a large voltage is applied across it. This results in large energy dissipation. This energy loss increases with the increasing of switching frequency. The typical voltage and
current waveforms during one cycle of a power semiconductor switch and freewheeling diode are shown in Fig. 1-2 (linear for convenient). Suppose the load current flows through one lower freewheeling diode (e.g. \( D_4 \)) of the inverter before \( t_1 \), one upper power semiconductor switch (e.g. \( S_1 \)) turned on at \( t_1 \). During \( t_1 \) and \( t_2 \) load current is shifted from freewheeling diode (\( D_4 \)) to power semiconductor switch (\( S_1 \)), but there is significant reverse recovery current before the freewheeling diode can block reverse voltage. The reverse recovery current also flows through power semiconductor switch (\( S_1 \)), so the switching device current is the sum of reverse recovery current and load current. The voltage drop of power semiconductor switch is the same as that of DC link \( V_S \) before \( t_2 \) (actually it is the sum of DC link voltage \( V_S \) and forward voltage drop of freewheeling diode \( V_{FD} \) which is relatively small and can be neglected), thus the power loss of the switching device is high during \( t_1 \) and \( t_2 \) (i.e. high turning on power loss). Similarly there are significant switching power losses of the freewheeling diode during \( t_2 \) and \( t_3 \).

Then the power semiconductor switch (\( S_1 \)) is turned off at \( t_4 \). Load current is shifted from switching device to freewheeling diode (\( D_4 \)). The voltage drop of power semiconductor switch rises from conduction voltage drop (several volts) to that of DC link before \( t_5 \). From \( t_5 \) and \( t_6 \) the switching device current decays to zero, but the voltage drop of power

![Fig. 1-2. The voltage and current waveforms of power semiconductor switch and freewheeling diode](image)

- \( V_S \) Voltage of DC power supplies
- \( V_{FT} \) Conduction voltage drop of power semiconductor switch
- \( V_{FD} \) Conduction voltage drop of freewheeling diode
- \( I_M \) Current of load
- \( I_{PR} \) Peak reverse recovery current of freewheeling diode
- \( I_{PT} \) Turning on peak current of power semiconductor switch
Chapter 1 Introduction

semiconductor switch is the same as that of DC link, so the power loss of the switching device is high during $t_4$ and $t_6$ (i.e. high turning off power loss).

Turning on and turning off power losses are called switching power losses. It is well known that with higher switching frequency, the size of electromagnetic energy storage components like filter inductors and capacitors can be reduced significantly. The performance of the inverter is improved and the output current is more smooth. However the switching power loss increases significantly while the conduction power loss is almost the same. Thus, the total power loss increases significantly. For an IGBT in normal work condition, when the switching frequency is higher than 10kHz, the switching power losses is greater than conduction power losses. The switching power loss is primary for the higher switching frequency inverters.

Besides high power loss, the conventional hard switching has also the following drawbacks [63]:

- **Second breakdown**: there is turning off current spike for inductive load or turning on voltage spike for capacitive load with hard switching inverter, which can produce excessive localized hot spots to damage power semiconductor switch.

- **Severe EMI**: In hard switching inverter high $dv/dt$ and $di/dt$ induce voltage and current oscillations in parasitic capacitors and inductors during switching transitions. These oscillations result in higher peak current and voltage in the power switches and thus the switching power losses increase. These oscillations can also produce severe EMI which can interfere with other parts of the circuit or surrounding electronic equipment.

- **Increase of power semiconductor switch presses**: In order to decrease $dv/dt$ and $di/dt$, snubber circuit is obligatory, but the snubber can not reduce power losses while it will increase current press on the power semiconductor switches.

- **Noise**: When the switching frequency is within audio spectrum, it may produce severe acoustic noise.
1.3 Introduction to Soft-switching Inverter

Soft switching has been proven to be an effective means of reducing switching losses and for attaining higher overall efficiencies. Various soft-switching techniques have been developed in recent decades. Soft-switching techniques force the switch voltage or current to zero before the device switching, thus avoiding current and voltage overlap during the switching transition. It can be achieved by either zero-voltage switching (ZVS) or zero-current switching (ZCS). ZVS consists of turning on/off the switches while the voltage across them is zero. ZCS consists of turning on/off the switches when the current through them is zero.

![Diagram showing hard switching and soft switching](image)

(a) Hard switching  
(b) Soft switching

Fig. 1-3. Comparison of hard switching with soft switching

ZVS or ZCS can be accomplished by adding small undamped LC networks at strategic places in the inverter circuit and gating the power semiconductor switches on and off at the right opportunities. With soft-switching technology much demerit related to the hard switching can be reduced: reduction of switching power loss, risk of second breakdown, noise and eliminate snubber circuit. Lowering the inverter's overall losses can also make it possible to reduce its size by using smaller cooling apparatus. The switching waveforms in the conventional hard switching inverter and soft switching inverter are shown in Fig. 1-3. From the figure we can see that overlap of voltage drop and current of the soft-switching inverter is reduced, so the switching power loss can be reduced. ZCS turn on and ZVS turn off are similar to that of Fig. 1-3(b).
Soft switching technique was first introduced in DC/DC converter from the beginning of 1980s, such as Quasi-Resonant Converter (QRC) [25, 45, 46], Series Resonant Converter (SRC) [7, 83], Parallel Resonant Converter (PRC) [2, 93], Series-Parallel Resonant Converter (SPRC) [3, 69, 84], Multi-element Resonant Converter (MRC) [1, 35, 77, 94]. In 1986, D.M. Divan introduced soft switching technique in DC/AC inverter. In electric motor drive applications, soft-switching inverters are usually classified in three categories, namely resonant DC link inverters (RDCLI), resonant pole inverters (RPI) and resonant AC link inverters [6, 58].

1) **Resonant DC Link Inverter**

The structure of a resonant DC link inverter [17] is shown in Fig. 1-4. LC resonant circuit was added between DC power supply and 6-switches inverter. All power semiconductor switches’ snubber circuit can be eliminated. Resonance occurs periodically or at controlled instant to make DC link voltage reach zero temporarily during which the power semiconductor switches at the output section could be switched on or off under ZVS condition.

![Fig. 1-4. The structure of resonant DC link inverter](image)

2) **Resonant Pole Inverter**

The structure of a resonant pole inverter [18] is shown in Fig. 1-5. There is a so-called resonant pole that comprises a resonant inductor and a pair of resonant capacitors at each phase leg. These capacitors are directly connected in parallel with the main switches in order to achieve ZVS. In contrast to resonant DC link inverters, no resonance is produced
at the DC link. Instead of that, the resonant transitions occur separately at each resonant pole, only when the switches in the output stage need to be commutated. The DC link voltage remains unaffected during the resonant transitions. Therefore, the main switches in the inverter phase legs can be commutated totally independent from each other and we can choose the commutation instant freely. One of the disadvantages of the resonant pole inverter is that relatively more auxiliary switches are needed than that of resonant DC link inverter.

![Resonant Pole Inverter Diagram](image)

**Fig. 1-5. The structure of resonant pole inverter**

### 3) Resonant AC Link Inverter

The structure of the resonant AC link inverter [58] is similar to the resonant DC link inverter. The resonant tank in the AC link produces a high-frequency alternating voltage or a high-frequency alternating current. The switches of both the source-side and the load-side inverters are turned on and off when the voltage or the current in the AC link passes through zero, minimizing the switching losses.

### 1.4 Controller

Fuzzy logic, or fuzzy set theory, was first presented by Zadeh [53]. The main idea of fuzzy logic control [26, 48, 53] is to use the control ability of human being which includes experience and intuition, so the nature of the controller has adaptive characteristics that can achieve robust response to a system with uncertainty, parameter variation, and load disturbance. PI controller has the advantage of fast response especially in motor starting, but it will introduce overshoot and oscillation. The fuzzy logic controller can solve these problems while it is slower response than that of PI controller.
Chapter 1 Introduction

To utilize the advantages of both PI and fuzzy logic controllers to provide better response than any one controller only, a hybrid controller with fuzzy logic and PI will be introduced in this thesis.

A variable speed electric drive system is normally controlled by a speed/current double closed-loop controller. In conventional control system, during starting, the current reaches its maximum value quickly which contributes to the fast response of the system as the motor runs with maximum acceleration. When the motor reaches the desired speed, the current can not be reduced to its steady state value immediately; it needs time to settle. Normally overshoot and oscillation are inevitable, settling time is multiple that of the starting time. If current reaches its maximum value immediately during starting and when the motor reaches desired speed, the current skips to its steady state value at the same time and the motor runs at the desired speed, the starting time is shortest and the settling time is only the starting time. If the motor reaches desired speed while the current can only skip to around the steady state value, there is oscillation too, but the oscillation is smaller than that of conventional control system and the settling time can be reduced greatly, too.

To achieve fast starting, the key is to determine (predict) the steady state reference current during starting. An artificial neural network (ANN) [5, 10, 15] is a computational network, consisting of a number of interconnected processing units (neurons), which is able to learn and represent the unknown dependency relationship between a set of input variables and a set of output variables of a system. By selecting the training patterns (acceleration, speed, current, DC link voltage, reference speed) which cover all conditions (i.e. various DC link voltage, various load, various moment of inertia, various reference speed) to train the neural network, the neural network is then possible to predict the SSRC according to the acceleration, speed, current, DC link voltage, reference speed of the drive system, although the predicted value may be not very accurate.

1.5 Objectives and Major Contributions

The objectives of this research work are as follows:
Chapter 1 Introduction

- To conduct a literature survey on soft-switching inverter and find possible topology which is applicable to BDCM drive system;

- To survey the current close-loop controller for variable speed drive system and offer new solutions to improve the performance of the system.

The major contributions are:

- Find a transformer based resonant DC link inverter which can generate DC link voltage notches during chopping switches commutation to guarantee all switches working in zero voltage switching condition. The inverter has the advantages: all switches work under soft-switching condition; voltage stress on all the switches would be not greater than DC supply voltage; only one DC link voltage notch is needed during one PWM cycle, and the switching frequency of the auxiliary switches would not higher than PWM frequency; $\frac{dv}{dt}$ and $\frac{di}{dt}$ are reduced significantly to reduce EMI, does not need center taped DC link capacitor; simple auxiliary switches control scheme and so on.

- Propose a novel resonant pole inverter, which is special to brushless DC motor drive system. The inverter possesses the advantages: low switching power loss; low inductor power loss; all switches work under soft-switching condition; voltage stress on all the switches would be not greater than DC supply voltage; The normal operation of the inverter is entirely the same as hard switching inverter; simple auxiliary switches control scheme; $\frac{dv}{dt}$ and $\frac{di}{dt}$ are reduced significantly to reduce EMI and so on.

- A hybrid controller for the PM BDCM drive system is proposed which holds the advantages of both PI controller and fuzzy controller, i.e. fast response, little overshoot, little oscillation, robust to system parameters variation, stability and so on.

- Propose a steady state reference current (SSRC) prediction technique based on neural network for PM BDCM drive system. Conventional controller combines with this technique can improve system response speed, reduce overshoot and oscillation.
1.6 Organization of this thesis

This thesis comprises the brief describing the operation principle of BDCM, literature review of resonant DC link inverter and resonant pole inverter, analysis of proposed novel resonant DC link inverter and resonant pole inverter for BDCM drive system. Simulation and experiment are also proposed to verify the analysis. This thesis also proposes a fuzzy and PI hybrid controller that holds the advantages of PI and fuzzy logic controller. Then steady state reference current (SSRC) prediction technique will be introduced, Conventional controller with this technique holds the advantages of fast response, little overshoot, robust and so on. There are seven chapters in this thesis, the first chapter is the introduction of research work which contains background, overview of soft-switching inverter and major contribution of this thesis. The main contents are presented in Chapter 2, 3, 4, 5 and 6, respectively.

In Chapter 2, the operation principle of BDCM will be introduced first, the controller of the BDCM will be briefly described, then one novel method to reduce torque ripple will be proposed.

In Chapter 3, known resonant DC link inverter topologies will be reviewed, then a transformer based resonant DC link inverter for BDCM drive system will be proposed. The operation principle and control scheme of the inverter are analyzed. Simulation and experimental results are proposed to verify the theoretical analysis.

In Chapter 4, literature review of resonant pole inverter will be proposed first, then a special design resonant pole inverter for BDCM drive system will be offered. The operation principle of the inverter is analyzed. Simulation and experimental results are proposed to verify the theoretical analysis.

In Chapter 5, a hybrid controller for the PM BDCM drive system which holds the advantages of both PI and fuzzy logic controller will be proposed. The design of the controller will be described in detail. Experimental results are given to verify the feasibility of the controller.
In Chapter 6, a steady state reference current (SSRC) prediction technique based on neural network for PM BDCM drive system will be proposed. The SSRC prediction technique is described in detail. Hardware implementation and experimental results are proposed.

Finally, a summary of the research work and some suggestions for further developments are given in chapter 7.
Chapter 2 Brushless DC Motor

The earliest prototype of a brushless DC motor (BDCM) was built up in 1962 when T.G. Wilson and P.H. Trickey made a “DC Machine with Solid State Commutation”. It was subsequently developed as a high torque, high response drive for specialty applications such as tape and disk drives for computers, robotics and positioning systems, and in aircraft. With the advent of powerful permanent magnetic materials and power semiconductor switches in the early to mid 1980s, the ability to build a high power BDCM became reality. Today, almost all of the major motor manufacturers make BDCM in at least some horsepower sizes and makes BDCM from 1/2 to 500 hp as a complete product line.

2.1 Operation Principle

The structure of BDCM [78, 81] is shown in its most usual form in Fig. 2-1 alongside the PM DC commutator motor. The stator structure is similar to that of a polyphase AC induction motor. The function of the magnet is the same in both the BDCM and the DC commutator motor. In both cases the air gap flux is fixed by the magnet and little affected by armature current. BDCM works on the same principle as DC commutator motor but the motor is built “inside out” with the fields (which are permanent magnets) on the motor rotor and the “armature” on the outside. The fields magnets and the “armature” stays stationary. The action of the commutator (which no longer needs to exist since the winding is now stationary) is implemented by a shaft encoder and a controller. The shaft encoder (which is mostly a Hall sensor) is to sense the magnetic position of the fields on the shaft. The controller determines which winding(s) should be active according magnetic position to produce maximum torque. In this way the motor and controller act in the same way as a DC commutator motor without the brushes. The controller is made up of an inverter which is similar in topology to the inverter used in induction motor drives if the BDCM has three phases.
Chapter 2 Brushless DC motor

The most obvious advantage of the brushless configuration is the removal of the brushes. Brush maintenance is no longer required, and many problems associated with brushes are eliminated. For example, brushes tend to produce RFI (radio-frequency interference) and the sparking associated with them is a potential source of ignition in inflammable atmospheres. The absence of commutator and brush reduces the motor length. This is useful not only as a simple space saving, but also as a reduction in the length between bearings. So that for a given stack length the lateral stiffness of the rotor is greater, permitting higher speeds or a longer active length/diameter ratio. This is important in servo-type drives where a high torque/inertia ratio is required. The removal of the commutator reduces the inertia still further. Another advantage of the brushless configuration is that the stator is outside and more cross-sectional area is thus available for the windings. At the same time the conduction of heat through the frame is improved. Generally an increase in the electric loading is possible providing a greater specific torque.

The basic torque and back EMF equations of the BDCM are quite simple and resemble those of the DC commutator motor. A simple “concept machine” is shown in Fig. 2-2(a). The two-pole magnet has a pole arc of 180 degrees. The air gap flux-density waveform is ideally a square wave as shown in Fig. 2-2(b). In practice, fringing causes the corners to be somewhat rounded. The coordinate axes have been chosen so that the centre of a north pole of the magnet is aligned with the x-axis, i.e. at $\theta=0$. The stator has 12 slots and a three-phase winding. Thus there are two slots per pole per phase. Each phase winding
consists of two adjacent full-pitch coils of \( N_1 \) turns each, whose axes are displaced from one another by 30 degrees. The winding is a single-layer, and any slot contains \( N_1 \) conductors from only one phase winding. Consider the flux-linkage \( \psi_1 \) of coil \( a_1A_1 \) as the rotor rotates which is shown in Fig. 2-2(c). The flux-linkage varies linearly with rotor position because the air gap flux-density set up by the magnet is constant over each pole-pitch of the rotor. Maximum positive flux-linkage occurs at 0° and negative flux-linkage at 180°. By integrating the flux-density around the air gap, the maximum flux-linkage of the coil can be found as

\[
\psi_{1\text{max}} = N_1 \int B(\theta) r_1 \, d\theta \cdot l = N_1 B_g \pi r_1 l
\]

(2-1)

Where \( B_g \) is the air gap flux-density, \( r_1 \) is the rotor radius, \( l \) is the rotor axial length. The variation with \( \theta \) as the rotor rotates from 0 to 180° is given by

\[
\psi_1(\theta) = \left[ 1 - \frac{\theta}{\pi/2} \right] \psi_{1\text{max}}
\]

(2-2)

The back EMF induced in coil \( a_1A_1 \) is given by

\[
e_1 = -\frac{d\psi_1}{dt} = -\frac{d\psi_1}{d\theta} \frac{d\theta}{dt} = -\omega \frac{d\psi_1}{d\theta} = 2N_1 B_g l r_1 \omega
\]

(2-3)

This represents the magnitude of the square-wave back EMF. The back EMF \( e_{a1} \) induced by coil \( a_1A_1 \) is shown in Fig. 2-2(d). The back EMF \( e_{a2} \) induced in the second coil \( a_2A_2 \) is identical, but retarded in phase by 30°, which is shown in Fig. 2-2(e). If the two coils are connected in series, the total phase back EMF \( e_a \) is the sum of the two separate coil back EMF, which is shown in Fig. 2-2(f). The basic effect of distributing the winding into two coils is to produce a stepped back EMF waveform. In practice, fringing causes its corners to be rounded, as shown by the dotted lines. Then the back EMF waveform has the “trapezoidal” shape that is characteristic of the BDCM. With 180° magnet arcs and two slots per pole per phase, the flat top of this waveform is ideally 150° wide, but in practice the fringing field reduces this to a somewhat smaller value, possibly as little as 120°. The magnitude of the flat-topped phase back EMF \( e \) is given by

\[
e = 2N_{ph} B_g l r_1 \omega
\]

(2-4)

Where \( N_{ph} \) is the number of turns in series per phase.
Fig. 2-2. BDCM with ideal waveforms of flux-density, back EMF and current [78]. (a) Motor showing two coils of one phase, (b) Magnet flux-density around the air gap. (c) Flux-linkage of coils 1 and 2 as the rotor rotates, (d) Back EMF waveform of coil 1. (e) Back EMF waveform of coil 2. (f) Back EMF waveform of phase a. (g) Ideal phase current waveforms.

An ideal rectangular waveform of phase current with pulse width 120 electrical degrees and magnitude I is shown in Fig. 2-2(g). If the phase windings are star-connected, at any
time there are just two phases conducting. During any 120° interval of phase current the instantaneous power being converted from electrical to mechanical is

\[ P = \omega T_e = 2eI \]  \hspace{1cm} (2-5)

The ‘2’ in this equation arises from the fact that two phases are conducting. Using the expression derived above for the back EMF, the electromagnetic torque is given by

\[ T_e = 4N_{ph} B_g l r I \]  \hspace{1cm} (2-6)

This equation is valid for any number of pole-pairs. The similarity between the brushless motor and the commutator motor can now be seen. Writing \( E = 2e \) to represent the combined back EMF of two phases in series, the back EMF and torque equations can be written in the form

\[ E = k \phi \omega \quad \text{and} \quad T = k \phi \, I \]  \hspace{1cm} (2-7)

Where \( k = 4N_{ph} / \pi \) and \( \phi = B_g r I \). \( k \) is the “armature constant” and \( \phi \) is the flux. These equations for back EMF and torque are similar to those of the DC commutator motor; only the form of the constant \( k \) is different. It is clear that with ideal wave shapes and with perfect commutation, these equations are true at all instants of time. The electronic commutation of the inverter switches has thus assumed the function of the mechanical commutator in the DC commutator motor, to give a pure DC machine with constant, ripple-free torque. In practice, of course, none of the ideal conditions can be perfectly realized. The main result of this is to introduce ripple torque, but the basic relationships of the back EMF proportional to speed and the torque proportional to current remain unchanged.

### 2.2 Controller

#### 2.2.1 Controller

The structure of simplest controller for BDCM drive is shown in Fig. 2-3 [78]. The rotor position is sensed by a Hall-effect sensor, a slotted optical disk or some other transducer,
providing signals as represented in Table 2-1. These signals are decoded by combinatorial logic to provide the firing signals for 120° conduction on each of the three phases.

**Fig. 2-3. The structure of controller for BDCM drive**

**Table 2-1 Commutation logic of BDCM**

*(180° Magnet-Star winding, 120° square-wave phase currents BDCM)*

<table>
<thead>
<tr>
<th>Direction</th>
<th>Position</th>
<th>Hall signal</th>
<th>Switching state</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td><strong>Forward</strong></td>
<td>0° - 60°</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>60° - 120°</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>120° - 180°</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>180° - 240°</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>240° - 300°</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>300° - 360°</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><strong>Reverse</strong></td>
<td>0° - 60°</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>300° - 360°</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>240° - 300°</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>180° - 240°</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>120° - 180°</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>60° - 120°</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Chapter 2 Brushless DC motor

The basic forward control loop is voltage control, implemented by PWM (voltage reference signal compared with triangular wave). The PWM is applied only to the lower phaseleg power semiconductor switches. This not only reduces the current ripple but also avoids the need for wide bandwidth in the level-shifting circuit that feeds the upper phaseleg power semiconductor switches. From a control point of view, the BDCM is similar to the DC commutator motor, as the simple torque and voltage equations shown. Consequently it is possible to implement current (torque) feedback and speed feedback in the same way as for the DC motor.

Sometimes the instantaneous current in the BDCM is regulated in each phase by a hysteresis-type regulator that maintains the current within adjustable limits. This is called “current mode” control and several algorithms are possible to control the switching.

The commutation logic and the three AND gates in Fig. 2-3 can be implemented by GAL programmable logical device. With Advanced Boolean Equation Language (ABEL) [70, 91] and commutation logic table (Table 2-1), the source file can be written (Appendix A). Then the source file is compiled into Joint Electron Device Engineering Council (JEDEC) standard file. The JED file is written to the GAL chip 16V8 using programmer and the commutation logic IC for BDCM is thus created.

2.2.2 Speed sensor

Speed feedback signal can be obtained from a tachometer-generator, optical encoder, resolver or derived from rotor position sensor. A tachometer generator is a generator (DC or AC generator) with its shaft mounted on the object which can develop a voltage proportional to the object speed. The generator has low moment of inertia and small electromagnetism time constant.

An optical encoder [40] consists of a rotating disk, a light source, and a photodetector (light sensor). The disk, which is mounted on the rotating shaft, has coded patterns of opaque and transparent sectors. As the disk rotates, these patterns interrupt the light emitted onto the photodetector, generating a digital or pulse signal output. Traditionally, two very different types of encoders exist in automation: Incremental and Absolute. The
Chapter 2 Brushless DC motor

two types vary greatly in their design and in the type of interface electronics typically used to read the encoder. Applications determine which type of encoder is required to satisfy a particular system requirement. Incremental encoders are most commonly used due to their low cost and simple application. Quadrature encoders are the most common incremental style and widely used in all forms of automation. This type of encoder has two channels, which output digital square waves proportional to the number of windows on the optical code disk. The quadrature encoders signals are shown in Fig. 2-4. The quadrature name comes from the fact the two channels are phase shifted by 90° to each other; the offset phasing relationship reverses between the two signals for opposite direction of encoder shaft rotation. By observing the phase sequence between the two digital output channels, a controller can determine the direction of shaft rotation. Additionally, Incremental square waves are counted by a controller to determine shaft position, velocity and/or acceleration. A third channel with a once per rotation signal is often found on incremental encoders and is commonly called the index or reference pulse. This signal is typically used to mark a particular location in a system’s rotation that corresponds to a known mechanical location often called a home position.

![Quadrature encoder signals](image)

Fig. 2-4. Quadrature encoder signals

The drawback to an incremental encoder in a control system is that if the controller’s counter loses power or miscounts, the system must be cycled back to a known location, such as an index location, before restarting. Normally an absolute encoder is used instead of an incremental encoder in order to overcome this problem. Absolute encoders provide position information in a very different manner. The noticeable difference is with the disk
pattern and sensing system. The absolute encoder disk is made up of several tracks with alternating light and opaque segments, which correspond with several tracks of photo detectors to form a distinct multi-bit word. The final result for the absolute encoders is a unique multi-bit word defining a unique shaft location. A 4-bit absolute encoder disk is shown in Fig. 2-5, the number of each position is also marked. Motion control systems using absolute feedback do not require a restart sequence in case of losing power, they simply read the encoder output word and determine the exact absolute shaft position.

A resolver is a position sensor or transducer which measures the instantaneous angular position of the rotating shaft to which it is attached. Resolvers are typically built like small motors with a rotor (mounted on the object shaft), and a stator (stationary part) which produces the output signals. The word resolver is a generic term for such devices derived from the fact that at they resolve the rotor mechanical angle into orthogonal or Cartesian \((x\) and \(y\)) components. From a geometric perspective, the relationship between the rotor angle and its \(x\) and \(y\) components is that of a right triangle. Then all resolvers produce signals proportional to the sine and cosine of their rotor angle. To get the rotor angle, a resolver-to-digital converter is required which performs two basic functions: demodulation of the resolver format signals to remove the carrier, and angle determination to provide a digital representation of the rotor angle. Since every angle has a unique combination of sine and cosine values, a resolver provides absolute position information within one revolution \((360^\circ)\) of its rotor. This absolute (as opposed to
incremental) position capability is one of the resolver’s main advantages over incremental encoders.

If the rotor position of a BDCM is sensed by a Hall-effect sensor and no critical speed is required, the speed signal can be obtained by measuring the width of three Hall signals to reduce cost as shown in Fig. 2-6. We can get 60° electrical angle width square wave Q from three Hall signals marked A, B, C which are with 120° electrical angle shift. The width of the pulse $\Delta w$ can be obtained by detecting both edges of the wave via a timer which can be easily implemented by any microprocessor. The motor speed $\omega_r$ is inversely proportional to the width $\Delta w$.

Quadrature Encoder Pulse (QEP) is a standard digital speed or position signal and can feed into many devices (e.g. TMS320C24x DSP has QEP receive circuit). In high speed BDCM, the QEP can be derived from rotor position. The converter circuit and interesting waveforms are shown in Fig. 2-7. Where Hall signals marked A, B, C are the inputs and QEP1 and QEP2 are the outputs. Some microprocessors have digital counter and can accept DIR and CK signal, thus the converter circuit can be simpler. The circuit can be implemented by Complex Programmer Logical Device (CPLD) and only occupy partial resource of the chip. The circuit can also be implemented by one GAL 16V8 IC and four dual D flip-flop IC (e.g. 74LS74) (Appendix B).
Chapter 2 Brushless DC motor

(a) Converting Hall signal to QEP circuit

(b) Key waveforms

Fig. 2-7. Circuit for deriving QEP from Hall signal and waveforms
2.2.3 Gate drive for IGBT

In general, there will be level-shifting circuits to buffer the outputs of the logic circuit and provide the drive to the power semiconductor switches. Fig. 2-8 shows the gate driver circuit for a single IGBT. The input buffer state is made up of hex inverter buffer 74LS06 and a current limiting resistor. A Photocoupler gate driver, TLP250, is used to implement the gate drive circuit. This gate driver provides a peak output current of 1.5A. This current capability is good enough to drive the IGBT being used. It also isolates the input signal from the output so that common mode noise is reduced. An IGBT needs a voltage in +15V ~ +20V to turn-on and −5V ~ −10V to turn-off. The input to the gate driver is only 5V. To get the required output voltage and reduce the number of isolated DC power supply, a +7V Zener diode is used to get the required negative turn off voltage. Thus the driver circuit can provide +17V for turn on and −7V for turn off with only single +24V output DC power supply.

![Fig. 2-8. Gate driver circuit for IGBT](image)

For inverters, the emitters of three lower main switches are commonly connected together, the gate driver for these switches can use one common output DC power supply. However, the emitters of three upper main switches have no common nodes, the gate driver for one upper main switch should use one individual output DC power supply. Thus four isolated DC power supplies are needed for gate driver of 6 main switches. If soft switching is adopted and auxiliary switches is added, more isolated DC power supplies is required. All the DC power supplies for gate driver and control circuit can be built up by switching mode power supply (SMPS). The drive board for the inverter is introduced in Appendix C in detail.
To save the number of output DC power supply, bootstrap circuit can be adopted. The bootstrap circuit [42] is proposed by International Rectifier company and adopted in gate driver, such as IR2110, IR2113. This method has the advantage of only one insulated DC power supply is needed for 6 switches gate driver in a three-phase full bridge inverter, but has some limitations, such as duty cycle and on-time are limited by the requirement to refresh the charge in the bootstrap capacitor. The Gate driver circuit for two switches in one phase leg with bootstrap supply is shown in Fig. 2-9. The bootstrap circuit is formed by a bootstrap diode $D_{bs}$ and bootstrap capacitor $C_{bs}$. The bootstrap capacitor voltage $v_{bs}$ (the voltage difference between the $v_{hb}$ and $v_{hl}$ pins on the IC TLP250) provides the supply to the high side driver circuitry of the gate driver IC TLP250. This supply needs to be in the range of 17 - 27V (normally the turn on voltage for an IGBT is 10 – 20V) to ensure that the gate driver IC can fully enhance the IGBT $S_h$ being driven. This $v_{bs}$ supply voltage is a floating supply that sits on top of the DC link.

![Diagram](diagram.png)

Fig. 2-9. Gate driver circuit for two switches in one phase leg with bootstrap supply

The operation of the circuit is as follows. When $v_o$ is pulled down to ground (turn on lower switch $S_l$), the bootstrap capacitor $C_{bs}$ is charged through the bootstrap diode $D_{bs}$ from the +24V supply, thus providing a supply to $v_{bs}$. To reduce leakage current of bootstrap capacitor, it is always better to use a non-electrolytic capacitor. The bootstrap capacitor $C_{bs}$ is charged only when $v_o$ is pulled down to ground. Therefore the turn on
time for the lower switch $S_l$ should be sufficient to ensure the full charging of bootstrap capacitor $C_{bs}$. The bootstrap diode $D_{bs}$ needs to be able to block the full DC link voltage, which is seen when the upper switch $S_h$ is turned on. It must be a fast recovery device to minimize the amount of charge fed back from the bootstrap capacitor into the +24V supply, and similarly the high temperature reverse leakage current would be important if the capacitor has to store charge for long periods of time.

The gate driver with bootstrap supply can be applied to the inverter directly where the upper switches and the lower switches are turned on alternately, such as inverter for induction motor, induction heating, standby power supplies and so on. When the gate signal is minor modified, the gate driver can be also applied to the inverter for BDCM. The PWM signal is applied to the upper phaseleg switches other than lower phaseleg switches in conventional inverter.

Suppose PWM signal is applied to the upper switch $S_1$ and the lower switch $S_6$ is turned on. During freewheeling, phase current $i_a$ flows through the freewheeling diode $D_4$ as shown in Fig. 2-10. The phase voltage $v_a$ is clamped to the ground and the bootstrap capacitor for the gate driver circuit of the upper switch $S_1$ can be charged. During phase current commutation, if the switching state is changed from one lower switch to another lower switch, there is no problem as the gate driver circuit for the lower switch is not supplied by bootstrap capacitor. During phase current commutation, if the switching state is changed from one upper switch to another upper switch, e.g. turn off $S_1$ and turn on $S_5$, before turning on the upper switch $S_5$, the lower switch $S_2$ should be turned on for a short
time beforehand to charge the bootstrap capacitor for the gate driver circuit of the switch $S_5$, which will not affect the operation of BDCM as the time of turning on the switch $S_2$ is very short and the phase current $i_c$ will not increase much due to bulk motor inductance.

### 2.3 12-switches Inverter to Reduce Torque Ripple

In relation to the commutation of the inverter, the back EMF is essentially at its full value when the outgoing phase is commutated, and this back EMF is in such a direction as to drive the current down and assist in the commutation. On the other hand, the back EMF is of equal value in the incoming phase and is in such a direction as to oppose the current build-up. This is the primary reason for the current ripple. So the BDCM drive system with conventional three phase full wave inverter has the demerit of current ripple during commutation and the torque ripple of is also high. Many methods to reduce torque ripple has been proposed [12, 79, 95], but these methods show limited effectiveness in practical applications due to motor parameter sensitivity and dissatisfactory performance over wide speed range. In this section, one 12-switches inverter for BDCM will be introduced [99], which can commutate the phase current more freely and reduce the torque ripple.

#### 2.3.1 Commutation process with conventional inverter

Assumption the rotor reluctance of BDCM is constant independent rotor position $\theta$, and only the fundamental components of the flux linkages contributed by the permanent magnet are considered. Then the mathematical model of the BDCM can be expressed as [67]

$$
\begin{bmatrix}
  v_a \\
  v_b \\
  v_c
\end{bmatrix}
= \begin{bmatrix}
  R & 0 & 0 & \vdots & i_a \\
  0 & R & 0 & \vdots & i_b \\
  0 & 0 & R & \vdots & i_c
\end{bmatrix}
+ \begin{bmatrix}
  L & M & M & \vdots & i_a \\
  M & L & M & \vdots & i_b \\
  M & M & L & \vdots & i_c
\end{bmatrix}
\begin{bmatrix}
  p i_a \\
  p i_b \\
  p i_c
\end{bmatrix}
+ \begin{bmatrix}
  e_a \\
  e_b \\
  e_c
\end{bmatrix}
$$

(2-8)

Where $R$ is the phase resistance, $L$ is phase inductance, $M$ is the mutual inductance, $v$ is the phase voltage, $i$ is the phase current, $e$ is the phase back EMF, $p$ is the derivational operator $\frac{d}{dt}$. 

- 26 -
For Y-connected BDCM with conventional three-phase full wave inverter, Equation (2-8) can be changed to

\[
\begin{bmatrix}
 v_a \\
 v_b \\
 v_c
\end{bmatrix} =
\begin{bmatrix}
 R & 0 & 0 \\
 0 & R & 0 \\
 0 & 0 & R
\end{bmatrix}
\begin{bmatrix}
 i_a \\
 i_b \\
 i_c
\end{bmatrix} +
\begin{bmatrix}
 L - M & 0 & 0 \\
 0 & L - M & 0 \\
 0 & 0 & L - M
\end{bmatrix}
\begin{bmatrix}
 i_a \\
 i_b \\
 i_c
\end{bmatrix} +
\begin{bmatrix}
 e_a \\
 e_b \\
 e_c
\end{bmatrix}
\]

\[ T_c = (e_a i_a + e_b i_b + e_c i_c) / \omega_c \]  
\[ (2-10) \]

So the equivalent circuit of the BDCM drive system during commutation can be simplified as Fig. 2-11 (Assume commutation from +A-B => +A-C, “+” means current flow from the positive pole of supply, “-” means current flow to the negative pole).

Neglecting the voltage drop across switches and diodes, the governed voltage and current equation can be obtained

\[
\begin{cases}
 V_S = i_a R_a + L_a \frac{d i_a}{dt} + e_a + e_c + L_c \frac{d (i_a - i_b)}{dt} + (i_a - i_b) R_c \\
i_a R_a + L_a \frac{d i_a}{dt} + e_a + e_b + L_b \frac{d i_b}{dt} + i_b R_b = 0
\end{cases}
\]

\[ (2-11) \]

Where \( R_a = R_b = R_c = R, \ L_a = L_b = L_c = L - M, \ e_a = e_b = e_c = e \). \( V_S \) is DC power supply voltage. For approximate solution, assume the circuit has reached the steady state before commutation, we have the equation as conventional DC motor,

\[ V_S = 2IR + 2e \]

\[ (2-12) \]
With the initial value \( i_{a0+} = I, \quad i_{b0+} = I \) (\( I \) is the current of DC link) and Equation (2-12) solve the Equation (2-11) obtain

\[
\begin{align*}
\begin{cases}
i_a &= \left( \frac{4}{3} I - \frac{V_s}{3R} \right) + \left( \frac{V_s}{3R} - \frac{1}{3} I \right) e^{- \frac{R}{L} t} \\
i_b &= \left( \frac{2}{3} I - \frac{2V_s}{3R} \right) + \left( \frac{2V_s}{3R} + \frac{1}{3} I \right) e^{- \frac{R}{L} t} 
\end{cases}
\end{align*}
\tag{2-13}
\]

The phase voltage during commutation can be obtained from Equation (2-12)

\[
\begin{align*}
\begin{cases}
v_a = v_b = v_{p0} &= \frac{V_s}{6} + \frac{1}{3} IR \\
v_c &= v_{on} &= \frac{5V_s}{6} - \frac{1}{3} IR 
\end{cases}
\end{align*}
\tag{2-14}
\]

Thus we can sketch the waveform of current and voltage of phase A as Fig. 2-12(a) and waveform of torque as Fig. 2-12(b). From the figure we can see that the current ripple of phase A is the cause by commutation, the phase voltage is decreased between \( t_1 \) and \( t_2 \). Maintaining the uncommutation phase voltage to be constant, the current ripple can be eliminated, and the torque ripple can be reduced. For this purpose, half wave inverter can be used, such as conventional half-wave inverter, Miller inverter, Buck-fronted inverter and C-dump inverter [49]. But the efficiency of the motor is low with these inverters for there is only one winding conducting at the same time. So the 12-switches inverter is introduced.
2.3.2 Commutation process with 12-switches inverter

The topology of the inverter is shown in Fig. 2-13. It consists of 3 single-phase inverters and the three armatures of the motor connect to them respectively. Thus phase current can be controlled independently and not affected by other phase commutation procedure.

![Fig. 2-13. The topology of 12-switches inverter](image)

Also assume phase current commutates from +A-B => +A-C (turn off \( S_7, S_8 \); turn on \( S_{11}, S_{12} \)). With the 12-switches inverter, two independently governed voltage and current equations of the phase B, C can be obtained (current of phase A is not affected by commutation)

\[
\begin{align*}
V_b &= R_b i_b + L_b \frac{di_b}{dt} + e_b \\
-V_c &= R_c i_c + L_c \frac{di_c}{dt} + e_c
\end{align*}
\]  
\[(2-15)\]

For trapezoidal back EMF BDCM, the waveform of the back EMF is shown in Fig. 2-14(a). If the commutation occurs at time \( t_1 \), with the initial condition \( i_{b0r} = -I \), \( i_{c0r} = 0 \) and \( e_b \approx e_c = -(V_S - IR) \) solve the equation, obtain

\[
\begin{align*}
i_b &= \frac{2V_S}{R} - I + \frac{2V_S}{R} e^{-\frac{R}{L-M'}} \\
i_c &= I(1 - e^{-\frac{R}{L-M'}})
\end{align*}
\]  
\[(2-16)\]
Chapter 2 Brushless DC motor

Fig. 2-14. Waveforms of back EMF, phase current and torque with 12-switches inverter

\( i_b \) can reduce to zero very quickly, but the \( i_c \) increases very slowly. In order to shorten the commutation process, \( S_{11} \), \( S_{12} \) are turned on at \( t_2 \), \( S_7 \), \( S_8 \) are turned off at \( t_3 \), then \( i_c \) can increases more quickly. As the back EMF Vs time (or electrical degree) is a continuous function, there exists an instant \( t_2 \) that \( i_c \) can reach the steady value at \( t_1 \). So the phase current is smoother, and the torque of the motor is reduced [as shown in Fig. 2-14(b)].

The 12-switches inverter not only reduces the torque ripple significantly, includes the merit of the conventional three phase full wave inverter and half wave inverter, but also has other merit as follows:
• For a given supply voltage, the current flows through one winding only other than two windings in conventional inverter, so it can offer twice phase current and torque. The supply only needs to get over back EMF of one phase, so the speed of the motor also doubled.

• For a given motor speed, it only requires half supply voltage, so the voltage stress of switching device is reduced half. It is easier to select required device and the price of two low voltage stress devices is lower than that of one high voltage stress device. The insulation class requirement can be also reduced.

• The inverter is applicable to other motors such as induction motor, synchronous motor, and no deadbeat time is required.

• The phase current can be controlled more flexible.

2.3.3 Simulation and experimental results

The simulation results of phase current, phase voltage, torque and FFT of torque in conventional three-phase full wave inverter and 12-switches inverter are shown in Fig. 2-15. The waveforms in Fig. 2-15(a) are with conventional three-phase full wave inverter, and supply voltage is 500V; waveforms in figure 2-15(b) are with 12-switches inverter, and supply voltage is 250V. From the simulation result we can see that average torque in the two inverter is almost the same, the first order of torque harmonics is much less in 12-switches inverter than that of in conventional inverter, so the torque ripple with 12-switches reduces significantly, the magnitude of phase current and torque with the two inverters is the same, the speed is also same, but the supply voltage of former is twice as that of later.

In order to verify the theoretical analysis and simulation results, two inverters are built up to compare the performance of the 12-switches inverter and conventional three-phase inverter. A customized 2.2kW BDCM with all stator windings terminal connected externally is introduced in this experiment. The shaft of the motor is clutched to variable load with torque probe. The phase current and torque waveforms in the two inverters are shown in Fig. 2-16. From the figure we can see that the phase current in 12-switches inverter is not affected by the commutation of other phase and the torque has less ripple than that of three-phase inverter.
Fig. 2-15. Simulation result of conventional inverter versus that of 12-switches inverter, (a) Waveforms in conventional three-phase full wave inverter (b) Waveforms in 12-switches inverter

Fig. 2-16. Experimental result of conventional inverter versus 12-switches inverter
2.4 Summary

The operation principle of the brushless DC motor is introduced first. Then the controller for BDCM drive system is described. Commutation logic table is proposed, speed sensor is introduced and two methods to get speed signal from Hall sensor are illustrated, gate driver circuit for IGBT is introduced and bootstrap supply is applicable to gate driver circuit to save the number of insulated DC power supply.

A novel 12-switches inverter for BDCM is proposed to reduce the torque ripple of BDCM. With the inverter, for a given voltage of supply, torque and speed of the motor are doubled. For a given speed of the motor, the voltage stress of switching device is reduced half, the insulation class requirement can be also reduced. The inverter is also applicable to induction motor.
Chapter 3 Resonant DC Link Inverter

The structure of the resonant DC link inverter has been introduced in Chapter 1. An LC resonant circuit was added between DC power supply and 6-switches inverter. All power semiconductor switches’ snubber circuit can be eliminated. Resonance occurs periodically or at controlled instant to make DC link voltage reach zero temporarily during which the power semiconductor switches at the output section could be switched on or off with ZVS condition. In this chapter, details will be proposed. Literature review will be given first, then a novel topology will be proposed, the operation principle and control scheme of the novel inverter are analyzed. Simulation and experimental results are proposed to verify the theoretical analysis.

3.1 Literature Review

3.1.1 Prototype of resonant DC link inverter

D. M. Divan is the first scholar to introduce resonant DC link inverter (RDCLI) [17, 51]. The topology of the inverter and its equivalent circuit is shown in Fig. 3-1. The full bridge three-phase inverter and load can be modelled by a current source, based on the assumption that the load has a high inductance and that the load current varies slowly with respect to the DC link frequency. Analysis of the circuit operation can begin by assuming that switch $S_r$ remains open and the DC link components are ideally lossless. Under these conditions, if the supply voltage is suddenly applied to the resonant tank, the voltage across the resonant capacitor $C_r$ will oscillate sinusoidally between zero and twice the DC supply voltage. The DC link voltage would then exhibit periodically zero voltage opportunities during which the power semiconductor switches at the output section could be switched on or off with low switching losses. However, if the resonant tank is not lossless, the DC link voltage will never return to zero. The switch $S_r$ is then included in the circuit to ensure that the resonant DC link voltage will always return to zero in order to produce a sustained DC link pulsation. Furthermore, switch $S_r$ also ensures that the DC
link voltage will remain at zero for a finite time interval, in order to provide enough time for commutation of the main output switches.

![Resonant DC link inverter](image1)

If $S_r$ is kept closed while the supply voltage is applied, the current in the resonant inductor $L_r$ will build up linearly. $S_r$ should then be held closed until the magnetic energy stored in $L_r$ is enough to compensate for the losses in the resonant tank, define the corresponding current as $I_{Lr0}$. During the resonant, the circuit is governed by the equation

$$
\begin{aligned}
L_r \frac{di_{Lr}}{dt} + i_{Lr} R + u_{Cr} &= V_s \\
C_r \frac{du_{Cr}}{dt} &= i_{Lr} + I_0 
\end{aligned}
$$

(3-1)

With initial condition $i_{Lr}(0) = I_{Lr0}$, $u_{Cr}(0) = 0$, solve the equation, get
Chapter 3 Resonant DC link inverter

\[
\begin{align*}
    u_{Cr} &= (V_S - I_0 R) + e^{-\frac{t}{\tau}} (I_0 R - V_S) \cos \omega t + \\
    &\quad e^{-\frac{t}{\tau}} \left[ \frac{1}{2 \omega r} (V_S - \frac{R}{2} (I_{Lr0} + I_0)) + \omega L_r (I_{Lr0} - I_0) \right] \sin \omega t \\
    i_{Lr} &= I_0 + e^{-\frac{t}{\tau}} (I_{Lr0} - I_0) \cos \omega t - e^{-\frac{t}{\tau}} \left[ \frac{2V_S - R(I_{Lr0} + I_0)}{\omega L_r} \right] \sin \omega t
\end{align*}
\]  

(3-2)

Where \( \tau = \frac{2L_r}{R} \), \( \omega_r = \frac{1}{\sqrt{L_r C_r}} \), \( \omega = \sqrt{\frac{\omega_r^2}{1 - \omega_r^2}} \). When neglecting inductor resistance \( R=0 \), Equation (3-2) can be simplified into

\[
\begin{align*}
    u_{Cr} &= V_S (1 - \cos \omega_r t) + \omega_r L_r (I_{Lr0} - I_0) \sin \omega_r t \\
    i_{Lr} &= I_0 + \frac{V_S}{\omega_r L_r} \sin \omega_r t + (I_{Lr0} - I_0) \cos \omega_r t
\end{align*}
\]  

(3-3)

When \( I_{Lr0} = I_0 \), Equation (3-3) can be simplified into

\[
\begin{align*}
    u_{Cr} &= V_S (1 - \cos \omega_r t) \\
    i_{Lr} &= I_0 + \frac{V_S}{\omega_r L_r} \sin \omega_r t
\end{align*}
\]  

(3-4)

From Equation (3-4) we can see that if the DC link components are ideally lossless, and the charged resonant inductor current \( i_{Lr}(0) \) is greater than \( I_{Lr0} \), \( u_{Cr} \) will oscillate sinusoidally between zero and twice the DC supply voltage. The average value of resonant inductor current is \( I_{Lr0} \). But actually it is impossible that the DC link components are lossless, \( i_{Lr}(0) \) must greater than \( I_{Lr0} \), then peak \( u_{Cr} \) will greater than twice the DC power supply voltage.

If the output section of the resonant DC link inverter is composed by half-bridge inverter legs, the function of switch \( S_r \) can be executed by the output switches themselves. In this case, \( S_r \) can be eliminated from the circuit. The inverter circuit will be therefore very simple, having only two additional passive elements in comparison to a hard switched inverter. No additional power semiconductor switch is required. However, due to the pulsed DC link voltage, only discrete pulse modulation techniques can be used for output control. Furthermore, the higher voltage stress on the power semiconductor switches at
Chapter 3 Resonant DC link inverter

the output section, in excess of double of the supply voltage, represents a major drawback of this topology.

3.1.2 Improved resonant DC link inverter

Several alternative topologies which limit the peak voltage stress have been proposed to solve this problem. So far, one of successful topologies is the Actively Clamped Resonant DC Link Inverter (ACRDCLI) [19, 20, 23, 32, 33, 80].

![Diagram of ACRDCLI topology and key waveforms](image)

The topology of the ACRDCLI and key waveforms are shown in Fig. 3-2. It is obtained by augmenting the RDCLI with a clamping loop around the resonant inductor $L_r$. This
clamping loop is composed of the clamping capacitor $C_c$ and the clamp switch $S_c$, with its associated anti-parallel connected diode.

Circuit operation of the ACRDCLI is very similar to that of the RDCLI mentioned in 2.1. The clamping capacitor $C_c$ is charged to a preset voltage $(k_c-1)V_s$ where $k_cV_s$ is the clamping voltage.

(i) Firstly switch $S_r$ is turned on, the current through $L_r$ ($i_{Lr}$) rises linearly. When the current reaches a preset current level $I_{Lr1}$ (enough energy is stored in $L_r$ to ensure that a full resonant cycle will be completed), switch $S_r$ is turned off and resonant begins.

(ii) $i_{Lr}$ is pumped into the resonant capacitor $C_r$, and the voltage across $C_r$ ($u_{Cr}$) starts to rise towards its natural peak. When $u_{Cr}$ reaches clamping voltage, the clamp diode across $S_c$ begins to conduct, diverting the current from the resonant capacitor into the clamp capacitor.

(iii) While the clamp diode is conducting, switch $S_c$ can be turned on, under zero voltage conditions and with low switching losses. $S_c$ is kept on until the current in the $C_c$ (equal to $i_{Lr}$) reverses and reaches a preset current level $I_{Lr2}$, at which $S_c$ is turned off.

(iv) Immediately after turn-off of $S_c$, the inverted current which was flowing in the clamping circuit will be transferred back to $C_r$, causing the DC link voltage to oscillate toward zero. When $u_{Cr}$ reaches zero, the anti-parallel diode of $S_r$ will conduct and then a new cycle can be initiated.

The turn-off current reference $I_{Lr2}$ is supplied by a control loop which regulates the voltage across the clamping capacitor. If $C_c$ is large enough, the voltage across it will exhibit only a small change during one clamping cycle. However, the control loop must ensure that the excess charge injected into $C_c$ at the beginning of each clamping cycle is returned to the main circuit in finite time, with the objective of maintaining the long-term charge balance in $C_c$, thus keeping the clamp voltage stable.
The clamping factor $k_c$ should be chosen according to the supply voltage and to the voltage rating of the power semiconductor switches employed. For example, with industry-standard power modules rated at 1200V and with a rectified AC voltage equal to 600V, a clamping factor of approximately 1.5 would be a good choice, yielding a maximum voltage stress of 900V. The clamp switch $S_c$, as well as the shunt switch $S_r$, are turned off with low switching losses, under zero voltage conditions. This is achieved by the presence of the resonant capacitor $C_r$ across the DC link, which slows down the voltage rise at the terminals of both switches when they cut off the current. The intervals where the DC link voltage is zero are used for lossless commutation of the output main switches.

It can be known from the analysis of literature [20] that when the $k_c$ is smaller than 2, the frequency of the resonant circuit will be reduced with the reduction of $k_c$. When $k_c = 1$, the frequency is equal zero which means that the clamping circuit is no use any more. So the device voltage stress is still high. On the other hand, it is required to keep the voltage of clamping capacitor stable and there is need to measure the current of resonant inductor which is difficult to implement. Moreover the output of the inverter contains subharmonic components which are difficult to be filtered out, and in some cases, cannot be accepted.

Source Voltage Clamped Resonant DC Link Inverter (SVCRDCLI) is another improved RDCLI that can limit the peak voltage stress [32, 33]. The construction of the inverter is shown in Fig. 3-3. The circuit only uses one auxiliary switch to clamp the DC link voltage to the same level as that of DC power supply. The zero voltage of DC link can be kept for
Chapter 3 Resonant DC link inverter

a short interval to guarantee the main switches of inverter switch under ZVS condition. However the circuit needs to preset four current levels to control the resonant circuit. The auxiliary switches should be turned on/off at the instant when the inductor current equal to the preset value which is hard to implement. The control scheme is very complex.

3.1.3 Quasi resonant DC link inverter

All above inverters have the disadvantage of considerable inductor power losses as there is always current flow through resonant inductor. In order to solve this problem, quasi resonant DC link inverter (QRDCLI) \cite{14, 27, 36, 43, 52, 54, 87, 92, 102} is introduced. The resonant inductor can be removed from the main conduction path and paralleled with inverter section. The resonant only occurs at the interval when the main switches of inverter need to switch. No current flows through resonant inductor in regular time.

![The topology of QPRDCLI I and its key waveforms](image)

(a) The topology of QPRDCLI I

(b) Key waveforms of the inverter

Fig. 3-4. The topology of QPRDCLI I and its key waveforms
One quasi parallel resonant DC link inverter (QPRDCLI) [14, 87] is introduced by Jung G. Cho. The topology of the inverter is depicted in Fig. 3-4(a). It consists of three auxiliary switches, two power diodes and LC resonant components. The resonant inductor is connected at the center of H-bridge instead of main conduction path and forms a parallel resonant circuit with resonant capacitor. The operation of the inverter can be divided into six operational modes and the related waveforms are shown in Fig. 3-4(b).

- **Mode 0** ($S_L$: on, $S_a$, $S_b$: off) The switch $S_L$ conducts load current and the voltage of DC link is the same as that of DC power supply. It operates the same as conventional hard switching inverter.

- **Mode 1** ($S_L$: on, $S_a$, $S_b$: on) When the switching is needed, the switches $S_a$ and $S_b$ are turned on with zero current conditions and the inductor current $i_{Lr}$ is increased linearly to a preset reference value $I_{Lr1}$, while the capacitor voltage $u_{Cr}$ is kept with DC power supply voltage $V_S$.

- **Mode 2** ($S_L$: off, $S_a$, $S_b$: on) The switch $S_L$ is turned off with zero voltage condition and resonance starts between $L_r$ and $C_r$. The capacitor voltage $u_{Cr}$ is decreased sinusoidally to zero.

- **Mode 3** ($S_L$: off, $S_a$, $S_b$: on) The resonant capacitor voltage $u_{Cr}$ is kept zero while the inductor current freewheels through paths of $S_a - D_a$ and $S_b - D_b$. This zero DC link voltage period provides ZVS condition to the main switches of the inverter.

- **Mode 4** ($S_L$: off, $S_a$, $S_b$: off) When the switching of inverter devices is completed, the switches $S_a$ and $S_b$ are turned off with ZVS condition. Then the path of inductor current is shifted to $D_a$, $D_b$ and $C_r$, thus $u_{Cr}$ is increased sinusoidally until $u_{Cr}$ becomes $V_S$.

- **Mode 5** ($S_L$: on, $S_a$, $S_b$: off) When $u_{Cr}$ is increased slightly over $V_S$, the antiparallel diode connected in $S_L$ is turned on with zero voltage condition. Then the DC link voltage $u_{Cr}$ is clamped by supply voltage and the remaining energy in the resonant inductor is returned to supply. $i_{Lr}$ is linearly decreased from $I_{Lr2}$ to zero and the diodes $D_a$ and $D_b$ are turned off with ZCS condition.
From the analysis we can see that the advantages of the inverter are obvious: all the main switches, auxiliary switches and power diodes work under ZVS or ZCS condition, inductor power loss reduces significantly. The demerit of the topology is that: measuring inductor current is still necessary and too many auxiliary devices (three switches and two diodes) are required.

Another two QPRDCLIs [43, 54, 92] are shown in Fig. 3-5. The operation principle of these inverters is similar to the inverter I. They reduce the number of power device and possess the merit of as inverter I. But the inverters do not overcome the demerit of the needs of measuring inductor current. The resonant period of inverter III is a little long that would cause the failure of ZVS.

Applying zero voltage transition of DC/DC converter to DC/AC inverters, DC-rail parallel resonant zero voltage transition (ZVT) voltage source inverters [11, 29, 37, 50, 62]
are proposed, they are either having not all switches and diodes work under soft-switching condition or they require a stiff DC link capacitor bank that is center taped to accomplish commutation. The center voltage of DC link is susceptible to drift that may affect the operation of the resonant circuit. In addition they require two ZVT every PWM cycle, which would worsen the output voltage and limit the switch frequency of the inverter.

3.2 Transformer Based Resonant DC Link Inverter

3.2.1 The structure of the transformer based resonant DC link inverter

The majority of soft-switching inverters proposed in the recent years have been aimed at the induction motor drive applications. So it is necessary to research on the novel topology of soft-switching inverter and special control circuit for BDCM drive systems. This section proposes a resonant DC link inverter based on transformer for BDCM drive system to solve the problems mentioned above. The inverter possesses the advantage of low switching power loss, low inductor power loss, low DC link voltage ripple, small device voltage stress and simple control scheme.

![Fig. 3-6. The structure of the resonant DC link inverter for BDCM drive system](image)
Chapter 3 Resonant DC link inverter

The structure of the transformer based resonant DC link inverter is shown in Fig. 3-6. The system contains an uncontrolled rectifier, a resonant circuit, a conventional three-phase inverter and control circuit. The resonant circuit consists of three auxiliary switches (S_L, S_a, S_b) and corresponding built in freewheeling diode (D_L, D_a, D_b), one transformer with turn ratio 1: n and one resonant capacitor. All auxiliary switches work under ZVS or zero current switching (ZCS) condition. It generates voltage notches of the DC link to guarantee the main switches (S_1-S_6) of the inverter operating in ZVS condition.

3.2.2 Resonant circuit

The resonant circuit consists of three auxiliary switches, one transformer and one resonant capacitor. The auxiliary switches are controlled at certain instant to obtain the resonance between transformer and capacitor. Thus, the DC link voltage reaches zero temporarily (voltage notch) and the main switches of the inverter get ZVS condition for commutation. Since the resonant process is very short, the load current can be assumed constant. The equivalent circuit of the inverter is shown in Fig. 3-7. Where \( V_S \) is the DC power supply voltage, \( I_0 \) is the load current. The corresponding waveforms of the auxiliary switches gate signal, PWM signal, resonant capacitor voltage \( (u_{C_r}) \) (i.e. DC link voltage), the transformer primary winding current \( (i_{Lr}) \) and current of switch \( S_L (i_{SL}) \) are illustrated in Fig. 3-8. The DC link voltage is reduced to zero and then rises to supply voltage again is called one zero voltage transition (ZVT) process or one DC link voltage notch. The operation of the ZVT process in one PWM cycle can be divided into 8 modes.

![Fig. 3-7. The equivalent circuit of the inverter](image-url)
Chapter 3 Resonant DC link inverter

Mode 0 (shown in Fig. 3-9) $0 < t < t_0$. Its operation is the same as conventional inverter. Current flows from DC power supply through $S_L$ to the load. The voltage across resonant capacitor $C_r$ ($u_{C_r}$) is equal to the supply voltage ($V_S$). The auxiliary switches $S_a$ and $S_b$ are turned off.

Mode 1 (shown in Fig. 3-10) $t_0 < t < t_1$. When it is the instant for phase current commutation or PWM signal is flopped from high to low, auxiliary switch $S_a$ is turned on with ZCS (as the $i_{Lr}$ can not change suddenly due to the transformer inductance) and
switch $S_L$ is turned off with ZVS (as the $u_{Cr}$ can not change suddenly due to resonant capacitor $C_r$) at the same time. The transformer primary winding current $i_{Lr}$ begins to increase and the secondary winding current $i_{Lrs}$ also begins to build up through diode $D_b$ to DC link at $t = t_0$. The terminal voltages of primary and secondary windings of the transformer are DC link voltage $u_{Cr}$ and supply voltage $V_S$ respectively. Capacitor $C_r$ resonates with transformer, the DC link voltage $u_{Cr}$ is decreased. Neglecting the resistances of windings, using the transformer equivalent circuit (referred to the primary side) [66], the transformer current $i_{Lr}$, $i_{Lrs}$ and DC link voltage $u_{Cr}$ obey the equation:

$$\begin{align*}
\frac{du_{Cr}(t)}{dt} &= L_{l1} \frac{di_{Lr}(t)}{dt} + a^2 L_{l2} \frac{d[i_{Lrs}(t)/a]}{dt} + aV_s \\
i_{Lr}(t) + I_0 + C_r \frac{du_{Cr}(t)}{dt} &= 0
\end{align*}$$

(3-5)

Fig. 3-10. Equivalent circuit of mode 1

Where $L_{l1}$ and $L_{l2}$ are the primary and secondary winding leakage inductance respectively, $a$ is the transformer turn ratio $1: n$. The transformer has a high magnetizing inductance. We can assume that $i_{Lrs} = i_{Lr}/n$, with initial condition $u_{cr}(0) = V_s$, $i_{Lr}(0) = 0$, solve the Equation (3-5), get (Deduction proposed in Appendix D)

$$\begin{align*}
u_{cr}(t) &= \frac{(n-1)V_s}{n} \cos(\omega_r t) - I_0 \sqrt{\frac{L_r}{C_r}} \sin(\omega_r t) + \frac{V_s}{n} \\
i_{Lr}(t) &= I_0 \cos(\omega_r t) - I_0 + \frac{(n-1)V_s}{n} \sqrt{\frac{C_r}{L_r}} \sin(\omega_r t)
\end{align*}$$

(3-6)

Where $L_r = L_{l1} + L_{l2} / n^2$ is the equivalent inductance of the transformer, $\omega_r = \sqrt{1/L_r C_r}$ is the natural angular resonance frequency. Rewrite the Equation (3-6) get
Chapter 3 Resonant DC link inverter

\[
\begin{align*}
\begin{cases}
u_{Cr}(t) &= K \cos(\omega_r t + \alpha) + \frac{V_s}{n} \\
i_{Lr}(t) &= K \sqrt{\frac{C_r}{L_r}} \sin(\omega_r t + \alpha) - I_0
\end{cases}
\end{align*}
\]  

(3-7)

Where \( K = \sqrt{\frac{(n-1)^2V_s^2}{n^2} + \frac{I_0^2L_r}{C_r}} \), \( \alpha = \arctan\left(\frac{nI_0}{(n-1)V_s \sqrt{\frac{L_r}{C_r}}} \right) \). \( n \) is a number which is slightly less than 2 (the selection of such a number will be explained later), \( i_{Lr} \) will decay to zero faster than \( u_{Cr} \). Let \( i_{Lr}(t) = 0 \), the duration of the resonance can be determined:

\[\Delta t_1 = t_1 - t_0 = \frac{\pi - \alpha}{\omega_r} \]  

(3-8)

When \( i_{Lr} \) is reduced to zero, auxiliary switch \( S_a \) can be turned off with ZCS condition. At \( t = t_1 \), the corresponding DC link voltage \( u_{Cr} \) is

\[u_{Cr}(t_1) = \frac{2-n}{n} V_s \]  

(3-9)

Fig. 3-11. Equivalent circuit of mode 2

**Mode 2** (shown in Fig. 3-11) \( t_1 < t < t_2 \). When the transformer current is reduced to zero, the resonant capacitor is discharged through load from initial condition as Equation (3-9). The interval of this mode can be determined by:

\[\Delta t_2 = t_2 - t_1 = \frac{C_r V_s (2-n)}{nI_0} \]  

(3-10)
As it has been mentioned that \( n \) is a number which is slightly less than 2, the interval is normally very short.

**Mode 3** (shown in Fig. 3-12) \( t_2 < t < t_3 \). The DC link voltage \( (u_{Cr}) \) is zero. The main switches of the inverter can now be either turned on or turned off under ZVS condition during this mode. Load current flows through the freewheeling diode \( D \).

![Fig. 3-12. Equivalent circuit of mode 3](image)

**Mode 4** (shown in Fig. 3-13) \( t_3 < t < t_4 \). As the main switches have turned on or turned off, auxiliary switch \( S_b \) is turned on with ZCS (as the \( i_{Lrs} \) can not change suddenly due to the transformer inductance) and the transformer secondary current \( i_{Lrs} \) starts to build up linearly. The transformer primary current \( i_{Lr} \) also begins to conduct through diode \( D_a \) to the load. The current in the freewheeling diode \( D \) begins to fall linearly. The load current is slowly diverted from the freewheeling diodes to the resonant circuit. DC link voltage \( u_{Cr} \) is still equal to zero before the transformer primary current is greater than load current.
Chapter 3 Resonant DC link inverter

The terminal voltages of transformer primary and secondary windings are zero and DC power supply voltage $V_S$ respectively. Redefine the initial time, we obtain

$$0 = L_1 \frac{di_{Lr}}{dt} + a^2 L_2 \frac{d[i_{Lrs}(t)/a]}{dt} + aV_S$$  \hspace{1cm} (3-11)

Since the transformer current $i_{Lrs} = i_{Lr}/n$ as in mode 1, rewrite the Equation (3-11) as

$$\frac{di_{Lr}}{dt} = -\frac{V_S}{nL_r}$$  \hspace{1cm} (3-12)

The transformer primary current $i_{Lr}$ is reversed linearly from zero, the mode is end when $i_{Lr} = -I_0$, the interval of this mode can be determined:

$$\Delta t_4 = t_4 - t_3 = \frac{nL_r I_0}{V_S}$$  \hspace{1cm} (3-13)

At $t_4$, $i_{Lr}$ equals the negative load current $-I_0$ and the current through the diode $D$ becomes zero. Thus the freewheeling diode turns off under ZCS condition, the diode reverse recovery problems are reduced.

**Mode 5** (shown in Fig. 3-14) $t_4 < t < t_5$. Absolute value of $i_{Lr}$ is increased continuously from $I_0$ and $u_{Cr}$ is increased from zero when the freewheeling diode $D$ is turned off. Redefine the initial time, we can get the same equation as Equation (3-5). The initial condition is $u_{Cr}(0) = 0$, $i_{Lr}(0) = -I_0$, neglecting the inductor resistance, solving the equation, we get (Deduction proposed in Appendix D)
Chapter 3 Resonant DC link inverter

\[
\begin{align*}
    u_{C_r}(t) &= -\frac{V_S}{n}\cos(\omega_r t) + \frac{V_S}{n} \\
    i_{L_r}(t) &= -I_0 - \frac{V_S}{n} \sqrt{\frac{C_r}{L_r}} \sin(\omega_r t)
\end{align*}
\]  

(3-14)

When

\[
    \Delta t_s = t_5 - t_4 = \frac{1}{\omega_r} \arccos(1-n)
\]  

(3-15)

\(u_{C_r} = V_S\), auxiliary switch \(S_L\) is turned on with ZVS (due to \(C_r\)). The interval is independent from load current. At \(t = t_5\), the corresponding transformer primary current \(i_{L_r}\) is

\[
i_{L_r}(t_5) = -I_0 - \frac{V_S}{n} \sqrt{\frac{(2-n)C_r}{nL_r}}
\]  

(3-16)

The peak value of the transformer primary current can be also determined:

\[
i_{L_{r-m}} = -I_0 - \frac{V_S}{n} \sqrt{\frac{C_r}{L_r}} = I_0 + \frac{V_S}{n} \sqrt{\frac{C_r}{L_r}}
\]  

(3-17)

---

**Fig. 3-15. Equivalent circuit of mode 6**

**Mode 6** (shown in Fig. 3-15) \(t_5 < t < t_6\). Both the terminal voltages of primary and secondary windings are equal to supply voltage \(V_S\) after auxiliary switch \(S_L\) is turned on. Redefine the initial time, we obtain
Chapter 3 Resonant DC link inverter

\[ V_s = L_1 \frac{di_{Lr}}{dt} + a^2 \frac{d[i_{Lrs}(t)/a]}{dt} + aV_s \]  \hspace{1cm} (3-18)

Since the transformer current \( i_{Lrs} = i_{Lr}/n \) as in mode 1, rewrite the Equation (3-18) as:

\[ \frac{di_{Lr}}{dt} = \frac{(n-1)V_s}{nL_r} \]  \hspace{1cm} (3-19)

The transformer primary current \( i_{Lr} \) decays linearly, the mode is end when \( i_{Lr} = -I_0 \) again. With initial condition Equation (3-16), the interval of this mode can be determined:

\[ \Delta t_6 = t_6 - t_5 = \frac{\sqrt{n(2-n)L_rC_r}}{n-1} \]  \hspace{1cm} (3-20)

The interval is also independent from load current. As it has mentioned that \( n \) is a number which is slightly less than 2, the interval is also very short.

![Fig. 3-16. Equivalent circuit of mode 7](image)

**Mode 7** (shown in Fig. 3-16) \( t_6 < t < t_7 \). The transformer primary winding current \( i_{Lr} \) decays linearly from negative load current \(-I_0\) to zero. Partial load current flows through the switch \( S_L \). The sum current flowing through switch \( S_L \) and transformer is equal to the load current \( I_0 \). Redefine the initial time, the transformer winding current obeys the Equation (3-19) with the initial condition \( i_{Lr}(0) = -I_0 \). The interval of this mode is:

\[ \Delta t_7 = t_7 - t_6 = \frac{nL_rI_0}{(n-1)V_s} \]  \hspace{1cm} (3-21)

Then auxiliary switch \( S_b \) can be also turned off with ZCS condition after \( i_{Lr} \) decays to zero (at any time after \( t_7 \)).
3.2.3 Design consideration

It is assumed that the inductance of BDCM is much higher than transformer leakage inductance. From the analysis presented previously, the design considerations can be summarized as follows:

- Determine the value of resonant capacitor $C_r$, and the parameter of transformer.
- Select the main switches and auxiliary switches.
- Design the gate signal for the auxiliary switches.

The transformer turn ratio ($1:n$) can be determined ahead. From Equation (3-15) $n$ must satisfy:

$$n < 2$$  \hspace{1cm} (3-22)

On the other hand, from Equations (3-9) and (3-10) it is expected that $n$ is as close 2 as possible so that the duration of mode 2 would be not very long and $u_{Cr}$ would be small enough at the end of mode 1. Normally, $n$ can be selected at the range 1.7~ 1.9. The equivalent inductance of the transformer $L_r = L_{t1} + L_{t2} / n^2$ is inversely proportional to the rising rate of switch current when turn on the auxiliary switches. It means that the equivalent inductance $L_r$ should be big enough to limit the rising rate of the switch current to work in ZCS condition. The selection of $L_r$ can be referenced from the rule depicted in [19].

$$L_r \geq 4t_{on} V_s / I_{0\text{max}}$$  \hspace{1cm} (3-23)

Where $t_{on}$ is the turn on time of switch $S_a$, $I_{0\text{max}}$ is the maximum load current. The resonant capacitance $C_r$ is inversely proportional to the rising rate of switch voltage drop when turn off the switch $S_L$. It means that the capacitance is as high as possible to limit the rising rate of the voltage to work in ZVS condition. The selection of the resonant capacitor can be determined as

$$C_r \geq 4t_{off} I_{0\text{max}} / V_s$$  \hspace{1cm} (3-24)

Where $t_{off}$ is the turn off time of switch $S_L$. However, as the capacitance increases, more energy is stored on it, the peak value of transformer current will be also high. The peak value of $i_{Lr}$ should be limited to twice peak load current. From Equation (3-17) we obtain
The DC link voltage rising transition time is expressed as

\[ T_w = \Delta t_4 + \Delta t_5 = \frac{n L_r I_0}{V_S} + \sqrt{L_r C_r \arccos(1-n)} \]  

For high switching frequency, \( T_w \) should be as short as possible. Select the equivalent inductance \( L_r \) and resonant capacitance \( C_r \) to satisfy the Inequalities (3-23) - (3-25), \( L_r \) and \( C_r \) should be as small as possible. \( L_r \) and \( C_r \) selection area is illustrated in Fig. 3-17 to determine their values, the valid area is shadowed, where \( B_1 - B_3 \) is boundary which is defined according to Inequalities (3-24) - (3-26):

\[ B_1 : \quad L_r = 4t_{on} V_S / I_{0\text{max}} \]  
\[ B_2 : \quad C_r = 4t_{off} I_{0\text{max}} / V_S \]  
\[ B_3 : \quad \sqrt{\frac{C_r}{L_r}} = \frac{n I_{0\text{max}}}{V_S} \]  

If boundary \( B_3 \) intersects \( B_1 \) first as shown in Fig. 3-17(a), the value of \( L_r \) and \( C_r \) in the intersection of \( B_3 \) and \( B_2 \) (i.e. \( A_1 \)) can be selected. Otherwise, the value of \( L_r \) and \( C_r \) in the intersection \( A_2 \) is selected as shown in Fig. 3-17(b).
Main switches $S_{1-6}$ work under ZVS condition, the voltage stress is equal to the DC power supply voltage $V_S$. The device current rate can be load current. Auxiliary switch $S_L$ works under ZVS condition, its voltage and current stress is the same as main switches. Auxiliary switches $S_a,b$ work under ZCS or ZVS condition, the voltage stress is also equal to the DC power supply $V_S$. The peak current flowing through them is limited to double maximum load current. As the auxiliary switches $S_{a,b}$ carry the peak current only during switch transitions, they can be rated lower continuous current rating.

The design of gate signal for auxiliary switches can be referenced to Fig. 3-8. The trailing edge of the gate signal for auxiliary switch $S_L$ is the same as that of PWM, the leading edge is determined by the output of DC link voltage sensor. The gate signal for auxiliary switch $S_a$ is a positive pulse with leading edge the same as PWM trailing edge, its width $\Delta T_a$ should be greater than $\Delta t_1$. From Equation (3-8), $\Delta t_1$ is maximum when the load current is zero. So $\Delta T_a$ can be a fixed value determined by:

$$\Delta T_a > \Delta t_1|_{\text{max}} = \frac{\pi}{\omega_r} = \pi \sqrt{\frac{L_r}{C_r}}$$  \hspace{1cm} (3-30)

The gate signal for auxiliary switch $S_b$ is also a pulse with leading edge the same as that of PWM, its width $\Delta T_b$ should be longer than $t_7 - t_3$ (i.e. $\Delta t_4 + \Delta t_5 + \Delta t_6 + \Delta t_7$). $\Delta T_b$ can be determined from Equation (3-13), (3-15), (3-20), (3-21) that:

$$\Delta T_b > \sum_{i=4}^{7} \Delta t_i|_{\text{max}} = \frac{n^2 L_r I_{0\text{max}}}{(n-1)V_S} + \sqrt{\frac{L_r C_r}{n-1}} \left[ \arccos(1-n) + \frac{\sqrt{n(2-n)}}{n-1} \right]$$  \hspace{1cm} (3-31)

### 3.2.5 Control scheme

When the duty of PWM is 100%, i.e. full duty cycle, the main switches of the inverter work under the commutation frequency. When it is the instant to commutate the phase current of the BDCM, we control the auxiliary switches $S_a, S_b, S_L$ and resonant occurs between transformer $L_r$ and capacitor $C_r$. The DC link voltage reach zero temporarily, thus ZVS condition of the main switches is obtained. When the duty of PWM is less than 100%, the auxiliary switch $S_L$ works as chop. The main switches of the inverter do not
switch within a PWM cycle when the phase current needs not commutate. It has the benefit of reducing phase current drop during the PWM is off. The phase current is commutated during the DC link voltage becomes zero. There is only one DC link voltage notch per PWM cycle. It is very important especially for very low or very high duty of PWM. Otherwise the interval between two voltage notches is very short or even overlapped which will limit the tuning range.

![Diagram of commutation logical circuit for main switches](image1)

**Fig. 3-18. Commutation logical circuit for main switches**

![Diagram of control circuit for the auxiliary switches](image2)

**Fig. 3-19. Control circuit for the auxiliary switches**
Chapter 3 Resonant DC link inverter

The commutation logical circuit of the system is shown in Fig. 3-18. It is similar to conventional BDCM commutation logical circuit except adding six D flip-flops to the output. Thus the gate signal of the main switches is controlled by the synchronous pulse CK that will be mentioned late and the commutation can be synchronized with auxiliary switches control circuit (shown in Fig. 3-19). The operation of the inverter can be divided into PWM operation and full duty cycle operation.

A. Full duty cycle operation

When the duty of PWM is 100%, i.e. full duty cycle, the whole ZVT process (mode1 – mode7) occurs when the phase current commutation is on going. The monostable flip-flop $M_3$ will generate one narrow negative pulse. The width of the pulse $\Delta T_3$ is determined by $\Delta t_1 + \Delta t_2 + T_c'$, where $T_c'$ is a constant consider the turn on/off time of main switches. If $n$ is close 2, $\Delta t_1$ would be very short or $u_C$ would be small enough at the end of mode1, $\Delta T_3$ can be determined by:

$$\Delta T_3 = \Delta t_1_{\text{max}} + T_c = \pi \sqrt{L_r C_r} + T_c$$

(3-32)

Where $T_c$ is a constant which is greater than $T_c'$. The data selector makes the output of monostable flip-flop $M_3$ active. The monostable flip-flop $M_1$ generates a positive pulse when the trailing edge of $M_3$ negative pulse is coming. The pulse is the gate signal for auxiliary switch $S_a$ and its width is $\Delta T_a$ which is determined by Inequality (3-30). The gate signal for switch $S_L$ is flopped to low at the same time. Then mode 1 begins and the DC link voltage is reduced to zero. Synchronous pulse CK is also generated by a monostable flip-flop $M_4$, the pulse width $\Delta T_d$ should be greater than maximum $\Delta t_1$ (i.e. $\pi \sqrt{L_r C_r}$). If the D flip-flops are rising edge active, then CK is connected to the negative output of the $M_4$, otherwise connected to the positive output. Thus the active edge of pulse CK is within mode3 when the voltage of DC link is zero and the main switches of the inverter get ZVS condition. The monostable flip-flop $M_2$ generates a positive pulse when the leading edge of $M_3$ negative pulse is coming. The pulse width of $M_2$ is $\Delta T_b$ that is determined by Inequality (3-31). Then mode 4-7 occurs, the DC link voltage is increased to that of supply again. The leading edge of the gate signal for switch $S_L$ is
determined by DC link voltage sensor signal. In a word in full cycle operation when the phase current commutation is on going, the resonant circuit generates a DC link voltage notch to let main switches of the inverter switch under ZVS condition.

**B. PWM operation**

In this operation, the data selector makes PWM signal active. The auxiliary switch $S_L$ works as chop, but the main switches of the inverter do not turn on or turn off within a single PWM cycle when the phase current needs not commutate. The load current is commutated during the DC link voltage becomes zero. (As the PWM cycle is very short, it does not affect the operation of the motor).

- When PWM signal is flopped down, mode 1 begins, pulse signal for switch $S_a$ is generated by $M_1$ and gate signal for switch $S_L$ is dropped to low. However the voltage of DC link does not increase until PWM signal is flipped up. Pulse CK is also generated by $M_4$ to let active edge of CK locate in mode 3.

- When PWM signal is flipped up, mode 4 begins, pulse signal for switch $S_b$ is generated at the moment. Then when the voltage of the DC link is increased to supply voltage $V_S$, the gate signal for switch $S_L$ is flipped to high level.

Thus, only one ZVT occurs per PWM cycle: mode 1,2 for PWM turning off, mode 4,5,6,7 for PWM turning on. And the switching frequency would be not greater than PWM frequency.

**3.2.5 Simulation and experiment**

The proposed system is verified by simulation software PSim. The DC power supply voltage $V_S$ is 240V, the maximum load current is 12A. The transformer turn ratio is 1: 1.8, the leakage inductances of the primary secondary windings are selected as 4μH and 12.96μH respectively. So the equivalent transformer inductance $L_r$ is about 8μH. The resonant capacitance $C_r$ is 0.1μF. Switch $S_{a,b}$ gate signal width $\Delta T_a$ and $\Delta T_b$ are set to be 3μs and 6μs respectively. The narrow negative pulse width $\Delta T_3$ in full duty cycle is set to be 4.5μs, the delay time for synchronous pulse CK $\Delta T_d$ is set to be 3.5μs. The frequency
of the PWM is 20kHz. Waveforms of DC link voltage $u_{Cr}$, transformer primary winding current $i_{Lr}$, switch $S_L$ and diode $D_L$ current $i_{SL}/i_{DL}$, PWM, auxiliary switch gate signal under low and high load current are shown in Fig. 3-20. The figure shows that the inverter worked well under various load currents.

![Waveforms](image)

(a) Under low load current ($I_0 = 2A$)  (b) Under high load current ($I_0 = 8A$)

Fig. 3-20. Waveforms of $u_{Cr}$, $i_{Lr}$, $i_{SL}/i_{DL}$, PWM, auxiliary switches gate signal under various load current

In order to verify the theoretical analysis and simulation results. The proposed soft switching inverter was tested on an experimental prototype. The DC link voltage is 240V, the switching frequency is 20kHz. Select 50A/1200V BSM 35 GB 120 DN2 dual IGBT module as main inverter switches $S_1$-$S_6$ and auxiliary switch $S_L$, another switch in the same module of $S_L$ can be adopted as auxiliary switch $S_a$, 30A/600V IMBH30D-060 IGBT as auxiliary switch $S_b$. With datasheets of these switches and Equation (3-22) ~ (3-25), the value of capacitance and the parameter of transformer can be determined. A polyester capacitor of 0.1μF, 1000V was adopted as DC link resonant capacitor $C_r$. A high magnetizing inductance transformer with turn ratio 1:1.8 was employed in the experiment. The equivalent inductance is about 8μH under short circuit test [66]. The switching frequency is 20 kHz. The monostable flip-flop is set up by IC 74LS123,
variable resistor and capacitor. The logical gate can be replaced by programmable logical device to reduce the number of IC. $\Delta T_a$, $\Delta T_b$, $\Delta T_3$ and $\Delta T_d$ are set to be 3$\mu$s, 6$\mu$s, 4.5$\mu$s and 3.5$\mu$s respectively.

From Fig. 3-19 it is required to measure the DC link voltage to generate the gate signal for auxiliary switch $S_L$, which can be implemented by a voltage sensor. The voltage sensor should be a high performance sensor with little delay and little distortion which may be high price. As it is only needed to know whether DC link voltage reaches DC supply voltage, auxiliary switch $S_L$ gate signal generator can be built up as Fig. 3-21 with cheap parts. The DC link voltage is measured and compared in power stage then it is fed the AND logic gate by a Photocoupler. Detail is introduced in the Appendix E auxiliary drive board for resonant DC link inverter.

The system is tested in light and heavy load. The waveforms resonant DC link voltage $u_{Cr}$ and transformer primary winding current $i_{Lr}$ in low and high load currents are shown in Fig. 3-22(a) and Fig. 3-22(b) respectively. The transformer based resonant DC link inverter works well under various load currents. The waveforms of auxiliary switch $S_L$ voltage $u_{SL}$ and its current $i_{SL}$ are shown in Fig. 3-22(c). There is little overlap between the switch $S_L$ voltage and its current during the switching under soft switching condition, so the switching power losses are low. The waveforms of resonant DC link voltage $u_{Cr}$ and synchronous signal CK are shown in Fig. 3-22(d), which the main switches can switch under ZVS condition during commutation. The phase current of BDCM is shown in Fig. 3-22(e). The design of the system is successful.
Chapter 3 Resonant DC link inverter

(a) $u_{cr}$ and $i_{Lr}$ under low load current (100V/div, 10A/div)

(b) $u_{cr}$ and $i_{Lr}$ under high load current (100V/div, 10A/div)

(c) Switch $S_L$ voltage and current (100V/div, 10A/div)
3.3 Summary

Known resonant DC link inverters have been reviewed first. A transformer based resonant DC link inverter for BDCM drive system, capable of controlling zero voltage notch instant and width is presented. Its principle of operation was explained. The simulation results are also given. All the relevant experimental waveforms were captured to verify the theory analysis and simulation. The following observations were made:

- All switches work under soft-switching condition, so their power losses are small.
- Voltage stress on all the switches would be not greater than DC Supply voltage.
Chapter 3 Resonant DC link inverter

- Only one DC link voltage notch is needed during one PWM cycle, and the switching frequency of the auxiliary switches would not higher than PWM frequency.

- Simple auxiliary switches control scheme.

- Freewheeling diodes turned off under zero current condition and this greatly reduced the reverse recovery problem of the diodes.

- $dv/dt$ and $di/dt$ are reduced significantly, so EMI is reduced.

- Soft switching results in considerably less noise as the switching frequency can be high to outside the audio spectrum.

- The topology also applicable to induction motor drive system.
Chapter 4  Resonant Pole Inverter

The structure of the resonant pole inverter (RPI) has been introduced in Chapter 1. The family of resonant pole inverter is characterized by the presence of a so-called resonant pole that comprises a resonant inductor and a pair of resonant capacitors at each phase leg. These capacitors are directly connected in parallel with the main switches in order to achieve zero-voltage switching. In this chapter, details will be proposed. Literature review will be given first, then a novel topology will be proposed, the operation principle of the inverter is analyzed. Simulation and experimental results are proposed to verify the theoretical analysis.

4.1 Literature Review

In contrast to resonant DC link inverters, no resonance is produced at the DC link in resonant pole inverters. Instead of that, the resonant transitions occur separately at each resonant pole, only when the switches in the output stage need to be commutated. The DC link voltage remains unaffected during the resonant transitions. Therefore, the main switches in the inverter phase legs can be commutated totally independent from each other and choice the commutation instant freely.

4.1.1. Auxiliary resonant commutated pole inverter

Resonant pole inverter is first proposed by D.M. Divan [18]. One of successful resonant pole inverter is auxiliary resonant commutated pole inverter (ARCI) [41, 59, 71, 89, 90, 96]. An equivalent circuit of one phase ARCI is shown in Fig. 4-1. Each main switch (S1 and S2) is closely paralleled by a snubber capacitor (Cr1 and Cr2) to obtain ZVS turn-off conditions. Auxiliary switches (Sa and Sb) are placed in series with the resonant inductor La and operate under zero current switching conditions. Auxiliary switches (Sa and Sb) are placed in series with the resonant inductor La and operate under zero current switching conditions. La is load inductor, ia is load current. The DC link capacitor is center-tapped as the zero point.
As load inductance $L_a$ is much larger than resonant inductance $L_r$, the load current $i_a$ can be assumed constant in switching transition. For convenient discussion, assume load current $i_a > 0$, main switch $S_1$ is turned off and $S_2$ is turned on. Then during the switching transition of turning off the main switch $S_2$ and turning on $S_1$, the waveforms of main switches $S_1$ and $S_2$ and auxiliary switch $S_a$ gate signal, resonant inductor current $i_{Lr}$, phase voltage $v_a$ are illustrated in Fig. 4-2. The operation of the switching transition can be divided into 7 modes.

**Mode 0** ($t < t_0$): As the load current $i_a > 0$, main switch $S_1$ is turned off, load current flows through freewheeling diode $D_2$. Snubber capacitor $C_{r1}$ voltage $v_{C_{r1}}$ is DC supply voltage $V_S$, phase voltage $v_a$ is zero.
Chapter 4 Resonant pole inverter

**Mode 1** \( (t_0 < t < t_1) \): At \( t_0 \), the auxiliary switch \( S_a \) is turned on (ZCS turned on due to resonant inductor \( L_r \)), resonant inductor current \( i_{Lr} \) increases linearly at a rate of \( \frac{V_s}{2L_r} \). When \( i_{Lr} \) reaches load current \( i_a \), freewheeling diode \( D_2 \) is turned off self.

**Mode 2** \( (t_1 < t < t_2) \): Resonant inductor current \( i_{Lr} \) still increases linearly, main switch \( S_2 \) carries partial resonant inductor current \( i_{Lr} \). When \( i_{Lr} \) exceeds load current \( i_a \) at a preset threshold \( I_{boost} \), main switch \( S_2 \) is turned off (ZVS turned off due to snubber capacitor \( C_{r2} \)). Phase voltage \( v_a \) is still zero.

**Mode 3** \( (t_2 < t < t_3) \): Resonance occurs between resonant inductor \( L_r \) and snubber capacitors \( C_{r1} \) and \( C_{r2} \). Phase voltage \( v_a \) rises sinusoidal, snubber capacitor \( C_{r1} \) voltage \( v_{C_{r1}} \) decays. The peak current in the auxiliary circuit will reach

\[
i_{Lr-m} = i_a + I_{boost} + \frac{V_s}{2\sqrt{L_r/C_r}}
\]  

(4-1)

Where \( C_r \) is capacitance of snubber capacitor \( C_{r2} \).

**Mode 4** \( (t_3 < t < t_4) \): Phase voltage \( v_a \) reaches DC supply voltage, snubber capacitor \( C_{r1} \) voltage \( v_{C_{r1}} \) is zero, freewheeling diode \( D_1 \) begins to conduct, main switch \( S_1 \) can get ZVS turn on condition in this mode. Resonant inductor current \( i_{Lr} \) decreases linearly, but it is still greater than load current \( i_a \).

**Mode 5** \( (t_4 < t < t_5) \): Resonant inductor current \( i_{Lr} \) decreases linearly to zero and it is less than load current \( i_a \), the load current transfers into main switch \( S_1 \).

**Mode 6** \( (t_5 < t < t_6) \): Main switch \( S_1 \) carries load current, auxiliary switch \( S_a \) can be turned off ZCS.

The total duration of the commutation sequence can be estimated by

\[
T_c = \frac{2L_r(i_a + I_{boost})}{V_s} + \pi \sqrt{L_rC_r}
\]  

(4-2)
Chapter 4 Resonant pole inverter

The operation principle of switching transition from $S_1$ to $S_2$ is similar except turning on auxiliary switch $S_b$. When load current $i_a < 0$, the operation can be also described. The inverter is able to achieve real PWM control but it requires a stiff DC link capacitor bank that is center taped to accomplish commutation. The center voltage of DC link is susceptible to drift that may affect the operation of the resonant circuit. The inverter also needs to control current threshold $I_{boost}$ which increases the control implementation complexity.

4.1.2 Y-configured auxiliary resonant snubber inverter

To eliminate the center taped stiff DC link capacitor bank, a Y-configured auxiliary resonant snubber inverter [56] is proposed, its structure is shown in Fig. 4-3. Each phase leg has an added resonant branch with an auxiliary switch and a resonant inductor. This topology requires one additional auxiliary switch for each phase, but the size of the auxiliary switch can be much smaller than that of the main switches because of low duty cycle. Depending on the switching frequency and the inductor design, typical size of the auxiliary switch is about one-tenth of the main switch.

![Fig. 4-3. The structure of Y-configured auxiliary resonant snubber inverter](image)

The operation of the resonant snubber inverter is to produce zero voltage across the device using the resonant branch. For example, if the phase current is flowing through $D_3$, $D_4$ and $D_5$ which are anti-parallel with $S_3$, $S_4$ and $S_5$, in order to turn on switch $S_1$ at zero voltage, we can turn on $S_a$ and $S_c$ to create a current path through $S_3$, $(L_{rb} S_b)/(L_{rc}, S_c)$, $S_a$, $L_{ra}$ and $S_4$. The supply voltage is now fully charging through this current path, and the inductor current is linearly increased. When the current in inductor $L_{ra}$ is higher than...
Chapter 4 Resonant pole inverter

the load current in phase-A, we can turn off $S_4$ to form a resonance that charges and discharges snubber capacitors $C_{r1}$ and $C_{r4}$. After the resonance, the voltage across $C_{r1}$ tends to be negative which will be clamped to zero by the anti-parallelled diode $D_1$ so that main switch $S_1$ can be turned on at ZVS condition. The same procedure can also be applied to the other phases.

![Fig. 4-4. The single phase version of auxiliary resonant snubber inverter](image)

For single-phase applications, the proposed soft-switching inverter circuit can be configured in Fig. 4-4. This circuit consists of four main switches $S_1$, $S_2$, $S_3$ and $S_4$, and their corresponding anti-parallelled diodes $D_1$, $D_2$, $D_3$ and $D_4$. The resonant circuit consists of two resonant inductors $L_{ra}$ and $L_{rb}$, two auxiliary switches $S_a$ and $S_b$, and snubber capacitors $C_{r1}$, $C_{r2}$, $C_{r3}$ and $C_{r4}$. These capacitors allow the main switches to turn off at ZVS condition. The inverter output is a resistor-inductor load, i.e., $R_a$ and $L_a$. Typically the load inductance is much higher than the resonant inductance.

For an initially positive load current, turning off $S_1$ and $S_2$ will divert the load current to freewheeling diodes $D_3$ and $D_4$, and thus $S_3$ and $S_4$ can be turned on at ZVS condition without the need of auxiliary resonant circuit operation. If main switch $S_1$ and $S_2$ are turned on directly, the corresponding snubber capacitors discharge surge current will also flow through the switch $S_1$ and $S_2$ thus the switches may face the risk of second breakdown. The energy stored in snubber capacitors must be discharged ahead. The key waveforms of operating modes for turning on main switches $S_1$ and $S_2$ at the positive load current are illustrated in Fig. 4-5. These waveforms are main switch $S_1$ and $S_4$ and auxiliary switch $S_b$ gate signal, resonant inductor current $i_{L/2}$, main switch $S_1$ and $S_4$
branch current $i_{S1}$ and $i_{S4}$ (include corresponding diode current as indicated in Fig. 4-4), snubber capacitor $C_{r1}$ voltage $v_{Cr1}$. The operation can be divided into 6 modes.

**Mode 0 ($t_0 < t < t_1$):** This is the initial condition that a positive load current is free-wheeling through $D_3$ and $D_4$ while $S_3$ and $S_4$ remain turn-on.

![Fig. 4-5. The key waveform of auxiliary resonant snubber inverter](image)

**Mode 1 ($t_1 < t < t_2$):** At $t_1$, turn on the auxiliary switch $S_b$. The resonant inductor current $i_{Lrb}$ is built up linearly. The current in switches $S_3$ and $S_4$ gradually reduces to zero at $t_2$ when the resonant inductor current $i_{Lrb}$ reaches the load current $i_a$.

**Mode 2 ($t_2 < t < t_3$):** The inductor current $i_{Lrb}$ exceeds the load current at $t_2$ and the main switches $S_3$ and $S_4$ can be turned off after $t_2$ with ZVS condition due to snubber capacitors $C_{r3}$ and $C_{r4}$.

**Mode 3 ($t_3 < t < t_4$):** The resonant capacitors conduct at $t_3$ after turning off devices $S_3$ and $S_4$, capacitors $C_{r3}$ and $C_{r4}$ are charged to full DC link voltage $V_S$, and $C_{r1}$ and $C_{r2}$ are discharged to zero voltage at $t_4$. 
Mode 4 \((t_4 < t < t_5)\): The resonant current starts decreasing, and the load current is diverted to diodes \(D_1\) and \(D_4\). Switches \(S_1\) and \(S_4\) can now be turned on at the zero-voltage condition. At \(t_5\) the resonant current equals the load current, and the diode current is diverted to the switch.

Mode 5 \((t_5 < t < t_6)\): The resonant current keeps decreasing, and the current of main switch \(S_1\) and \(S_2\) increase linearly. At \(t_6\) the resonant current drops to zero, and the resonant switch \(S_b\) can be turned off at ZCS condition.

This topology has the advantages of simple structure and simple control scheme. There will be over-voltage across the auxiliary switch if the center point of the Y-connection resonant branch is floating. The voltage across the auxiliary switch will exceed the supply voltage which can cause over-voltage failure. One way of preventing over-voltage is to add a clamping diode \(D_{cl}\) between the center point and ground. There will be circulating current in the off phase when the main inverter circuit conducts current in two of the three phases. The off phase may have a circulating current because the load voltage is unknown and current can flow into this phase through the antiparallel diode. This case occurs mainly in BDCM drives where only two phases conduct at a time, and the back EMF tends to circulate current through resonant branches which are in off-state.

4.1.3 Delta-configured auxiliary resonant snubber inverter

To avoid over-voltage in auxiliary switches, a delta (\(\Delta\)) configured resonant snubber inverter \([38, 39]\) is proposed as shown in Fig. 4-6. The proposed inverter has auxiliary resonant branches connected between the different phase-leg outputs to avoid a floating point voltage which may cause over-voltage failure of the auxiliary switches. Instead of using an anti-paralleled diode to allow resonant current to flow in the reverse direction as in the Y-configured version, the resonant branch in the \(\Delta\)-configured version uses a diode to block the negative voltage. Each auxiliary branch consists of a resonant inductor and a reverse blocking auxiliary switch.
Chapter 4 Resonant pole inverter

The operation principle of $\Delta$-configured version is similar to that of $Y$-configured version. For the three-phase operation, the unidirectional auxiliary switches allow the resonant current to flow only from phase $a$ to $b$, $b$ to $c$ and $c$ to $a$. For reverse resonant currents, i.e. from $b$ to $a$, $c$ to $b$ and $a$ to $c$, two auxiliary switches are turned on simultaneously. For example, to obtain a resonant current from $b$ to $a$, turn on auxiliary switches $S_b$ and $S_c$. This type of switching requires complicated logic circuit design and additional turn-on duty of the auxiliary switches. An alternative approach is to add a reverse conducting switch-diode pair in each branch to simplify the logic design and to reduce the conduction duty of the auxiliary switches. Fig. 4-7 shows the $\Delta$-configured resonant snubber circuit with bidirectional auxiliary switches in resonant branch. However the inverter requires too many auxiliary switches.

Fig. 4-6. The structure of $\Delta$-configured resonant snubber inverter

Fig. 4-7. The structure of resonant snubber inverter with bidirectional auxiliary switches
4.1.4 Zero voltage transition resonant pole inverter

To avoid the requirement of too many auxiliary switches, a zero voltage transition (ZVT) resonant pole inverter [16, 86] is introduced. The structure of the inverter is shown in Fig. 4-8.

To describe the operation principle, assume phase current $i_a$ is positive, $i_b$ and $i_c$ are negative, main switches $S_3$, $S_4$ and $S_5$ are closed, phase currents are flowing through freewheeling diodes $D_3$, $D_4$ and $D_5$. The goal is to turn off main switches $S_3$, $S_4$ and $S_5$ and turn on $S_1$, $S_2$ and $S_6$, the phase currents are diverted to main switches, while achieving ZVS for all the switches and diodes involved in the transition. The transition can be divided into three phases: charging phase, resonant phase, discharging phase.

**Charging phase:** At the beginning, the auxiliary switch $S_x$ is closed, the currents through resonant inductors $i_{Lra}$, $i_{Lrb}$ and $i_{Lrc}$ start to build up linearly from zero, gradually diverting the currents form freewheeling diodes $D_3$, $D_4$ and $D_5$ to the resonant circuit. When resonant inductor currents exceed the corresponding phase currents, freewheeling diodes $D_3$, $D_4$ and $D_5$ are turned off self with ZCS condition, which eliminates the diode reverse recovery problems. The charging stage is continued until there is enough energy stored in the auxiliary inductors to charge/discharge the snubber capacitors.

**Resonant phase:** After the resonant inductors $L_{ar}$, $L_{br}$, and $L_{cr}$ have been charged, main switches $S_3$, $S_4$ and $S_5$ are turned off with ZVS condition due to snubber capacitors, resonant phase starts. The energy stored in the auxiliary inductors is used to charge /
discharge the snubber capacitors, swinging the phase voltage between the two DC rails. This provides ZVS turn-on conditions for the main switches $S_1$, $S_2$ and $S_6$.

**Discharging phase:** Turning on main switches $S_1$, $S_2$ and $S_6$ results in reversal of voltages at the resonant circuit, the energy stored in the resonant inductors is returned to the DC side, the resonant inductor currents are decays linearly. Then the auxiliary switch $S_x$ can be turned off with ZCS condition.

The advantages of the ZVT resonant pole inverter are that it only require one auxiliary switch, and the control scheme is relative simple. However, the switching frequency of auxiliary switch is much higher than that applying to the main switches, thus it will limit the switching frequency of the inverter. Furthermore the three resonant branches of the inverter work together and will be affected each other.

### 4.2 Special Design Resonant Pole Inverter for BDCM

The resonant pole inverters mentioned previously are primarily applied in induction motor drive applications. They are usually required to change the switching state of two switches at the same time to obtain resonant path. It is not suitable to BDCM drive system as only one switch is needed to change the switching state in a single PWM cycle. In some topology, e.g. Y-configured auxiliary resonant snubber inverter, there will be circulating current in the off phase when the main inverter circuit conducts current in two of the three phases. The off phase may have a circulating current because the load voltage is unknown and the back EMF tends to circulate current through resonant branches which are at off-state. BDCM drive is just this case. So it is necessary to develop novel topology of soft-switching inverter and special control circuit for BDCM drive systems.

#### 4.2.1 Topology of the resonant pole inverter

A typical controller for BDCM drive system has been introduced in Chapter 2 as shown in Fig. 2-3. The PWM is applied only to the lower switches. This not only reduces the current ripple but also avoids the need for wide bandwidth in the level-shifting circuit that feeds the upper switches. The switching frequency of three upper switches ($S_1$, $S_3$, $S_5$)
Chapter 4 Resonant pole inverter

(typical several hundred Hz) is different from that of the three lower switches \((S_4, S_6, S_2)\) (typical tens of kHz) in an inverter for BDCM drive system. So it is not important that the three upper switches work under soft switching condition. The switching power losses can be reduced significantly and the auxiliary circuit would be simpler if only three lower switches work under soft switching condition. Thus a specially designed resonant pole inverter [98] for BDCM drive system is introduced for this purpose which is easy to apply in industry. In addition, this inverter possesses the following advantages: low switching power losses, low inductor power losses, low switching noise and simple control scheme.

The structure of the proposed inverter is shown in Fig. 4-9.

![Fig. 4-9. The resonant pole inverter for BDCM drive system](image)

The system contains a diode bridge rectifier, a resonant circuit, a conventional three-phase inverter and control circuitry. The resonant circuit consists of three auxiliary switches \((S_a, S_b, S_c)\), one transformer with turn ratio \(1: n\) and two diodes \(D_{fp}, D_r\). Diode \(D_{fp}\) is connected in parallel to the primary winding of the transformer, diode \(D_r\) is serially connected with secondary winding across the DC link. There is one snubber capacitor connected in parallel to each lower switch of phase leg. The snubber capacitor resonates with the primary winding of the transformer. The emitters of the three auxiliary switches are connected together. So the gate drive of these auxiliary switches can use one common output DC power supply.
In a whole PWM cycle, the three lower switches ($S_4$, $S_6$, $S_2$) can be turned off in ZVS condition as the snubber capacitors ($C_{ra}$, $C_{rb}$, $C_{rc}$) can slow down the voltage rise rate. The turn-off power losses can be reduced and turn off voltage spike is eliminated. Before turning on the lower switch, the corresponding auxiliary switch ($S_a$, $S_b$, $S_c$) must be turned on ahead. The snubber capacitor is then discharged and the lower switches get ZVS condition. During phase current commutation, the switching state is changed from one lower switch to another, e.g. turn off $S_6$ and turn on $S_2$ $S_6$ can be turned off directly in ZVS condition, turning on auxiliary switch $S_c$ to discharge the snubber capacitor $C_{rc}$ then switch $S_2$ can get ZVS condition. During phase current commutation, if the switching state is changed from one upper switch to another upper switch, the operation is the same as hard switching inverter as the switching power losses of the upper switches is much smaller than that of lower switches.

### 4.2.2 Operation principle

![Fig. 4-10. The equivalent circuit](image)

For convenience in describing the operation principle, we investigate the period while the switch $S_1$ is always turned on, switch $S_6$ works under PWM frequency and other main inverter switches are turned off. Since the resonant transition is very short, the load current can be assumed constant. The equivalent circuit is shown in Fig. 4-10. Where $V_S$ is the DC link voltage, $i_{Lr}$ is the transformer primary winding current, $u_{S6}$ is the voltage drop across the switch $S_6$ (i.e. snubber capacitor $C_{rb}$ voltage), $I_0$ is the load current. The waveforms of the switches ($S_6$, $S_b$) gate signal, PWM signal, main switch $S_6$ voltage drop ($u_{S6}$) and the transformer primary winding current ($i_{Lr}$) are illustrated in Fig. 4-11, details
will be explained following. According the interesting instant $t_0-t_6$, the operation of one switching cycle can be divided into 7 modes.

![Fig. 4-11. Key waveforms of the equivalent circuit](image)

**Mode 0** (shown in Fig. 4-12) $0 < t < t_0$: After the lower switch $S_6$ is turned off, load current flows through upper freewheeling diode $D_3$, the voltage drop $u_{S6}$ (i.e. snubber capacitor $C_{rb}$ voltage) across the switch $S_6$ is the same as DC link voltage. The auxiliary resonant circuit does not operate.

![Fig. 4-12. Equivalent circuit of mode 0](image)
**Mode 1** (shown in Fig. 4-13) $0 < t < t_1$: If the switch $S_6$ is turned on directly, the capacitor discharge surge current will also flow through switch $S_6$ thus the switch $S_6$ may face the risk of second breakdown. The energy stored in snubber capacitor must be discharged ahead. Thus the auxiliary switch $S_b$ is turned on (ZCS turn on as the $i_{Lr}$ can’t change suddenly due to the transformer inductance). The transformer primary winding current $i_{Lr}$ begins to increase, the current flowing through freewheeling diode $D_3$ decays. The secondary winding current $i_{Lrs}$ also begins to conduct through diode $D_r$ to DC link. Both the terminal voltages of the primary and secondary windings are equal to DC link voltage $V_S$. Neglecting the resistances of the windings, using the transformer equivalent circuit (referred to the primary side) [72], we can get the equation:

$$V_S = L_{l1} \frac{di_{Lr}(t)}{dt} + a^2 L_{l2} \frac{d[i_{Lrs}(t)/a]}{dt} + aV_S$$  \hspace{1cm} (4-3)

Where $L_{l1}$ and $L_{l2}$ are the primary and secondary winding leakage inductance respectively, $a$ is the transformer turn ratio $1/n$. The transformer has a high magnetizing inductance.

We can assume that $i_{Lrs} = i_{Lr}/n$, and rewrite (1) as:

$$\frac{di_{Lr}}{dt} = \frac{(n-1)V_S}{n(L_{l1} + \frac{1}{n^2} L_{l2})} = \frac{(n-1)V_S}{nL_r}$$  \hspace{1cm} (4-4)

Where $L_r$ is the equivalent inductance of the transformer $L_{l1} + L_{l2}/n^2$. The transformer primary winding current $i_{Lr}$ increases linearly, the mode is ended when $i_{Lr} = I_0$. The interval of this mode can be determined by
Chapter 4 Resonant pole inverter

\[
\Delta t_1 = t_1 - t_0 = \frac{nL_s I_0}{(n-1)V_s}
\]  

(4-5)

Fig. 4-14. Equivalent circuit of mode 2

**Mode 2** (shown in Fig. 4-14) \( t_1 < t < t_2 \): At \( t = t_1 \), all load current flows through the transformer primary winding, freewheeling diode \( D_3 \) is turned off in ZCS condition. The freewheeling diode reverse recovery problems is reduced greatly. The snubber capacitor \( C_{rb} \) resonates with transformer, voltage drop \( u_{S6} \) across switch \( S_6 \) decays. Redefine the initial time, the transformer current \( i_{Lr}, i_{Lrs} \) and capacitor voltage \( u_{S6} \) obey the equation:

\[
\begin{cases}
  u_{S6}(t) = L_{r1} \frac{di_{Lr}(t)}{dt} + a^2 L_{r2} \frac{d[i_{Lrs}(t)/a]}{dt} + aV_s \\
  -C_r \frac{du_{S6}(t)}{dt} = i_{Lr}(t) - I_0 
\end{cases}
\]  

(4-6)

Where \( C_r \) is the capacitance of snubber capacitor \( C_{rb} \). The transformer current \( i_{Lrs} = i_{Lr}/n \) as in mode 1, with initial conditions \( u_{S6}(0) = V_s \), \( i_{Lr}(0) = I_0 \), the solution of (4) is

\[
\begin{cases}
  u_{S6}(t) = \frac{(n-1)V_s}{n} \cos(\omega_r t) + \frac{V_s}{n} \\
  i_{Lr}(t) = I_0 + \frac{(n-1)V_s}{n} \sqrt{\frac{C_r}{L_r}} \sin(\omega_r t)
\end{cases}
\]  

(4-7)

Where \( \omega_r = \sqrt{\frac{1}{L_r C_r}} \). Let \( u_{C_r}(t) = 0 \), and get the duration of the resonance:
\[ \Delta t_2 = t_2 - t_1 = \frac{1}{\omega_r} \arccos \left( -\frac{1}{n-1} \right) \] (4-8)

The interval is independent from load current. At \( t = t_2 \), the corresponding transformer primary current \( i_{Lr} \) is

\[ i_{Lr}(t_2) = I_0 + V_S \sqrt{\frac{(n-2)C_r}{nL_r}} \] (4-9)

The peak value of the transformer primary current can be also determined:

\[ i_{Lr-m} = I_0 + \frac{(n-1)V_S}{n} \sqrt{\frac{C_r}{L_r}} \] (4-10)

\( \Delta t_2 \) is the time interval when the transformer current \( i_{Lr} \) is zero. The transformer secondary voltage is \( V_S \) and the transformer primary voltage is zero. The load current \( I_0 \) is constant. The auxiliary switch \( S_a \) conducts at \( t = t_2 \), and the freewheeling diode \( D_{fp} \) begins to conduct. The sum current flowing through switch \( S_a \) and diode \( D_{fp} \) is the transformer primary current \( i_{Lr} \).

**Mode 3** (shown in Fig. 4-15) \( t_2 < t < t_3 \): When the capacitor voltage \( u_{S6} \) reaches zero at \( t = t_2 \), the freewheeling diode \( D_{fp} \) begins to conduct. The current flowing through auxiliary switch \( S_b \) is load current \( I_0 \). The sum current flowing through switch \( S_b \) and diode \( D_{fp} \) is transformer primary winding current \( i_{Lr} \). The transformer primary voltage is zero and the secondary voltage is \( V_S \). Redefine the initial time, we obtain

\[ 0 = L_{11} \frac{di_{Lr}(t)}{dt} + a^2 L_{12} \frac{di_{Lr}(t)/a}{dt} + aV_S \] (4-11)

Since the transformer current \( i_{Lrs} = i_{Lr}/n \) as in mode 1, we deduce (9)

\[ \frac{di_{Lr}}{dt} = -\frac{V_S}{nL_r} \] (4-12)
The transformer primary current $i_{Lr}$ decays linearly, the mode is ended when $i_{Lr} = I_0$. With initial condition given by (7), the interval of this mode can be determined:

$$
\Delta t_3 = t_3 - t_2 = \sqrt{\frac{n(n-2)L_rC_r}{n}}
$$

(4-13)

The interval is also independent from load current. During this mode, switch $S_6$ is turned on in ZVS condition.

**Mode 4** (shown in Fig. 4-16) $t_3 < t < t_4$: The transformer primary winding current $i_{Lr}$ decays linearly from load current $I_0$ to zero. Partial load current flows through the main switch $S_6$. The sum current flowing through switch $S_6$ and $S_b$ is equal to the load current $I_0$. The sum current flowing through switch $S_b$ and diode $D_{fp}$ is transformer primary winding current $i_{Lr}$. Redefine the initial time, the transformer winding current obeys the Equation (4-12) with the initial condition $i_{Lr}(0) = I_0$. The interval of this mode is:

$$
\Delta t_4 = t_4 - t_3 = \frac{nL_rI_0}{V_s}
$$

(4-14)

The auxiliary switch $S_b$ can be turned off in ZVS condition. In this case, after switch $S_b$ is turned off, the transformer primary winding current $i_{Lr}$ flows through freewheeling diode $D_{fp}$. The auxiliary switch $S_b$ can be also turned off in ZVS and zero-current-switching (ZCS) condition after $i_{Lr}$ decays to zero.

**Mode 5** (shown in Fig. 4-17) $t_4 < t < t_5$: The transformer primary winding current decays to zero and the resonant circuit idles. This state is similar to the same operation state as
conventional hard switching inverter. The load current flows from DC link through two switches $S_1$ and $S_6$, and the motor.

![Fig. 4-17. Equivalent circuit of mode 5](image)

**Mode 6** (shown in Fig. 4-18) $t_5 < t < t_6$: The main inverter switch $S_6$ is turned off directly and resonant circuit does not work. The snubber capacitor $C_{rb}$ can slow down the rise rate of $u_{S6}$, the main switch $S_6$ operates in ZVS condition. The duration of the mode is:

$$\Delta t_6 = t_6 - t_5 = \frac{CV_s}{I_0}$$

(4-15)

![Fig. 4-18. Equivalent circuit of mode 6](image)

The next period starts from mode 0 again, but the load current flows through freewheeling diode $D_3$. During phase current commutation, the switching state is changed from one lower switch to another (e.g. turn off $S_6$ and turn on $S_2$), $S_6$ can be turned off directly in ZVS condition (similar to mode 6), turning on auxiliary switch $S_c$ to discharge...
Chapter 4 Resonant pole inverter

the snubber capacitor $C_{rc}$ then switch $S_2$ can get ZVS condition (similar to mode 1 – mode 4).

4.2.3 Design considerations

It is assumed that the inductance of BDCM is much higher than the transformer leakage inductance. From the analysis presented previously, the design considerations can be summarized as follows:

- Determine the value of snubber capacitor $C_{rc}$ and the parameter of transformer.
- Select the main and auxiliary switches.
- Design the control circuitry for the main and auxiliary switches.

The transformer turn ratio ($1:n$) can be determined ahead. From Equation (4-8) $n$ must satisfy:

$$n > 2$$  \hspace{1cm} (4-16)

On the other hand, from Equation (4-14) the transformer primary winding current $i_{Lr}$ will take a long time to decay to zero if $n$ is too big. So $n$ must be a moderate number. The equivalent inductance of the transformer $L_r = L_{r1} + L_{r2}/n^2$ is inversely proportional to the rise rate of the switch current when turning on the auxiliary switches. It means that the equivalent inductance $L_r$ should be big enough to limit the rising rate of the switch current to work in ZCS condition. The selection of $L_r$ can be referenced from the rule depicted in [19].

$$L_r = 4t_{on}V_S / I_{0\text{max}}$$  \hspace{1cm} (4-17)

Where $t_{on}$ is the turn on time of an IGBT, $I_{0\text{max}}$ is the maximum load current. The snubber capacitance $C_r$ is inversely proportional to the rise rate of the switch voltage drop when turning off the lower main inverter switches. It means that the capacitance is as high as possible to limit the rising rate of the voltage to work in ZVS condition. The selection of the snubber capacitor can be determined as
\[ C_r \approx 4t_{\text{off}} I_{0\text{max}} / V_S \] (4-18)

Where \( t_{\text{off}} \) is the turn off time of an IGBT. However, as the capacitance increases, more energy is stored in it. This energy should be discharged when the lower main inverter switches are turned on. With high capacitance, the peak value of transformer current will be also high. The peak value of \( i_{Lr} \) should be restricted to twice that of maximum load current. From (4-10) we obtain

\[ \sqrt{\frac{C_r}{L_r}} \leq \frac{nI_{0\text{max}}}{(n-1)V_S} \] (4-19)

Three lower switches of inverter (i.e. \( S_4, S_6, S_2 \)) are turned on during mode 3 (i.e. lag rising edge of PWM at the time range \( \Delta t_1 + \Delta t_2 \sim \Delta t_1 + \Delta t_2 + \Delta t_3 \)). In order to turn on these switches at a fixed time (say \( \Delta T_1 \)) lagging rising edge of PWM under various load current for control convenient, the condition should be satisfied:

\[ (\Delta t_1 + \Delta t_2 + \Delta t_3) |_{t=0} > (\Delta t_1 + \Delta t_2) |_{t=I_{0\text{max}}} + t_{\text{off}} \] (4-20)

Substitute Equations (4-5), (4-8) and (4-13) into Equation (4-20),

\[ \sqrt{n(n-2)L_r C_r} > \frac{nL_r I_{0\text{max}}}{(n-1)V_S} + t_{\text{off}} \] (4-21)

The whole switching transition time is expressed as

\[ T_w = \Delta t_1 + \Delta t_2 + \Delta t_3 + \Delta t_4 \]
\[ = \frac{nL_r I_0}{(n-1)V_S} + \sqrt{L_r C_r \left[ \arccos \left( -\frac{1}{n-1} \right) + \sqrt{n(n-2)} \right]} \] (4-22)

For high switching frequencies, \( T_w \) should be as short as possible. Select the equivalent inductance \( L_r \) and snubber capacitance \( C_r \) to satisfy the Equations (4-16) - (4-21), \( L_r \) and \( C_r \) should be as small as possible.

As the transformer operates at high frequency (20kHz), the magnetic core material can be ferrite. The design of the transformer needs the parameters of form factor, frequency, the input/output voltage, input/output maximum current, ambient temperature. From Fig. 4-
Chapter 4 Resonant pole inverter

11, the transformer current can be simplified as triangular waveforms, then the form factor can be determined as \( \frac{2}{\sqrt{3}} \). Ambient temperature is dependent of application field. Other parameters can be obtained from the previous section. The transformer only carries current during the transition of turning on a switch in one cycle, so the winding can be of smaller diameter.

Main switches \( S_{1-6} \) work under ZVS condition, the voltage stress is equal to the DC link voltage \( V_S \). The device current rate can be load current. Auxiliary switches \( S_{a-c} \) work under ZCS or ZVS condition, and the voltage stress is also equal to the DC link voltage \( V_S \). The peak current flowing through them is limited to double maximum load current. As the auxiliary switches \( S_{a-c} \) carry the peak current only during switch transitions, they can be rated at lower continuous current rating. The additional cost will be not too much.

![Gate signal generator circuit](image)

Gate signal generator circuit is shown in Fig. 4-19. Rotor position signal decode module produces the typical gate signal of the main switches. The inputs of the module are rotor position signals, rotating direction of the motor, “Enable” signal and PWM pulse-train.
The rotor position signals are three square-waves with phase shift in 120°. “Enable” signal is used to disable all outputs in case of emergency (e.g. over current, over voltage, over heat). PWM signal is the output of comparator comparing the reference voltage signal with triangular wave. The reference voltage signal is the output of speed controller. Speed controller is a processor (single chip computer or digital signal processor) and the PWM signal can be produced by software. The outputs \(G_1 - G_6\) of the module are the gate signals applied to the main inverter switches. The outputs \(G_{1,3,5}\) are the required gate signals for three upper main inverter switches.

The gate signals of three lower main inverter switches and auxiliary switches can be deduced from the outputs \(G_{4,6,2}\) as shown in Fig. 4-20. The trailing edge of the gate signals for three lower main inverter switches \(G_{5,4,6,2}\) is the same as that of \(G_{4,6,2}\), the leading edge of \(G_{5,4,6,2}\) lags \(G_{4,6,2}\) for a small time \(\Delta T_1\). The gate signals for auxiliary switches \(G_{5a,b,c}\) have a fixed pulse width \(\Delta T_2\) with the leading edge same as that of \(G_{4,6,2}\).

In Fig. 4-19, the gate signals \(G_{5a,b,c}\) are the outputs of monostable flip-flops \(M_{2,4,6}\) with the inputs \(G_{4,6,2}\). The three monostable flip-flops \(M_{2,4,6}\) have the same pulse width \(\Delta T_2\). The gate signals \(G_{5,4,6,2}\) are combined by the negative outputs of monostable flip-flops \(M_{1,3,5}\) and \(G_{4,6,2}\). The combining logical controller can be implemented by a D flip-flop with “preset” and “clear” terminals. The three monostable flip-flops \(M_{2,4,6}\) have the same pulse width \(\Delta T_1\).

![Fig. 4-20. Gate signals \(G_{5,4,6,2}\) and \(G_{5a,b,c}\) from \(G_{4,6,2}\)](image)

Determination of the pulse widths of \(\Delta T_1\) and \(\Delta T_2\) is referenced from theoretical analysis in section 4.2.2. In order to get ZVS condition of the main inverter switches under various load currents, the lag time \(\Delta T_1\) should satisfy:
In order to get soft switching condition of the auxiliary switches, pulse width $\Delta T_2$ needs only satisfy:

$$\Delta T_2 > (\Delta t_1 + \Delta t_2 + \Delta t_3) \Bigg|_{I_0=I_{\text{max}}}$$  \hspace{1cm} (4-24)

### 4.2.4 Simulation and experimental results

The proposed topology is verified by simulation software PSim. The DC link voltage $V_S$ is 300V, the maximum load current is 25A. The parameters of the resonant circuit were determined from Equations (4-16) - (4-22). The transformer turn ratio is 1:4, the leakage inductances of the primary secondary windings are 6$\mu$H and 24$\mu$H respectively. So the equivalent transformer inductance $L_r$ is 7.5$\mu$H. The resonant capacitance $C_r$ is 0.047$\mu$F. Then $\Delta t_1 + \Delta t_2$ and $\Delta t_1 + \Delta t_2 + \Delta t_3$ can be determined under various load current $I_0$ as shown in Fig. 4-21. Considering the turn off time of a switch lagging time $\Delta T_1$ and pulse width $\Delta T_2$ are set to 2.1$\mu$s and 5$\mu$s respectively. The frequency of the PWM is 20 kHz. Waveforms of transformer primary winding current $i_{L_r}$, switch $S_6$ voltage drop $u_{S6}$, PWM, main switch $S_6$ and auxiliary switch $S_b$ gate signal under low and high load current are shown in Fig. 4-22. The figure shows that the inverter worked well under various load currents.

![Fig. 4-21. Boundary of $\Delta T_1$ and $\Delta T_2$ under various load current $I_0$](image-url)
Chapter 4 Resonant pole inverter

In order to verify the theoretical analysis and simulation results, the inverter was tested by experiment. The DC link voltage is 300V, the switching frequency is 20kHz. Select 50A/1200V BSM 35 GB 120 DN2 dual IGBT module as main inverter switches, 30A/600V IMBH30D-060 IGBT as auxiliary switches. With datasheets of these switches and Equation (4-16) – (4-22), the value of inductance and capacitance can be determined. Three polyester capacitors of 47nF/630V were adopted as snubber capacitor $C_r$ for three lower switches of the inverter. A high magnetizing inductance transformer with turn ratio 1:4 was employed in the experiment. 52 turns wires with size AWG 15 are selected as primary winding, 208 turns wires with size AWG 20 are selected as secondary winding. The equivalent inductance is about $7\mu H$. The switching frequency is 20 kHz. The rotor position signal decode module is implemented by a 20 leads gate array logic (GAL) IC GAL16V8. The monostable flip-flop is set up by IC 74LS123, variable resistor and capacitor. With Equations (4-23) and (4-24), lag time $\Delta T_1$ and pulse width $\Delta T_2$ are determined to be 2.5µs and 5µs respectively.

(a) Under low load current ($I_0 = 5A$)  
(b) Under high load current ($I_0 = 25A$)

Fig. 4-22. Simulation waveforms of $i_L$, $u_{S6}$, PWM, $S_6$ and $S_b$ gate signal under various load current
(a) Switch $S_6$ voltage $u_{S6}$ (top) and its gate signal (bottom) under low load current (100V/div)

(b) Switch $S_6$ voltage $u_{S6}$ (top) and its gate signal (bottom) under high load current (100V/div)

(c) Switch $S_6$ voltage $u_{S6}$ (top) and its current $i_{S6}$ (bottom) (100V/div, 5A/div)
The system is tested in light load and full load currents. The waveforms of the voltage across main inverter switch $u_{S6}$ and its gate signal in low and high load currents are shown in Fig. 4-23(a) and Fig. 4-23(b) respectively. All the voltage signals measured by a differential probe with a gain of 20. For voltage waveform, $5.00\text{V/div} = 100\text{V/div}$. The waveforms of $u_{S6}$ and its current $i_{S6}$ are shown in Fig. 4-23(c), $dv/dt$ and $di/dt$ are reduced significantly. The waveforms of $u_{S6}$ and transformer primary winding current $i_{Lr}$ are shown in Fig. 4-23(d). The phase current is shown in Fig. 4-23(e). It can be seen that the resonant pole inverter works well under various load currents, and there is little overlap between the voltage and current waveforms during the switching under soft switching condition, so the switching power losses is low. The efficiency of hard switching and soft
switching under rated speed and various load torque (p.u.) is shown in Fig. 4-24. The efficiency improves with soft switching inverter. The design of the system is successful.

Fig. 4-24. Efficiency of hard switching and soft switching under various load torque (p.u.)

4.3 Summary

Known resonant pole inverters have been reviewed firstly. A specially designed resonant pole inverter dedicated for BDCM drive system is presented. Its principle of operation is explained. Selection of the required transformer parameter, snubber capacitors is given. The main inverter switches and auxiliary switches gate signal generation methods are also illustrated. Determination of the corresponding pulse width is given. The inverter operation is also verified by the results of simulation and experiment. The following observations were made:

- All the high switching frequency switches (three lower main switches and auxiliary switches) work under soft-switching condition.
- Voltage stress on all the switches is low that is not greater than DC Supply voltage.
- Very simple auxiliary switches control scheme.
- Freewheeling diodes turned off under zero current condition and this greatly reduced the reverse recovery problem of the diodes.
- The normal operation of the inverter is entirely the same as hard switching inverter.

- \( \frac{dv}{dt} \) and \( \frac{di}{dt} \) are reduced significantly, so EMI is reduced.

- As the switching frequency is as high as 20 kHz, the switching acoustic noise can be eliminated.
Chapter 5  Fuzzy and PI Hybrid Control

PI controller has the advantage of fast response especially in motor starting but it will introduce overshoot and oscillation. The fuzzy logic controller can solve these problems and is robust to the system parameters variation while it has slower response than that of PI controller. A hybrid controller for the PM BDCM drive system is proposed in this chapter which holds the advantages of both PI and fuzzy logic controller. In case of large speed error, PI controller is active; in case of small speed error, fuzzy logic controller is applied. Experimental results are given to verify the feasibility of the controller.

5.1 Introduction

Fuzzy logic, or fuzzy set theory, was first presented by Zadeh [53]. The main idea of fuzzy logic control is to use the control ability of human being which includes experience and intuition so the nature of the controller has adaptive characteristics that can achieve robust response to a system with uncertainty, parameter variation, and load disturbance. The fuzzy logic control [9, 26, 28, 48] has been broadly used in ill-defined, nonlinear, or imprecise systems and no accurate mathematical model of the complete system is required. In the area of the electrical drive system, fuzzy logic controllers have been applied to switched reluctance motors [8, 31], induction motors [57], brushless DC motors [76] and so on.

PI controller has the advantage of fast response especially in motor starting but it will introduce overshoot and oscillation. The fuzzy logic controller can solve these problems while it has slower response than that of PI controller. To utilize the advantages of both PI and fuzzy logic controllers to provide better response than any one controller only, hybrid controller with fuzzy logic and PI has been introduced in many fields and achieve good performance. Un-Chul Moon proposed hybrid PI and fuzzy controller for TV glass furnace temperature control [82] to overcome the complex and nonlinear of glass melting furnace. Yen-Shin Lai also introduced this hybrid controller for direct torque control
induction motor drives [97] which reduces the steady state error as compared with PI-type fuzzy logic controller, while keeping the merits of PI-type FLC. Onat M. proposed fuzzy plus integral control of the effluent turbidity in direct filtration [65] which successfully compensates the disturbances such as the filter flow rate and the influent turbidity that directly affect the effluent turbidity.

Rubaai A. proposed a hybrid fuzzy and PI controller for PM BDCM drive system which is effective and simple to design [76]. However it is a single closed-loop controller without current loop which will be slow response in motor starting and sensitive to load disturbance. Moreover the load current may exceed allowed maximum value which will be harmful to the motor. This chapter introduces a hybrid fuzzy and adaptive PI controller with current/speed double closed-loop for PM BDCM drive system. It has the advantages of fast response, little overshoot, robust, stability and so on. It has also the advantage of easy to be implemented and the algorithm, flowing chart of the software will be offered in this chapter. The structure of the control system is shown in Fig. 5-1. It includes outer speed loop, inner current loop, drive system, sensor and user interface (to set reference speed and other parameter). The outer speed loop comprises two controllers: PI controller and fuzzy logic controller. In case of large speed error PI controller is active, in case of small speed error fuzzy logic controller is applied. The inner current loop is made up of a conventional PI controller. The drive system includes rectifier, inverter, motor and mechanical load.

![Fig. 5-1. The structure of control system](image-url)
5.2 Model of Drive System

The drive system comprises rectifier, inverter, motor and mechanical load. The rectifier is a three-phase diode bridge. The inverter can be hard switching inverter or soft switching inverter. The soft-switching inverters have been introduced in Chapter 3 and Chapter 4. Assumption the rotor reluctance of PM BDCM is constant independent rotor position $\theta_r$ and only the fundamental components of the flux linkages contributed by the permanent magnet are considered. Then the mathematical model of the three phase Y connected PM BDCM can be expressed as [67]

$$
\begin{align*}
\begin{bmatrix}
  v_a \\
  v_b \\
  v_c
\end{bmatrix} &= 
\begin{bmatrix}
  R & 0 & 0 \\
  0 & R & 0 \\
  0 & 0 & R
\end{bmatrix}
\begin{bmatrix}
  i_a \\
  i_b \\
  i_c
\end{bmatrix} +
\begin{bmatrix}
  L-M & 0 & 0 \\
  0 & L-M & 0 \\
  0 & 0 & L-M
\end{bmatrix}
\begin{bmatrix}
  p \cdot i_a \\
  p \cdot i_b \\
  p \cdot i_c
\end{bmatrix} +
\begin{bmatrix}
  e_a \\
  e_b \\
  e_c
\end{bmatrix} \\
T_e &= (e_a i_a + e_b i_b + e_c i_c) / \omega_r
\end{align*}$$

(5-1)

(5-2)

Where $R$ is the phase resistance, $L$ is phase inductance, $M$ is the mutual inductance, $v_{a,b,c}$ is the phase voltage, $i_{a,b,c}$ is the phase current, $e$ is the phase back EMF, $p$ is the derivational operator $\frac{d}{dt}$, $\omega_r$ is the rotor speed, and $T_e$ is electromagnetic torque.

![Fig. 5-2. The waveforms of back EMF and phase currents](image)
Chapter 5 Fuzzy and PI hybrid control

For three-phase Y connected trapezoidal back EMF PM BDCM, two phases are active at all time, phase currents commutation happens every 60 electrical degrees. Normal waveforms of back EMF, phase currents are shown in Fig. 5-2. The sum of absolute phase currents $i_{sum}$ is also shown in the figure. $I_{avg}$ is the average value of $i_{sum}$. The maximum phase back EMF $E$ is expressed as:

$$E = K\phi \omega_t$$  \hspace{1cm} (5-3)

Where $\phi$ is flux per pole produced by the permanent magnetic, $K$ is a constant for a given motor which is related to the number of poles, conductors in the armature, parallel paths in the armature circuit. Details have been described in Chapter 2. When the phase currents are active, it is beyond the flat top part of back EMF. Then from Equations (5-2) and (5-3), the electromagnetic torque is in the form:

$$T_e = K\phi i_{sum}$$  \hspace{1cm} (5-4)

From Equation (5-1), we can also get

$$v = R_{eq}i_{sum} + L_{eq} \frac{di_{sum}}{dt} + K\phi \omega_t$$  \hspace{1cm} (5-5)

Where $R_{eq}$ is the equivalent resistance $R_{eq} = R/2$, $L_{eq}$ is the equivalent inductance $L_{eq} = (L - M)/2$, $v$ is the equivalent terminal voltage $v = \delta V_S$, $V_S$ is the inverter DC link voltage (DC power supply voltage), $\delta$ is the duty of PWM. The Equations (5-4) and (5-5) are similar to that of conventional DC motor. For three-phase Y connected PM BDCM, the two active phases are connected in serial, we can not control their current separately, but we can change inverter average voltage to control the sum of absolute phase current $i_{sum}$. Thus we can design the controller for PM BDCM according the design formula for commutated DC motor.

![Fig. 5-3. The block diagram of the PM BDCM](image)
Chapter 5 Fuzzy and PI hybrid control

The motion equation of the drive system is describe as

\[
J \frac{d\omega_r}{dt} = T_e - B \omega_r - T_L
\]  

(5-6)

Where \( J \) is the moment inertia of motor and load, \( B \) is the viscous friction coefficient which is generally small and can be neglected, \( T_L \) is the load torque. Then the block diagram of PM BDCM can be got from Equations (5-3) ~ (5-6) as shown in Fig. 5-3, where \( \tau_e \) is electrical time constant \( L_{eq} / R_{eq} \), \( \tau_m \) is mechanical time constant \( J / B \).

### 5.3 Current Controller

The inner current loop of the controller is a PI controller. The design of the current loop controller can be referred from the textbook [34]. The output of the current controller is PWM duty \( \delta \) for the inverter, the average voltage for motor is proportional to the duty \( \delta \), when switching frequency is high enough the inverter can be considered as one amplifier, it has the gain of \( K_C \) which is proportional to DC link voltage. The current loop for PM BDCM is shown in Fig. 5-4. Where \( K_{si} \) is the gain of current controller, \( \tau_{si} \) is the integral time constant, \( K_i \) is the gain of current sensor, \( \tau_{em} \) is electromechanical time constant \( JR/(K\phi)^2 \). The current controller is expressed as

\[
G_i(s) = \frac{K_{si}(1+s\tau_{si})}{s\tau_{si}}
\]  

(5-7)

![Fig. 5-4. The current loop for the PM BDCM](image)

Consider current loop is much faster than that of speed loop, when \( \omega^2 \tau_{em} \tau_e \gg 1 \), the right block of Fig. 5-4 can be simplified as
Chapter 5 Fuzzy and PI hybrid control

\[
\frac{s \tau_{em}}{R_{eq}(s^2 \tau_{em} \tau_{e} + s \tau_{em} + 1)} \approx \frac{s \tau_{em}}{R_{eq}(s^2 \tau_{em} \tau_{e} + s \tau_{em})} = \frac{1}{R_{eq}(1 + s \tau_{e})} \quad (5-8)
\]

Select the integral time constant \( \tau_{si} \) to be equal to the electrical time constant \( \tau_{e} \), i.e. \( \tau_{si} = \tau_{e} \), then simpler current loop can be obtained as shown in Fig. 5-5.

![Fig. 5-5. The simplified current loop for the PM BDCM](image)

For given critical frequency \( \omega_c \), the gain of current controller \( K_{si} \) can be determined:

\[
K_{si} = \frac{\omega_c \tau_{e} R_{eq}}{K_c K_i} \quad (5-9)
\]

The close loop transfer function can be also determined:

\[
H_i(s) = \frac{1}{K_i(1 + s / \omega_c)} \quad (5-10)
\]

The current loop is always stable as the phase will never cross \(-180^\circ\). Normally the current controller will not be saturated, a limit in the output of the controller is not needed. In case of saturation, the PWM duty \( \delta \) is 1 and the motor runs with full DC link voltage.

In digital control system, the sum of absolute phase currents \( i_{sum} \) can be obtained by two current sensors via analog digital converter (ADC), then calculate the third phase current and sum of absolute phase currents \( i_{sum} \). In analog control system, \( i_{sum} \) can be obtained by two current sensor and analog operating circuit. In order to reduce sensors and save cost, only one single DC current sensor with saturation compensator during commutation is applicable [44].

In time domain, incremental PI control can be also obtained
Chapter 5 Fuzzy and PI hybrid control

\[ \Delta \delta = K_{sl} \Delta e_i + \frac{K_{si}}{\tau_{si}} e_i \]  

(5-11)

After continuous time controller is designed, it can be approximated using a digital controller. This design method has the advantages of simple and tools readily available. However there are approximation errors and no guarantee on stability & performance after digital implementation. The digital controller can be designed direct in z-plane. First get the z-transform of plant consider the sample and zero order holder. Then select sample time of inner current loop T according electrical time constant \( \tau_e \) and select integrate time constant \( \tau_{si} \) to balance system steady state and transient performance. Lastly the gain of the controller can be determined by root-locus in z-plane.

5.4 Speed Controller

5.4.1 PI controller for the speed loop

The design of PI controller for the speed loop can be also referred from textbook. The current loop of the system is expressed as (5-10). The speed loop for the PM BDCM with PI controller is shown in Fig. 5-6. Where \( K_{sao} \) is the gain of speed controller, \( \tau_{sao} \) is the integral time constant, \( K_\omega \) is the gain of speed sensor. The output of the speed controller is the reference current \( i^* \) for current controller. The motor has a limited allowed maximum phase current, so one limit (or saturation) is needed to protect motor. The open loop transfer function of the speed loop is:

\[ A_\omega (s) = \frac{K_{sao}(1 + s \tau_{sao}) \cdot K_\phi \cdot K_\omega}{s \tau_{sao} BK_i(1 + s / \omega_c)(1 + s \tau_m)} \]  

(5-12)

Fig. 5-6. The speed loop for the PM BDCM
The critical frequency of speed loop $\omega_{cs}$ should be at least five times smaller than that of current $\omega_{ci}$. With the required critical frequency $\omega_{cs}$ and phase margin $\varphi_{cs}$, the speed controller parameter $K_{ss}$ and $\tau_{ss}$ can be determined from open loop transfer function (5-12). As the PI controller is active in case of large error, speed controller parameter $K_{ss}$ and $\tau_{ss}$ can be selected most for fast response. Overshoot and oscillation will be alleviated by fuzzy controller.

### 5.4.2 Fuzzy logic controller for the speed loop

PI controller has the advantage of fast response especially during the starting of a motor when the speed error is large and the phase current will reaches maximum rapidly, then the motor can start with maximum acceleration. At the same time the speed controller is saturated and it will not retreat from saturation until the speed error is negative, thus overshoot is inevitable. On the other hand, the response of the controller is conflict with overshoot. When the response of the controller is fast then the overshoot is large. When the overshoot is small, the settling time is long. The PID controller can retreat from saturation beforehand to eliminate overshoot, however, the differential part of the controller is sensitive to disturbance, and the settling time is longer than PI controller. In order to solve these problems, fuzzy logic controller is introduced.

![The structure of fuzzy logic controller](image)

---

The main idea of fuzzy logic control is to use the control ability of human being which includes experience and intuition of experts. It is one of the useful control techniques for uncertain and ill-defined nonlinear systems. Control actions of a fuzzy controller are
Chapter 5 Fuzzy and PI hybrid control

described by some linguistic rules. This property makes the control algorithm easy to understand. Heuristic fuzzy controllers incorporate the experience or knowledge into rules. Before the motor will reach desired speed, the controller will reduce the command signal to avoid overshoot. The structure of fuzzy logic controller for PM BDCM is shown in Fig. 5-7.

The input of the fuzzy logic controller is speed error and acceleration error (the differential of speed error). The output of the controller is command increment. The pre-process is used to calculate normalized speed error $e_{pu}$ and acceleration error $\dot{e}_{pu}$, so it is convenient to determine parameter of the fuzzifier. The pre-process can be expressed by:

$$
\begin{align*}
 e &= \omega^* - \omega \\
 e_{pu} &= e / \omega_n \\
 \dot{e}_{pu} &= de_{pu} / dt
\end{align*}
$$

(5-13)

Where $\omega_n$ is the rated motor speed. Then the crisp inputs $e_{pu}$ and $\dot{e}_{pu}$ should be mapped into fuzzy variables $\tilde{e}$ and $\tilde{\dot{e}}$. This process is called fuzzification, the corresponding module is called fuzzifier. A fuzzy variable has linguistic values, for example, LOW, MEDIUM, HIGH which may be defined through triangle, trapezoidal or bell shape membership functions with gradual variation. Triangle shape membership function is introduced here. The membership functions of fuzzy variables $\tilde{e}$ and $\tilde{\dot{e}}$ are shown in Fig. 5-8. Where linguistic value Z, PS, PB, NS and NB means zero, positive small, positive big, negative small and negative big respectively. The membership functions of $\tilde{e}$ and $\tilde{\dot{e}}$ are expressed as:

$$
\mu_{NB}(e_{pu}) = \begin{cases} 
1 & e_{pu} \leq -e_2 \\
\frac{e_1 + e_{pu}}{e_1 - e_2} & -e_2 < e_{pu} < -e_1 \\
0 & \text{otherwise}
\end{cases}
$$

$$
\mu_{NS}(e_{pu}) = \begin{cases} 
\frac{e_{pu}}{e_1} & -e_1 < e_{pu} < 0 \\
0 & \text{otherwise}
\end{cases}
$$

\[
\mu_{PB}(\dot{e}_{pu}) = \begin{cases} 
1 & \dot{e}_{pu} \geq \dot{e}_2 \\
\frac{\dot{e}_{pu} - \dot{e}_1}{\dot{e}_2 - \dot{e}_1} & \dot{e}_1 < \dot{e}_{pu} < \dot{e}_2 \\
0 & \text{otherwise}
\end{cases}
\]

(a) Speed error \( \tilde{e} \) membership function

(b) Acceleration error \( \ddot{e} \) membership function

Fig. 5-8. Membership function of fuzzy input variable

Fig. 5-9. Membership function of fuzzy output variable \( \Delta \tilde{u} \)

The boundary \( e_1, e_2, \dot{e}_1 \) and \( \dot{e}_2 \) can be determined according to the experience and trial in simulation and no rigorous values are required. As the crisp inputs \( e_{pu} \) and \( \dot{e}_{pu} \) are per unit value, the boundary \( e_1, e_2, \dot{e}_1 \) and \( \dot{e}_2 \) can be fixed values. There are also some
methods to determine the membership function, such as: three-phase method, the
incremental method, multiphase fuzzy statistical method, absolute comparison method,
set-valued statistical iteration method and so on [26].

Table 5-1. The fuzzy rule base

<table>
<thead>
<tr>
<th></th>
<th>NB</th>
<th>NS</th>
<th>Z</th>
<th>PS</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>Z</td>
</tr>
<tr>
<td>NS</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>Z</td>
<td>PS</td>
</tr>
<tr>
<td>Z</td>
<td>NM</td>
<td>NS</td>
<td>Z</td>
<td>PS</td>
<td>PM</td>
</tr>
<tr>
<td>PS</td>
<td>NS</td>
<td>Z</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
</tr>
<tr>
<td>PB</td>
<td>Z</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
</tr>
</tbody>
</table>

It has mentioned that the fuzzy rule base comes from the experience of experts. The input
signals to the controller that the experts can observe are the speed error (\( \tilde{e} \)) and the
change rate of speed error (\( \tilde{e}^{\sim} \)). The output of the experts is to alter the control signal and
determines how much the control signal should be altered (\( \Delta \tilde{u} \)). Then the fuzzy rule base
can be deduced as shown on Table 5-1. The output of fuzzy inference is the command
(control signal) increment \( \Delta \tilde{u} \). Its values is NB, NM, NS, Z, PS, PM and PB. NM means
negative medium, PM means positive medium, other values are the same as former. The
membership of \( \Delta \tilde{u} \) is shown in Fig. 5-9. The boundary \( u_1, u_2 \) and \( u_3 \) can be also
determined according to the experience and trial in simulation. There are \( 5 \times 5 = 25 \) rules,
i.e.:

Rule 1: \( \text{IF } \tilde{e} = \text{NB AND } \tilde{e}^{\sim} = \text{NB THEN } \Delta \tilde{u} = \text{NB} \)

......

Rule 5: \( \text{IF } \tilde{e} = \text{PB AND } \tilde{e}^{\sim} = \text{NB THEN } \Delta \tilde{u} = \text{Z} \) \hspace{1cm} (5-15)

......

Rule 25: \( \text{IF } \tilde{e} = \text{PB AND } \tilde{e}^{\sim} = \text{PB THEN } \Delta \tilde{u} = \text{PB} \)

Rule 1 suggests that when the real speed is greatly more than reference speed (\( \tilde{e} = \text{NB} \))
while motor speed is still increase greatly (\( \tilde{e}^{\sim} = \text{NB} \)), the control signal should be reduced
greatly (\( \Delta \tilde{u} = \text{NB} \)). Rule 5 suggests that when the real speed is greatly more than
reference speed ($\ddot{e} = \text{NB}$) while motor speed is decreased greatly ($\dot{e} = \text{PB}$), the motor speed is approaching to the reference speed with maximum deceleration, the current control signal is perfect, we need not change it ($\Delta \ddot{u} = \text{Z}$). Other rules can be also interpreted.

Fuzzy inference engine is used to combine the IF-THEN rules and obtain the conclusion for the consequent. Use Mamdami implication [10] for each IF_THEN rule, the output membership of the linguistic value can be got:

Rule 1: $$\mu_{\text{NB1}}(\Delta u') = \min\{\mu_{\text{NB}}(e_{pu}), \mu_{\text{NB}}(\dot{e}_{pu})\} \tag{5-16}$$

Rule 2: $$\mu_{\text{NB2}}(\Delta u') = \min\{\mu_{\text{NS}}(e_{pu}), \mu_{\text{NB}}(\dot{e}_{pu})\} \tag{5-16}$$

......

Rule 25: $$\mu_{\text{PB25}}(\Delta u') = \min\{\mu_{\text{PB}}(e_{pu}), \mu_{\text{PB}}(\dot{e}_{pu})\} \tag{5-16}$$

From Table 5-1 we can find that different rules may conclude same linguistic value, e.g. rule 1, 2, 6 get the same linguistic value NB. Then we can set the maximum one as the final membership, e.g. for NB, have

$$\mu_{\text{NB}}(\Delta u') = \max\{\mu_{\text{NB1}}(\Delta u'), \mu_{\text{NB2}}(\Delta u'), \mu_{\text{NB6}}(\Delta u')\} \tag{5-17}$$

Thus the fuzzy output obtain:

$$\Delta \ddot{u} = \frac{\mu_{\text{NB}}(\Delta u')}{\text{NB}} + \frac{\mu_{\text{NM}}(\Delta u')}{\text{NM}} + \frac{\mu_{\text{NS}}(\Delta u')}{\text{NS}} + \frac{\mu_{\dot{Z}}(\Delta u')}{\dot{Z}} + \frac{\mu_{\text{PS}}(\Delta u')}{\text{PS}} + \frac{\mu_{\text{PM}}(\Delta u')}{\text{PM}} + \frac{\mu_{\text{PB}}(\Delta u')}{\text{PB}} \tag{5-18}$$

![Fig. 5-10. Output of fuzzy controller $\Delta \ddot{u}$](image)

The output of the inference engine is fuzzy variable in the form as shown in Fig. 5-10. The fuzzy logic controller must convert its internal fuzzy variable into crisp value so that the actual system can use the command signal. This conversion is called defuzzification.
One of the commonly used methods for defuzzification is center of area (COA) method. COA method is to get the centroid of each membership function for each output linguistic value. Then the crisp output command increment $\Delta u$ is expressed as:

$$
\Delta u = \frac{\int \mu(\Delta u')\Delta u'd\Delta u'}{\int \mu(\Delta u')d\Delta u'}
$$

(5-19)

![Fig. 5-11. Output variable $\Delta u$ membership function with crisp value](image)

To simplify the defuzzification, the membership function of output variable $\Delta u$ can be crisp value [97] as shown in Fig. 5-11. Then defuzzification is simplified as:

$$
\Delta u = \frac{\sum_{i=1}^{7} \mu_i(\Delta u')\Delta u'}{\sum_{i=1}^{7} \mu_i(\Delta u')} = u_1[\mu_{PS}(\Delta u') - \mu_{SB}(\Delta u')] + u_3[\mu_{PM}(\Delta u') - \mu_{SM}(\Delta u')] + u_4[\mu_{PB}(\Delta u') - \mu_{SN}(\Delta u')] + u_5[\mu_{PB}(\Delta u') + \mu_{SM}(\Delta u')] + u_6[\mu_{PB}(\Delta u') + \mu_{PS}(\Delta u')] + u_7[\mu_{PB}(\Delta u') + \mu_{PS}(\Delta u')]
$$

(5-20)

Integrating the command increment, the reference current $i^*$ is obtained (Fig. 5-7), where $\tau_f$ is integration time constant. The value of $\tau_f$ is determined by the response speed, load current. For fuzzy logic control, it is hard to obtain analytical equation of $\tau_f$. It can only be obtained by trial and experience. However, a wide range of $\tau_f$ is applicable to the control system.

### 5.4.3 Switching controller

The objective of the hybrid controller is to utilize the advantages of the PI and fuzzy controllers to provide better response than one controller only. The combined speed
controller is shown in Fig. 5-12. The controller selection signal $sel$ is determined by absolute speed error $|e|$ with hysteresis:

$$
sel(n) = \begin{cases} 
0 & e \leq e_i \\
0 & e_i < e \leq e_h \\
1 & \text{otherwise}
\end{cases}
$$

(5-21)

Thresholds $e_l$ and $e_h$ (with $e_h > e_l$) can be determined by user, a wide range of $e_l$ and $e_h$ can be selected. When the $sel$ is "1", speed error is big, switch $K$ is turned on, multiplexer $MUX$ selects $\frac{K_{s\omega}e}{\tau_{s\omega}}$ to the integrator, thus PI controller is active; when the $sel$ is "0", speed error is small, switch $K$ is turned off, $MUX$ selects fuzzy controller output command increment $\Delta u$ to the integrator, thus fuzzy controller is active. Fuzzy logic controller and PI controller can use the same integrator. When the controller is switched between PI controller and fuzzy logic controller, the step command signal is $K_{s\omega}e$, i.e. when the controller is switched from fuzzy to PI, command signal will step up $K_{s\omega}e$, vice versa. During the motor starting, PI controller will be saturated soon, when the controller is switched from PI to fuzzy logic controller, the step down command signal $K_{s\omega}e$ will help the controller to retreat from saturation to avoid overshoot. When the controller is required from fuzzy logic to PI, it means that the motor speed is deviated from reference speed and the controller should increase command signal greatly, the step up command signal $K_{s\omega}e$ just does it.
5.5 Implementation and Experimental Results

5.5.1 Structure of the experimental system

The structure of PM BDCM drive system for experiment is illustrated in Fig. 5-13 which comprises: diode bridge rectifier, three phase full wave inverter, motor, digital signal processor (DSP), user interface, sensor, commutation logic circuit and gate drive. The motor is a 3.3 hp 3000 rpm three-phase PM BDCM. The BDCM is equipped with a Hall-effect sensor and an incremental optical encoder. The Hall-effect sensor indicates which of the three phases of the motor should be excited as the motor runs. The optical incremental encoder with resolution of 512 pulses/revolution is used to give speed feedback. The optical encoder has been introduced in Chapter 2, Section 2.2.2. As only speed feedback is needed, no index pulse is required.

The control algorithm is implemented by software and executed by the DSP. The control software is written and loaded into the DSP using a PC. User interface is one key panel and LED display to set the reference speed. User interface can be also implemented by PC software which communicates with DSP via serial communication RS-232. The inputs to the commutation logic circuit are the three Hall sensor signals, the direction of desired rotation and PWM. The commutation logic circuit determines which switches should be turned on. The output of the commutation logic circuit is gate signals which...
feed the power semiconductor switches of the inverter via gate driver circuit. The commutation logic circuit and gate driver circuit have been described in Chapter 2.

The DSP used in the controller is TMS320F2407 which is special designed for power electronics and electric drive. The on-chip memory system includes 16k words (16bits) program flash E²PROM, 544 words data/program dual access RAM. The chip also comprises dual 10 bits 16 channel ADCs, serial communication interface (SCI), event manager, digital I/O and other modules. The event manager includes PWM channels, quadrature encoder pulse (QEP) circuit, capture unit, timer and so on. As PWM signal can be generated by the DSP, triangular wave generator and comparator are not required any more. The output of the incremental optical encoder can feed the QEP of the DSP directly. Capture unit can detect both edge of a square wave and measure its width. Dual on-chip ADC can accept two current sensor signals. Only one DC path current sensor is also applicable to reduce cost and to be set up conveniently [1]. The DSP can also accept reference speed signal from other processor via SCI.

### 5.5.2 Software introduction

The control algorithm is implemented by software and executed by the DSP. The flowchart of the software is shown in Fig. 5-14 which includes main routine, timer T1 interrupt service routine and speed control subroutine.

The flowchart of main routine is shown in Fig. 5-14(a). System initialization is executed first which includes system and output clock setting, sign extension mode setting, overflow mode settings and watchdog setting. In event register initialization, timer, PWM unit, event interrupt register, capture unit will be set. The period of timer T1 will be set to be 50µs, the timer also acts as time base of PWM unit, thus the switching frequency is 20kHz. Timer T2 and T3 are cascaded into a 32-bit timer for QEP circuit to measure the motor speed. There are four capture units in the DSP, capture 1 and capture 2 are combined as QEP circuit. The DSP comprises dual 10 bits 16 channel ADCs. As there are only two phase currents should be measured by ADC, one phase current is allocated one ADC to simplify the software. The ADCs are also set to be started by timer T1 event, thus the phase current is measured every 50µs (The conversion time for ADC is about 6µs).
Chapter 5 Fuzzy and PI hybrid control

Timer T1 period interrupt is enabled, the event interrupt is belong to interrupt 2 which should be also enabled, the corresponding register is set. Shared I/O registers are also set to read reference speed. Interrupt is enabled after all the initialization is complete. Then the main routine read the reference speed all the time, the main routine will be paused if the interrupt service routine is being executed.

\[
i_{\text{sum}} = |i_a - I_{\text{offset}}| + |i_b - I_{\text{offset}}| + 2|I_{\text{offset}} - i_a - i_b| \quad (5-22)
\]

The flowchart of timer T1 interrupt service routine is shown in Fig. 5-14(b). The routine can read two phase currents from ADC data register, then calculate \(i_{\text{sum}}\) as

![Flowchart of software](image)
Chapter 5 Fuzzy and PI hybrid control

Where $I_{offset}$ is current offset. As the ADC in DSP can only accept positive voltage signal (0~5V), phase current $i_a$ and $i_b$ are added $I_{offset}$ first to satisfy the ADC. The winding of the motor is Y-configured, phase current $i_c$ can be calculated from $i_a$ and $i_b$. To alleviate the measure noise, $I_{sum}$ is averaged every four data. Division by 4 can be replaced by right shift 2 bits. Incremental PI regulation for current will be executed every 200µs. Incremental PI algorithm has the advantages of avoiding error accumulation and less memory is needed. The output of the current PI controller is duty cycle $\delta$ of PWM. The sample period of speed controller is 5ms, thus speed control subroutine is called every 100 times of timer T1 interrupt.

The flowchart of speed control subroutine is shown in Fig. 5-14(c). In the subroutine, the count in the cascaded 32-bit timer of T2 and T3 is read first to calculate the current speed $\omega_r$. Then the speed error $e$ and derivative of the speed error $\dot{e}$ are also determined. The controller selection signal $sel$ can be determined from speed error according to Equation (5-21). When the $sel$ is 0, fuzzy logic controller is selected, otherwise PI controller is selected. In fuzzy logic controller, speed error $e$ and its derivative $\dot{e}$ are normalized first to get their per unit value $e_{pu}$ and $\dot{e}_{pu}$. Then the membership of input will be determined.

From the figure of membership function (Fig. 5-8) we can see that there are only two linguistic values are nonzero at most for each input. One algorithm to obtain membership of speed error can be:

```c
Define variables Eind1 and Eind2 to save nonzero linguistic name for speed error; /* 0 -- NB   1 -- NS   2 -- Z   3 -- PS   4 -- PB */

Define variables Emb1 & Emb2 to save possible nonzero speed error membership and initial with zero; /* member2 may be zero */

Store absolute value of speed error to variable absError;

if (absError < e1) /* e1 is the boundary */
{
    Eind1 = 3; Eind2 = 2; /* PS and Z are nonzero value */
    Emb1 = absError / e1; /* calculate membership */
    Emb2 = 1 - Emb1;
}
else
```

- 108 -
\{ 
Eind1 = 4; Eind2 = 3; /* PB and PS are possible nonzero value */
if (absError < e2) /* e2 is also the boundary */
{
    Emb1 = (absError - e1) / (e2 - e1);
    Emb2 = 1 - Emb1; /* calculate membership */
}
else
{
    Emb1 = 1; Emb2 = 0; /* PB is maximum, PS is zero */
}
}

if (speed error < 0)
{
    /* PB -> NB, PS -> NS, Z has no changed */
    Eind1 = 4 - Eind1; Eind2 = 4 - Eind2;
}

The algorithm to determine membership of acceleration error is similar to that of speed error. This algorithm has less CPU load, the variables defined in the algorithm are also convenient for inference. As there are only two linguistic values are nonzero at most for each input, only four rules at most will be invoked as shown in Table 5-1 and contribute to the output. One algorithm of inference with Mamdami implication can be:

/* Variables to save nonzero linguistic name for acceleration error is dEind1 and dEind2. Variables to save nonzero membership for acceleration error is dEmb1 and dEmb2. */
Define array Omb[7] to save output membership & initial with zero;

index = (Eind1 left shift 3 bits) + dEind1; /* index = Eind1 × 8 + dEind1 */
ptr = RuleTable[index];
Omb[ptr] = min(Emb1, dEmb1);

index = (Eind1 left shift 3 bits) + dEind2; /* index = Eind1 × 8 + dEind2 */
ptr = RuleTable[index];
if (Omb[ptr] <= min(Emb1, dEmb2))
{
    Omb[ptr] = min(Emb1, dEmb2); /* Maximum value */
}
Chapter 5 Fuzzy and PI hybrid control

... ... ...
/* The same for group (Eind2, Emb2, dEind1, dEmb1) and (Eind2, Emb2, dEind2, dEmb2) */

RuleTable
/* Output linguistic 0 - NB, 1 - NM, 2 - NS, 3 - Z, 4 - PS, 5 - PM, 6 – PB, 0FFH is padding */
0      0      1      2      3      0FFH   0FFH   0FFH
0      1      2      3      4      0FFH   0FFH   0FFH
1      2      3      4      5      0FFH   0FFH   0FFH
2      3      4      5      6      0FFH   0FFH   0FFH
3      4      5      6      6      0FFH   0FFH   0FFH

This algorithm has also less CPU load. Then with Equation (5-20), command increment Δu can be obtained. Lastly the subroutine updates the reference current. Detail can be referenced from source code in Appendix G.

5.5.3 Experimental results

The switching frequency is 20 kHz. The phase current is sampled every 50µs, the speed is measured every 5ms. The integration time constant for fuzzy controller $\tau_f$ is 3.5ms, threshold for switching controller $e_l$ and $e_h$ is 15% $\omega_n$ and 20% $\omega_n$ respectively. The boundary of the membership function of the fuzzy variable $e_1$, $e_2$, $\dot{e}_1$, $\dot{e}_2$, $u_1$, $u_2$ and $u_3$ is 0.1, 0.3, 0.5, 1.8, 0.1, 0.3 and 0.6 respectively. The parameter of the PI speed controller $K_{sp}$ and $\tau_{sp}$ is 15 and 28.7ms respectively, the parameter PI current controller $K_{si}$ and $\tau_{si}$ is 2.2 and 3.075ms respectively. The experimental waveforms are shown in Fig. 5-15. The top waveform of each capture figure is motor speed with scale 1000 rpm/div. The bottom waveform is DC link current with scale 5A/div. Step speed response with PI controller only, fuzzy controller only, hybrid controller and corresponding DC link current are shown in Fig. 5-15(a), 5-15(b) and 5-15(c) respectively. From these figures we can see that the PI controller is faster response than that of fuzzy controller while there is overshoot and oscillation in PI controller. There is little overshoot and oscillation with fuzzy logic controller. Speed response of PI controller and fuzzy logic controller with impulse load torque are shown in Fig. 5-15(d) and 5-15(e) respectively. Speed response of PI controller and fuzzy logic controller with step load torque are shown in Fig. 5-15(f)
and 5-15(g) respectively. Fuzzy logic controller is more robust than that of PI controller, hybrid controller holds the advantages of the two controllers.

(a) Step speed response with PI controller only and DC link current

(b) Step speed response with fuzzy controller only and DC link current

(c) Step speed response with hybrid controller and DC link current
(d) Speed response of PI controller with impulse load torque and DC link current

(e) Speed response of fuzzy controller with impulse load torque and DC link current

(f) Speed response of PI controller with step load torque and DC link current
(g) Speed response of fuzzy controller with step load torque and DC link current

Fig. 5-15. Experimental waveforms of speed response and DC link current under PI controller only, fuzzy controller only and hybrid controller

5.6 Summary

A hybrid controller for the PM BDCM drive system is proposed which holds the advantages of both PI controller and fuzzy controller, i.e. fast response, little overshoot, little oscillation, robust to system parameters variation, stability and so on. The design of the controller is proposed. Hardware implementation is described. Experimental results are illustrated. The design of the controller is successful.
Chapter 6   SSRC Prediction Technique

This chapter proposed a Steady State Reference Current (SSRC) prediction technique based on neural network for PM BDCM drive system. Conventional controller that combines this technique holds the advantages of fast response, little overshoot, robust and so on. The prediction technique is described in detail. Hardware implementation and software flowchart are proposed and experimental results are illustrated. The drive system is tested under PI controller and fuzzy controller. The performance is improved greatly.

6.1 Introduction

A variable speed DC (or brushless DC) motor drive system is normally controlled by a speed/current double closed-loop controller. Typical speed and current curve of the drive system is shown in Fig. 6-1. Where \( \omega_r \) is reference speed, \( i^*_c \) is Steady State Reference Current (SSRC). During starting, the current (torque) reaches its maximum value quickly, which contributes to the fast response of the system as the motor runs with maximum acceleration. When the motor reaches desired speed, the current can not be reduced to its steady state value immediately. Normally it is still at maximum value and needs time to settle. Normally, speed overshoot and oscillation are inevitable, and the settling time is as long as multiple the starting time. Ideal speed and current curve are shown in Fig. 6-2. Current reaches its maximum value immediately during starting. When the motor reaches desired speed, the current can skip to its steady state value at the same time and the motor runs at the desired speed. Thus the settling time is shortest as it is only the starting time. Of course, it is hard to achieve ideal starting, however we can try to approach it. Near ideal speed and current curve is shown in Fig. 6-3. When the motor reaches desired speed while the current can not skip to the exact steady state value \( i^*_c \) and it can only skips to around the steady state value, there is oscillation too, but the oscillation is smaller than that of conventional control system and the settling time can be reduced greatly, too.
Chapter 6 SSRC prediction technique

(a) Speed

(b) Current

Fig. 6-1. Typical speed and current curve of a DC motor drive system

(a) Speed

(b) Current

Fig. 6-2. Ideal speed and current curve of a DC motor drive system

(a) Speed

(b) Current

Fig. 6-3. Near ideal speed and current curve of a DC motor drive system
Chapter 6 SSRC prediction technique

So the key is to determine (predict) the SSRC during starting. An artificial neural network (ANN) \[4, 5, 10, 15\] is a computational network, consisting of a number of interconnected processing units (neurons), which is able to learn and represent the unknown dependency relationship between a set of input variables and a set of output variables of a system. By selecting the training patterns (acceleration, speed, current, DC link voltage, reference speed) which cover all conditions (i.e. various DC link voltage, various load, various moment of inertia, various reference speed) to train the neural network, the neural network is able to predict the SSRC according to the acceleration, speed, current, DC link voltage, reference speed of the drive system, although the predicted value may be not very accurate.

6.2 The Structure of the System

This chapter introduces a SSRC prediction technique based on neural network for PM BDCM drive system. Conventional controller with this technique holds the advantages of fast response, little overshoot, robust and so on. Short settling time is very important for frequent run/stop drives, e.g. lift, lathe, electric actuator and so on. The structure of the control system is shown in Fig. 6-4. It includes outer speed loop, inner current loop, drive system, sensor and user interface (to set reference speed and other parameter). The outer speed loop comprises conventional controller, SSRC estimator, coarse reference current \(i_{cr}\) generator. In case of large speed error the reference current is maximum or minimum current, depending on the polarity of the speed error. When the speed error \(e\) is small enough, the reference current skips from extremum to coarse value \(i_{cs}\) which is determined by SSRC estimator. Then the conventional controller is active to fine adjust reference current and control the motor speed to the desired value. The coarse reference current generator is used to determine coarse reference current and active conventional controller according to the speed error \(e\). The expression of the coarse reference current \(i_{cr}\) will be proposed later. The conventional controller can be incremental PI controller, fuzzy logic controller or other controller. The inner current loop is a conventional PI controller. The drive system includes rectifier, inverter, motor and mechanical load.
Chapter 6 SSRC prediction technique

Fig. 6-4. The structure of the control system

PI controller for the current loop, PI and fuzzy logic controller for the speed loop has been introduced in the Chapter 5. SSRC estimator will be described in next section. Coarse reference current generator will be introduced here.

The coarse reference current generator is used to determine coarse reference current and active conventional controller according to the speed error $e$. The conventional controller active signal $act$ is

$$act(n) = \begin{cases} 
1 & e \leq e_l \\
1 & e_l < e \leq e_h \\
0 & \text{otherwise}
\end{cases} \quad (6-14)$$

The coarse reference current $i_{cr}$ is

$$i_{cr} = \begin{cases} 
I_{max} & e < 0 \quad act(n) = 0 \\
I_{min} & e > 0 \quad act(n) = 0 \\
i_{cr}^* & \text{act(n) = 1}
\end{cases} \quad (6-15)$$

Thresholds $e_l$ and $e_h$ (with $e_h > e_l$) can be determined by simulation. $I_{max}$ is allowed continuous maximum current. $I_{min}$ is minimum current, it maybe a negative value for reverse current braking, otherwise it is zero. $i_{cr}^*$ is coarse SSRC which is determined by SSRC estimator. During starting, the absolute of speed error $|e|$ is big, coarse reference current $i_{cr}$ is maximum current $I_{max}$, and conventional controller is not active. When $|e|$ decreases to smaller than $e_l$, conventional controller is active and coarse reference current...
Chapter 6 SSRC prediction technique

\( i_{cr} \) is \( i_{cr}^* \). After the conventional controller is active, it would not be stopped unless \( |e| \) is larger than \( e_h \) again.

SSRC estimator will calculate \( i_{cr}(n) \) for every sample period. The output for coarse reference current generator \( i_{cr}^* \) can be calculated from recent \( i_{cr}(n-i) \) with weight; the more recent the value, the larger the weight. For convenient execution in micro-processor, one expression of the calculation can be

\[
i_{cr}^* = \frac{1}{P} \sum_{j=0}^{\log_2 P - 1} \sum_{i=0}^{2^j - 1} \frac{1}{2^i} i_{cr} \left[ n - (2^j + j - 1) \right]
\]

(6-16)

Where \( P \) is a natural number. When \( P \) is power of 2, all the division operations in Equation (16) can be replaced by right shifting which is fast instruction in micro-processor. For example, if \( P = 2^2 = 4 \), then current and 14 previous \( i_{cs} \) will be calculated, all the divisors are power of 2.

\[
i_{cr}^* = \frac{1}{4} \left\{ i_{cs}(n) + \frac{i_{cs}(n-1)+i_{cs}(n-2)}{2} + \frac{i_{cs}(n-3)+\cdots+i_{cs}(n-6)}{4} + \frac{i_{cs}(n-7)+\cdots+i_{cs}(n-14)}{8} \right\}
\]

(6-17)

If \( P \) is not power of 2, only one division should be executed.

6.3 Steady State Reference Current Estimator

6.3.1 The architecture of the SSRC estimator

The architecture of SSRC estimator is shown in Fig. 6-5 which is a feed-forward neural network with sigmoid activation function. The neural network comprises input layer, two hidden layers, output layer. The number of input and output nodes corresponds to the number of network inputs and desired outputs, respectively.
From Equations (5-4) and (5-6) in Chapter 5 we can get

$$\dot{\omega}_r J + \omega_r B + T_L = K\dot{i}_{sum} \quad (6-18)$$

Where $\dot{\omega}_r$, $\omega_r$ and $i_{sum}$ can be measured from system. For $N$ samples, we have

$$\begin{bmatrix}
\dot{\omega}_r (n) \\
\dot{\omega}_r (n-1) \\
\vdots \\
\dot{\omega}_r (n-N+1)
\end{bmatrix}
\begin{bmatrix}
\omega_r (n) \\
\omega_r (n-1) \\
\vdots \\
\omega_r (n-N+1)
\end{bmatrix}
\begin{bmatrix}
J \\
B \\
\vdots \\
T_L
\end{bmatrix}
= K\phi
\begin{bmatrix}
i_{sum} (n) \\
i_{sum} (n-1) \\
\vdots \\
i_{sum} (n-N+1)
\end{bmatrix} \quad (6-19)$$

When $N \geq 3$, Equation (6-19) has no accurate solution, but we can get the least squares solution by left multiply coefficient matrix

$$\begin{bmatrix}
\sum_{i=0}^{N-1} \omega_r^2 (n-i) \\
\sum_{i=0}^{N-1} \dot{\omega}_r (n-i) \omega_r (n-i) \\
\sum_{i=0}^{N-1} \omega_r (n-i) \\
\sum_{i=0}^{N-1} \omega_r (n-i)
\end{bmatrix}
\begin{bmatrix}
\sum_{i=0}^{N-1} \dot{\omega}_r (n-i) i_{sum} (n-i) \\
\sum_{i=0}^{N-1} \omega_r (n-i) i_{sum} (n-i) \\
\sum_{i=0}^{N-1} \omega_r (n-i) \\
\sum_{i=0}^{N-1} i_{sum} (n-i)
\end{bmatrix}
\begin{bmatrix}
J \\
B \\
\vdots \\
T_L
\end{bmatrix}
= K\phi
\begin{bmatrix}
\sum_{i=0}^{N-1} \omega_r (n-i) i_{sum} (n-i) \\
\sum_{i=0}^{N-1} \omega_r (n-i) i_{sum} (n-i) \\
\sum_{i=0}^{N-1} \omega_r (n-i) \\
\sum_{i=0}^{N-1} i_{sum} (n-i)
\end{bmatrix} \quad (6-20)$$

Define the coefficient as
Chapter 6 SSRC prediction technique

\[ x_i(n) = a_i(n) = \sum_{i=0}^{N-1} \omega_r^2(n-i) \quad (6-21) \]

\[ x_2(n) = a_2(n) = \sum_{i=0}^{N-1} \omega_r^2(n-i) \quad (6-22) \]

\[ x_3(n) = a_3(n) = \sum_{i=0}^{N-1} \omega_r(n-i)\omega_r(n-i) \quad (6-23) \]

\[ x_4(n) = a_4(n) = \sum_{i=0}^{N-1} \omega_r(n-i) \quad (6-24) \]

\[ x_5(n) = a_5(n) = \sum_{i=0}^{N-1} \omega_r(n-i) \quad (6-25) \]

\[ x_6(n) = b_1(n) = \sum_{i=0}^{N-1} \omega_r(n-i)i_{sum}(n-i) \quad (6-26) \]

\[ x_7(n) = b_2(n) = \sum_{i=0}^{N-1} \omega_r(n-i)i_{sum}(n-i) \quad (6-27) \]

\[ x_8(n) = b_3(n) = \sum_{i=0}^{N-1} i_{sum}(n-i) \quad (6-28) \]

And Equation (5-20) is simplified as

\[
\begin{bmatrix}
    a_1(n) & a_3(n) & a_4(n) \\
    a_3(n) & a_3(n) & a_5(n) \\
    a_4(n) & a_4(n) & 1
\end{bmatrix}
\begin{bmatrix}
    J \\
    B \\
    T_L
\end{bmatrix}
= K\phi
\begin{bmatrix}
    b_1(n) \\
    b_2(n) \\
    b_3(n)
\end{bmatrix}
\quad (6-29)
\]

In steady state, reference current (output torque) is related to \( \omega_r \), \( B \), \( T_L \), thus reference rotor speed \( \omega_r^* \), \( a_1(n) \), \( a_2(n) \), \( a_3(n) \), \( a_4(n) \), \( a_5(n) \), \( b_1(n) \), \( b_2(n) \) and \( b_3(n) \) are selected as input for the neural network. DC link voltage \( v_{dc}(n) \) will affect the phase commutation in brushless DC motor, it is another factor to affect SSRC, so \( v_{dc}(n) \) is also one input for the neural network. The input data also implicate speed error \( e \) and acceleration error \( \dot{e} \).

Neural network requires that its input and output data should be normalized to have the same order of magnitude. If the input data are not of the same order of magnitude, some input may appear to be more significant than they actually do. The training algorithm has to compensate for order-of-magnitude differences by adjusting the network weights, which is not very effective in some training algorithms such as back propagation algorithm. In addition, typical activation functions, such as a sigmoid function, or a
hyperbolic tangent function, cannot distinguish between two large values, because both yield identical threshold output values of 1.0. Normalize input data can be.

\[
\omega_r(n) = \omega_r(n) / \omega_R \tag{6-30}
\]

\[
\dot{\omega}_r(n) = \dot{\omega}_r(n) / \dot{\omega}_{\text{max}} \tag{6-31}
\]

\[
i_{\text{sum}}(n) = i_{\text{sum}}(n) / 2I_R \tag{6-32}
\]

\[
\omega^*_r = \omega^*_r / \omega_R \tag{6-33}
\]

\[
v_{dc}(n) = v_{dc}(n) / V_R \tag{6-34}
\]

Where \( \omega_R \) is rated rotor speed, \( I_R \) is rated phase current, \( V_R \) is rated voltage, \( \dot{\omega}_{\text{max}} \) is possible maximum acceleration.

The choice of the number of hidden layers and the nodes in each hidden layer depends on the network application. In general, adding a second hidden layer improves the network prediction capability due to the nonlinear separability property of the network. Although using a single hidden layer is sufficient for solving many functional approximation problems, some problems may be easier to solve with a two hidden layer configuration [5]. So two hidden layers network is employed here. The number of neurons was chosen on a trial-and-error basis. The activation function of neurons in the hidden layers is sigmoid function, as

\[
f(x) = \frac{1}{1 + e^{-x}} \tag{6-35}
\]

For the \( j^{th} \) node in the \( 1^{st} \) hidden layer, the input \( \text{net}^1_j \) \( (j = 1, 2, \ldots, J) \) \( (J \) is the number of neurons in the \( 1^{st} \) hidden layer) and output \( y^1_j \) of the neuron are represented, respectively, as

\[
\text{net}^1_j(n) = \sum_{i=1}^{10} w^1_{ji}(n)x_i(n) \tag{6-36}
\]

\[
y^1_j(n) = f(\text{net}^1_j(n)) = \frac{1}{1 + e^{-\text{net}^1_j(n)}} \tag{6-37}
\]
Chapter 6 SSRC prediction technique

Where \( w_{ji}^1 \) is the weight between the \( j^{th} \) node in the 1\(^{st}\) hidden layer and the \( i^{th} \) node in the input layer. For the \( k^{th} \) node in the 2\(^{nd}\) hidden layer, the input \( net_k^2 \) \((k = 1, 2, \ldots, K)\) \((K \) is the number of neurons in the 2\(^{nd}\) hidden layer\) and output \( y_k^2 \) of the neuron are represented, respectively, as

\[
net_k^2(n) = \sum_{j=1}^{J} w_{kj}^2(n)net_j^1(n)
\]

\[
y_k^2(n) = f(net_k^2(n)) = \frac{1}{1 + e^{-net_k^2(n)}}
\]

Where \( w_{kj}^2 \) is the weight between the \( k^{th} \) node in the 2\(^{nd}\) hidden layer and the \( j^{th} \) node in the 1\(^{st}\) hidden layer. There is only one neuron in the output layer, the activation function is linear function. The input \( net_1^3 \) and output \( y_1^3 \) of the neuron are represented as

\[
y_1^3(n) = net_1^3(n) = \sum_{k=1}^{K} w_{1k}^3(n)net_k^2(n)
\]

Where \( w_{1k}^3 \) is the weight between the \( k^{th} \) node in the 2\(^{nd}\) hidden layer and the only one neuron in the output layer. The output of the neuron \( y_1^3 \) is just the coarse SSRC \( i_{cs}(n) \) mentioned formerly.

6.3.2 Training the neural network

Back propagation (BP) algorithm [4, 5, 10, 15, 85] is one of the most popular algorithms for training a network due to its success from both simplicity and applicability viewpoints. The algorithm consists of two phases: Training phase and recall phase. In the training phase, first, the weights of the network are randomly initialized. Then, the output of the network is calculated and compared to the desired value. The error of the network is calculated and used to adjust the weights of the output layer. In a similar fashion, the network error is also propagated backward and used to update the weights of the previous layers. There are two different methods of updating the weights. In the first method, weights are updated for each of the input patterns using an iteration method. In the second method, an overall error for all the input output patterns of training sets is calculated. In
other words, either each of the input patterns or all of the patterns together can be used for updating the weights. First method of updating weights will be adopted here. The training phase will be terminated when the error is less than the minimum set value provided by the designer. One of the disadvantages of back propagation algorithm is that the training phase is very time consuming. If the training is implemented off-line by a PC, the time consumption is not important. During the recall phase, the network with the final weights resulting from the training process is employed. Therefore, for every input pattern in this phase, the output will be calculated using both linear calculation and nonlinear activation functions. The process provides a very fast response of the network in the recall phase, which is one of its important advantages and it can be executed by a fixed-point microprocessor.

To describe the back propagation algorithm, first the energy function $E$ is defined as

$$E = \frac{1}{2} \left[ t^*_i - y^3_i(n) \right]^2$$

(6-41)

Where $t^*_i$ is the desired SSRC. Minimizing energy function leads to a sequence of updating weight which starting from output layer, then backward. The weights of the interconnections between the two adjacent layers can be updated based on the following formula

$$w(n+1) = w(n) - \eta \frac{\partial E}{\partial w(n)}$$

(6-42)

Where $\eta$ is learning rate of the network, $\partial E / \partial w(n)$ is the local gradient. Between the output layer and the second hidden layer, for weight $w_{ik}^3(n)$ the local gradient descent of energy function can be obtained from Equations (6-40) and (6-41)

$$\frac{\partial E}{\partial w_{ik}^3(n)} = \left[ t^*_i - y^3_i(n) \right] \frac{\partial y^3_i(n)}{\partial w_{ik}^3(n)} = y^2_i(n) \left[ t^*_i - y^3_i(n) \right]$$

(6-43)

The derivative of activation function (6-35) is

$$f'(x) = f(x)[1 - f(x)]$$

(6-44)
Chapter 6 SSRC prediction technique

Then between the second hidden layer and the first hidden layer, for weight $w^2_{kj}(n)$, to get the local gradient of energy function, apply chain-rule

$$\frac{\partial E}{\partial w^2_{kj}(n)} = \frac{\partial E}{\partial y^3_i(n)} \frac{\partial y^3_i(n)}{\partial y^2_k(n)} \frac{\partial y^2_k(n)}{\partial net^2_k(n)} \frac{\partial net^2_k(n)}{\partial w^2_{kj}(n)}$$  \hspace{1cm} (6-45)

From Equations (6-38) ~ (6-40), (6-41) and (6-44) obtain

$$\frac{\partial E}{\partial w^2_{kj}(n)} = \left[ e^i - y^3_i(n) \right] w^3_{ik}(n) y^2_k(n) [1 - y^2_k(n)] y^2_j(n)$$  \hspace{1cm} (6-46)

Between the first hidden layer and the input layer, for weight $w^1_{ji}(n)$ similarly apply chain-rule

$$\frac{\partial E}{\partial w^1_{ji}(n)} = \frac{\partial E}{\partial y^3_i(n)} \sum_{k=1}^{K} \frac{\partial y^3_i(n)}{\partial y^2_k(n)} \frac{\partial y^2_k(n)}{\partial net^2_k(n)} \frac{\partial net^2_k(n)}{\partial w^1_{ji}(n)} \frac{\partial net^1_j(n)}{\partial w^1_{ji}(n)}$$  \hspace{1cm} (6-47)

From Equations (6-36) ~ (6-40), (6-41) and (6-44) the local gradient of energy function is obtained

$$\frac{\partial E}{\partial w^1_{ji}(n)} = \left[ e^i - y^3_i(n) \right] y^2_j(n) [1 - y^2_j(n)] \sum_{k=1}^{K} w^3_{ik}(n) y^2_k(n) [1 - y^2_k(n)] y^2_j(n)$$  \hspace{1cm} (6-48)

Another problem of back propagation algorithm is local minima. One suggested solution is momentum technique[68] which includes addition of first and second moments to the learning phase. In such an approach, the network memorizes its previous adjustment, and, therefore it will escape the local minima. A new term can be added to Equation (6-42)

$$w(n+1) = w(n) - \eta \frac{\partial E}{\partial w(n)} + \alpha \Delta w(n)$$  \hspace{1cm} (6-49)

Where $\alpha$ is the momentum gain, $\Delta w(n)$ is the weight change in the previous iteration.

An important factor is that the training set should be comprehensive and cover all the practical areas of applications of the network. Therefore, the proper selection of the training sets is critical to the good performance of the network. For brushless DC motor drive system, SSRC is determined for given DC link voltage, reference speed, load torque,
moment of inertia. So the selected \( L \) sets will cover variable DC link voltage, load, reference speed, moment of inertia. For one set, measure and record DC link voltage and reference speed first, then run the motor with conventional controller and acquire \( M + N \) samples of acceleration \( \dot{\omega}_r \), speed \( \omega_r \) and current \( i_{sum} \), lastly record the desired SSRC \( i^*_s \). These data can be combined to \( M \) training patterns for neural network. So there are totally \( LM \) training patterns. The pattern selection order to train the neural network is: first pattern of set 1, then first pattern of set 2, ..., first pattern of set \( L \), second pattern of set 1, ..., second pattern of set \( L \), ..., last pattern (\( M^{th} \)) of set 1, ..., last pattern of set \( L \). If the error is not small enough, train the neural network again with these patterns at the same order again.

6.4 Implementation and Experimental Results

6.4.1 Structure of the experimental system

The structure of PM BDCM drive system for experiment is illustrated in Fig. 6-6 which comprises: diode bridge rectifier, three phase full wave inverter, motor, digital signal processor (DSP), user interface, sensor, commutation logic circuit and gate drive. The motor is a 3.3 hp 3000 rpm 4 pole-pairs three-phase PM BDCM. The BDCM is equipped with a Hall-effect sensor and a tachometer generator (TG). The Hall-effect sensor indicates which windings of the motor should be excited as the motor runs. The tachometer generator is used to give speed feedback. The advantage of adopting a tachometer generator is to get high measured precision in case of low speed and high sampling frequency. The acceleration \( \dot{\omega}_r \) is obtained from speed \( \omega_r \) by an analog differentiator. User interface is one key panel and LED display to set the reference speed. User interface can be also implemented by PC software which communicates with DSP via serial communication RS-232. The inputs to the commutation logic circuit are the three Hall sensor signals, the direction of desired rotation and PWM. The commutation logic circuit determines which switches should be turned on. The output of the commutation logic circuit is gate signals which feed the power semiconductor switches of the inverter via gate driver circuit. The commutation logic circuit and gate driver circuit have been described in Chapter 2.
The DSP used in the system is TMS320F2407 which is specially designed for power electronics and electric drive. The chip comprises dual 10 bits 16 channel ADCs, serial communication interface (SCI), event manager, digital I/O and other modules. The conversion time for each ADC unit is approximately 6µs, DC link voltage $v_{dc}$, the phase current $i_a$, speed $\omega_r$ can be converted by ADC1, the phase current $i_b$ and acceleration $\dot{\omega}_r$ can be converted by ADC2. The event manager includes PWM channels, quadrature encoder pulse (QEP) circuit, capture unit, timer and so on. As PWM signal can be generated by the DSP, triangular wave generator and comparator are not needed any more. SSRC estimator is also operated by the DSP, activation function (6-35) can be implemented by table and interpolation for fast execution.

### 6.4.2 Software introduction

Conventional control software is modified to acquire data for training neural network in SSRC estimator. To simplify software, only two phase currents $i_a$ and $i_b$, speed $\omega_r$ and acceleration $\dot{\omega}_r$ are converted by ADCs, DC link voltage is recorded by hand. The period of timer T1 will be set to be 25µs and the period interrupt of timer T1 is enabled. The period of timer T2 will be set to be 50µs and be selected as the time base for PWM unit, the switching frequency is 20 kHz. Phase current $i_a$ and speed $\omega_r$ are converted by ADC1 alternately when timer T1 interrupt occurs. Phase current $i_b$ and acceleration $\dot{\omega}_r$ are
converted by ADC2 alternately when timer T1 interrupt occurs. Thus phase currents $i_a$ and $i_b$ can be converted at the same time and speed $\omega_r$ and acceleration $\dot{\omega}_r$ can be converted at the same time, too. Every 16 samples are averaged to get $\omega_r(n)$, $\dot{\omega}_r(n)$ and $i_{sum}(n)$. For each set, DSP saves $\omega_r(n)$, $\dot{\omega}_r(n)$ and $i_{sum}(n)$ in the DSP memory during starting. Then these data are uploaded to a PC, the PC selects $M + N$ of them to build up $M$ training patterns for neural network by Equations (6-21) ~ (6-28). The reference current in steady state is also recorded as the desired output $i^*_r$ of neural network. Then the neural network can be trained to get ultimate weights.

With trained neural network, the control software with SSRC prediction technique can be developed. The flowchart of the software is shown in Fig. 6-7 which includes timer T1 interrupt service routine, SSRC prediction routine and speed control subroutine.

The flowchart of main routine is similar to Fig. 5-14(a) except that there are more than two variables that should be converted by ADCs, no QEP is needed any more. The period of timer T1 is also set to be 25µs and T2 is also set to be 50µs. Timer T2 is also selected as the time base for PWM unit and the switching frequency is 20k Hz. The ADCs are also set to be started by timer T1 event. Thus two phase currents $i_a$ and $i_b$, speed $\omega_r$ and acceleration $\dot{\omega}_r$ can be sampled every PWM period.

The flowchart of timer T1 interrupt service routine is shown in Fig. 6-7(a). Phase current $i_a$ and speed $\omega_r$ are also converted by ADC1 alternately, and phase current $i_b$ and acceleration $\dot{\omega}_r$ are also converted by ADC2 alternately. If the timer T1 interrupt number is odd, the routine reads speed $\omega_r$ and acceleration $\dot{\omega}_r$ from ADC1 and ADC2 respectively. If the interrupt number is even, the routine reads phase currents $i_a$ and $i_b$ from ADC1 and ADC2 respectively. Then $i_{sum}$ can be also calculated as Equation (5-23). $i_{sum}$ should be accumulated for current PI control every 100 µs (i.e. two PWM period). Speed $\omega_r$, acceleration $\dot{\omega}_r$ and $i_{sum}$ should be also accumulated to get average every 0.8 ms for being built up neural network input data. SSRC estimator is also called every 0.8 ms. The sample period of speed controller is 3.2 ms, thus speed control subroutine is called every 64 times of timer T1 interrupt. The input of speed controller is latest averaged speed (and acceleration).
Chapter 6 SSRC prediction technique

(a) Timer T1 interrupt routine

Start

N

Read \( \omega \) and \( \dot{\omega} \)

Y

Even?

Read \( i_a \) and \( i_b \)

calculation \( i_{sum} \)

Accumulate \( i_{sum} \), \( \omega \) and \( \dot{\omega} \)

100 \( \mu \)s past?

Y

Current PI control

Update PWM register

N

0.8 ms past?

Y

Call SSRC estimator

N

3.2 ms past?

Y

Call speed control

Return

(b) SSRC prediction subroutine

Start

Average get \( i_{sum}(n) \), \( \omega(n) \), and \( \dot{\omega}(n-1) \)

Calculate \( a_0(n), a_0(n), \ldots, a_5(n), b_1(n), b_2(n), b_3(n) \)

32 data?

Y

Calculate neural network output get \( i_{oa}(n) \)

Calculate \( i_{oa}^* \) with weight

Return

(c) Speed control subroutine

Start

Calculate speed error

\( |e| \leq e_1 \)?

Y

|act = 1 \& |e| \leq e_2 ?

N

act = 1 ?

Y

act = 0

\( i^* = i_{oa}^* \)

Conventional controller

N

\( e > 0 \)?

Y

\( i^* = I_{max} \)

Return

N

\( i^* = I_{min} \)

Fig. 6-7. Flowchart of software
The flowchart of SSRC estimator is shown in Fig. 6-7(b). In the subroutine, the DSP get the average of the 16 samples of acquired data to obtain $\omega_r(n)$, $\omega_i(n)$ and $i_{sum}(n)$. Current and 15 former data are used to built up neural network input $a_1(n)$, $a_1(n)$, ..., $a_5(n)$, $b_1(n)$, $b_2(n)$ and $b_3(n)$ according to the Equation (6-21) ~ (6-28). To save CPU cycle, these Equations are modified as:

\[
\begin{align*}
    x_1(n) &= a_1(n) = a_1(n-1) + \omega_i^2(n) - \omega_i^2(n-N) \\
    x_2(n) &= a_2(n) = a_2(n-1) + \omega_i^2(n) - \omega_i^2(n-N) \\
    x_3(n) &= a_3(n) = a_3(n-1) + \omega_i(n)\omega_i(n) - \omega_i(n-N)\omega_i(n-N) \\
    x_4(n) &= a_4(n) = a_4(n-1) + \omega_i(n) - \omega_i(n-N) \\
    x_5(n) &= a_5(n) = a_5(n-1) + \omega_i(n) - \omega_i(n-N) \\
    x_6(n) &= b_1(n) = b_1(n-1) + \omega_i(n)i_{sum}(n) - \omega_i(n-N)i_{sum}(n-N) \\
    x_7(n) &= b_2(n) = b_2(n-1) + \omega_i(n)i_{sum}(n) - \omega_i(n-N)i_{sum}(n-N) \\
    x_8(n) &= b_3(n) = b_3(n-1) + i_{sum}(n) - i_{sum}(n-N) \\
\end{align*}
\]

To save multiply instruction, $\omega_i^2(n-i)$, $\omega_i^2(n-i)$, $\omega_i(n-i)\omega_i(n-i)$, $\omega_i(n-i)i_{sum}(n-i)$ and $\omega_i(n-i)i_{sum}(n-i)$ ($i = 0, \ldots, N$) are also saved in DSP memory. The output of the neural network $i_{cs}(n)$ can be calculated with input $x_1(n) \sim x_8(n)$. Then coarse reference current $i_{cs}^*$ can be get according Equation (6-16).

The flowchart of speed control subroutine is shown in Fig. 6-7(c). In the subroutine, the conventional controller active signal $act(n)$ is determined according speed error and previous $act(n-1)$ according Equation (6-14). When the $act$ is 1, conventional controller is active, otherwise reference current $i^*$ is set as extremum value. When the $act$ is jumped from 1 to 0, reference current $i^*$ skips from extremum value to coarse reference current $i_{cs}^*$.

### 6.4.3 Experimental results

The switching frequency is 20 kHz. The phase current is sampled every 50µs, the speed is also measured every 50µs. SSRC estimator executes every 0.8ms. There are 16 current and speed samples each period. These samples are averaged to get $\omega_i(n)$, $\omega_i(n)$ and...
\( i_{sum}(n) \). These data are used to build up input data for neural network by Equations (6-21) ~ (6-28) with former \( N-1 \) samples. The sample period for inner current loop is 100\( \mu s \) (two switching periods). The sample period for outer speed loop is 3.2ms (four SSRC estimator sample period). Threshold for coarse reference current generator \( e_{r1} \) and \( e_{r2} \) is 5% \( \omega_n \) and 15% \( \omega_n \) respectively. The parameter of the PI speed controller \( K_{sat} \) and \( \tau_{sat} \) is 15 and 28.7ms respectively, the parameter PI current controller \( K_{si} \) and \( \tau_{si} \) is 2.2 and 3.075ms respectively. The data number \( N \) for calculating neural network training pattern is 32, the pattern number \( M \) in each set is 200, the set number \( L \) is 32. The neuron number in the first hidden layer is 24, the neuron number in the second hidden layer is 16. The drive system is tested under PI controller and fuzzy controller respectively.

The experimental waveforms are shown in Fig. 6-8. The top waveform of each captured figure is motor speed with scale 1000 rpm/div. The bottom waveform is DC link current with scale 5A/div. Time scale is 1 s/div. Speed response during starting under PI controller with and without SSRC prediction technique and corresponding DC link current are shown in Fig. 6-8(a) and 6-8(b) respectively. Speed response under fuzzy logic controller for various reference speed and various loads with and without SSRC prediction technique are shown in Fig. 6-8(c) ~ 6-8(g) respectively. Speed response with load torque impulse is shown in Fig. 6-8(h). Step up and step down speed response is shown in Fig. 6-8(i) and 6-8(j) respectively. From these figures we can see that the conventional controller combined with SSRC prediction technique has the advantage of little overshoot, little oscillation, fast response, robust and so on. The performance is improved greatly.

(a) PID control without SSRC prediction technique (\( \omega_r = 2000 \)rpm, starting)
(b) PID control with SSRC prediction technique ($\omega_1^* = 2000$rpm, starting)

(c) Fuzzy control without SSRC prediction technique ($\omega_1^* = 2000$rpm, starting)

(d) Fuzzy control with SSRC prediction technique ($\omega_1^* = 2000$rpm, starting)
(e) Fuzzy control with SSRC prediction technique ($\omega_r^* = 1250$rpm, starting)

(f) Fuzzy control with SSRC prediction technique ($\omega_r^* = 2500$rpm, starting)

(g) Fuzzy control with SSRC prediction technique ($\omega_r^* = 2000$rpm, starting, heavy load)
Chapter 6 SSRC prediction technique

(h) Fuzzy control with SSRC prediction technique ($\omega_i^* = 2000\text{rpm}$, load torque impulse)

(i) Fuzzy control with SSRC prediction technique ($\omega_i^*$ step up from 1000rpm to 2000 rpm)

(j) Fuzzy control with SSRC prediction technique ($\omega_i^*$ step down from 2000rpm to 1000 rpm)

Fig. 6-8. Experimental waveforms of speed response and DC link current under PI and fuzzy control with or without SSRC prediction technique
6.5 Summary

A SSRC prediction technique based on neural network for PM BDCM drive system is proposed. Conventional controller with this technique holds the advantages of fast response, little overshoot, little oscillation, robust and so on. The design of the conventional controller is introduced. The prediction technique is described in detail. Hardware implementation and software flowchart are described and experimental results are illustrated. The drive system is tested under PI controller and fuzzy controller. The performance is improved greatly. The result of this investigation will be very useful for industrial applications.
Chapter 7  Conclusion and Recommendation

7.1 Conclusion

The background of the research work is introduced firstly and the concept of the soft-switching is introduced. Then operation principle of the brushless DC motor is introduced. The controller for BDCM drive system is described. Commutation logic table is proposed, speed sensor is introduced and two methods to get speed signal from Hall sensor are illustrated, gate driver circuit for IGBT is introduced and bootstrap supply is applicable to gate driver circuit to save the number of insulated DC power supply. A novel 12-switches inverter for BDCM is proposed to reduce the torque ripple of BDCM. With the inverter, for a given voltage of supply, torque and speed of the motor are doubled. For a given speed of the motor, the voltage stress of switching device is reduced by half, the insulation class requirement can be also reduced. The inverter is also applicable to induction motor.

Then known resonant DC link inverters have been reviewed. A transformer based resonant DC link inverter for BDCM drive system, capable of controlling zero voltage notch instant and width is presented. Its principle of operation was explained. The simulation results are also given. All the relevant experimental waveforms were captured to verify the theory and simulation. The following observations were made:

- All switches work under soft-switching condition, so their power losses are small.
- Voltage stress on all the switches would be not greater than DC Supply voltage.
- Only one DC link voltage notch is needed during one PWM cycle, and the switching frequency of the auxiliary switches would not be higher than PWM frequency.
- Simple auxiliary switches control scheme.
- Freewheeling diodes turned off under zero current condition and this greatly reduced the reverse recovery problem of the diodes.
Chapter 7 Conclusion and recommendation

- $dv/dt$ and $di/dt$ are reduced significantly, so EMI is reduced.
- Soft switching results in considerably less noise as the switching frequency can be high to beyond the audio spectrum.
- The topology also applicable to induction motor drive system.

Known resonant pole inverters have been reviewed. A special designed resonant pole inverter dedicated for BDCM drive system is presented. Its principle of operation is explained. Selection of the required transformer parameter, snubber capacitors is given. The main inverter switches and auxiliary switches gate signal generation method are also illustrated. Determination of the corresponding pulse width is given. The inverter operation is also verified by the results of simulation and experiment. The following observations were made:

- All the high switching frequency switches (three lower main switches and auxiliary switches) work under soft-switching condition.
- Voltage stress on all the switches is low that is not greater than DC Supply voltage.
- Very simple auxiliary switches control scheme.
- Freewheeling diodes turned off under zero current condition and this greatly reduced the reverse recovery problem of the diodes.
- The normal operation of the inverter is entirely the same as hard switching inverter.
- $dv/dt$ and $di/dt$ are reduced significantly, so EMI is reduced.
- As the switching frequency is as high as 20 kHz, the switching acoustic noise can be eliminated.

In a resonant DC link inverter with little link voltage ripple, usually there is a main conduction path switch which will increase conduction power losses. In case of induction motor (or other three phase AC load) application, there is a DC link voltage notch if any main inverter switch changes state, thus unchanging phase will be affected. In a resonant pole inverter, there are no extra conduction power losses and the DC link voltage is kept constant while relative more auxiliary devices are required than that of resonant DC link inverter. General speaking, the performance of resonant pole inverter is a little higher.
than that of resonant DC link inverter. For BDCM drive system, in case of compact inverter is required, resonant DC link inverter is recommended. If requiring more auxiliary device is acceptable, resonant pole can be adopted.

A hybrid controller for the PM BDCM drive system is proposed which holds the advantages of both PI controller and fuzzy controller, i.e. fast response, little overshoot, little oscillation, robust to system parameters variation, stability and so on. The design of the controller is proposed. Hardware implementation is described and software flowchart is illustrated. Experimental results are presented. The design of the controller is successful.

A SSRC prediction technique based on neural network for PM BDCM drive system is proposed. Conventional controller with this technique holds the advantages of fast response, little overshoot, little oscillation, robust and so on. The design of the conventional controller is introduced. The prediction technique is described in detail. Hardware implementation and software flowchart is proposed and experimental results are illustrated. The drive system is tested under PI controller and fuzzy controller. The performance is improved greatly. The result of this investigation will be very useful for industrial applications.

The reference current in conventional controllers (such as the controller presented in Chapter 5) is continuous. Although these controllers can greatly improve the performance of the system, they can not further shorter the rise time and settling time. The controller combined with SSRC technique, the reference current is discontinuous. Current can reach its maximum value immediately during starting which gets shorter rising time; when the motor reaches desired speed, the current is changed to its steady state value at the same time and the motor runs at the desired speed, then settling time can be further reduced. It can get the shortest rise time and settling time in theory.

7.2 Recommendation

The laboratorial resonant DC link inverter and resonant pole inverter, used in this thesis, are only prototypes. Although it could explain some fundamental laws of the topology, higher power and higher voltage inverter seems more preferable for practical applications.
Chapter 7 Conclusion and recommendation

Protection and Reliability are other factors that should be considered for practical applications. More research work can be focused on current source inverter with soft-switching technique for BDCM, soft-switching inverter for switch reluctance motor (SRM) and 12-switches inverter for induction motor application.

The SSRC technique proposed in this thesis is based on off-line training neural network, on-line training neural network can be also further studied. Doing some experiment on the application of BDCM drive system such as Electrical Vehicle would be very attractive if there is chance.
Author’s Publications


Bibliography


<table>
<thead>
<tr>
<th>Number</th>
<th>Reference</th>
</tr>
</thead>
</table>


Appendix

A. The ABEL Source Code for Commutation Logical Circuit

The ABEL source file for BDCM commutation logical circuit can be written as follows:

"Filename: Commut.abl

MODULE COMMUTATE
TITLE 'Commuate logical circuit IC for BDCM,'
ICCOMMU DEVICE 'P16V8S';

"INPUT PIN
A, B, C PIN 1,2,3;
PWM, DIR, EN PIN 4,5,6;

"OUTPUT PIN
PWM1, PWM3, PWM5 PIN 19,18,17;
PWM4, PWM6, PWM2 PIN 16,15,14;

EQUATIONS
PWM1 = EN & !A & B & DIR # EN & !B & A & !DIR;
PWM3 = EN & !B & C & DIR # EN & !C & B & !DIR;
PWM5 = EN & !C & A & DIR # EN & !A & C & !DIR;
PWM4 = EN & !B & A & DIR & PWM # EN & !A & B & !DIR & PWM;
PWM6 = EN & !C & B & DIR & PWM # EN & !B & C & !DIR & PWM;

TEST_VECTORS
([A, B, C, PWM, EN, DIR] -> [PWM1, PWM3, PWM5, PWM4, PWM6, PWM2])
[1, 1, 1, 1, 1, 1] -> [0, 0, 0, 0, 0, 0];
[0, 0, 0, 1, 1, 1] -> [0, 0, 0, 0, 0, 0];
[1, 0, 1, 1, 0, 1] -> [0, 0, 0, 0, 0, 0];
[0, 1, 0, 1, 1, 1] -> [1, 0, 0, 0, 1, 0];
[0, 0, 1, 0, 1, 1] -> [0, 1, 0, 0, 0, 0];
[0, 1, 1, 1, 1, 0] -> [0, 0, 1, 1, 0, 0];

END COMMUTATE
B. Implementation of QEP Generator Circuit

The schematic circuit which adds some definition of input and output ports for GAL PLD from Fig. 4-4a is shown in Fig. A-1. All the logic GATE in the schematic circuit can be implemented by only one GAL16V8 IC. The definition of input and output ports name and ABEL logical equation can be written as follows:
Input: A, B, C, QA, QB, QC, In7, In8, In9;
Output: Q1, NQ2, DIR, CK, NCK, Out6, Out7;

Equation:

\[
\begin{align*}
Q1 &= QA \# QB \# QC; \\
NQ2 &= QA \& QB \& QC; \\
CK &= A \& B \# B \& C \# C \& A; \\
NCK &= \neg CK; \\
Out6 &= \neg NQ2 \& Q1; \\
DIR &= In7 \& \neg Out6 \# In8 \& Out6; \\
Out7 &= In9 \& DIR \# \neg In9 \& \neg DIR;
\end{align*}
\]

The implementation circuit for QEP generator is shown in Fig. A-2.

C. Main Drive Board for the Inverter

The main drive board for the inverter provides gate driver for the main switches and brake switch of the inverter, isolated DC power supply for gate driver and control circuit. Its schematic circuit diagram is shown in Fig. A-4. Detail of the IC board in this figure is shown in Fig. A-3.
Fig. A-4. Main drive board for the inverter
D. Solution of the Equation 3-5

Solve the Equation (3-5):

\[
\begin{align*}
    u_C(t) &= L_1 \frac{di_L(t)}{dt} + a^2 L_2 \frac{d[i_L(t)]}{dt} + aV_S \\
    i_L(t) + I_0 + C_r \frac{du_C(t)}{dt} &= 0
\end{align*}
\]  

(3-5)

With initial condition \( u_C(0) = V_S, \ i_L(0) = 0 \)

**Solution:**

Rewrite the equation \( L_r = L_1 + \frac{L_2}{n^2} \)

\[
\begin{align*}
    u_C(t) &= \left( L_1 + \frac{1}{n^2} L_2 \right) \frac{di_L(t)}{dt} + \frac{V_S}{n} \\
    i_L(t) + I_0 + C_r \frac{du_C(t)}{dt} &= 0 \\
    u_C(t) &= L_r \frac{di_L(t)}{dt} + \frac{V_S}{n} \\
    i_L(t) &= -I_0 - C_r \frac{du_C(t)}{dt}
\end{align*}
\]

Laplace transform of the above equation get

\[
\begin{align*}
    U_C(s) - \frac{V_S}{ns} &= L_r s I_L(s) \\
    I_L(s) &= -\frac{I_0}{s} - C_r [s U_C(s) - V_S] \\
    U_C(s) - \frac{V_S}{ns} &= L_r s \left[ -\frac{I_0}{s} - C_r s U_C(s) + C_r V_S \right] \\
    L_r C_r s^2 U_C(s) + U_C(s) &= s L_r C_r V_S + \frac{V_S}{ns} - L_r I_0 \\
    U_C(s) &= \frac{sL_r C_r V_S + \frac{V_S}{ns} - L_r I_0}{L_r C_r s^2 + 1} = \frac{sV_S + \frac{V_S}{nL_r C_r s} - \frac{I_0}{C_r}}{s^2 + \frac{1}{L_r C_r}}
\end{align*}
\]
\[ u_C(t) = \frac{(n-1)V_s}{n} \cos(\omega t) - I_0 \frac{L_r}{C_r} \sin(\omega t) + \frac{V_s}{n} \]

\[ I_L(s) = -\frac{I_0}{s} + C_r V_s - C_r s U_C(s) \]

\[ I_L(s) = -\frac{I_0}{s} + \frac{s^2 L_r C_r C_V S + C_r V_s}{L_r C_s s^2 + 1} \]

\[ = -\frac{I_0}{s} + \frac{s^2 L_r C_r C_V S + C_r V_s - s^2 L_r C_r C_V S - C_r V_s}{L_r C_s s^2 + 1} + \frac{n + s L_r C_I_0}{L_r C_s s^2 + 1} \]

\[ = -\frac{I_0}{s} + \frac{n - 1}{L_r C_s s^2 + 1} + \frac{(n-1)V_s + s I_0}{L_r C_r} \]

\[ i_L(t) = I_0 \cos(\omega t) - I_0 \frac{(n-1)V_s}{n} \frac{C_r}{L_r} \sin(\omega t) \]

Solve the same equation:

\[ \begin{cases} 
   u_C(t) = I_{q_1} \frac{di_L(t)}{dt} + a^2 L_{q_2} \frac{d[i_L(t)]}{dt} + a V_s \\
   i_L(t) + I_0 + C_r \frac{du_C(t)}{dt} = 0 
\end{cases} \]  

(3-5)

With initial condition \( u_C(0) = 0, \ i_L(0) = -I_0 \) , (in mode 5)

**Solution:**

Rewrite the equation

\[ \begin{cases} 
   u_C(t) = L_r \frac{di_L(t)}{dt} + \frac{V_s}{n} \\
   i_L(t) = -I_0 - C_r \frac{du_C(t)}{dt} 
\end{cases} \]

Laplace transform of the above equation get
\[
\begin{align*}
U_{C_r}(s) - \frac{V_S}{nS} &= L_r \left[ sI_{Lr}(s) + I_0 \right] \\
I_{Lr}(s) &= -\frac{I_0}{s} - C_r s U_{C_r}(s) \\
U_{C_r}(s) - \frac{V_S}{nS} &= L_r s \left[ -\frac{I_0}{s} - C_r s U_{C_r}(s) \right] + L_r I_0 \\
L_r C_r s^2 U_{C_r}(s) + U_{C_r}(s) &= \frac{V_S}{nS} \\
U_{C_r}(s) &= \frac{V_S}{L_r C_r s^2 + 1} = \frac{V_S}{nL_r C_r s} \\
&= \frac{V_S \left( s^2 + \frac{1}{L_r C_r} \right)}{s^2 + \frac{1}{L_r C_r}} = \frac{s V_S}{n} \frac{1}{s^2 + \frac{1}{L_r C_r}} + \frac{V_S}{nS} \\
u_{C_r}(t) &= -\frac{V_S}{n} \cos(\omega t) + \frac{V_S}{n} \\
I_{Lr}(s) &= -\frac{I_0}{s} - C_r s U_{C_r}(s) \\
I_{Lr}(s) &= -\frac{I_0}{s} - \frac{C_r V_S}{n} \frac{n}{L_r C_r s^2 + 1} = -\frac{I_0}{s} - \frac{V_S}{nL_r} \frac{n}{s^2 + \frac{1}{L_r C_r}} \\
i_{Lr}(t) &= -I_0 - \frac{V_S}{n} \sqrt{\frac{C_r}{L_r}} \sin(\omega t)
\end{align*}
\]

E. Auxiliary Drive Board for Resonant DC Link Inverter

Auxiliary drive board for resonant DC link inverter provides gate driver for auxiliary switches, measure and compare DC link voltage to generate gate signal for auxiliary switch $S_L$. Its schematic circuit diagram is shown in Fig. A-5.
Fig. A-5. Auxiliary drive board for resonant Dc link inverter
F. Solution of the Equation 4-6

Solve the Equation (3-5):

\[
\begin{align*}
    u_{S6}(t) &= L_{q1} \frac{di_{Lr}(t)}{dt} + a^2 L_{q2} \frac{d[i_{Lr}(t)/a]}{dt} + aV_s \\
    -C_r \frac{du_{S6}(t)}{dt} &= i_{Lr}(t) - I_0
\end{align*}
\]

(4-6)

With initial condition \( u_{S6}(0) = V_s, \quad i_{Lr}(0) = I_0 \)

**Solution:**

Rewrite the equation \( L_r = L_{q1} + L_{q2}/n^2 \)

\[
\begin{align*}
    u_{S6}(t) &= \left( L_{q1} + \frac{1}{n^2} L_{q2} \right) \frac{di_{Lr}(t)}{dt} + \frac{V_s}{n} \\
    i_{Lr}(t) + C_r \frac{du_{S6}(t)}{dt} &= I_0 \\
    u_{S6}(t) &= L_r \frac{di_{Lr}(t)}{dt} + \frac{V_s}{n} \\
    i_{Lr}(t) &= I_0 - C_r \frac{du_{S6}(t)}{dt}
\end{align*}
\]

Laplace transform of the above equation get

\[
\begin{align*}
    U_{S6}(s) - \frac{V_s}{ns} &= L_r \left[ sI_{Lr}(s) - I_0 \right] \\
    I_{Lr}(s) &= \frac{I_0}{s} - C_r \left[ sU_{S6}(s) - V_s \right] \\
    U_{S6}(s) - \frac{V_s}{ns} &= L_r s \left[ \frac{I_0}{s} - C_r sU_{S6}(s) + C_r V_s \right] - L_r I_0 \\
    U_{S6}(s) &= \frac{sL_r C_r V_s + \frac{V_s}{ns}}{L_r C_r s^2 + 1} = \frac{sV_s + \frac{V_s}{n L_r C_r}}{s^2 + \frac{1}{L_r C_r}} \\
    U_{S6}(s) &= \frac{sV_s + \frac{V_s}{ns} \left( s^2 + \frac{1}{L_r C_r} \right) - sV_s}{s^2 + \frac{1}{L_r C_r}} = \frac{n^{-1} sV_s}{n} + \frac{V_s}{ns}
\end{align*}
\]
\( u_{s6}(t) = \frac{(n-1)V_z}{n} \cos(\omega t) + \frac{V_s}{n} \)

\( I_{L_s}(s) = \frac{I_0}{s} + C_r V_s - C_s s U_{s6}(s) \)

\[
I_{L_s}(s) = \frac{I_0}{s} + C_r V_s - \frac{s^2 L_r C_r C_s V_s + C_r V_s}{L_r C_s s^2 + 1} \\
= \frac{I_0}{s} + \frac{s^2 L_r C_r C_s V_s + C_r V_s - s^2 L_r C_r C_s V_s - C_r V_s}{L_r C_s s^2 + 1} \\
= \frac{I_0}{s} + \frac{n-1}{n} C_r V_s = \frac{I_0}{s} + \frac{n-1}{n} L_r \frac{V_s}{s^2 + \frac{1}{L_r C_r}} \\
i_{L_s}(t) = I_0 + \frac{(n-1)V_s}{n} \sqrt{\frac{C_r}{L_r}} \sin(\omega t)\]

### G. Source Code of the Hybrid Controller

Source code of the hybrid controller is in the following:

```asm
; Description: This program is use to control a bruhless DC motor drive system with speed current double close loop feed back control system, the speed controller is a hybrid controller with conventional PI controller and fuzzy logic controller.
; Version: 1.00

.include x24x.h
.def _c_int0

; Speed regulator coefficients setting
KPw .set 15 ; P for speed controller
KIw .set 8 ; I for speed controller
KPi .set 5 ; P for current controller
KII .set 3 ; I for current controller

MaxCurrent .set 2000
```

- 158 -
Appendix

;---------------------------------------------------------------------
; Fuzzy membership function boundary
;---------------------------------------------------------------------
E1          .set    030H
E2          .set    090H
MAX_E       .set    060H
dE1         .set    030H
dE2         .set    090H
MAX_dE      .set    060H

;---------------------------------------------------------------------
; Variable Declarations for on chip RAM Blocks
;---------------------------------------------------------------------
.bss    GPR0,1          ; General purpose register.
.bss    LED_STATUS,1    ; LED Status Register
.bss    COMP,1          ; Duty cycle
.bss    Idc,1           ; Current reference
.bss    SPEED_REF,1     ; Speed reference
.bss    SPEED_COUNT,1   ; Speed loop count
.bss    Current_Sample_No,1 ; Speed sample number
.bss    Direction,1     ; The direction of the motor
.bss    Speed,1         ; The speed of the motor
.bss    SpeedSum,1      ; The sum of speed every 8 times
.bss    CurrentSum,1    ; The sum of current every 4 times
.bss    CurError,1      ; Current speed error
.bss    PreError,1      ; Previous speed error
.bss    dError,1        ; Differential of speed error
.bss    PreCodeH        ; Previous count in QEP
.bss    PreCodeL        ; Previous count in QEP
.bss    Sel             ; Controller selection
.bss    temp,1
.bss    temp1,1
.bss    temp2,1
.bss    stack,6         ; Context save stack

;---------------------------------------------------------------------
; Vector address declarations
;---------------------------------------------------------------------
.sect   ".vectors"
RSVECT    B       START             ; Reset Vector
INT1      B       PHANTOM           ; Interrupt Level 1
INT2      B       T1_INT            ; Interrupt Level 2
INT3      B       PHANTOM           ; Interrupt Level 3
INT4      B       PHANTOM           ; Interrupt Level 4
INT5      B       PHANTOM           ; Interrupt Level 5
INT6      B       PHANTOM           ; Interrupt Level 6
RESERVED  B       PHANTOM           ; Reserved
SK_INT8   B       PHANTOM           ; User S/W Interrupt
SK_INT9   B       PHANTOM           ; User S/W Interrupt
SK_INT10  B       PHANTOM           ; User S/W Interrupt
SK_INT11  B       PHANTOM           ; User S/W Interrupt
SK_INT12  B       PHANTOM           ; User S/W Interrupt
SK_INT13  B       PHANTOM           ; User S/W Interrupt
SK_INT14  B       PHANTOM           ; User S/W Interrupt
SK_INT15  B       PHANTOM           ; User S/W Interrupt
SK_INT16  B       PHANTOM           ; User S/W Interrupt
TRAP      B       PHANTOM           ; Trap vector
NMINT     B       PHANTOM           ; Non-maskable Interrupt
EMU_TRAP  B       PHANTOM           ; Emulator Trap
SK_INT20  B       PHANTOM           ; User S/W Interrupt
SK_INT21  B       PHANTOM           ; User S/W Interrupt
SK_INT22  B       PHANTOM           ; User S/W Interrupt
SK_INT23  B       PHANTOM           ; User S/W Interrupt

;---------------------------------------------------------------------
; M A I N   C O D E   - starts here
; Description:  Read reference speed
; Input:        IOPB
; Output:       SPEED_REF
;---------------------------------------------------------------------
.text
_c_int0:      NOP

- 159 -
Appendix

START:
CALL     SYSINIT
CALL     EV_INIT
CLRC     INTM                ; Enable interrupt

LOOP
NOP
POINT_PF2
LACC     PBADATDIR           ; IOPB, read reference speed
AND      #0FFH
SFL                         ; Times 2
POINT_PG0
SACL     SPEED_REF
B LOOP

;=====================================================================
; I S R -      T1_INT
; Description:  Responsible for T1 general purpose timer T1 period
;               interrupt, regulate the current loop every 4 times.
;               regulate the speed loop each 100 times
;=====================================================================
T1_INT
; save status registers
MAR     *,AR1
SST     #1, *+              ; save ST1
SST     #0, *               ; save ST0

POINT_EV
SPLK    #0ffffh,IFRA
POINT_PF1
LACC     SYSIVR
LACC     ADCTRL2
AND      #0C0h
BZ      NO_CURRENT_SIGNAL
LACC     ADCFIFO1,10         ; Read ADC 1, phase current A
POINT_PG0
SACH     temp
LACC     temp
SUB      #200h               ; Minus Ioffset
SACL     temp                ; ia
POINT_PF1
LACC     ADCFIFO2,10         ; Read ADC 2, phase current B
POINT_PG0
SACH     temp1
LACC     temp1
SUB      #200h               ; Minus Ioffset
SACL     temp1                ; ib
NEG
SUB      temp                ; ic = -ia - ib
ABS     ; |ic|
SACL     temp2
LACC     temp
ABS     ; |ia|
ADD      temp2               ; |ia| + |ic|
SACL     temp
LACC     temp1
ABS     ; |ib|
ADD      temp                ; |ia| + |ib| + |ic|
ADD      CurrentSum          ; Accumulate
SACL     CurrentSum
LACC     Current_Sample_No
ADD      #1
SACL     Current_Sample_No
AND      #4
BZ      NO_CURRENT_REG
LACC     CurrentSum          ; Read current 4 times
SACL     Idc                 ; The value of Isum
                      ; Not need to divid 4
SPLK    #0, CurrentSum
SPLK    #0, Current_Sample_No
LACC     Idc_ref             ; Current PI control
SUB      Idc
MAR     *,AR2

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library
Appendix

LAR AR2,#0328h
SACL *+
SUB *+
SACL *-
LT *-
MPY #KPi
LTP *-
MPY #KII
LTD *
ADD COMP
SACL COMP ; duty
BLZ NEG_CURRENT ; duty < 0;
SUB #4000
BLZ RESTORE_CMPR ; 0 < duty < 4000
SPLK #4000,COMP ; duty > 4000, 4000 => duty
B RESTORE_CMPR
NEG_CURRENT
BZ RESTORE_CMPR
SPLK #0,COMP ; duty <0, 0 => duty
RESTORE_CMPR
LACC COMP
SFR ; divide 8
SFR ; 4000 / 8 = 500
SFR
POINT_EV
SACL CMPR1 ; Update PWM
NO_CURRENT_REG
POINT_PG0
LACC SPEED_COUNT
ADD #1
SACL SPEED_COUNT
SUB #100 ; 50us * 100 = 5ms
BLZ NO_SPEED_REG
CALL SPEED_REG
SPLK #0, SPEED_COUNT
NO_SPEED_REG
; restore status registers
MAR *, AR1 ; make stack pointer active
LST #0, -* ; load ST0
LST #1, * ; load ST1
CLRC INTM
RET

;=====================================================================; S R   -       SYSINIT
; Description:  Initial the system parameter
;=====================================================================; SYSINIT:

SETC INTM ; Disable interrupts
CLRC SXM ; Clear Sign Extension Mode
CLRC OVM ; Reset Overflow Mode
CLRC CNF ; Config Block B0 to Data mem
CLRC XF
LAR AR1,#stack ; Init context save stack pointer
POINT_PF1 ; DP for addresses 7000h-707Fh
SPLK #008Bh, CKCR1 ; CLKIN(OSC)=10MHz, CPUCLK=20MHz
SPLK #00C3h, CKCR0 ; CLKMD=PLL Enable, SYSCLK=CPUCLK/2
SPLK #40C0h, SYSCR ; CLKOUT=CPUCLK
SPLK #006Fh, WDCR ; Disable WD if VCCP=5V (JP5 in pos. 2-3)
KICK_DOG ; Reset Watchdog
SPLK #0h, GPR0 ; Set wait state generator for:
OUT GPR0, WSGR ; Program Space, 0 wait states
; Data Space, 0 wait states
; I/O Space, 0 wait states
;=====================================================================; I/O setting p11-11
POINT_PF2
SPLK #000Fh, OCRA
SPLK #0076h, OCRB
Appendix

SPLK  #0, PBDATDIR ; Configured as input
LAR   AR2,#310h   ; Parameter for fuzzy control
MAR   *,AR2
SPLK  #0FFDD0H,**  ; -U2 --- -30H
SPLK  #0FFD0H,**  ; -U1 --- -10H
SPLK  #00030H,**  ; U1 ---  30H
SPLK  #00010H,**  ; U2 ---  10H
SPLK  #00050H,*   ; U3 ---  50H
LAR   AR2,#0320h
SPLK  #029H,*+
SPLK  #029H,*+
SPLK  #0, *

LAR   AR2,#0320h
SPLK  #029H,*+
SPLK  #029H,*+
SPLK  #0, *

LAR   AR2,#0320h
SPLK  #029H,*+
SPLK  #029H,*+
SPLK  #0, *

LAR   AR2,#0320h
SPLK  #029H,*+
SPLK  #029H,*+
SPLK  #0, *

SPM   0  ; No shift of PREG output
RET

;======================================================================
;  S R   -       SYSINIT
; Description:  Initial the event management and ADC parameter
;======================================================================

EV_INIT:
POINT_EV
ZAC
SACL  T1CON    ; Clear register first
SACL  T1PER
SACL  T1CNT
SACL  T1CMP
SACL  T2CON
SACL  T2PER
SACL  T2CNT
SACL  T2CMP
SACL  T3CON
SACL  T3PER
SACL  T3CNT
SACL  T3CMP
SACL  COMCON
SACL  DBTCON
SACL  ACTR
SACL  SACTR
SACL  CMPR1
SACL  CMPR2
SACL  CMPR3
SACL  SCMPR1
SACL  SCMPR2
SACL  SCMPR3
SACL  CAPCON
SPLK  #00ffh, CAPFIFO
LACC  FIFO1
LACC  FIFO2
LACC  FIFO3

;PWM Unit setting
SPLK  #0500,T1PER  ; 500 * 100ns = 50us
SPLK  #0000h,T1CNT
SPLK  #0FFDh,ACTR  ; Only use PWM1 output
SPLK  #00000,CMPR1
SPLK  #00000,CMPR2
SPLK  #00000,CMPR3
SPLK  #8287h,COMCON
SPLK  #8287h,COMCON
SPLK  #2800h,T1CON
SPLK  #2840h,T1CON
SPLK  #1830h,T2CON  ; Casacade to a 32-bit timer
SPLK  #1870h,T2CON  ; Directional up/down count mode
SPLK  #2820h,T3CON  ; Casacade to a 32-bit timer
SPLK  #2860h,T3CON
SPLK  #0EOF0h,CAPCON ; Set capture 1,2 as QEP
SPLK  #0FFh,CAPFIFO  ; Clear status register
SPLK  #0100h,GPTCON  ; Start ADC by GP timer 1 event
Appendix

; Setting of period interrupt flag

; Core Mask Setting
POINT_PGO
LACC #02h                ; Unmask INT2 (Timer)
SACL IMR
SPLK #0ffffh,IFR

; EV Mask Setting, Vector & Flag reset p11-46
POINT_EV
SPLK #0ffffh,IFRA        ; Clear event interrupt flag
SPLK #0ffffh,IFRB
SPLK #0ffffh,IFRC
SPLK #60h,IMRA           ; GP timer 1 period interrupt
SPLK #0,IMRB
SPLK #0,IMRC
LACC EVIVRA
LACC EVIVRB
LACC EVIVRC

; ADC Unit setting p3-8
POINT_PF1
SPLK #0403h,ADCTRL2
SPLK #0385Ah,ADCTRL1     ; ADCIN0 and ADCIN8

POINT_PGO                   ; Variables initial
ZAC
SACL SPEED_REF
SACL PreCode
SACL Idc_ref
SACL COMP
SACL SPEED_COUNT
SACL Direction
SACL SpeedSum
SACL CurrentSum
SACL Speed
SACL Current_Sample_No
SACL PreCodeH
SACL PreCodeL
SACL CurError             ; Current speed error
SACL PreError             ; Previous speed error
SACL dError               ; Differential of speed error
SPLK #1, Sel

RET

; ============================================================================
; S R   -       SPEED_REG
; Description: Regulate the speed loop subroutine.
;
; Fuzzifier of input data
;
; Membership function of speed error
;
;       NB  NS  Z  PS  PB
;
;  _______            |            _______
;         \    /
;          \  /  
;           /    /
;           /
;          /  
;         /    
;  -------------------+--------------------->
;    -E2  -E1  0  E1  E2
;
; Membership function of differential speed error
;
;       NB  NS  Z  PS  PB
;
;  _______            |            _______
;         \    /
;          \  /  
;           /    /
;           /
;          /  
;         /    
;  -------------------+--------------------->
;    -dE2  -dE1  0  dE1  dE2
Appendix

; Membership function of output
;
; NB  NM  NS  Z  PS  PM  PB
; |   |   |   |   |   |   |   |
; |   |   |   |   |   |   |   |
; |   |   |   |   |   |   |   |
; |   |   |   |   |   |   |   |
; |   |   |   |   |   |   |   |
; |---------------------------------------------------------------------|
; -U3 -U2 -U1  0    U1    U2    U3
;

SPEED_REG
  KICK_DOG
  MAR *,AR2
  LAR AR2,#0330h
  POINT_EV
  LACC T2CNT
  SACL *+
  LACC T3CNT, 16
  POINT_PG0
  SACL *-
  LACL *
  ; Read 32-bit timer
  SUB PreCodeL
  SUBB PreCodeL
  ABS
  SACL Speed
  ; Speed calculate
  LACC *+
  SACL PreCodeL
  LACC *+
  SACL PreCodeH
  ; Save current count for next calculation
  SETC SXM
  LACC SPEED_REF
  SUB Speed
  ; Speed error calculation
  SACL CurError
  SUB PreError
  SACL dError,5
  LACC CurError
  ABS
  SUB #75
  BLZ FuzzyControl
  ; |e| < e1
  LACC Sel
  BNZ PI_CONTROL
  ; Current controller is PI
  LACC CurError
  ABS
  SUB #100
  BLZ FuzzyControl
  ; |e| < eh & Sel = 0

PI_CONTROL
  LACC CurError
  ; Speed PI control
  MAR *,AR2
  LAR AR2,#0320h
  SACL *+
  SUB *+
  SACL *
  LT *--
  MPY #KPw
  LTP *--
  MPY #KIw
  LTD *
  ADD Idc_ref
  SACL Idc_ref
  B LIM_REG

FuzzyControl
  SPLK #0, Sel
  ; Initialization
  LAR AR2,#308h
  MAR *,AR2
  ZAC
Appendix

; For speed error
; 300H, 301H membership function index 1 & 2
; 0 -- NB  1 -- NS  2 -- Z
; 3 -- PS  4 -- PB
; 302H, 303H membership 1 & 2

; For differential speed error NB, NS, Z, PS, PB
; 304H, 305H membership function index 1 & 2
; 306H, 307H membership 1 & 2

; For output membership NB, NM, NS, Z, PS, PM, PB
SACL *+ ; NB -- 308H
SACL *+ ; NM -- 309H
SACL *+ ; NS -- 30AH
SACL *+ ; Z -- 30BH
SACL *+ ; PS -- 30CH
SACL *+ ; PM -- 30DH
SACL * ; PB -- 30EH

; Fuzzification
LAR AR2,#300h
LACC CurError
ABS
SUB #E1
BGZ PS_PB_E
SPLK #3,** ; PS
SPLK #2,** ; Z
LACC CurError
ABS
SFL ; x 2
SACL *+ ; Membership of PS
SUB #MAX_E
ABS
SACL * ; Membership of Z
B SYMBOL_E

PS_PB_E:
LACC CurError
ABS
SUB #E2
BGZ PB_E
SPLK #4,** ; PB
SPLK #3,** ; PS
LACC CurError
ABS
SUB #E1
SACL *+ ; Membership of PB
SUB #MAX_E
ABS
SACL * ; Membership of PS
B SYMBOL_E

PB_E:
SPLK #4,** ; PB
SPLK #3,** ; PS
SPLK #MAX_E,** ; PB
SPLK #0,* ; PS

SYMBOL_E
LACC CurError
BGZ Ffuzi_dE ; Symmetry of negative
LAR AR2, #300h
LACC #4
SUB * ; Change the membership index
SACL *+ ; Membership of PB
SACL * ; Membership of PS
LACC #4
SUB *
SACL *

Ffuzi_dE
LAR AR2, #300h
LACC dError
ABS
SUB #dE1
BGZ PS_PB_dE
SPLK #3,** ; PS
SPLK #2,** ; Z
LACC dError
ABS
SFL ; x 2
Appendix

SACL *+ ; Membership of PS
SUB #MAX_dE
ABS
SACL * ; Membership of Z
B SYMBOL_dE

PS_PB_dE:
LACC dError
ABS
SUB #dE2
BGZ PB_dE
SPLK #4,*+ ; PB
SPLK #3,*+ ; PS
LACC dError
ABS
SUB #dE1
SACL *+ ; Membership of PB
SUB #MAX_dE
ABS
SACL * ; Membership of PS
B SYMBOL_dE

PB_dE:
SPLK #4,*+ ; PB
SPLK #3,*+ ; PS
SPLK #MAX_dE,*+ ; PB
SPLK #0,* ; PS
SYMBOL_dE
LACC dError
BGZ Inference ; Symmetry of negative
LAR AR2,#304h
LACC #4
SUB * ; Change the membership index
SACL *+ ; Membership of PB
SUB #4
SACL *

Inference:
LAR AR0,#2
LAR AR2,#0304h
LAR AR3,#0300h
LACC *0+,3,AR3
ADD *0+,AR2 ; (304)*8+(300) => ACC
ADD #RuleTable
TBLR temp ; Get index of output u
LACC #308h
ADD temp
SACL temp
LAR AR4,temp
LACC *,AR3 ; Inference engine, minimum rule
SACL temp
SUB *
BLZ Get_306
LACC *
B UpdateU

Get_306:
LACC temp

UpdateU:
MAR *,AR4
SACL *,AR2
LAR AR2,#0305h
LAR AR3,#0300h
LACC *0+,3,AR3
ADD *0+,AR2 ; (305)*8+(300) => ACC
ADD #RuleTable
TBLR temp ; Get index of output u
LACC #308h
ADD temp
SACL temp
LAR AR4,temp
LACC *,AR3 ; Inference engine, minimum rule
SACL temp
SUB *
BLZ Get_307
LACC *
Appendix

B       UpdateU2
Get_307:
  LACC    temp
UpdateU2:
  SACL    temp
  MAR    *,AR4
  SUB    *
  BLZ    NextRule3
  LACC    temp
  SACL    *,AR2
NextRule3:
  LAR    AR2,#0304h
  LAR    AR3,#0301h
  LACC    *0+,3,AR3
  ADD    *0+,AR2 ; (304)*8+(301) => ACC
  ADD    #RuleTable
  TBLR    temp ; Get index of output u
  LACC    #308H
  ADD    temp
  SACL    temp
  LAR    AR4,temp
  LACC    *,AR3 ; Inference engine, minimum rule
  SACL    temp
  SUB    *
  BLZ    Get_306_2
  LACC    *
  B       UpdateU3
Get_306_2:
  LACC    temp
UpdateU3:
  SACL    temp
  MAR    *,AR4
  SUB    *
  BLZ    NextRule4
  LACC    temp
  SACL    *,AR2
NextRule4:
  LAR    AR2,#0305h
  LAR    AR3,#0301h
  LACC    *0+,3,AR3
  ADD    *0+,AR2 ; (305)*8+(301) => ACC
  ADD    #RuleTable
  TBLR    temp ; Get index of output u
  LACC    #308H
  ADD    temp
  SACL    temp
  LAR    AR4,temp
  LACC    *,AR3 ; Inference engine, minimum rule
  SACL    temp
  SUB    *
  BLZ    Get_307_2
  LACC    *
  B       UpdateU4
Get_307_2:
  LACC    temp
UpdateU4:
  SACL    temp
  MAR    *,AR4
  SUB    *
  BLZ    Defuzzifier
  LACC    temp
  SACL    *,AR2
Defuzzifier:
  MAR    *,AR2
  LAR    AR2,#0308h
  LAR    AR3,#0310h
  LACC    *+
  ADD    *+ ; Sum of membership
  ADD    *+
  ADD    *+
  ADD    *+
Appendix

ADD    *                   ; Add the previous product to ACC
SACL    temp
LAR     AR2,#0308h         ; Sum of membership * boundary
ZAC
LT      *+,AR3
MPY     *+,AR2
LT      *+,AR3
MPYA    *+,AR2
LT      *+,AR3
MPYA    *+,AR2
LT      *+,AR3
MPYA    *+,AR2
APAC                        ; Add the previous product to ACC
SFR
SACL    temp1
ABS
RPT     #15                ; Division
SUBC    temp
AND     #0FFFFH
BIT     temp1,0
BCND    UpdateIdc,NTC
NEG
UpdateIdc:
ADD     Idc_ref
SACL    Idc_ref
LIM_REG
; reference current limitation
BGZ     CURRENT_LIM
SPLK    #0,Idc_ref         ; Minimum zero
B RESOTRE_IREF
CURRENT_LIM
SUB     #MaxCurrent         ; Limit the reference current
BLZ     RESOTRE_IREF
SPLK    #MaxCurrent, Idc_ref
RESOTRE_IREF
LACC    CurError
SACL    PreError
LACC    Idc_ref
SPLK    #0,SPEED_COUNT      ; Reset Speed loop timer
CLRC    SXM
RET

;=====================================================================;
; I S R  -      PHANTOM
; Description: Dummy ISR, used to trap spurious interrupts.
;=====================================================================;
PHANTOM
KICK_DOG                      ; Resets WD counter
B PHANTOM

;=====================================================================;
; Rule table
; dE\E   NB   NS   Z   PS   PB
; |    |    |    |    |    |    |    |    |
; NB   -   NB   NB   NM   NS   Z
; NS   -   NB   NM   NS   Z   PS
; Z    -   NM   NS   Z   PS   PM
; PS   -   NS   Z   PS   PM   PB
; PB   -   Z   PS   PM   PB   PB
;
;=====================================================================;

RuleTable .word               0           ; Line 1
          .word               0
          .word               1
          .word               2
          .word               3
          .word               0FFH        ; Padding
Appendix

```assembly
.word     OFFH
.word     OFFH
.word     0       ; Line 2
.word     1
.word     2
.word     3
.word     4
.word     OFFH    ; Padding
.word     OFFH
.word     OFFH
.word     1       ; Line 3
.word     2
.word     3
.word     4
.word     5
.word     OFFH    ; Padding
.word     OFFH
.word     OFFH
.word     2       ; Line 4
.word     3
.word     4
.word     5
.word     6
.word     OFFH    ; Padding
.word     OFFH
.word     OFFH
.word     OFFH
.word     3       ; Line 5
.word     4
.word     5
.word     6
.word     6
.word     OFFH    ; Padding
.word     OFFH
.word     OFFH
```
Appendix H Novel Soft-Switching Inverter for Brushless DC Motor Variable Speed Drive System

H Novel Soft-Switching Inverter for Brushless DC Motor Variable Speed Drive System

Zhi Yang Pan and Fang Lin Luo, Senior Member, IEEE

Abstract—Brushless dc motor has been widely used in industrial applications because of its low inertia, fast response, high power density, high reliability and maintenance-free. It is usually supplied by a hard-switching PWM inverter, which normally has low efficiency since the power losses across the switching devices are high. In order to reduce the losses, many soft switching inverters have been designed. Unfortunately, there are many drawbacks, such as high device voltage stress, large dc link voltage ripple, complex control scheme and so on. This paper introduces a novel soft-switching inverter which generates notches of the dc bus voltage becomes to zero during chopping switches commutation to guarantee all switches working in zero voltage state. The result of this investigation will be very useful for industrial applications.

Index Terms—Brushless dc motor (BDCM), resonant dc link, soft switching, 12-switches inverter.

I. INTRODUCTION

BRUSHLESS dc motor (BDCM) has been widely used in industrial applications because of its high power density, low inertia, fast response, high reliability and therefore maintenance-free. It is usually supplied by a hard-switching PWM inverter, which normally has low efficiency since the power losses across the switching devices are high. In order to reduce the losses, many soft switching inverters have been designed.

Soft switching operation of power inverter has attracted much attention in recent decade. In medium power applications, the resonant dc link concept [1] offered a first practical and reliable way to reduce commutation losses and to eliminate individual snubbers. Thus it allows high operating frequencies and improved efficiency. The inverter is quite simple to get the zero voltage switching (ZVS) condition of the six main inverter switches only by adding one auxiliary switch. However, the inverter has the drawbacks of high voltage stress of the switches, high voltage ripple of the dc link, discrete pulse modulation (DPM) other than PWM control. In order to overcome the drawback of high voltage stress of the switches, actively clamped resonant dc link inverter was introduced [2]. The control scheme of the inverter is too complex and the output contains subharmonic which, in some cases, cannot be accepted.

In order to generate notches of the dc link at controllable instants, several quasiparallel resonant schemes were proposed [3]–[5]. As a dwell time is generally required after every notch, severe interferences occur, mainly in multiphase inverters, ap-

November 19, 2002; revised September 25, 2003. Recommended by Associate Editor A. M. Trzynadowski.
1 The authors are with the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (e-mail: zypnntu.edu.sg).
2 Digital Object Identifier 10.1109/TPED.2003.823173

0885-8993/04$20.00 © 2004 IEEE

preciably worsening the modulation quality. A novel dc-rail parallel resonant zero voltage transition (ZVT) voltage source inverter [6] is introduced, it overcome many drawbacks mentioned above. However it requires two ZVT per PWM cycle, it would worsen the output and limit the switching frequency of the inverter.

The conventional three phase full wave inverter has the demerit of current ripple during commutation, thus the torque ripple of BDCM is high. Some authors [7]–[9] proposed some method to reduce torque ripple, but these methods show limited effectiveness in practical applications due to motor parameter sensitivity and dissatisfactory performance over wide speed range.

The paper proposed a novel resonant dc link inverter for BDCM. The topology of the soft-switching inverter is shown in Fig. 1. The system contains an uncontrolled rectifier, a resonant circuit, a 12-switches inverter and control circuit. The resonant circuit consists of three auxiliary switches (one IGBT S1 and two fast switching thyristors S2, S3), one resonant inductor and one resonant capacitor. All auxiliary switches work under ZVS or zero current switching (ZCS) condition. It can generate voltage notches of the dc link at controllable instants and width so that the main inverter switches (S1 – S12) of the inverter can get ZVS condition. The conventional quasi-resonant procedure is divided into two half procedure for PWM operation. It has the merit of low voltage ripple of the dc link, low voltage stress of the switches and simple control schemes. In order to reduce torque ripple, the 12-switches inverter is introduced. The inverter comprises three single-phase inverters, and the three motor windings are connected to the three single-phase inverters respectively. The 12-switches inverter has other merit for motor drives not only for BDCM, but also for other ac motor such as induction motor, synchronous motor. Although the inverter requires more switching devices, for a given torque and speed, the voltage stress of the switches can reduce half, thus the total cost of the switching device would not increase. While the price of switching device has decreased significantly especially for medium and low power application and the cost of switches has lower proportion of the drive system. The control circuit contains speed controller, commutation logical circuit of the BDCM, auxiliary switches control circuit and gate signal drive.

II. RESONANT CIRCUIT

The resonant circuit consists of three auxiliary switches, one resonant inductor and one resonant capacitor. The auxiliary switches are controlled at certain instant to obtain the resonance between inductor and capacitor. Thus the dc link voltage

0885-8993/04$20.00 © 2004 IEEE
Appendix H Novel Soft-Switching Inverter for Brushless DC Motor Variable Speed Drive System

Fig. 1. Topology of soft-switching inverter for BDCM drive system.

Fig. 2. Equivalent circuit.

reaches zero temporarily (voltage notch) and the main switches of the inverter get ZVS condition.

A. Operation Principle of the Resonant Circuit

Since the resonant procedure is very short, the load current can be assumed constant. The equivalent circuit is shown in Fig. 2. The corresponding waveforms of gate signal of auxiliary switches, resonant capacitor voltage \( v_{C_{r}} \), inductor current \( i_{L_{r}} \) and current of switch \( S_{L}(i_{S_{L}}) \) are illustrated in Fig. 3. The dc link voltage reduce to zero and then rise to dc supply voltage again is called one zero voltage transition process or one dc link voltage notch, shortened for ZVT. The operation of the ZVT process can be divided into six modes.

Mode 0 [shown in Fig. 4(a)] \( 0 < t < t_{0} \). Its operation is the same as conventional inverter. Current flows from dc power supply through \( S_{T} \) to the load. The voltage across \( C_{r} \) \( (v_{C_{r}}) \) is equal to the supply voltage \( (V_{S}) \). The auxiliary switches \( S_{A} \) and \( S_{B} \) are in off state.

Mode 1 [shown in Fig. 4(b)] \( t_{0} < t < t_{1} \). When it is the instant for phase current commutation or PWM signal is flipped from “1” to “0,” thyristor \( S_{T} \) is fired (ZCS turn on due to \( L_{r} \)) and IGBT \( S_{L} \) is turned off (ZVS turn off due to \( C_{r} \)) at the same time. Capacitor \( C_{r} \) resonates with inductor \( L_{r} \), the voltage across capacitor \( C_{r} \) is decreased. Redefine the initial time we have the equation

\[
\begin{align*}
\frac{dv_{C_{r}}}{dt} + R_{L_{r}} i_{L_{r}}(t) + L_{r} \frac{di_{L_{r}}(t)}{dt} &= \frac{V_{S}}{2} \\
- \frac{dC_{r}}{dt} &= 0
\end{align*}
\]

where \( R_{L_{r}} \) is the resistance of inductor \( L_{r} \), \( i_{0} \) is load current, \( V_{S} \) is the dc power supply voltage, with initial condition \( v_{C_{r}}(0) = V_{S}, i_{L_{r}}(0) = 0 \), solve the (1), we get

\[
\begin{align*}
\frac{v_{C_{r}}(t)}{L_{r}} &= \frac{1}{2} R_{L_{r}} i_{0} + \left( \frac{1}{2} R_{L_{r}} - R_{L_{r}} i_{0} \right) e^{-\frac{t}{R_{L_{r}} C_{r}}} \cos(\omega t) + \frac{1}{2} \frac{1}{R_{L_{r}} C_{r}} \\
\times e^{-\frac{t}{R_{L_{r}} C_{r}}} \left( \frac{1}{2} R_{L_{r}} C_{r} V_{S} - i_{0} L_{r} + \frac{1}{2} R_{L_{r}} C_{r} i_{0} \sin(\omega t) \right) \\
t_{L_{r}}(t) &= t_{0} - t_{0} e^{-\frac{t}{R_{L_{r}} C_{r}}} e^{-\frac{t}{R_{L_{r}} C_{r}}} \sin(\omega t)
\end{align*}
\]

where

\[
\tau = \frac{2L_{r}}{R_{L_{r}}} \quad \omega = \sqrt{\frac{1}{L_{r} C_{r}}} - \frac{1}{\tau^{2}}
\]
Appendix H Novel Soft-Switching Inverter for Brushless DC Motor Variable Speed Drive System

As the resonant frequency is very high (several hundred kHz), \( \omega L_r \gg R_{L_r} \), resonant inductor resistance \( R_{L_r} \) can be neglected. Then (2) can be simplified as

\[
\begin{align*}
  u_{C_r}(t) &= \frac{V_0}{2} + K \cos(\omega_r t + \alpha) \\
  i_{L_r}(t) &= I_0 - K \sqrt{\frac{C_r}{L_r}} \sin(\omega_r t + \alpha)
\end{align*}
\]  

(3)

where

\[
K = \sqrt{\frac{V_0^2}{4} + \frac{I_0^2 L_r}{C_r}}, \quad \omega_r = \sqrt{\frac{1}{L_r C_r}}, \quad \alpha = \arcsin \left( \frac{2 I_0 V_S}{V_S^2} \right).
\]

Let \( u_{C_r}(t) = 0 \), we get

\[
\Delta T_1 = t_3 - t_0 = \frac{\pi - 2\alpha}{\omega_r}
\]

(4)

\( i_{L_r}(t_1) \) is zero at the same time. Then the thyristor \( S_h \) is self turned-off.

**Mode 2** (shown in Fig. 4(c)) \( t_1 < t < t_2 \). None of auxiliary switches is fired and the voltage of dc link \( u_{C_r} \) is zero. The main switches of the inverter can be either turned on or turned off under ZVS condition during the interval. Load current flows through the freewheeling diode \( D \).

**Mode 3** (shown in Fig. 4(d)) \( t_2 < t < t_3 \). As the main switches have turned on or turned off, thyristor \( S_h \) is fired (ZCS turn on due to \( L_r \)) and \( i_{L_r} \) starts to build up linearly in the auxiliary branch. The current in the freewheeling diode \( D \) begins to fall linearly. The load current is slowly diverted from the free-wheeling diodes to the resonant branch. But \( u_{C_r} \) is still equal to zero. We have

\[
\Delta T_3 = t_3 - t_2 = \frac{2 I_0 L_r}{V_S}.
\]

(5)

At \( t_3 \), \( i_{L_r} \) equals the load current \( I_0 \) and the current through the diode becomes zero. Thus the free-wheeling diode turns off under zero-current condition.

**Mode 4** (shown in Fig. 4(e)) \( t_3 < t < t_4 \). \( i_{L_r} \) is increased continuous from \( I_0 \) and \( u_{C_r} \) is increased from zero when the freewheeling diode \( D \) is turned off. Redefine the initial time, we can get the same equation as (1). But the initial condition is \( u_{C_r}(0) = 0 \), \( i_{L_r}(0) = I_0 \), neglect the inductor resistance, solve the equation, we get

\[
\begin{align*}
  u_{C_r}(t) &= \frac{V_0}{2} \left[ 1 - \cos(\omega_r t) \right] \\
  i_{L_r}(t) &= I_0 + \frac{V_0}{\omega_r} \sqrt{\frac{C_r}{L_r}} \sin(\omega_r t)
\end{align*}
\]  

(6)

when

\[
\Delta T = t_4 - t_3 = \frac{\pi}{\omega_r}
\]

(7)
Appendix H Novel Soft-Switching Inverter for Brushless DC Motor Variable Speed Drive System

\[ u_{c_r} = V \_0, \text{ IGBT } S \_2 \text{ is fired (ZVS turn on), } i_{dC_r} = I \_0 \text{ again.} \]

The peak inductor current can be derived from (6), that

\[ i_{L_r-m} = I \_0 + \frac{V \_0}{2} \sqrt{\frac{C \_r}{L \_r}}. \]  

**Mode 5** [shown in Fig. 4(f)] \( t \_4 < t < t \_5 \). When the dc link voltage is equal to the supply voltage, auxiliary switch \( S \_1 \) is turn on (ZVS turned on due to \( C \_r \)), \( i \_d \) is decreased linear from \( I \_0 \) to zero at \( t \_5 \) and the thyristor \( S \_3 \) is self turned off.

Then go back to mode 0 again. The operation principle of the other procedure is the same as conventional inverter.

**B. Commutation Logical Circuit and Control Circuit for Auxiliary Switches**

When the duty of PWM is 100\%, i.e. full duty cycle, the main switches of inverter work under the commutation frequency. When it is the instant to commutate the phase current of the BDCM, we control the auxiliary switches \( S \_a, S \_b, S \_c \) and resonant occur between \( L \_r \) and \( C \_r \). The voltage of dc link reach zero temporarily, thus ZVS condition of the main switches is obtained. When the duty of PWM is less than 100\%, the auxiliary switch \( S \_1 \) works as a chop. The main switches of the inverter do not switch within a PWM cycle when the phase current needs not commutate. It has the benefit of reducing phase current drop during the PWM is off. The phase current is commutated during the dc link voltage becomes zero. So there is only one dc link voltage noch per PWM cycle. It is very important especially for very low or very high duty of PWM. Otherwise the interval between two voltage noches is very short even overlapped which will limit the tuning range.

The commutation logical circuit of the system is shown in Fig. 5. It is similar to conventional BDCM commutation logical circuit except adding six D flip-flops to the output. Thus the gate signal of the main switches is controlled by pulse CK that will be mentioned later. The operation of the inverter can be divided into full duty cycle operation and PWM operation.

1) Full Duty Cycle Operation: When the duty of PWM is 100\%, i.e. full duty cycle, the whole ZVT process (mode 0-mode 5) occurs when the phase current commutation is on going. The control scheme for the auxiliary switches in this operation is illustrated in Fig. 6(a). When mode 1 begins, pulse signal for thyristor \( S \_a \) is generated by a monostable flip-flop and gate signal for IGBT \( S \_2 \) is dropped to low level (i.e., turn off the \( S \_3 \)) at the same time. Then, pulse signal for thyristor \( S \_b \) and pulse CK can be obtained after two short delays (delay1 and delay2 respectively). Obviously delay1 is longer than delay2. Pulse CK is generated during mode 2 when the voltage of dc link is zero and the main switches of the inverter get ZVS condition. Then modes 3,4,5 occur, the voltage of dc link is increased to that of supply again.

2) PWM Operation: In this operation the auxiliary switch \( S \_1 \) works as chop, but the main switches of the inverter do not turn on or turn off within a PWM cycle when the phase current needs not commutate. The load current is commutated during the dc link voltage becomes to zero, i.e. when PWM signal is “0” (As the PWM cycle is very short, it does not affect the operation of the motor). The control scheme for the auxiliary switches in PWM operation is illustrated in Fig. 6(b).

- When PWM signal is flopped from “1” to “0,” mode 1 begins, pulse signal for thyristor \( S \_a \) is generated and gate signal for IGBT \( S \_2 \) is dropped to low level. But the voltage of dc link does not increase until PWM signal is flipped from “0” to “1.” Pulse CK is generated during mode 2.

- When PWM signal is flipped from “0” to “1,” mode 3 begins, pulse signal for thyristor \( S \_b \) is generated at the moment (mode 3). Then when the voltage of the dc link is increased to supply voltage \( V \_0 \), the gate signal for IGBT \( S \_2 \) is flipped to high level (Modes 4 and 5).

Thus, only one ZVT occurs per PWM cycle: mode 1,2 for PWM turned off, modes 3,4,5 for PWM turned on. And the switching frequency would be no greater than PWM frequency.

III. Operation Principle of the 12-Switches Inverter

A. Commutation Process With Conventional Inverter

Assumption the rotor reluctance of BDCM is constant independent rotor position \( \theta \) and only the fundamental components of the flux linkages contributed by the permanent magnet are
Appendix H Novel Soft-Switching Inverter for Brushless DC Motor Variable Speed Drive System

Fig. 7. Equivalent circuit during commutation.

considered. Then the mathematical model of the BDCM can be expressed as [10]

\[
\begin{bmatrix}
    v_a \\ v_b \\ v_c
\end{bmatrix} =
\begin{bmatrix}
    R & 0 & 0 \\ 0 & R & 0 \\ 0 & 0 & R
\end{bmatrix}
\begin{bmatrix}
    i_a \\ i_b \\ i_c
\end{bmatrix} +
\begin{bmatrix}
    L & M & M \\ M & L & M \\ M & M & L
\end{bmatrix}
\begin{bmatrix}
    \frac{d}{dt} i_a \\ \frac{d}{dt} i_b \\ \frac{d}{dt} i_c
\end{bmatrix}
\begin{bmatrix}
    e_a \\ e_b \\ e_c
\end{bmatrix}
\]

where \( R \) is the phase resistance, \( L \) is phase inductance, \( M \) is the mutual inductance, \( v \) is the phase voltage, \( i \) is the phase current, \( e \) is the phase back EMF, and \( p \) is the derivative operator \((\frac{d}{dt})\).

For Y-connected BDCM with conventional three-phase full wave inverter, the (9) can be changed to

\[
\begin{bmatrix}
    v_a \\ v_b \\ v_c
\end{bmatrix} =
\begin{bmatrix}
    R & 0 & 0 \\ 0 & R & 0 \\ 0 & 0 & R
\end{bmatrix}
\begin{bmatrix}
    i_a \\ i_b \\ i_c
\end{bmatrix} +
\begin{bmatrix}
    L - M & 0 & 0 \\ 0 & L - M & 0 \\ 0 & 0 & L - M
\end{bmatrix}
\begin{bmatrix}
    \frac{d}{dt} i_a \\ \frac{d}{dt} i_b \\ \frac{d}{dt} i_c
\end{bmatrix}
\begin{bmatrix}
    e_a \\ e_b \\ e_c
\end{bmatrix}
\]

so the equivalent circuit of the BDCM drive system during commutation can be simplified as Fig. 7 (Assume commutation from \( +A-B = > +A-C \); "=" means current flow from the positive pole of supply, "-" means current flow to the negative pole).

Neglect the voltage drop across switches and diodes, the governed voltage and current equation can be obtained [11]

\[
\begin{align*}
U &= i_a R_a + L_a \frac{d}{dt} i_a + e_a + e_c + L_c \frac{d}{dt} (i_a - i_c) + (i_a - i_c) R_c \\
i_a R_a + L_a \frac{d}{dt} i_a + e_a + e_b + L_b \frac{d}{dt} i_b + i_b R_b &= 0
\end{align*}
\]

where \( R_a = R_b = R_c \) = \( R \), \( L_a = L_b = L_c = L - M \), \( e_a = e_b = e_c = e \). For approximate solution, assume the circuit as reached the steady state before commutation, we have the equation as conventional dc motor

\[
U = 2IR + 2e.
\]

Fig. 8. Waveforms of phase current, phase voltage and torque with conventional inverter. (a) Phase A current and voltage. (b) Torque.

With the initial value \( i_{a0}, i_{b0} = I, i_{c0} = I \) (\( I \) is the current of dc link) and (13) solve the (12) obtain

\[
\begin{align*}
i_a &= \left( \frac{3I}{3R} \right) \left( -\frac{1}{3} \right) e^{-\frac{1}{3}\alpha t} \\
i_b &= \left( \frac{3I}{3R} \right) \left( -\frac{1}{3} \right) e^{-\frac{1}{3}\alpha t} + \left( \frac{1}{3} \right) \end{align*}
\]

(14)

The phase voltage during commutation can be obtained from (13)

\[
\begin{align*}
v_a &= v_b = v_{PH} = \frac{\beta}{6} + \frac{1}{3}IR \\
v_c &= v_{ON} = \frac{\beta}{6} - \frac{1}{3}IR.
\end{align*}
\]

Thus we can sketch the waveform of current and voltage of phase A as Fig. 8(a) and waveform of torque as Fig. 8(b). From the figure we can see that the current ripple of phase A is the cause of commutation, the phase voltage is decreased between \( t_1 \) and \( t_2 \). Maintaining the uncommutation phase voltage to be constant, the current ripple can be eliminated, and the torque ripple can be reduced. For this purpose, half wave inverter can be used, such as conventional half-wave inverter, Miller inverter, Buck-fronted inverter and C-dump inverter [12]. But the efficiency of the motor is low with these inverters for there is only one winding conduct at the same time. So the 12-switches inverter is introduced.

B. Commutation Process With 12-Switches Inverter

The topology of the inverter is shown in Fig. 9. It consists of three single-phase inverters and the three armatures of the motor connect to them respectively. Thus phase current can be controlled independently and not affected by other phase commutation procedure.

Also assume phase current commutates from \( +A-B = > +A-C \) (turn off \( S_{75}, S_{74} \); turn on \( S_{1}, S_{12} \)). With the 12-switches inverter, two independent governed voltage and current equations of the phase B.C can be obtained (current of phase A is not affected by commutation)

\[
\begin{align*}
U &= i_b R_b + L_b \frac{d}{dt} i_b + e_b \\
-U &= i_c R_c + L_c \frac{d}{dt} i_c + e_c
\end{align*}
\]

(16)
Appendix H Novel Soft-Switching Inverter for Brushless DC Motor Variable Speed Drive System

For trapezoidal BDCM, the waveform of the back EMF is shown in Fig. 10(a). If the commutation occurs at time \( t_1 \), with the initial condition \( \theta_{0k} = -I, i_{c0} = 0, \theta_c = -(U - IR) \), solve the equation, obtain

\[
\begin{align*}
\theta_c &= \frac{2U}{R} - I + \frac{2U}{R} e^{-\frac{2U}{R} t} \\
i_c &= I \left( 1 - e^{-\frac{2U}{R} t} \right). 
\end{align*}
\]  

(17)

\( \theta_c \) can reduce to zero very quickly, but the \( i_c \) increases very slowly. In order to shorten the commutation procedure, S11, S12 are turned on at \( t_2 \), S7, S8 are turned off at \( t_3 \), then \( i_c \) can increase quicker. As the back EMF \( V_s \) time (or electrical degree) is a continuous function, there exists an instant \( t_2 \) that \( i_c \) can reach the steady value at \( t_1 \). So the phase current is smoother, and the motor torque is reduced [as shown in Fig. 10(b)].

Fig. 9. Topology of 12-switches inverter.

Fig. 10. Waveforms of back EMF, phase current and torque with 12-switches inverter. (a) Back EMF of trapezoidal BDCM. (b) Phase current and torque.

Fig. 11. Simulation result of the soft switching inverter with PWM. (a) Waveforms of \( \theta_c, i_{c1}, i_{c2}, i_{c3} \). (b) Zoom in waveforms of \( u_{C1}, u_{C2}, u_{C3} \) and switches gate signal.
Appendix H Novel Soft-Switching Inverter for Brushless DC Motor Variable Speed Drive System

Fig. 12. Simulation result of conventional inverter versus 12-switches inverter. (a) Waveforms in conventional three-phase full wave inverter. (b) Waveforms in 12-switches inverter.

The 12-switches inverter not only reduces the torque ripple significantly, includes the merit of the conventional three phase full wave inverter and half wave inverter, but has other merit as follows.

- For a given supply voltage, the current flows through one winding only other than two windings in conventional inverter, so it can offer twice phase current and torque. The supply only needs to get over back EMF of one phase, so the speed of the motor is also doubled.
- For a given motor speed, it only requires half supply voltage, so the voltage stress of switching device is reduced half. It is easier to select required device and the price of two low voltage stress devices is lower than that of one high voltage stress device. The insulation class requirement can be also reduced.

Fig. 13. Voltage and current waveforms of switch $S_2$ in hard switching and soft switching inverter. (a) Switch voltage and current with hard switching (10 A/div). (b) Switch voltage and current with soft switching (10 A/div).

- The inverter is applicable to other motors such as induction motor, synchronous motor, and no deadbeat time is required.
- The phase current can be controlled more flexible.

IV. SIMULATION AND EXPERIMENT RESULT

The simulation results of soft-switching inverter with PWM operation by Psim is shown in Fig. 11. The waveforms of phase current ($i_{a}$), phase voltage ($v_{a}$), dc link voltage ($V_{dc}$) and resonant inductor current ($i_{Lr}$) are shown in Fig. 11(a). The zoom in waveforms of dc link voltage, resonant inductor current and switches gate signal are shown in Fig. 11(b). The dc link voltage is 250 V, the switching frequency is 10 kHz, the resonant inductor is 10 µH, the resonant capacitance is 0.047 µF. From the zoom in waveforms we can see that the simulation results matches the theoretical analysis in Section II, the switch $S_2$ is turned off and switch $S_7$ is turned on during the dc link voltage is zero.

The simulation results of phase current, phase voltage, torque and FFT of torque in conventional three-phase full wave inverter and 12-switches inverter are also shown in Fig. 12. The waveforms in Fig. 12(a) are with conventional three-phase full wave inverter, and supply voltage is 500 V; waveforms in Fig. 12(b) are with 12-switches inverter, and supply voltage is 250 V. From the simulation results we can see that average torques in the two inverters are almost the same, the first order of torque harmonics is much less in 12-switches inverter than that of conventional inverter, so the torque ripple with 12-switches reduces significantly. The magnitude of phase current and torque with the two inverters is the same, the speed is also same, but the supply voltage of former is twice as that of later.
In order to verify the theoretical analysis and simulation results, the proposed soft switching inverter was tested on an experimental prototype. A polyester capacitor of 47 nF, 1500 V was adopted as dc link resonant capacitor $C_r$. The resonant inductor was of 6 $\mu$H/30 A with ferrite core. The design of the auxiliary switches control circuit was referenced from Fig. 6. The waveforms of voltage across switch and current under hard switching and soft switching are shown in Fig. 13. All the voltage signals come from differential probe, and there is a gain of 20. For voltage waveform, 5.00 V/div in oscilloscope represents 100 V/div, which is the same for Fig. 14. It can be seen that there is a considerable overlap between the voltage and current waveforms during the switching under hard switching. The overlap is much less with soft switching and the switching power loss is smaller. A serial of key waveforms with soft switching inverter is shown in Fig. 14. The default scale is: dc link voltage: 100 V/div, current: 20 A/div. The default switching frequency is 10 kHz. The dc link voltage is fixed to 240 V. These experimental waveforms are coincident with the simulation waveforms in Fig. 13.

Two inverters are set up to compare the performance of the 12-switches inverter and conventional three-phase inverter. A customizing 2.2 kW customizing BDCM with all stator windings terminal connected external is introduced in this experiment. The shaft of the motor is clutched to variable load with torque probe. The phase current and torque waveforms in the two inverters are shown in Fig. 15. From the figure we can see
that the phase current in 12-switches inverter is not affected by the commutation of other phase and torque is less ripple than that of three-phase inverter [13]–[15].

V. CONCLUSION

A novel soft switching inverter for BDGM variable speed drives systems is proposed. Operation principles, analysis and simulation result are also illustrated.

1) All switches work under soft-switching condition, so their power losses are small. Only one dc link voltage notch is needed for every PWM cycle. Simple switches controls switch scheme.

2) Torque ripple of motor is reduced significantly. For a given voltage of supply, torque and speed of the motor are doubled. For a given speed of the motor, the voltage stress of switching device is reduced half, the insulation class requirement can be also reduced. The inverter is also applicable to induction motor.

REFERENCES


Novel Resonant Pole Inverter for Brushless DC Motor Drive System

Zhi Yang Pan, Student Member, IEEE, and Fang Lin Luo, Senior Member, IEEE

Abstract—The brushless dc motor (BDCM) has been widely used in industrial applications because of its low inertia, fast response, high power density, high reliability, and maintenance-free reputation. It is usually supplied by a hard-switching pulse width modulation inverter, which normally displays relative low efficiency since the power losses across the switching devices are high. In order to reduce the losses, many soft switching inverters have been designed. However, these inverters have such disadvantages as high device voltage stress, large dc link voltage ripple, discrete pulse modulation, and complex control schemes. This paper introduces a novel resonant pole inverter, which is unique to a BDCM drive system, and is easy to implement. The inverter possesses the advantages of low switching power loss, low inductor power loss, low device voltage stress, and simple control scheme. The operation principle of the inverter is analyzed. Simulation and experimental results are proposed to verify the theoretical analysis.

Index Terms—Brushless dc motor (BDCM), resonant pole inverter, soft switching, zero-current-switching (ZCS), zero-voltage switching (ZVS).

I. INTRODUCTION

The brushless dc motor (BDCM) has been widely used in industrial applications because of its low inertia, fast response, high power density, high reliability, and maintenance-free reputation. It exhibits the operating characteristics of a conventional commutated dc permanent magnet motor but eliminates the mechanical commutators and brushes. Hence, many problems associated with brushes are eliminated, such as radio-frequency interference and sparking which is the potential source of ignition in inflammable atmosphere. It is usually supplied by a hard-switching pulse width modulation (PWM) inverter, which normally has relative low efficiency since the power losses across the switching devices are high. The high $dV/dt$ and $di/dt$ will result in severe electromagnetic interference (EMI) and severe problems with the reverse recovery of the freewheeling diodes, especially in high switching frequency. As the switching frequency of the hard switching is not very high when the switching frequency is within audio spectrum, it may produce severe acoustic noise. Furthermore, there is “turning off current spike” for inductive load or “turning on voltage spike” for capacitive load with a hard switching inverter, which can produce excessive localized hot spots to damage power semiconductor switches. In order to solve these problems, many soft switching inverters have been designed.

Fig. 1. Resonant pole inverter.

Soft switching operation of the power inverter has attracted much attention in the recent decades. In electric motor drive applications, soft-switching inverters are usually classified into three categories, namely, resonant pole inverter, resonant dc link inverter, and resonant ac link inverter [1]. Resonant ac link inverter is not suitable to BDCM drivers. Resonant dc link inverter [2], [3] has disadvantages such as high voltage stress of the switches, high dc link voltage ripple, and large resonant inductor power losses. It is with discrete pulse modulation (DPM) control that it is hard to achieve real PWM control and will result in sub-harmonics. Several quasiparallel resonant dc link inverters were designed to solve these problems, but these inverters require an additional main conduction path switch, which will increase the conduction power losses of the inverter [4], [5]. Other problems with the resonant dc link are such that whichever phase is needed to commutate, the dc link voltage is reduced to zero temporarily, which will affect the operation of other phases.

The structure of the resonant pole inverter [6]–[11] is shown in Fig. 1. Each resonant pole comprises a resonant inductor and a pair of resonant capacitors at each phase leg. These capacitors are directly connected in parallel to the main inverter switches in order to achieve zero-voltage switching (ZVS) condition. In contrast to the resonant dc link inverter, the dc link voltage remains unaffected during the resonant transitions. The resonant transitions occur separately at each resonant pole when the corresponding main inverter switch needs switching. Therefore, the main switches in the inverter phase legs can switch independently from each other and choose the commutation instant freely. Moreover, there is no additional main conduction path switch. Thus, the normal operation of the resonant pole inverter is entirely the same as that of the conventional hard switching inverter.

The auxiliary resonant commutated pole (ARCP) inverter [6] and the ordinary resonant snubber inverter [7] provide a ZVS condition without increasing the device voltage and current stress. These inverters are able to achieve real PWM control. However, they require a stiff dc link capacitor bank that is center-taped to accomplish commutation. The center voltage of dc link is susceptible to drift that may affect the operation of the resonant circuit. The resonant transition inverter [8], [9]
only uses one auxiliary switch, whose switching frequency is much higher than that applying to the main switches. Thus, it will limit the switching frequency of the inverter. Furthermore, the three resonant branches of the inverter work together and will be affected by each other. A Y-configured resonant snubber inverter [10] has a floating neutral voltage that may cause overvoltage failure of the auxiliary switches. A delta (Δ) configured resonant snubber inverter [11] avoids the floating neutral voltage and is suitable for multiphase operation without circulating currents between the off-state branch and its corresponding output load. However, the inverter requires three inductors and six auxiliary switches.

Moreover, resonant pole inverters have been applied in induction motor drive applications. They are usually required to change two phase switch states at the same time to obtain a resonant path. It is not suitable for a BDCM drive system as only one switch is needed to change the switching state in a PWM cycle. The switching frequency of three upper switches (S1, S2, S3) is different than that of three lower switches (S4, S5, S6) in an inverter for a BDCM drive system. All the switches have the same switching frequency in a conventional inverter for induction motor applications. Therefore, it is necessary to develop a novel topology of soft-switching inverter and special control circuit for BDCM drive systems. This paper proposes a special designed resonant pole inverter that is suitable for BDCM drive systems and is easy to apply in industry. In addition, this inverter possesses the following advantages: low switching power losses, low inductor power losses, low switching noise, and simple control scheme.

II. TOPOLOGY OF THE RESONANT POLE INVERTER

A typical controller for BDCM drive system [12] is shown in Fig. 2. The rotor position can be sensed by a Hall-effect sensor or a slotted optical disk, providing three square-waves with phase shift in 120°. These signals are decoded by a combinatorial logic to provide the firing signals for 120° conduction on each of the three phases. The basic forward control loop is voltage control implemented by PWM (voltage reference signal compare with triangular wave or generated by microprocessor). The PWM is applied only to the lower switches. This not only reduces the current ripple but also avoids the need for wide bandwidth in the level-shifting circuit that feeds the upper switches. The three upper switches work under commutation frequency (typical several hundred Hz) and the three lower switches work under PWM frequency (typical tens of kHz). So it is not important that the three upper switches work under soft switching condition. The switching power losses can be reduced significantly and the auxiliary circuit would be simpler if only three lower switches work under soft switching condition. Thus a special design resonant pole inverter for BDCM drive system is introduced for this purpose. The structure of the proposed inverter is shown in Fig. 3.

The system contains a diode bridge rectifier, a resonant circuit, a conventional three-phase inverter, and control circuitry. The resonant circuit consists of three auxiliary switches (S1, S2, S3), one transformer with turn ratio 1 : n, and two diodes D1p, D1n. Diode D1p is connected in parallel to the primary winding of the transformer, diode D1n is serially connected with secondary winding across the dc link. There is one snubber capacitor connected in parallel to each lower switch of phase leg. The snubber capacitor resonates with the primary winding of the transformer. The emitters of the three auxiliary switches are connected together. Thus, the gate drive of these auxiliary switches can use one common output dc power supply.

In a whole PWM cycle, the three lower switches (S4, S5, S6) can be turned off in the ZVS condition as the snubber capacitors (C1a, C1b, C1c) can slow down the voltage rise rate. The turn-off power losses can be reduced and the turn-off voltage spike is eliminated. Before turning on the lower switch, the corresponding auxiliary switch (S1, S2, S3) must be turned on ahead. The snubber capacitor is then discharged and the lower switches get the ZVS condition. During phase current commutation, the switching state is changed from one lower switch to another, e.g., turn off S0 and turn on S2, S6 can be turned off directly in the ZVS condition, turning on auxiliary switch S1 to discharge the snubber capacitor C1c, then switch S2 can get the ZVS condition. During phase current commutation, if the switching state is changed from one upper switch to another upper switch, the operation is the same as that of the hard switching inverter, as the switching power losses of the upper switches is much smaller than that of the lower switches.

III. OPERATION PRINCIPLE

For convenience sake, to describe the operation principle, we investigate the period of time when the switch S1 is always turned on, when switch S0 works under PWM frequency, and when other main inverter switches are turned off. Since the resonant transition is very short, it can be assumed that the load current is constant. The equivalent circuit is shown in Fig. 4. Where IZ is the dc link voltage, I1r is the transformer primary winding current, uDS is the voltage drop across the switch S1 (i.e., snubber capacitor C1a voltage), and I0 is the load current. The waveforms of the switches (S1, S2) gate signal, PWM signal, main switch S6 voltage drop (uS6), and the transformer primary winding current (i1r) are illustrated in Fig. 5, and details will be explained as follows. Accordingly, the instant t0 < t < t6, the operation of one switching cycle can be divided into seven modes.

Mode 0 [Shown in Fig. 6(a)] 0 < t < t0. After the lower switch S0 is turned off, load current flows through the upper freewheeling diode D3, the voltage drop uS6 (i.e., snubber capacitor C1a voltage) across the switch S6 is the same as that
Appendix I Novel Resonant Pole Inverter for Brushless DC Motor Drive System

Fig. 3. Structure of the resonant pole inverter for BDCM drive system.

Fig. 4. Equivalent circuit.

Fig. 5. Key waveforms of the equivalent circuit.

of the dc link voltage. The auxiliary resonant circuit does not operate.

Mode 1 [Shown in Fig. 6(b)] \( t_0 < t < t_1 \): If the switch \( S_0 \) is turned directly, the capacitor discharge current will also flow through switch \( S_0 \); thus, switch \( S_0 \) may face the risk of second breakdown. The energy stored in the snubber capacitor must be discharged ahead of time. Thus, auxiliary switch \( S_1 \) is turned on (ZCS turn on as the \( i_{Lr} \) cannot change suddenly due to the transformer inductance). As the transformer primary winding current \( i_{Lr} \) begins to increase, the current flowing through the freewheeling diode \( D_3 \) decays. The secondary winding current \( i_{Ls} \) also begins to conduct through diode \( D_3 \) to the dc link. Both of the terminal voltages of the primary and secondary windings are equal to the dc link voltage \( V_S \). By neglecting the resistances of the windings and using the transformer equivalent circuit (referred to the primary side) [13], we get

\[
V_S = L_{11} \frac{di_{Lr}(t)}{dt} + a^2 L_{12} \frac{di_{Ls}(t)/a}{dt} + a V_S \tag{1}
\]

where \( L_{11} \) and \( L_{12} \) are the primary and secondary winding leakage inductance, respectively, \( a \) is the transformer turn ratio \( 1 : n \). The transformer has a high magnetizing inductance. We can assume that \( i_{Lrs} = i_{Lr}/n \), and rewrite (1) as

\[
\frac{di_{Lr}}{dt} = \frac{(n-1)V_S}{n (L_{11} + \frac{1}{n^2} L_{12})} = \frac{(n-1)V_S}{n L_r} \tag{2}
\]

where \( L_r \) is the equivalent inductance of the transformer \( L_{11} + L_{12}/n^2 \). The transformer primary winding current \( i_{Lr} \) increases linearly and the mode is ended when \( i_{Lr} = I_0 \). The interval of this mode can be determined by

\[
\Delta t_1 = t_1 - t_0 = \frac{n I_1 I_0}{(n-1)V_S} \tag{3}
\]
Appendix I Novel Resonant Pole Inverter for Brushless DC Motor Drive System

Mode 2 [Shown in Fig. 6(c)] \( t_1 < t < t_2 \): At \( t = t_1 \), all load current flows through the transformer primary winding, the freewheeling diode \( D_2 \) is turned off in the ZCS condition. The freewheeling diode reverse recovery problems are reduced greatly. The snubber capacitor \( C_{sb} \) resonates with the transformer, and the voltage drop \( u_{sb} \) across switch \( S_b \) decays. By redefining the initial time, the transformer current \( i_L_r, t > t_1 \) and capacitor voltage \( u_{sb} \) obey the equation

\[
\begin{align*}
\begin{cases}
\dot{u}_{sb}(t) = L_{r1} \frac{di_L(t)}{dt} + \frac{n^2}{L_{r2}} \frac{d[i_L r(t)]}{dt} + aV_S \\
-C_r \frac{du_{sb}(t)}{dt} = i_L(t) - i_0
\end{cases}
\end{align*}
\]

where \( C_r \) is the capacitance of snubber capacitor \( C_{sb} \). The transformer current \( i_L r(t) \) is limited by \( \cos(\omega r t) \) as in mode 1, with initial conditions \( u_{sb}(0) = V_S, i_L(t = 0) = i_0 \), then the solution of (4) is

\[
\begin{align*}
\begin{cases}
u_{sb}(t) = \frac{(n-1)V_S}{n} \cos(\omega r t) + \frac{V_S}{n} \\
i_L r(t) = i_0 + \frac{(n-1)V_S}{n} \sqrt{\frac{C_r}{L_r}} \sin(\omega r t)
\end{cases}
\end{align*}
\]

where \( \omega r = \sqrt{(1/(L_r C_r))} \). Let \( u_{Cl}(t) = 0 \), which gets the duration of the resonance

\[
\Delta t_2 = t_2 - t_1 = \frac{1}{\omega r} \arccos \left( -\frac{1}{n-1} \right).
\]

The interval is independent from the load current. At \( t = t_2 \), the corresponding transformer primary current \( i_L r(t) \) is

\[
i_L r(t_2) = i_0 + V_S \sqrt{\frac{n-2}{n-1} C_r}.
\]

The peak value of the transformer primary current can also be determined

\[
i_L r_{\text{max}} = i_0 + \frac{(n-1)V_S}{n} \sqrt{\frac{C_r}{L_r}}.
\]

Mode 3 [Shown in Fig. 6(d)] \( t_2 < t < t_1 \): When the capacitor voltage \( u_{sb} \) reaches zero at \( t = t_2 \), the freewheeling diode \( D_2 \) begins to conduct. The current flowing through auxiliary switch \( S_b \) is the load current \( i_0 \). The sum current flowing through switch \( S_b \) and diode \( D_2 \) is the transformer primary
winding current $i_{Lr}$. The transformer primary voltage is zero and the secondary voltage is $V_S$. By redefining the initial time, we obtain

$$0 = L_{d1} \frac{di_{Lr}(t)}{dt} + a^2 L_{d2} \frac{d[i_{Lr}(t)/a]}{dt} + aV_S. \quad (9)$$

Since the transformer current $i_{Lr} = i_{Lr}/n$ as in Mode 1, we deduce (9)

$$\frac{di_{Lr}}{dt} = -\frac{V_S}{n L_{d1}}, \quad (10)$$

The transformer primary current $i_{Lr}$ decays linearly, the mode is ended while $i_{Lr} = I_0$. With the initial condition given by (7), the interval of this mode can be determined by

$$\Delta t_3 = t_3 - t_2 = \sqrt{n(n-2)L_{d1}C_r}. \quad (11)$$

The interval is also independent from the load current. During this mode, switch $S_3$ is turned on in ZVS condition.

**Mode 4** [Shown in Fig. 6(e)] $t_3 < t < t_4$: The transformer primary winding current $i_{Lr}$ decays linearly from load current $I_0$ to zero. Partial load current flows through the main switch $S_4$. The sum current flowing through switch $S_4$ and $S_2$ is equal to the load current $I_0$. The sum current flowing through switch $S_4$ and diode $D_{ip}$ is the transformer primary winding current $i_{Lr}$. By redefining the initial time, the transformer winding current obeys (10) with the initial condition $i_{Lr}(0) = I_0$. The interval of this mode is

$$\Delta t_4 = t_4 - t_3 = \frac{nL_{d1}I_0}{V_S}, \quad (12)$$

The auxiliary switch $S_4$ can be turned off in ZVS condition. In this case, after switch $S_4$ is turned off, the transformer primary winding current $i_{Lr}$ flows through the freewheeling diode $D_{ip}$. The auxiliary switch $S_4$ can be also turned off in ZVS and zero-current-switching (ZCS) condition after $i_{Lr}$ decays to zero.

**Mode 5** $t_4 < t < t_5$: The transformer primary winding current decays to zero and the resonant circuit idles. This state is likely the same operational state as the conventional hard switching inverter. The load current flows from dc link through the two switches $S_1$ and $S_5$, and the motor.

**Mode 6** [Shown in Fig. 6(f)] $t_5 < t < t_6$: The main inverter switch $S_6$ is turned directly off and the resonant circuit does not work. The snubber capacitor $C_{SN}$ can slow down the rise rate of $v_{SG}$, while the main switch $S_6$ operates in ZVS condition. The duration of the mode is

$$\Delta t_7 = t_7 - t_6 = \frac{C_r V_S}{I_0}. \quad (13)$$

The next period starts from mode 0 again, but the load current flows through freewheeling diode $D_1$. During phase current commutation, the switching state is changed from one lower switch to another (e.g., turn off $S_5$ and turn on $S_3$), $S_6$ can be turned off directly in ZVS condition (similar to Mode 6), turning on auxiliary switch $S_5$ to discharge the snubber capacitor $C_{SN}$, then switch $S_6$ can get ZVS condition (similar to Modes 1–4).

### IV. Design Considerations

It is assumed that the inductance of BDCM is much higher than the transformer leakage inductance. From the previous analysis, the design considerations can be summarized as follows:

1. determine the value of snubber capacitor $C_r$, and the parameter of transformer;
2. select the main and auxiliary switches;
3. design the control circuitry for the main and auxiliary switches.

The turn ratio $(1:n)$ of the transformer can be determined ahead. From (6) $n$ must satisfy

$$n > 2. \quad (14)$$

On the other hand, from (12) the transformer primary winding current $i_{Lr}$ will take a long time to decay to zero if $n$ is too big. So $n$ must be a moderate number. The equivalent inductance of the transformer $L_r = L_{d1} + L_{d2}/n^2$ is inversely proportional to the rise rate of the switch current when turn on the auxiliary switches. It means that the equivalent inductance $L_r$ should be big enough to limit the rising rate of the switch current to work in ZCS condition. The selection of $L_r$ can be referenced from the rule depicted in [14]

$$L_r \approx 4t_{on}V_S/I_{0_{max}} \quad (15)$$

where $t_{on}$ is the turn on time of an IGBT, $I_{0_{max}}$ is the maximum load current. The snubber capacitance $C_r$ is inversely proportional to the rise rate of the switch voltage drop when turning off the lower main inverter switches. It means that the capacitance is as high as possible to limit the rising rate of the voltage to work in ZVS condition. The selection of the snubber capacitor can be determined as

$$C_r \approx 4t_{off}I_{0_{max}}/V_S \quad (16)$$

where $t_{off}$ is the turn off time of an IGBT. However, as the capacitance increases, more energy is stored on it. This energy should be discharged when the lower main inverter switches are turned on. With high capacitance, the peak value of the transformer current will be also high. The peak value of $i_{Lr}$ should be restricted to twice that of the maximum load current. From (8), we obtain

$$\sqrt{C_r/L_r} \leq nI_{0_{max}}/(n-1)V_S. \quad (17)$$

Three lower switches of the inverter (i.e., $S_1$, $S_6$, $S_2$) are turned on during Mode 3 (i.e., lag rising edge of PWM at the time range $\Delta t_1 + \Delta t_2 \sim \Delta t_1 + \Delta t_2 + \Delta t_3$). In order to turn on these switches at a fixed time (say $\Delta t_1$) lagging rising edge of PWM under various load current for control convenient, the condition should be satisfied

$$(\Delta t_1 + \Delta t_2 + \Delta t_3)|_{I_{0}=0} > (\Delta t_1 + \Delta t_2)|_{I_{0}=I_{0_{max}}} + t_{off}. \quad (18)$$
Appendix I Novel Resonant Pole Inverter for Brushless DC Motor Drive System

Substitute (3), (6), and (11) into (18)

\[ \sqrt{n(n-2)I_s C_r} > \frac{n I_{sw} I_{r,\text{Ilmax}}}{(n-1)V_S} + t_{dt}. \]  

(19)

The whole switching transition time is expressed as

\[ T_w = \Delta t_1 + \Delta t_2 + \Delta t_3 + \Delta t_4 = \frac{n I_{sw} I_s}{(n-1)V_S} + \sqrt{L_s C_r} \times \left[ \arccos \left( -\frac{1}{n-1} \right) + \sqrt{n(n-2)} \right]. \]  

(20)

For high switching frequencies, \( T_w \) should be as short as possible. Select the equivalent inductance \( L_s \) and snubber capacitance \( C_r \) to satisfy (14)–(19), and \( L_s \) and \( C_r \) should be as small as possible.

As the transformer operates at high frequency (20 kHz), the magnetic core material can be ferrite. The design of the transformer needs the parameters of form factor, frequency, the input/output voltage, input/output maximum current, and ambient temperature. From Fig. 2, the transformer current can be simplified as triangle waveforms, then the form factor can be determined as \( 2/\sqrt{3} \). Ambient temperature is dependent on the application field. Other parameters can be obtained from the previous section. The transformer only carries current during the transition of turning on a switch in one cycle, so the winding can be a smaller diameter one.

Main switches \( S_{1,n-1} \) work under ZVS condition, therefore the voltage stress is equal to the dc link voltage \( V_S \). The device current rate can be load current. Auxiliary switches \( S_{2,n-1} \) work under the ZCS or ZVS condition, while the voltage stress is also equal to the dc link voltage \( V_S \). The peak current flowing through them is limited to double maximum load current. As the auxiliary switches \( S_{2,n} \) carry the peak current only during switch transitions, they can be rated with a lower continuous current rating. The additional cost will not be too much.

The gate signal generator circuit is shown in Fig. 7. The rotor position signal decode module produces the typical gate signal of the main switches. The inputs of the module are rotor position signals, rotating direction of the motor, which "enable" the signal and PWM pulse-train. The rotor position signals are three square-waves with a phase shift in 120°. The "enable" signal is used to disable all outputs in case of emergency (e.g., over current, over voltage, and over heat). The PWM signal is the output of comparator, comparing the reference voltage signal with the triangular wave. The reference voltage signal is the output of the speed controller. The speed controller is a processor (single chip computer or digital signal processor) and the PWM signal can be produced by software. The outputs \((G_1, G_2)\) of the module are the gate signals applying to the main inverter switches. The outputs \(G_{1,2,3,5,7}\) are the required gate signals for three upper main inverter switches.

The gate signals of three lower main inverter switches and auxiliary switches can be deduced from the outputs \(G_{4,0,2}\) as shown in Fig. 8. The trailing edge of the gate signals for three lower main inverter switches \(G_{4,0,2}\) is the same as that of \(G_{4,0}\), the leading edge of \(G_{4,0,2}\) lags \(G_{4,0}\) for a short time \(\Delta T_1\). The gate signals for auxiliary switches \(G_{s,\text{a,b,c}}\) have a fixed pulse width (\(\Delta T_2\)) with the leading edge, the same as that of \(G_{4,0,2}\). In Fig. 7, the gate signals \(G_{s,\text{a,b,c}}\) are the outputs of monostable flip-flops \(M_{s,4,6,6}\) with the inputs \(G_{s,4,6}\). The three monostable flip-flops \(M_{s,4,6,6}\) have the same pulse width \(\Delta T_2\). The gate signals \(G_{s,4,6,6}\) are combined by the negative outputs of monostable flip-flops \(M_{s,3,3,5}\) and \(G_{s,4,6,2}\). The combining logical controller can be implemented by a D flip-flop with "preset"
and “clear” terminals. The three monostable flip-flops \( M_{2,4,6} \) have the same pulse width \( \Delta T_1 \).

Determination of the pulse widths of \( \Delta T_1 \) and \( \Delta T_2 \) is referenced from theoretical analysis in Section III. In order to get the ZVS condition of the main inverter switches under various load currents, the lag time \( \Delta T_1 \) should satisfy

\[
(\Delta t_1 + \Delta t_2)|_{t_0=h_{\text{max}}} < \Delta T_1 < (\Delta t_1 + \Delta t_2 + \Delta t_3)|_{t_0=0} - t_{\text{off}}.
\]  

(21)

In order to get a soft switching condition of the auxiliary switches, pulse width \( \Delta T_2 \) need only satisfy

\[
\Delta T_2 > (\Delta t_1 + \Delta t_2 + \Delta t_3)|_{t_0=h_{\text{max}}}. \tag{22}
\]

V. SIMULATION AND EXPERIMENTAL RESULTS

The proposed topology is verified by software simulation PSpice. The dc link voltage \( V_S \) is 300 V, and the maximum load current is 25 A. The parameters of the resonant circuit were determined from (14)–(20). The transformer turn ratio is 1:4, and the leakage inductances of the primary secondary windings are 6 \( \mu \)H and 24 \( \mu \)H, respectively. Therefore, the equivalent transformer inductance \( L_{eq} \) is 7.5 \( \mu \)H. The resonant capacitance \( C_r \) is 0.047 \( \mu \)F. Then, \( \Delta t_1 + \Delta t_2 \) and \( \Delta t_1 + \Delta t_2 + \Delta t_3 \) can be determined under various load current \( I_L \) as shown in Fig. 9, considering the turn off time of a switch lagging time \( \Delta T_1 \) and pulse width \( \Delta T_2 \) are set to 2.1 \( \mu \)s and 5 \( \mu \)s, respectively. The frequency of the PWM is 20 kHz. Waveforms of transformer primary winding current \( i_{f2} \), switch \( S_0 \) voltage drop \( u_{S0} \), PWM main switch \( S_0 \), and auxiliary switch \( S_a \) under low and high load current is shown in Fig. 10. The figure shows that the inverter worked well under various load currents.

In order to verify the theoretical analysis and simulation results, the inverter was tested by experiment. The test conditions are

1) dc link voltage: 300 V;
2) power of the BDCM: 3.3 hp;
3) rated phase current: 10.8 A;
4) switching frequency: 20 kHz.

Select 50 A/1200 V BSM 35 GB 120 DN2 dual IGBT module as main inverter switches, and 30 A/600 V IMBH30D-060 IGBT as auxiliary switches. With datasheets of these switches
and (14)–(20), the value of inductance and capacitance can be determined. Three polyester capacitors of 47 nF/630 V were adopted as snubber capacitor \(C_s\) for three lower switches of the inverter. A high magnetizing inductance transformer with the turn ratio 1:4 was employed in the experiment. 52 turns wires with size AWG 15 are selected as primary winding, and 208 turns wires with size AWG 20 are selected as secondary winding. The equivalent inductance is about 7 \(\mu \)H. The switching frequency is 20 kHz. The rotor position signal decode module is implemented by a 20 leads gate array logic (GAL) IC GAL16V8. The monostable flip-flop is set up by IC 74LS123, variable resistor, and capacitor. With (21) and (22), lag time \(\Delta T_1\) and pulse width \(\Delta T_2\) are determined to be 2.5 \(\mu s\) and 5 \(\mu s\), respectively.

The system is tested in light load and full load currents. The voltage waveforms across the main inverter switch \(u_{SG}\) and its gate signal in low and high load currents are shown in Fig. 11(a) and (b), respectively. All the voltage signals measured by a differential probe with a gain of 20. For voltage waveform, 5.00 V/div=100 V/div. The waveforms of \(u_{SG}\) and its current \(i_{SG}\) are shown in Fig. 11(c), and \(di/dt\) and \(di/dt\) are reduced significantly. The waveforms of \(u_{SG}\) and transformer primary winding current \(i_{TA}\) are shown in Fig. 11(d). The phase current is shown in Fig. 11(e). It can be seen that the resonant pole inverter works well under various load currents, and there is little overlap between the voltage and current waveforms during the switching under soft switching condition, therefore, the switching power losses is low. The efficiency of hard switching and soft switching under rated speed and various load torque (p.u.) is shown in Fig. 12. The efficiency improves with the soft switching inverter. Therefore, the design of the system is successful.

VI. CONCLUSION

A specially designed resonant pole inverter dedicated for BDCM drive system is presented. Its principle of operation
is explained. Selection of the required transformer parameter and snubber capacitors is given. The main inverter switches and auxiliary switches gate signal generation method is also illustrated. Determination of the corresponding pulse width is given. The inverter operation is also verified by the results of the simulation and experiment. The following observations were made:

1. All the high switching frequency switches (three lower main switches and auxiliary switches) work under soft-switching condition.
2. Voltage stress on all the switches is so low that it is not greater than the dc supply voltage.
3. Very simple auxiliary switches control scheme.
4. Freewheeling diodes turned off under zero current condition greatly reduced the reverse recovery problem of the diodes.
5. The normal operation of the inverter is entirely the same as that of the hard switching inverter.
6. dvo/dt and ddi/dt are reduced significantly, so that EMI is reduced.
7. As the switching frequency is as high as 20 kHz, the switching acoustic noise can be eliminated.

REFERENCES

Appendix J Transformer Based Resonant DC Link Inverter for Brushless DC Motor Drive System

Transformer Based Resonant DC Link Inverter for Brushless DC Motor Drive System

Zhi Yang Pan, Student Member, IEEE, and Fang Lin Luo, Senior Member, IEEE

Abstract—Brushless dc motor has been widely used in industrial applications because of its low inertia, fast response, high power density, high reliability and maintenance-free. It is usually supplied by a hard-switching pulse-width modulation inverter, which is normally relative low efficiency since the switching power loss across the switching devices are high. In order to reduce the losses, a lot of soft switching inverters have been designed. Unfortunately, there are many drawbacks, such as high device voltage stress, large dc link voltage ripple, complex control scheme and so on. This paper introduces a soft-switching inverter based on transformer which can generate dc link voltage notches during chopping switches commutation to guarantee all switches working in zero voltage switching condition. The operation principle and control scheme of the inverter are analyzed. Simulation and experimental results are proposed to verify the theoretical analysis.

Index Terms—Brushless dc motor (BDCM), resonant dc link inverter, soft switching, zero-current-switching (ZCS), zero-voltage switching (ZVS).

I. INTRODUCTION

BRUSHLESS dc motor (BDCM) has been widely used in industrial applications because of its low inertia, fast response, high power density, high reliability and maintenance-free. It exhibits the operating characteristics of a conventional commutated dc permanent magnet motor but eliminates the mechanical commutators and brushes. Hence, many problems associated with brushes are eliminated. These problems are radio-frequency interference and sparking which is the potential source of ignition in inflammable atmosphere. It is usually supplied by a hard-switching PWM inverter, which is normally relative low efficiency since the switching power losses across the switching devices are high. In order to reduce the losses, many soft switching inverters have been designed.

Soft switching operation of power inverter has attracted much attention in recent decades. In electric motor drive applications, soft-switching inverters are usually classified into three categories, namely resonant pole inverters, resonant dc link inverters, and resonant ac link inverters [1]–[3]. Resonant pole inverter has the disadvantage containing a considerably large number of additional components, in comparison to other hard- and soft-switching inverter topologies. Resonant ac link inverter is not suitable to BDCM drivers.

In medium power applications, the resonant dc link concept [4] offered a first practical and reliable way to reduce commutation losses and to eliminate individual snubbers. Thus, it allows high operating frequency and improves efficiency. The six main switches of the inverter is quite simple to get the zero voltage switching (ZVS) condition only by adding one auxiliary switch. However, the inverter has the drawbacks of high voltage stress of the switches, high dc link voltage ripple. It is with discrete pulse modulation (DPM) control that is hard to achieve real PWM control and will result in sub-harmonics. Furthermore, the inductor power losses of the inverter are also considerable as the inductor always conducts. To overcome the drawback of high voltage stress across the switches, actively clamped resonant dc link inverter was introduced [5]–[8]. The control scheme of the inverter is too complex and the output also contains sub-harmonic. In addition, these inverters still did not overcome the drawback of high inductor power losses.

In order to generate voltage notches of the dc link at controllable instants and reduce the power losses of the inductor, several quasi-parallel resonant schemes were proposed [9]–[11]. As a dwell time is generally required after every notch, severe interferences occur, mainly in multiphase inverters, appreciably worsening the modulation quality. A novel dc-rail parallel resonant zero voltage transition (ZVT) voltage source inverter [12] is introduced, it overcome many drawbacks mentioned above. However, it requires a stiff dc link capacitor bank that is centered taped to accomplish commutation. The center voltage of dc link is susceptible to drift that may affect the operation of the resonant circuit. In addition it requires two ZVT per PWM cycle, it would worsen the output voltage and limit the switch frequency of the inverter.

On the other hand, the majority of soft-switching inverters proposed in the recent years have been aimed at the induction motor drive applications. So it is necessary to research on the novel topology of soft-switching inverter and special control circuit for BDCM drive systems. This paper proposed a resonant dc link inverter based on transformer for BDCM drive system to solve the problems mentioned former. The inverter possesses the advantages of low switching power loss, low inductor power loss, low dc link voltage ripple, small device voltage stress and simple control scheme. The structure of the soft-switching inverter is shown in Fig. 1. The system contains a diode bridge rectifier, a resonant circuit, a conventional three-phase inverter and control circuit. The resonant circuit consists of three auxiliary switches \( S_1, S_2, S_3 \) and corresponding built in freewheeling diode \( D_L, D_m, D_h \), one transformer with turn ratio 1:1 and one resonant capacitor. All auxiliary switches work under ZVS or zero current switching (ZCS) condition. It generates voltage notches of the dc link to guarantee the main switches \( S_1 \) of the inverter operating in ZVS condition.

0885-8993/05 $20.00 © 2005 IEEE
Appendix J Transformer Based Resonant DC Link Inverter for Brushless DC Motor Drive System

II. RESONANT CIRCUIT

The resonant circuit consists of three auxiliary switches, one transformer and one resonant capacitor. The auxiliary switches are controlled at certain instant to obtain the resonance between transformer and capacitor. Thus, the dc link voltage reaches zero temporarily (voltage notch) and the main switches of the inverter get ZVS condition for commutation. Since the resonant process is very short, the load current can be assumed constant. The equivalent circuit of the inverter is shown in Fig. 2. Where \( V_S \) is the dc power supply voltage, \( I_D \) is the load current. The corresponding waveforms of the auxiliary switches gate signal, PWM signal, resonant capacitor voltage \( u_{C_R} \) (i.e., dc link voltage), the transformer primary winding current \( i_{LP} \) and current of switch \( S_L(t_{SL}) \) are illustrated in Fig. 3. The dc link voltage is reduced to zero and then rises to supply voltage again is called one zero voltage transition (ZVT) process or one dc link voltage notch. The operation of the ZVT process in one PWM cycle can be divided into eight modes.

Mode 0 [Shown in Fig. 4(a)] \( t_0 < t < t_0 \): Its operation is the same as conventional inverter. Current flows from dc power supply through \( S_L \) to the load. The voltage across resonant capacitor \( C_R(u_{C_R}) \) is equal to the supply voltage \( (V_S) \). The auxiliary switches \( S_a \) and \( S_b \) are turned off.
Appendix J Transformer Based Resonant DC Link Inverter for Brushless DC Motor Drive System

Fig. 4. Operation mode of the resonant dc link inverter: (a) Mode 0, (b) Mode 1, (c) Mode 2, (d) Mode 3, (e) Mode 4, (f) Mode 5, (g) Mode 6, and (h) Mode 7.

through diode $D_4$ to dc link. The terminal voltages of primary and secondary windings of the transformer are dc link voltage $u_{C_r}$ and supply voltage $V_S$ respectively. Capacitor $C_r$ resonates with transformer, the dc link voltage $u_{C_r}$ is decreased. Neglecting the resistances of windings, using the transformer equivalent circuit (referred to the primary side) [13], the transformer current $i_{L_T}$, $i_{L_s}$, and dc link voltage $u_{C_r}$ obey the equation

$$
\begin{align*}
    u_{C_r}(t) &= L_{L_T} \frac{di_{L_T}(t)}{dt} + a^2 L_{L_s} \frac{di_{L_s}(t)}{dt} + a V_S \\
    i_{L_T}(t) + I_0 + C_r \frac{du_{C_r}(t)}{dt} &= 0
\end{align*}
$$

(1)

where $L_{L_T}$ and $L_{L_s}$ are the primary and secondary winding leakage inductance, respectively, $n$ is the transformer turn ratio $1 : n$. The transformer has a high magnetizing inductance. We can assume that $i_{L_T} = i_{L_s}/n$, with initial condition $u_{C_r}(0) = V_S$, $i_{L_r}(0) = I_0$, solve the (1), get

$$
\begin{align*}
    u_{C_r}(t) &= \frac{(n-1) V_S}{n} \cos(\omega_r t) - I_0 \frac{V_S}{C_r} \sin(\omega_r t) + \frac{V_S}{n} \\
    i_{L_T}(t) &= I_0 \cos(\omega_r t) - I_0 + \frac{(n-1) V_S}{n} \frac{V_S}{C_r} \sin(\omega_r t)
\end{align*}
$$

(2)

where $L_r = L_{L_T} + L_{L_s}/n^2$ is the equivalent inductance of the transformer, $\omega_r = \sqrt{1/L_r C_r}$ is the natural angular resonance frequency. Rewrite the (2) get

$$
\begin{align*}
    u_{C_r}(t) &= K \cos(\omega_r t + \alpha) + \frac{V_S}{n} \\
    i_{L_T}(t) &= K \frac{V_S}{L_r} \sin(\omega_r t + \alpha) - I_0
\end{align*}
$$

(3)
where $K = \sqrt{((n-1)2I_s^2/\eta n^2) + (I_d^2L_r/C_r)}$, $\alpha = \arctan((nI_0/(n-1)V_S)/\sqrt{L_r/C_r})$, $n$ is a number which is slightly less than 2 (the selection of such a number will be explained later), $i_{Lr}$ will decay to zero faster than $u_{C_r}$. Let $t_{Lr}(t) = 0$, the duration of the resonance can be determined

$$\Delta t_1 = t_1 - t_0 = \frac{\pi - \alpha}{\omega_r}. \quad (4)$$

When $i_{Lr}$ is reduced to zero, auxiliary switch $S_a$ can be turned off with ZCS condition. At $t = t_1$, the corresponding dc link voltage $u_{C_r}$ is

$$u_{C_r}(t_1) = \frac{2-n}{n}V_S. \quad (5)$$

Mode 2 [Shown in Fig. 4(c)] $t_1 < t < t_2$: When the transformer current is reduced to zero, the resonant capacitor is discharged through load from initial condition as (5). The interval of this mode can be determined by

$$\Delta t_2 = t_2 - t_1 = \frac{C_rV_S(2-n)}{nI_0}. \quad (6)$$

As it has mentioned that $n$ is a number which is slightly less than 2, the interval is normally very short.

Mode 3 [Shown in Fig. 4(d)] $t_2 < t < t_3$: The dc link voltage ($u_{C_r}$) is zero. The main switches of the inverter can now be turned on or turned off under ZCS condition during this mode. Load current flows through the freewheeling diode $D_r$.

Mode 4 [Shown in Fig. 4(e)] $t_3 < t < t_4$: As the main switches have turned on or turned off, auxiliary switch $S_a$ is turned on with ZCS (as the $i_{Lr}$ can change suddenly due to the transformer inductance) and the transformer secondary current $i_{Lr}$ starts to build up linearly. The transformer primary current $i_{Lr}$ also begins to conduct through diode $D_r$ to the load. The current in the freewheeling diode $D_r$ begins to fall linearly. The load current is slowly diverted from the freewheeling diodes to the resonant circuit. dc link voltage $u_{C_r}$ is still equal to zero before the transformer primary current is greater than load current. The terminal voltages of transformer primary and secondary windings are zero and dc power supply voltage $V_S$ respectively. Redefine the initial time, we obtain

$$0 = I_{L1} \frac{di_{Lr}(t)}{dt} + a^2I_{L2} \frac{di_{Lr}(t)}{dt} + aV_S. \quad (7)$$

Since the transformer current $i_{Lr}$ is $i_{Lr}/n$ as in mode 1, rewrite the (7) as

$$\frac{di_{Lr}}{dt} = -\frac{V_S}{nL_r}. \quad (8)$$

The transformer primary current $i_{Lr}$ is increased reverse linearly from zero, the mode is end when $i_{Lr} = -I_0$, the interval of this mode can be determined

$$\Delta t_4 = t_4 - t_3 = \frac{nL_rI_0}{V_S}. \quad (9)$$

At $t_4$, $i_{Lr}$ equals the negative load current $-I_0$ and the current through the diode $D$ becomes zero. Thus the freewheeling diode turns off under ZCS condition, the diode reverse recovery problems are reduced.

Mode 5 [Shown in Fig. 4(f)] $t_4 < t < t_5$: Absolute value of $i_{Lr}$ is increased continuously from $I_0$ and $u_{C_r}$ is increased from zero when the freewheeling diode $D_r$ is turned off. Redefine the initial time, we can get the same equation as (1). The initial condition is $u_{C_r}(0) = 0$, $i_{Lr}(0) = -I_0$, neglect the inductor resistance, solve the equation, we get

$$\begin{cases}
  u_{C_r}(t) = \frac{\sqrt{n}}{n}L_r\cos(\omega_r t) + \frac{V_S}{n} \\
  i_{Lr}(t) = -I_0 - \frac{\sqrt{n}}{n}L_r\sin(\omega_r t).
\end{cases} \quad (10)$$

When

$$\Delta t_5 = t_5 - t_4 = \frac{1}{\omega_r}\arccos(1-n). \quad (11)$$

The peak value of the transformer primary current can be also determined

$$i_{Lr-m} = -I_0 - \frac{V_S}{n}\sqrt{\frac{C_r}{L_r}} = I_0 + \frac{V_S}{n}\sqrt{\frac{C_r}{L_r}}. \quad (12)$$

Mode 6 [Shown in Fig. 4(g)] $t_5 < t < t_6$: Both the terminal voltages of primary and secondary windings are equal to supply voltage $V_S$ after auxiliary switch $S_a$ is turned on. Redefine the initial time, we obtain

$$V_S = L_{L1} \frac{di_{Lr}(t)}{dt} + a^2L_{L2} \frac{di_{Lr}(t)}{dt} + aV_S. \quad (14)$$

Since the transformer current $i_{Lr}$ as in mode 1, rewrite the (14) as

$$\frac{di_{Lr}}{dt} = \frac{(n-1)V_S}{nL_r}. \quad (15)$$

The transformer primary current $i_{Lr}$ decays linearly, the mode is end when $i_{Lr} = -I_0$ again. With initial condition (12), the interval of this mode can be determined

$$\Delta t_6 = t_6 - t_5 = \frac{\sqrt{n(2-n)L_rC_r}}{n-1}. \quad (16)$$

The interval is also independent from load current. As it has mentioned that $n$ is a number which is slightly less than 2, the interval is also very short.

Mode 7 [Shown in Fig. 4(h)] $t_6 < t < t_7$: The transformer primary winding current $i_{Lr}$ decays linearly from negative load current $-I_0$ to zero. Partial load current flows through the switch $S_a$. The sum current flowing through switch $S_a$ and transformer
Appendix J Transformer Based Resonant DC Link Inverter for Brushless DC Motor Drive System

is equal to the load current $I_L$. Redefine the initial time, the transformer winding current obeys the (15) with the initial condition $i_{tr}(0) = -i_0$. The interval of this mode is

$$\Delta t_t = t_f - t_0 = \frac{nL_rI_0}{(n-1)V_S}. \quad (17)$$

Then auxiliary switch $S_3$ can also be turned off with ZCS condition after $i_{tr}$ decays to zero (at any time after $t_f$).

III. DESIGN CONSIDERATION

It is assumed that the inductance of BDPCM is much higher than transformer leakage inductance. From the analysis presented previously, the design considerations can be summarized as follows.

1) Determine the value of resonant capacitor $C_r$, and the parameter of transformer.
2) Select of the main switches and auxiliary switches.
3) Design the gate signal for the auxiliary switches.

The turn ratio $(1:n)$ of the transformer can be determined ahead. From (11) $n$ must satisfy

$$n < 2. \quad (18)$$

On the other hand, from (5) and (6) it is expected that $n$ is as close as possible so that the duration of mode 2 would be not very long and $u_{tr}$ would be small enough at the end of model. Normally, $n$ can be selected at the range 1.7–1.9. The equivalent inductance of the transformer $L_r = L_{A1} + L_{ES}/n^2$ is inversely proportional to the rising rate of switch current when turn on the auxiliary switches. It means that the equivalent inductance $L_r$ should be big enough to limit the rising rate of the switch current to work in ZCS condition. The selection of $L_r$ can be referenced from the rule depicted in [14].

$$L_r \geq \frac{4t_{on}V_S}{I_{OMAX}} \quad (19)$$

where $t_{on}$ is the turn on time of switch $S_r$, $I_{OMAX}$ is the maximum load current. The resonant capacitance $C_r$ is inversely proportional to the rising rate of switch voltage drop when turn off the switch $S_r$. It means that the capacitance is as high as possible to limit the rising rate of the voltage to work in ZVS condition. The selection of the resonant capacitor can be determined as

$$C_r \geq \frac{4t_{off}I_{OMAX}}{V_S} \quad (20)$$

where $t_{off}$ is the turn off time of switch $S_r$. However, as the capacitance increases, more energy is stored on it, the peak value of transformer current will be also high. The peak value of $i_{tr}$ should be limited to twice peak load current. From (13) we obtain

$$\sqrt{\frac{C_r}{L_r}} \leq \frac{nI_{OMAX}}{V_S} \quad (21)$$

The dc link voltage rising transition time is expressed as

$$T_w = \Delta t_4 + \Delta t_5 = \frac{nL_rI_0}{V_S} + \sqrt{\frac{C_r}{L_r}} \arccos(1-n). \quad (22)$$

FIG. 5. $L_r$ and $C_r$ selection area: (a) Case 1: $B_3$ intersects $D_1$ first and (b) Case 2: $B_3$ intersects $B_1$ first.

For high switching frequency, $T_w$ should be as short as possible. Select the equivalent inductance $L_r$ and resonant capacitance $C_r$ to satisfy the Inequalities (18)–(21), $L_r$ and $C_r$ should be as small as possible. $L_r$ and $C_r$ selection area is illustrated in Fig. 5 to determine their values, the valid area is shadowed, where $B_1 - B_3$ is boundary which is defined according Inequalities (18)–(21)

$$B_1 : L_r = \frac{4t_{on}V_S}{I_{OMAX}} \quad (23)$$

$$B_2 : C_r = \frac{4t_{off}I_{OMAX}}{V_S} \quad (24)$$

$$B_3 : \sqrt{\frac{C_r}{L_r}} = \frac{nI_{OMAX}}{V_S} \quad (25)$$

If boundary $B_3$ intersects $B_3$ first as shown in Fig. 5(a), the value of $L_r$ and $C_r$ in the intersection of $B_3$ and $B_3$ (i.e., $A_1$) can be selected. Otherwise, the value of $L_r$ and $C_r$ in the intersection $A_2$ is selected as shown in Fig. 5(b).

Main switches $S_{1-4}$ work under ZVS condition, the voltage stress is equal to the dc power supply voltage $V_S$. The device current rate can be load current. Auxiliary switch $S_7$ works under ZVS condition, its voltage and current stress is the same as main switches. Auxiliary switches $S_{a,b}$ work under ZCS or ZVS condition, the voltage stress is also equal to the dc power supply voltage $V_S$. The peak current flowing through them is limited to double maximum load current. As the auxiliary switches $S_{a,b}$ carry the peak current only during switch transitions, they can be rated lower continuous current rating.
Appendix J Transformer Based Resonant DC Link Inverter for Brushless DC Motor Drive System

The design of gate signal for auxiliary switches can be referenced from Fig. 3. The trailing edge of the gate signal for auxiliary switch $S_L$ is the same as that of PWM, the leading edge is determined by the output of dc link voltage sensor. The gate signal for auxiliary switch $S_A$ is positive pulse with leading edge the same as PWM trailing edge, its width $\Delta T_a$ should be greater than $\Delta t_1$. From (4), $\Delta t_1$ is maximum when the load current is zero. So $\Delta T_a$ can be a fixed value determined by

$$\Delta T_a > \Delta t_1|_{max} = \frac{\pi}{\omega_L} = \pi \sqrt{L_c C_r}.$$ (26)

The gate signal for auxiliary switch $S_L$ is also a pulse with leading edge the same as that of PWM, its width $\Delta T_3$ should be longer than $t_2 - t_3$ (i.e., $\Delta t_2 + \Delta t_6 + \Delta t_1 + \Delta t_3$). $\Delta T_3$ can be determined from (9), (11), (16), and (17) that:

$$\Delta T_3 = \sum_{i=4}^{7} \Delta t_{i|_{max}}$$

$$= \left( \frac{\pi}{\omega_L} \right) \left( \frac{L_c}{L_S} \right) \left( \frac{C_r}{C_s} \right)$$

$$\times \left[ \cos \left( 1 - n \right) + \sqrt{\frac{n(2-n)}{n-1}} \right].$$ (27)

IV. CONTROL SCHEME

When the duty of PWM is 100%, i.e., full duty cycle, the main switches of the inverter work under the commutation frequency. When it is the instant to commutate the phase current of the BDCM, we control the auxiliary switches $S_A$, $S_B$, $S_L$, and resonant occurs between transformer $L_o$ and capacitor $C_r$. The dc link voltage reach zero temporarily, thus ZVS condition of the main switches is obtained. When the duty of PWM is less than 100%, the auxiliary switch $S_L$ works as chopper. The main switches of the inverter do not switch within a PWM cycle when the phase current does not commute. It has the benefit of reducing phase current drop during the PWM is off. The phase current is commutated during the dc link voltage becomes zero. There is only one dc link voltage notch per PWM cycle. It is very important especially for very low or very high duty of PWM. Otherwise the interval between two voltage notches is very short even overlapped which will limit the tuning range.

The commutation logical circuit of the system is shown in Fig. 6. It is similar to conventional BDCM commutation logical circuit except adding six D flip-flops to the output. Thus the gate signal of the main switches is controlled by the synchronous pulse CK that will be mentioned late and the commutator can be synchronized with auxiliary switches control circuit (shown in Fig. 7). The operation of the inverter can be divided into PWM operation and full duty cycle operation.

A. Full Duty Cycle Operation

When the duty of PWM is 100%, i.e., full duty cycle, the whole ZVT process (mode1 – mode7) occurs when the phase current commutation is on going. The monostable flip-flop $M_3$ will generate one narrow negative pulse. The width of the pulse

$$\Delta T_3 = \Delta t_1 + \Delta t_2 + T_c',$$ where $T_c'$ is a constant consider the turn on/off time of main switches. If $n$ is close 2, $\Delta T_2$ would be very short or $\pi C_r L_p$, would be small enough at the end of mode1, $\Delta T_3$ can be determined by

$$\Delta T_3 = \Delta t_{i|_{max}} + T_c = \pi \sqrt{L_c C_r} + T_c$$ (28)

where $T_c$ is a constant which is greater than $T_c'$. The data selector makes the output of monostable flip-flop $M_3$ active. The monostable flip-flop $M_3$ generates a positive pulse when the trailing edge of $M_3$ negative pulse is coming. The pulse is the gate signal for auxiliary switch $S_L$, and its width is $\Delta T_a$ which is determined by Inequality (26). The gate signal for switch $S_L$ is flopped to low at the same time. Then mode 1 begins and the dc link voltage is reduced to zero. Synchronous pulse CK is also generated by a monostable flip-flop $M_4$, the pulsewidth $\Delta T_a$ should be greater than maximum $\Delta t_1$ (i.e., $\pi \sqrt{L_c C_r}$). If the D flip-flops are rising edge active, then CK is connected to the negative output of the $M_4$, otherwise connected to the positive output. Thus the active edge of pulse CK is within mode3.
Appendix J Transformer Based Resonant DC Link Inverter for Brushless DC Motor Drive System

\[ \text{Fig. 8. Waveforms of } n_{dc}, i_{dc}, i_{dl}, i_{dl}, \text{ PWM, auxiliary switches gate signal under various load current: (a) under low load current } (I_L = 2.4) \text{ and (b) under high load current } (I_L = 8.4). \]

when the voltage of dc link is zero and the main switches of the inverter get ZVS condition. The monostable flip-flop M2 generates a positive pulse when the leading edge of M2 negative pulse is coming. The pulselength of M2 is \( \Delta T_2 \) that is determined by Inequality (27). Then mode 4-7 occurs, the dc link voltage is increased to that of supply again. The leading edge of the gate signal for switch \( S_L \) is determined by dc link voltage sensor signal. In a word in full cycle operation when the phase current commutation is on going, the resonant circuit generates a dc link voltage notch to let main switches of the inverter switch under ZVS condition.

B. PWM Operation

In this operation, the data selector makes PWM signal active. The auxiliary switch \( S_L \) works as a chopper, but the main switches of the inverter do not turn on or turn off within a single PWM cycle when the phase current needs not commutate. The load current is commutated during the dc link voltage becomes zero. (As the PWM cycle is very short, it does not affect the operation of the motor).

1) When PWM signal is flopped down, mode 1 begins, pulse signal for switch \( S_p \) is generated by \( M_4 \) and gate signal for switch \( S_L \) is dropped to low. However the voltage of dc link does not increase until PWM signal is flipped up. Pulse CK is also generated by \( M_4 \) to let active edge of CK locate in mode 3.

2) When PWM signal is flopped up, mode 4 begins, pulse signal for switch \( S_p \) is generated at the moment. Then when the voltage of the dc link is increased to supply voltage \( V_S \), the gate signal for switch \( S_L \) is flopped to high level.

Thus, only one ZVT occurs per PWM cycle: mode 1,2 for PWM turning off, mode 4,5,6,7 for PWM turning on. And the switching frequency would be not greater than PWM frequency.

V. SIMULATION AND EXPERIMENT

The proposed system is verified by simulation software Psim. The dc power supply voltage \( V_S \) is 240 V, the maximum load current is 12 A. The transformer turn ratio is 1:8, the leakage inductances of the primary secondary windings are selected as 4 \( \mu \)H and 12.96 \( \mu \)H respectively. So the equivalent transformer inductance \( L_x \) is about 8 \( \mu \)H. The resonant capacitance \( C_P \) is 0.1 \( \mu \)F. Switch \( S_{a,b} \) gate signal width \( \Delta T_5 \) and \( \Delta T_6 \) are set to be 3 \( \mu \)s and 6 \( \mu \)s respectively. The narrow negative pulselength \( \Delta T_5 \) in full duty cycle is set to be 4.5 \( \mu \)s, the delay time for synchronous pulse CK \( \Delta T_6 \) is set to be 3.5 \( \mu \)s. The frequency of the PWM is 20 kHz. Waveforms of dc link voltage \( n_{dc} \), transformer primary winding current \( i_{dl} \), switch \( S_L \) and diode \( D_L \) current \( i_{dl} \), PWM, auxiliary switch gate signal under low and high load current are shown in Fig. 8. The figure shows that the inverter worked well under various load currents.

In order to verify the theoretical analysis and simulation results, the proposed soft switching inverter was tested on an experimental prototype. The dc link voltage is 240 V, rated phase current is 10.8 A, the switching frequency is 20 kHz. Select 50 A/1200 V BSM 35 GB 120 DN2 dual IGBT module as main inverter switches \( S_1 - S_6 \) and auxiliary switch \( S_L \), another switch in the same module of \( S_L \) can be adopted as auxiliary switch \( S_a \). 30 A/600 V IMBH303F-060 IGBT as auxiliary switch \( S_p \). With datasheets of these switches and (18)-(21), the
value of capacitance and the parameter of transformer can be determined. A polyester capacitor of 0.1 μF, 1000 V was adopted as dc link resonant capacitor \( C_1 \). A high magnetizing inductance transformer with turn ratio 1:1.8 was employed in the experiment. The equivalent inductance is about 8 μH under short circuit test [13]. The switching frequency is 20 kHz. The monostable flip-flop is set up by IC 74LS123, variable resistor and capacitor. The logical gate can be replaced by programmable logical device to reduce the number of IC. \( \Delta T_1 \), \( \Delta T_2 \), \( \Delta T_3 \), and \( \Delta T_4 \) are set to be 3 μs, 6 μs, 4.5 μs, and 3.5 μs respectively.

The system is tested in light and heavy load. The waveforms of dc link voltage \( u_{CL} \) and transformer primary winding current \( i_{L1} \) in low and high load currents are shown in Fig. 9(a) and (b), respectively. The transformer based resonant dc link inverter works well under various load currents. The waveforms of auxiliary switch \( S_L \) voltage \( u_{SL} \) and its current \( i_{SL} \) are shown in Fig. 9(c). There is little overlap between the switch \( S_L \) voltage and its current during the switching under soft switching condition, so the switching power losses are low. The waveforms of resonant dc link voltage \( u_{CL} \) and synchronous signal CK are shown in Fig. 9(d), which the main switches can switch under ZVS condition during commutation. The phase current of BIDCM is shown in Fig. 9(e). The design of the system is successful.

VI. CONCLUSION

A transformer based resonant dc link inverter for BIDCM drive system, capable of controlling zero voltage notch instant and width is presented. Its principle of operation was explained. The simulation results are also given. All the relevant experimental waveforms were captured to verify the theory analyze and simulation. The following observations were made.

1) All switches work under soft-switching condition, so their power losses are small.
Appendix J Transformer Based Resonant DC Link Inverter for Brushless DC Motor Drive System

2) Voltage stress on all the switches would be not greater than dc Supply voltage.
3) Only one dc link voltage notch is needed during one PWM cycle, and the switching frequency of the auxiliary switches would not higher than PWM frequency.
4) Simple auxiliary switches control scheme.
5) High-frequency diodes turned off under zero current condition and this greatly reduced the reverse recovery problem of the diodes.
6) $dv/dt$ and $di/dt$ are reduced significantly, so EMI is reduced.
7) Soft switching results in considerably less noise as the switching frequency can be high to outside the audio spectrum.
8) The topology also applicable to induction motor drive system.

REFERENCES


Zhi Yang Pan (S’94) was born in Fujian, China. He received the B.E. degree in electronics application and the M.E. degree in power electronics and electric drives from Shanghai Jiao Tong University, China, in 1998 and 2001, respectively, and is currently pursuing the Ph.D. degree in power engineering at the Nanyang Technological University, Singapore. He was with Huawei Technology Corporation, Ltd., China, as a Software Engineer for more than one year. His research interests are soft switching inverters, electric drives, and motion control.

Fang Lin Luo (M’84–SM’95) was born in Yichang, Hubei, China. He received the B.Sc. degree, (with first class honors) in radio-electronic physics from Sichuan University, Chengdu, China, in 1986 and the Ph.D. degree in electrical engineering and computer science from Cambridge University, London, U.K., in 1986. He was with the Chinese Automation Research Institute of Metallurgy, Beijing, China, in 1968 to 1981. He was with the Enterprises Samuel Duval, Paris, France as a Project Engineer from 1981 to 1982. He was with Hocking NTD, Ltd., Allen-Bradley IAP, Ltd. and Simplatrol, Ltd. as a Senior Engineer from 1986 to 1995. He is with the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, from 1995 to 2005. He has published three text books and more than 200 technical papers in the IEE Proceedings and IEEE TRANSACTIONS and other journals, and various International Conferences. He was the Chief Editor of the international journal Power Supply Technologies and Applications. He is currently the International Editor of Advanced Technology of Electrical Engineering and Energy. His present research interest is in the power electronics and dc and ac motor drives, and ac/dc and dc/ac inverters. Dr. Luo is currently an Associate Editor of both the IEEE TRANSACTIONS ON POWER ELECTRONICS and the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS.