DESIGN OF A SCALABLE RF MODEL FOR DEEP SUB-MICRON MOSFETS

TONG AH FATT

SCHOOL OF ELECTRICAL & ELECTRONIC ENGINEERING

A thesis submitted to the Nanyang Technological University in fulfillment of the requirement for the degree of Doctor of Philosophy

2010
ABSTRACT

In order to achieve first pass design success and optimized RF circuit design, the process design kit (PDK) provided by the foundry must be equipped with accurate and scalable RF models for circuit simulation and optimization process. However, existing RF MOSFET models provided by most foundries are usually in discrete sizes. This poses many design problems for the integrated circuit (IC) designers because certain transistors’ geometry sizes are not available in the PDK. Design optimization is not possible without scalable RFCMOS models and the circuit performance cannot be optimized for a particular technology node used for circuit fabrication. Furthermore, discrete RFCMOS models will limit the design flexibility and increase the difficulty in designing RF circuit blocks to meet more stringent design specifications as the operating frequency increases. Currently in the industry, the RF MOSFET model that was developed is mainly in BSIM3v3 and BSIM4 models. In BSIM3v3, the RF model is developed by macro modeling approach whereby sub-circuit components are added to the core transistor model. In BSIM4, the RF model for the parasitic components were developed and included into the source code of the core model. Therefore, theoretically, there is no need for the addition of the sub-circuit components as in BSIM3v3 RF model. Although these two RF models are able to simulate the transistor’s S-parameters, the sub-circuit components used are of discrete values. Thus, scalable RF modeling is still not achieved. Therefore, there is a need to study how to develop a scalable and physical RF MOSFET model.

Most of the RF models are developed based on the macro modeling approach. Using this approach, sub-circuit components are added to the transistor’s
core model to model the RF parasitic components that will only appear at higher frequency range. The extraction of these sub-circuit components are performed with measured S-parameters but their extracted values can differ when different extraction techniques are used. The various extraction techniques usually differ from the DC biasing used for the RF extraction, different proposed equivalent circuits and the extraction approach in obtaining these component values. By studying the extracted parasitic component values with respect to the device’s geometry, scalable geometry equations can be formulated to model the parasitic components in the RF macro model. By simulating the RF model with scalable geometry equations, the measured and simulated DC and S-parameters for a wide range of device sizes can be compared and verified.

This thesis develops a systematic approach for the RF characterization, modeling and simulation of deep sub-micron RF MOSFETs. In general, there are four topics in this research work. Firstly, the geometry layout of the RF MOSFET is studied and an experiment is designed to compare the change in the geometry layout effect on the transistor’s figure of merits (FOMs). In the geometry variation, the unit width of the transistor is varied but the total width is kept constant. Hence, by comparing the various FOMs, the optimized unit width of the transistor can be found for a particular technology. In this experiment, the FOM used for the comparison are the unity short-circuit current gain frequency \(f_T\), maximum unilateral power gain frequency \(f_{\text{MAX}}\), high frequency (HF) noise and flicker noise performance.

Secondly, a new RF components extraction technique is presented. This extraction technique utilizes both Z- and Y-parameters analysis on the proposed small-signal equivalent circuit. The analytical equations are derived for all the RF
components and linear regression technique is used in the extraction. Excellent agreement has been obtained between the simulated and measured results up to 20 GHz.

Thirdly, the formation of the parasitic components that exist in the RF MOSFET structure at high frequency operations is presented. The parasitic components are extracted from the transistor’s S-parameter measurement and its geometry dependence is studied with respect to its layout structure. Physical geometry equations are proposed to represent these parasitic components and by implementing them into the RF model, a scalable RFCMOS model that is valid up to 49.85 GHz is demonstrated. A new verification technique is proposed to verify the quality of the developed scalable RFCMOS model.

Lastly, the HF noise modeling of RF MOSFET for a 90 nm technology node is presented. A brief discussion on the noise measurement theory is presented to illustrate the limitation of the noise measurement system. The extracted noise sources were studied for their geometry and biasing dependences and by implementing additional noise sources into the small-signal RFCMOS model, accurate HF noise simulation for the transistor can be achieved. Verilog-A is used for the coding of additional noise sources into the RFCMOS model and the added noise source will compensate the under-estimation of the channel thermal noise from the BSIM3v3 core model. Simulated noise circles and the measured noise figures are plotted as other source impedances to show that all the noise parameters are simulated accurately. The biasing and geometry dependences of the measured and simulated noise parameters are presented to demonstrate the scalability of the developed HF noise model.
ACKNOWLEDGMENTS

I wish to thank my supervisor, Prof. Yeo Kiat Seng, for his constructive advices and many fruitful discussions that we had during my research work. Without his kind assistance, support and feedback, this research work will not be completed. I also wish to thank Mr Lim Wei Meng for his support in taping out the test-chip and performing the device measurement during this research and the numerous discussions that we had has enhanced the quality of this research. I also wish to thank Mr Sia Choon Beng from Cascade Microtech for his guidance in device modeling and characterization when I was working in Advanced RFIC Pte. Ltd.. I am also grateful to Mrs Jia Lin for her guidance in the device characterization in the beginning years of my research study.

I wish to thank Takeshita, Abe and many other engineers from Sony Japan for their valuable discussions in device modeling that helped to improve my modeling technique.

I wish to thank the technical staffs in IC Design II Lab, Mr. Richard Tsoi, Miss Guee Geok Lian and Mrs. Leong Min Lin, for the help they have given me all these years.

Last but not least, I would like to thank my parents and my wife for their support and encouragement in my research study.
3.1 Introduction... 30
3.2 DC Measurement ... 30
3.3 RF Measurement .. 31
 3.3.1 S-parameter measurement system .. 32
 3.3.2 Network analyzer calibration ... 34
 3.3.3 Probe configuration and device layout .. 36
 3.3.4 De-embedding methods .. 38
 3.3.4.1 OPEN de-embedding ... 38
 3.3.4.2 OPEN-SHORT de-embedding ... 39
 3.3.5 De-embedding technique used and results .. 41
3.4 Flicker Noise Measurement and Test Structure ... 43
 3.4.1 Flicker noise measurement system ... 44
 3.4.2 Test structure ... 46
 3.4.3 Measurement results ... 46
3.5 High Frequency Noise Measurement and Test Structure 48
 3.5.1 High frequency noise measurement system .. 50
 3.5.2 Test structure ... 52
 3.5.3 System calibration and verification ... 52
 3.5.4 High frequency noise de-embedding method 55
3.6 Summary ... 58

Chapter 4 CMOS RF MODELING ... 60
4.1 Introduction ... 60
4.2 RF Parasitic in MOSFET ... 60
 4.2.1 Gate resistance modeling .. 61
 4.2.1.1 Poly-silicon gate electrode resistance ($R_{G,poly}$) 61
 4.2.1.2 Channel reflected gate resistance ($R_{G,NQS}$) 62
 4.2.2 Source and drain resistances modeling .. 62
 4.2.3 Substrate resistances modeling ... 64
 4.2.4 Parasitic capacitances modeling .. 65
4.3 BSIM3 – RF Model ... 66
4.4 BSIM4 – RF Model ... 69
 4.4.1 Gate resistance model ... 69
 4.4.2 Substrate resistance Model .. 72
4.5 Summary .. 73
Chapter 5 RFCMOS UNIT WIDTH OPTIMIZATION TECHNIQUE75
 5.1 Introduction..75
 5.2 Design Experiment and Test Structure Layout...77
 5.3 Unit Width Optimization on \(f_T \) and \(f_{\text{MAX}} \)78
 5.3.1 \(f_T \) definition and extraction ..78
 5.3.2 \(f_{\text{MAX}} \) definition and extraction ...80
 5.3.3 Experimental results and discussion ..81
 5.4 Unit Width Optimization on High Frequency Noise....................................87
 5.4.1 HF noise definition and theory ...87
 5.4.2 Experimental results and discussion ..89
 5.5 Proposal of New Figure of Merit for HF Noise......................................91
 5.6 Unit Width Optimization on Flicker Noise..95
 5.6.1 Experimental results and discussion ..96
 5.7 Circuit Application Discussion ...98
 5.7.1 Transistor selection for LNA design ...98
 5.7.2 Transistor selection for VCO design ..99
 5.7.3 Transistor selection for Mixer design ..99
 5.8 Summary ..100

Chapter 6 SIMPLE AND ACCURATE EXTRACTION METHODOLOGY FOR RF MOSFET VALID UP TO 20 GHZ.........................101
 6.1 Introduction..101
 6.2 Measurement Setup ...103
 6.3 Model ...103
 6.3.1 Extraction of terminal resistances \(R_g, R_d \) and \(R_s \)105
 6.3.2 Extraction of intrinsic parasitic components ..106
 6.4 Extraction and Simulation Results...108
 6.5 Summary ..118

Chapter 7 SCALABLE RFCMOS TRANSISTOR MODELING AND ITS VERIFICATION TECHNIQUE FOR RF CIRCUIT DESIGN119
 7.1 Introduction..119
 7.2 Scalable RF MOSFET Modeling..122
 7.2.1 Gate resistance modeling ...124
 7.2.2 Source and drain resistance modeling ...127
 7.2.3 Gate to substrate capacitance and resistance modeling129
LIST OF FIGURES

Fig. 1.1 Comparison of the input admittance for BSIM3v3 model with and without gate resistance .. 7

Fig. 1.2 Comparison of the output admittance for BSIM3v3 model with and without substrate resistance .. 8

Fig. 2.1 Z-parameter representation for two-port network 15

Fig. 2.2 Y-parameter representation for two-port network 16

Fig. 2.3 H-parameter representation for two-port network 17

Fig. 2.4 S-parameter representation for two-port network 19

Fig. 2.5 Relationship between S_{xx} and the complex impedance of a two-port 20

Fig. 2.6 Polar plot for S_{12} and S_{21} ... 21

Fig. 2.7 Noisy two-port network representation .. 27

Fig. 3.1 S-parameter measurement system ... 32

Fig. 3.2 Known specific calibration terminations .. 35

Fig. 3.3 RF GSG probes used in measurement .. 36

Fig. 3.4 RF transistor layout design .. 37

Fig. 3.5 OPEN structure layout and its equivalent circuit 38

Fig. 3.6 SHORT structure layout and its equivalent circuit 39

Fig. 3.7 Comparison of the S-parameters before and after de-embedding of the OPEN and SHORT structure .. 43

Fig. 3.8 Flicker noise measurement system ... 44

Fig. 3.9 (a) DC and (b) RF transistor test structures ... 46

Fig. 3.10 Measured (symbol) and simulated (solid line) DC results 47

Fig. 3.11 Measured (red) and simulated (green) noise current spectral density ... 47

Fig. 3.12 ATN NP5B noise parameter and S-parameter device characterization system .. 50

Fig. 3.13 Thru line S-parameter and noise verification ... 55

Fig. 4.1 Distributed effects of the gate electrode and channel 61
Fig. 4.2 Source and drain parasitic resistances network 63
Fig. 4.3 Different substrate configuration (a) 5-resistor, (b) 4-resistor, (c) 3-
resistor, (d) 2-resistor and (e) 1-resistor network .. 64
Fig. 4.4 Parasitic capacitances in MOSFET ... 66
Fig. 4.5 RF BSIM3v3 macro model .. 67
Fig. 4.6 BSIM4 RF model ... 69
Fig. 4.7 Geometrical details for the gate terminal in BSIM4 (a) NGCON = 1 (b)
NGCON = 2 .. 71
Fig. 4.8 Different gate resistance configuration with respect to RGATEMOD ... 72
Fig. 4.9 Five-substrate resistances network in BSIM4 73
Fig. 5.1 Designed test structure layout for a 15-finger thin gate NMOS transistor
.. 78
Fig. 5.2 Measured H_{21} (dB) versus Frequency for an NMOS transistor with 10
fingers and W_f of 12 µm ... 79
Fig. 5.3 Measured G_U (dB) versus Frequency for an NMOS transistor with 10
fingers and W_f of 12 µm ... 81
Fig. 5.4 Extracted f_T and f_{MAX} versus unit width for total width of (a) 48 µm, (b)
120 µm and (c) 240 µm ... 83
Fig. 5.5 Extracted (a) maximum g_m and C_g, (b) R_g and C_{gd} versus unit width for
total width of 48, 120 and 240 µm ... 84
Fig. 5.6 Extracted N_{F}^{min} (dB) versus Frequency with unit width of 4, 8, 12 and 24
µm for total width of (a) 48 µm, (b) 120 µm, (c) 240 µm 91
Fig. 5.7 Measured and calculated F_{min} R_n (Ω) versus Frequency with unit width of
4, 8, 12 and 24 µm for total width of (a) 48 µm, (b) 120 µm, (c) 240 µm 94
Fig. 5.8 Measured Flicker Noise S_{id} (A²/Hz) versus Frequency with unit width of
4, 8, 12 and 24 µm for total width of (a) 48 µm, (b) 120 µm and (c) 240 µm 98
Fig. 6.1 New small-signal RF equivalent circuit 103
Fig. 6.2 Simplified small-signal equivalent circuit at $V_{gs} = 1.8$ V and $V_{ds} = 0$ V105
Fig. 6.3 Simplified small-signal equivalent circuit at $V_{gs} = V_{ds} = 1.2$ V (saturation
region) .. 107
Fig. 6.4 Extraction of the transconductance g_m and output conductance g_{ds} at $V_{gs} =
V_{ds} = 1.2$ V ... 109
Fig. 6.5 Extraction of R_{subd} at $V_{gs} = V_{ds} = 1.2$ V from the plot of $\omega^2/\text{real } (Y_{sub})$ versus ω^2 .. 109

Fig. 6.6 Extraction of R_g, R_d and R_s at $V_{gs}=1.8$ V and $V_{ds}=0$ V 110

Fig. 6.7 Frequency plot for C_{gs}, C_{gd}, C_{ds}, C_{gd} and C_{sd} extracted at $V_{gs} = V_{ds} = 1.2$ V .. 110

Fig. 6.8 Simulated and measured Y-parameters data for a 5-finger NMOS transistor with length 0.18 μm and width 8 μm at $V_{gs} = V_{ds} = 1.2$ V 114

Fig. 6.9 Simulated and measured results for $10^*\log_{10}(\text{mag}(H_{21})^2)$ versus Frequency in log scale for a 5-finger NMOS transistor with length 0.18 μm and width 8 μm at $V_{gs} = V_{ds} = 1.2$ V .. 115

Fig. 6.10 Gate bias dependence on the extracted (a) Capacitances and (b) R_{subd} of a 5-finger NMOS transistor with length 0.25 μm and width 8 μm biased at $V_{ds} = 1.2$ V .. 116

Fig. 6.11 Drain bias dependence on the extracted (a) Capacitances and (b) R_{subd} of a 5-finger NMOS transistor with length 0.25 μm and width 8 μm biased at $V_{gs} = 1.2$ V .. 117

Fig. 7.1 RF equivalent sub-circuit model ... 122

Fig. 7.2 Simplified RF NMOS layout .. 123

Fig. 7.3 Simplified polysilicon gate structure and its distributed parasitic resistances .. 124

Fig. 7.4 Extracted and calculated R_{gate} versus (a) N_f and (b) W_f 127

Fig. 7.5 Source and drain metal structure .. 128

Fig. 7.6 Extracted and calculated (a) R_s and (b) R_d versus N_f....................................... 129

Fig. 7.7 Gate to substrate capacitance and resistance structure ... 130

Fig. 7.8 Extracted and calculated (a) C_{subg} and (b) R_{subg} versus N_f 132

Fig. 7.9 Gate to source and gate to drain capacitance structure ... 134

Fig. 7.10 Extracted and calculated (a) $C_{gs,ext}$ and (b) $C_{gd,ext}$ versus N_f 135

Fig. 7.11 Drain to source capacitance structure ... 136

Fig. 7.12 Extracted and calculated C_{ds} versus N_f ... 136

Fig. 7.13 Substrate resistances network .. 137

Fig. 7.14 Extracted and calculated (a) R_{sub1} and (b) R_{sub2} and R_{sub3} versus N_f 139
Fig. 7.15 Measured and simulated results for NMOS transistor with \(N_f \) of 8, \(W_f \) of 1 \(\mu \)m and \(L_g \) of 70 nm ... 140

Fig. 7.16 Measured and simulated results for NMOS transistor with \(N_f \) of 24, \(W_f \) of 1 \(\mu \)m and \(L_g \) of 70 nm ... 141

Fig. 7.17 Measured and simulated results for NMOS transistor with \(N_f \) of 64, \(W_f \) of 1 \(\mu \)m and \(L_g \) of 70 nm ... 142

Fig. 7.18 Measured and simulated results for NMOS transistor with \(N_f \) of 24, \(W_f \) of 2.5 \(\mu \)m and \(L_g \) of 70 nm ... 143

Fig. 7.19 Measured and simulated results for NMOS transistor with \(N_f \) of 24, \(W_f \) of 5 \(\mu \)m and \(L_g \) of 70 nm ... 144

Fig. 7.20 Model Accuracy for NMOSFETs with different \(N_f \) and \(W_f \) of 1, 2.5 and 5 \(\mu \)m at \(V_{gs} = 0.95 \) V and \(V_{ds} = 0.8 \) V ... 147

Fig. 7.21 Model Continuity for \(G_m \) and \(Y_{21} \) for NMOSFETs with different \(N_f \) and \(W_f \) of 1, 2.5 and 5 \(\mu \)m at \(V_{gs} = 0.95 \) V and \(V_{ds} = 0.8 \) V ... 148

Fig. 7.22 RF equivalent circuit model with added enhanced noise current \(\overline{i_{de}} \) and induced gate noise current \(\overline{i_g} \) ... 151

Fig. 7.23 Equivalent noise circuit (a) \(\overline{i_{de}} \) and (b) \(\overline{i_g} \) that generate additional noise current [99] ... 151

Fig. 7.24 Measured (symbol) and simulated (solid line) noise parameters versus frequency for transistor with \(N_f \) of 32, \(W_f \) of 5 \(\mu \)m and \(L_g \) of 70 nm (Extracted \(V_{ds} = 1.2 \) V @ \(V_{gs} = 0.55, 0.95 \) and 1.2 V) ... 153

Fig. 7.25 Simulated noise circles and measured noise figures at different source impedance states for transistor with \(N_f \) of 32, \(W_f \) of 5 \(\mu \)m and \(L_g \) of 70 nm (Extracted at \(V_{ds} = 1.2 \) V, \(V_{gs} = 0.55 \) V and frequency = 5 GHz) 154

Fig. 8.1 Noise parameters (a) \(NF_{min} \) and \(r_n \) and (b) real(\(\Gamma_{opt} \)) and \(\text{imag}(\Gamma_{opt}) \) before (solid line) and after (symbols) de-embedding of the pads and interconnects parasitic for transistor with \(N_f \) of 32, \(W_f \) of 5 \(\mu \)m and \(L_g \) of 70 nm at \(V_{gs} = 0.95 \) V and \(V_{ds} = 1.2 \) V ... 158

Fig. 8.2 Simplified RF NMOS layout ... 159

Fig. 8.3 Noise parameters (a) \(NF_{min} \) and \(r_n \) and (b) real(\(\Gamma_{opt} \)) and \(\text{imag}(\Gamma_{opt}) \) before (solid line) and after (symbols) de-embedding for transistor with \(N_f \) of 32, \(W_f \) of 1 \(\mu \)m and \(L_g \) of 70 nm 162

Fig. 8.4 DC characteristics (a) \(g_m \) versus \(V_{gs} \) and (b) \(I_{ds} \) versus \(V_{ds} \) with measured (symbols) and simulated (solid line) data for transistor with \(N_f \) of 32, \(W_f \) of 1 \(\mu \)m and \(L_g \) of 70 nm ... 164
Fig. 8.5 Proposed RFCMOS model with extrinsic parasitic resistance noise, intrinsic induced gate noise (i_g^2) and channel thermal noise (i_g^2) 164

Fig. 8.6 Extracted noise sources (a) i_g^2, (b) i_g^2 and (c) $i_g i_d$ versus frequency for transistors with N_f of 4, 16, 32 and 64 at fixed W_f of 5 μm and L_g of 70 nm (Extracted at $V_{gs} = 0.55$ V and $V_{ds} = 1.2$ V) .. 167

Fig. 8.7 Extracted noise sources (a) i_g^2, (b) i_g^2 and (c) $i_g i_d$ versus W_f for transistors with N_f of 4, 16, 32 and 64 at fixed L_g of 70 nm (Extracted at $V_{gs} = 0.55$ V, $V_{ds} = 1.2$ V and frequency = 5 GHz) ... 168

Fig. 8.8 Extracted noise sources (a) i_g^2, (b) i_g^2 and (c) $i_g i_d$ versus V_{gs} for transistors with N_f of 4, 16, 32 and 64 at fixed W_f of 5 μm and L_g of 70 nm (Extracted at $V_{ds} = 1.2$ V and frequency = 5 GHz) ... 169

Fig. 8.9 RF equivalent circuit model with added enhanced noise current i_{de}^2 and induced gate noise current i_g^2 ... 171

Fig. 8.10 Equivalent noise circuit (a) i_{de}^2 and (b) i_g^2 that generate additional noise current [99] ... 172

Fig. 8.11 Measured (symbol) and simulated (solid and dash line) noise parameters versus frequency for transistor with N_f of 32, W_f of 5 μm and L_g of 70 nm (Extracted at $V_{gs} = 1.2$ V and $V_{ds} = 1.2$ V) ... 175

Fig. 8.12 Measured (symbol) and simulated (solid line) noise parameters versus frequency for transistor with N_f of 32, W_f of 5 μm and L_g of 70 nm (Extracted $V_{ds} = 0.5$ V @ $V_{gs} = 0.55, 0.95$ and 1.2 V) ... 176

Fig. 8.13 Measured (symbol) and simulated (solid line) noise parameters versus frequency for transistor with N_f of 32, W_f of 5 μm and L_g of 70 nm (Extracted $V_{ds} = 1.2$ V @ $V_{gs} = 0.55, 0.95$ and 1.2 V) ... 177

Fig. 8.14 Simulated noise circles and measured noise figures at different source impedance states for transistor with N_f of 32, W_f of 5 μm and L_g of 70 nm (a) $V_{ds} = 1.2$ V, $V_{gs} = 0.55$ V and (b) $V_{ds} = V_{gs} = 1.2$ V (Extracted at frequency = 5 GHz) ... 178

Fig. 8.15 Simulated noise circles and measured noise figures at different source impedance states for transistor (a) $N_f = 4$, $W_f = 1$ μm, (b) $N_f = 64$, $W_f = 1$ μm, (c) $N_f = 4$, $W_f = 2.5$ μm, (d) $N_f = 64$, $W_f = 2.5$ μm, (e) $N_f = 4$, $W_f = 5$ μm and (f) $N_f = 64$, $W_f = 5$ μm at fixed L_g of 70 nm (Extracted at $V_{gs} = V_{ds} = 1.2$ V and frequency = 5 GHz) ... 182

Fig. 8.16 Measured (symbol) and simulated (dash line) noise parameters versus biasing for transistors with W_f (1, 2.5 and 5 μm) at fixed N_f of 32 (Extracted at $V_{ds} = 1.2$ V and frequency = 5 GHz) ... 184
Fig. 8.17 Measured (symbol) and simulated (dash line) noise parameters versus transistors’ geometry with N_f (4, 16, 32 and 64) and W_f (1, 2.5 and 5 µm) (Extracted at $V_{gs} = V_{ds} = 1.2$ V and frequency = 5 GHz) 185
LIST OF TABLES

Table 1 RF characteristics of an NMOS with decreasing channel length [4]........2
Table 5.1 Unit width optimization test structures fabricated in 0.18 μm CMOS technology with a channel length of 0.18 μm..77
Table 6.1 Extracted and optimized parameter values for a 5-finger NMOS transistor with $L = 0.18 \, \mu \text{m}$ and $W = 8 \, \mu \text{m}$ at $V_{gs} = V_{ds} = 1.2 \, \text{V}$112
Chapter 1

INTRODUCTION

1.1 Introduction

The radio frequency (RF) wireless technology has changed the way people communicate and transfer of information. The various technologies like the 3G cellular phones, global positioning system (GPS) and Bluetooth have advanced greatly and allow people to be connected at almost anywhere anytime in the world. In the past, wireless products like the cellular phone were very bulky and their operating power consumption was high. In order for cellular phone to be mobile, we need to reduce the size of the product and also improve its power efficiency so that the product can operate for a longer period of time. To achieve the size reduction and power efficiency, RF integrated circuit (IC) technology was developed.

Basically, RF IC is made up of high-speed transistors and passive components like the resistors, capacitors and inductors. The main parameters determining the performance of a RF IC are the operating frequency range, gain, noise, linearity and the power efficiency. Presently, the majority of the RF IC’s are typically implemented using GaAs or silicon bipolar technology [1], [2]. This is because GaAs and bipolar transistors have high unity cut-off frequency. As for the Complementary-Metal-Oxide-Semiconductor (CMOS) technology, its transistors are inferior as compared to GaAs and bipolar counterparts in terms of the microwave properties. But as the channel length of the Metal-oxide-Semiconductor Field Effect Transistor (MOSFET) scales down, both the unity
current gain frequency \((f_T)\) and unilateral power gain frequency \((f_{MAX})\) will increase while the minimum noise figure \((NF_{min})\) will reduce. From Table 1, the \(f_T\) and \(f_{MAX}\) for a 0.18 \(\mu m\) technology is about 50 GHz and the \(NF_{min}\) is about 0.35 dB at 2 GHz operation frequency. This shows that CMOS technology is becoming a viable technology choice for RF integrated components for the wireless communication market [3].

Table 1 RF characteristics of an NMOS with decreasing channel length [4]

<table>
<thead>
<tr>
<th>Gate Length, (L) (nm)</th>
<th>250</th>
<th>180</th>
<th>140</th>
<th>120</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_T) (GHz)</td>
<td>33</td>
<td>49</td>
<td>70</td>
<td>84</td>
<td>112</td>
</tr>
<tr>
<td>(f_{MAX}) (GHz)</td>
<td>41</td>
<td>47</td>
<td>51</td>
<td>52</td>
<td>60</td>
</tr>
<tr>
<td>(NF_{min}) (dB) @ 2 GHz</td>
<td>0.5</td>
<td>0.35</td>
<td>0.23</td>
<td>0.2</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Apart from the above improvements, CMOS technology also offers high integration density, low cost and the ability to integrate digital, low frequency analog and RF circuits into a single chip. Furthermore, the low power consumption of MOSFET makes the technology suitable for portable devices.

The two main differences of the RF MOSFET and the conventional high-speed transistors are the substrate material and the device structure [5]. For MOSFET, it is fabricated on a silicon substrate, which is a semi-conducting material unlike the GaAs, which is a semi-insulating material. The typical resistivity range for silicon is 0.01 to 10 \(\Omega\)-cm while the GaAs is about \(10^8\) \(\Omega\)-cm [5]. The low resistivity of the silicon substrate produces more parasitic in the MOSFET’s layout and these parasitic can affect the performance of the RF device. At high operating frequency, the substrate coupling effect for the RF MOSFET will become dominant when the impedance of the source and drain junction
capacitance starts to drop [6-10]. As for the bonding pads that connect the RF transistors, the parasitic capacitance between the signal pads and ground pads will increase due to the low resistivity of the silicon substrate [11]. Therefore, the de-embedding of the parasitic capacitance must be done in order to obtain the intrinsic RF MOSFET performance. As for the passive components such as the inductor, the energy dissipation through the silicon substrate significantly reduces the performance of the on-chip inductor [12-14]. When the operating frequency increases, the electric field from the interconnect structure will appear in the lossy silicon substrate, the signal will propagate in dielectric quasi-TEM mode. The signal propagation will be very complex and the modeling of interconnects will be difficult [15-17]. As the CMOS technology allows the integration of the digital, low frequency analog and RF circuits, the signal and noise coupling between these blocks will be an issue as the substrate is lossy [18-21].

The second difference between the MOSFET and the conventional RF transistor is the layout structure of the device. The conventional RF transistor like the bipolar transistors consists of three terminals, the base, the collector and the emitter. Therefore, it can be treated as a two-port network. As the RF measurement technique for the two-port network is well established, the S-parameters can be collected and analysed easily. The MOSFET consists of four terminals: gate, drain, source and body. Normally, the source and the body terminals are connected to each other, so that it becomes like a three-terminal device. But as the operating frequency increases, the AC substrate current will increase and flows through the distributed RC network in the substrate. This will cause the potential of the intrinsic substrate node to be different from the source and the extrinsic body terminal. Therefore to model a four-terminal MOSFET, additional DC
measurements must be made to characterize the biasing effect on the body structure. Since the biasing effect of the body structure can be characterized in the DC measurement, the source and the body terminals can be shorted together and measured as a two-port network during the RF measurement so as to extract its characteristic and the RF parasitic of the device layout.

1.2 Importance of RF Modeling and Existing Method

Presently, circuit simulation is the only way for RF circuit designer to predict the performance of the designed RF circuit before committing to silicon fabrication. The accuracy of circuit simulation is mainly dependent on the availability of accurate device models and interconnect parasitic. Hence, the number of design cycles and the time to market of the product can be reduced if accurate device models are provided.

Most of the MOSFET models have been developed for digital and low frequency analog circuit design [22-23], which focus on the DC characteristics and the low frequency performance up to several tens of MHz frequency range. But as the operating frequency increases, the extrinsic parasitic of the transistor will become more dominant and cannot be ignored anymore. Therefore, the commercially available digital and low frequency models can no longer be used for high frequency (HF) simulation. In order to achieve accurate HF simulation, the RF model must include both the intrinsic and extrinsic parasitic components.

The initial method for RF modeling is by using the table lookup method. This method has its advantages and disadvantages. In this method, the device characteristics are measured and then stored or translated into mathematical functions, which can then reproduce the data with minimum error. Therefore, there
is no need for parameter extraction. Furthermore, this method is technology independent. The procedure to develop such a table can be reuse for any technology whereas for physical models, modeling equations and parameter extraction method may have to change for different technologies.

As for the disadvantages, this method requires to measure many different transistor sizes so as to collect all their device characteristics and organise them in tabular form. During the circuit design, if the transistor size that the designer requires for the simulation is not in the lookup table, the lookup table must be updated by performing HF measurement on the required transistor size. If the required transistor is not fabricated then there is no way to predict the required transistor size performance. Therefore, this method requires a lot of measurement time to develop and it is unable to predict the HF performance of the device if the device size is not in the table. Furthermore, this method cannot be use to predict the device characteristics for the next generation technology. Hence, due to the above problems, macro modeling approach is adopted for the modeling of RF MOSFET. In the macro modeling approach, parasitic components that simulate the RF parasitic at higher frequency are added to the core transistor model. By adding the parasitic components, the generated RF MOSFET model is more complete and it can simulate the RF characteristics more accurately.

1.3 Review of RF MOSFET Core Model

1.3.1 BSIM3v3 model

BSIM3v3 is a DC scalable MOSFET model. It is considered as a physical model because most of its parameters have strong correlation to the process and device structure design. But there are also some parameters that have weak
physical meaning and are only introduced for the model fitting purposes. BSIM3v3 has been widely used by the industry and is initially developed for analog and digital circuit simulation. But for the RF simulation, it lacks of some important models that are required to predict the RF parasitic and therefore, sub-circuit components are added to the core model to simulate the RF parasitic effects [9] using the macro modeling approach.

In the core model, the gate resistance R_g is not included and hence it is unable to accurately predict the input admittance as shown in the Figure 1.1. It is important for the RF model to be able to predict the measured input admittance due to the power matching requirement. As R_g also contributes to the total thermal noise of the MOSFET, it will directly affect the simulated noise figure of the transistor. Furthermore, the unilateral power gain frequency f_{MAX} will be shown in chapter 2, in equation (2-29) to be dependent on R_g. Hence based on the above simulation issues, it is crucial to study the effect of R_g so that accurate model can be developed for it.

At DC and low frequency region, R_g is purely the gate electrode resistance. But as the frequency increases, the gate electrode must be treated as a distributed transmission line [24] so as to model R_g accurately.

By treating the gate terminal as a distributed transmission line, the gate impedance can be derived as in (1-1) and (1-2). The variable N is defined as the number of finger, C_p is the gate capacitance, ρ_{poly} is the gate resistivity, L and w is the length and width of a single finger, and L_s is the series inductance in the gate
terminal. A detailed derivation for (1-1) and (1-2) can be obtained in [24]. Based on the two equations, it is obvious that the effect of the distributed gate resistance becomes important especially for wide transistors and by using multi-finger layout, this distributed effect can be minimised. Another physical effect is the distributed or non-quasi-static (NQS) effect in the channel [9]. This will be discussed in greater detail in the following chapters.

Fig. 1.1 Comparison of the input admittance for BSIM3v3 model with and without gate resistance

Since the substrate coupling effect is not modelled in BSIM3v3, the output admittance of the transistor is unable to be modelled accurately as the output admittance is closely related to the substrate coupling at the drain and source junctions. Figure 1.2 shows the effect of the substrate coupling in predicting of the
output admittance. Therefore, it is clear that the substrate coupling network must be added into the RF model to accurately predict the output admittance.

![Graph](image_url)

Fig. 1.2 Comparison of the output admittance for BSIM3v3 model with and without substrate resistance

The common approach for RF modeling for BSIM3v3 is by adding sub-circuit components to model the R_g and R_{sub} resistances [9] and several others RF parasitic effect. Several other models with different sub-circuit components are reported in [25-30].

1.3.2 BSIM4 model

In BSIM4, the R_g effect is now included into its core model. Its resistance is being separated into the gate electrode resistance and the channel-reflected resistance. As the operating frequency increases, the gate electrode is being treated as a distributed resistance so that it can be modelled more accurately. The gate
electrode resistance is derived as in (1-1) and (1-2). The channel-reflected resistance is not a physical resistance. It is the resistance as “seen” by the gate signal and is a function of biasing [31]. This channel-reflected gate resistance is one of the various approaches to account for the NQS effect [31]. Quasi-Static (QS) is defined as the ability for the charges in the channel to respond immediately to the biasing and most of the commercially available models are QS models. When the RF MOSFET is operated at high frequency, the response speed of the device to the input biasing may not be fast enough and the device will show some signal delay, this is defined as NQS effect. In BSIM4, different configuration of the R_g model can be selected with the parameter RGATEMOD.

In BSIM3v3, there is no internal substrate resistance and hence the model is unable to fit the output admittance of the RF MOSFET. In BSIM4, the substrate resistances are now being modelled by a five resistors network. The substrate network can be selected by the parameter RBODYMOD. Note that this substrate network is not scalable, as they have no geometry dependence parameter in the model [32].

1.4 Objectives

In RF modeling, although the sub-circuit model approach for BSIM3v3 have been widely used and found to be sufficient, the associated parasitic extraction technique must still be improved so as to achieve a more robust extraction method.

In BSIM4, the inclusion of the gate and substrate resistances model has made BSIM4 another alternative for RF modeling. But as the proposed substrate network in BSIM4 is not scalable, it is unable to predict the RF characteristics for
different geometry sizes [32]. Similarly, for BSIM3v3 model, the sub-circuit components that are used to model the substrate resistances are also not scalable with geometry. Therefore, there is a need to improve the model so as to achieve RF scalability.

The goal of this thesis is to design a scalable RF model for deep sub-micron MOSFETs. Basically, four main objectives are required to fulfill in this research. Firstly, the layout of the RF MOSFET is studied and the relationship between its geometry layout and its corresponding HF parasitic effect is compared and analyzed. This study will enhance our device layout knowledge so that an optimized geometry design can be found for a particular RF circuit design.

Secondly, there are many different RF parameter extraction techniques proposed and published in this research and each technique produces different extracted values for the RF components. Therefore, there is a need to study the various published extraction techniques in greater details so as to understand their pro and cons and the assumptions in their proposed techniques. With the knowledge of the various extraction techniques, a new and accurate method is investigated for the extraction of the RF sub-circuit components.

Thirdly, most of the RF models provided by the foundry are for discrete sizes. So, when circuit designers tune or optimize their circuits, they will be limited by the number of device sizes available from the process design kit (PDK). Therefore, this research will study the geometry dependence of the extracted parasitic components and implementing them into the RF model so that a scalable RFCMOS model can be demonstrated.

Finally, in order to develop a truly scalable RFCMOS model, it should be scalable in terms of its DC, S-parameters, flicker noise and HF noise
characteristics. In the RFCMOS noise modeling, the flicker noise model provided in BSIM is well established and is already scalable with geometry and biasing. But the HF noise model provided in the BSIM models underestimates the device noise performance. Hence, this research aims to improve the HF noise modeling with respect to the model’s accuracy and scalability in terms of the device’s geometry and biasing.

1.5 Major Contributions

In this thesis, four major contributions are accomplished and they are listed as follows.

1. By studying the measured f_T, f_{MAX}, flicker noise and HF noise characteristics of the RFCMOS transistors for different unit width for a given fixed total width, the geometry dependence of the parasitic components is studied and optimized for a particular RF circuit design [33].

2. Proposed an accurate and simple parameter extraction technique for deep sub-micron MOSFETs. The as-developed RF model demonstrates excellent model accuracy up to 20 GHz [34].

3. By studying the geometry dependence of the parasitic components, a scalable RFCMOS model is successfully implemented that is valid up to 49.85 GHz. In addition, a new verification technique is proposed to verify the quality of the as-developed scalable RFCMOS model. The verification time of the scalable model is shortened and the coded scalable model equations are checked for its reliability to use.

4. High frequency (HF) noise modeling of RF MOSFET for a 90 nm technology node is demonstrated. The pads and interconnects parasitic are de-embedded to
obtain the true device noise performance and noise sources are extracted from the proposed noise equivalent circuit. By implementing the geometry and biasing dependence of the noise sources into the RF model, an accurate and scalable HF noise model is generated [36].

1.6 Thesis Organization

This thesis consists of nine chapters. In chapter 1, the importance of RF modeling is discussed and a review of the core RF MOSFET model is presented. Various objectives and major contributions in the course of this research, follow by the organization of this thesis are also given.

Chapter 2 presents the basic concepts of RF modeling which includes the linear two-port network theory. The knowledge of the various two-port networks are essential for de-embedding of pads and interconnects parasitic, the extraction of the RF sub-circuit components and the \(f_T \) and \(f_{\text{MAX}} \) parameters calculation. The different type of noise that exists in MOS devices is presented and the linear two-port noise theory and the noise parameters are discussed in this chapter.

Chapter 3 shows the various measurement results performed during the course of this research. The DC characteristics, S-parameters, flicker noise and the HF noise parameters are measured during the characterization of RF MOSFET. In the section of RF measurement, the measurement system and the device layout are presented and system calibration is performed to remove the errors and parasitic from the measurement setup to the probe pins plane. By performing Z and Y parameters calculations, the de-embedding of the pads and interconnects parasitic can be done so that the true device performance can be obtained. The measurement system of the flicker noise and HF noise is presented together with its
corresponding calibration steps. The noise contribution from the parasitic can be removed from the measured results to obtain the true noise behaviour.

In order to perform RF modeling, it is essential to know about all the RF parasitic that will appear at RF frequency range. Hence in chapter 4, all the RF parasitic that exist in the RF MOSFET will be discussed. The RF model of BSIM3v3 and BSIM4 will also be presented.

After the RF parasitic are discussed, it is important to understand how these RF parasitic changes with geometry and their effects on the FOMs for RF MOSFET. By understanding the relationship between the device geometry and the RF parasitic, the layout of the device can be optimized such that optimum device performance can be achieved. In chapter 5, FOMs such as f_T, f_{MAX}, flicker noise and HF noise parameters are optimized with geometry. A new FOM is proposed for the study of HF noise performance of transistor. A brief discussion on the transistor geometry requirement for RF circuit design such as low noise amplifier (LNA), voltage controlled oscillator (VCO) and mixer is given.

In chapter 6, a simple and accurate extraction methodology for RF MOSFET is proposed and the extraction is shown to be reliable up to 20 GHz. Based on literature review on the conventional and current extraction techniques, a new technique is proposed for the RF parasitic extraction. By implementing the extracted values for a 5 finger NMOS transistor, it is shown that the generated model is valid up to 20 GHz.

In chapter 7, a scalable RFCMOS transistor modeling and its model verification technique is demonstrated. The various RF parasitic components used in the proposed scalable RF model are presented in detail with their formulated geometry equations. The transistor’s finger and unit width scalability are
demonstrated for the DC, S-parameters and f_T plots. A new model verification technique is proposed for scalable RF model whereby the model’s accuracy and continuity are checked and verified.

Presently, RFCMOS noise modeling is mainly used for discrete transistor size only. Therefore, in order to enhance the PDK’s features and help circuit designers to optimize the noise critical circuit blocks, scalable RFCMOS noise modeling must be developed. In chapter 8, by using the reported techniques, measured noise parameters are de-embedded from the pads and interconnects parasitic. And with the proposed noise equivalent circuit, its noise sources can be extracted from the de-embedded noise parameters. By implementing the noise sources using Verilog-A into the RF model, the generated scalable RF noise model can be simulated accurately for a wide range of geometry, biasing and frequency.

Finally in chapter 9, the thesis will conclude all the research work done and a discussion will be done on the possible future work in this research area.
Chapter 2

BASIC CONCEPTS FOR RF MODELING

2.1 Introduction

The linear two-port network theory has been widely studied and used by many engineers to characterize the electrical behavior of devices. Basically, a RFCMOS transistor is a four terminal device and it consists of the gate, drain, source and body terminal. As the body terminal is not connected to ground, its potential will affect the charges in the channel and caused the threshold voltage of the transistor to vary. Therefore, in order to eliminate the body biasing effects on the substrate, the body terminal is usually tied to the source terminal and the transistor becomes a three terminal device. By grounding the source and body terminal, the RFCMOS transistor can be treated as a two-port device so that the two-port network theory can be used to describe the transistor electrical behavior. The different types of two-port network are presented and used in this thesis.

2.2 Z, Y, H and S-Parameters

Fig. 2.1 Z-parameter representation for two-port network
Fig. 2.1 shows the two-port network for the Z-parameters and their representations are derived in the following equations.

$$V_1 = Z_{11}I_1 + Z_{12}I_2$$ \hspace{1cm} (2-1) \\
$$V_2 = Z_{21}I_1 + Z_{22}I_2$$ \hspace{1cm} (2-2)

Based on (2-1) and (2-2), all the Z-parameters can be extracted by opening of port 1 and 2 in Fig. 2.1 and their corresponding equations are derived in (2-3) to (2-6).

$$Z_{11} = \left. \frac{V_1}{I_1} \right|_{I_2=0}$$ \hspace{1cm} (2-3) \\
$$Z_{12} = \left. \frac{V_1}{I_2} \right|_{I_1=0}$$ \hspace{1cm} (2-4) \\
$$Z_{21} = \left. \frac{V_2}{I_1} \right|_{I_2=0}$$ \hspace{1cm} (2-5) \\
$$Z_{22} = \left. \frac{V_2}{I_2} \right|_{I_1=0}$$ \hspace{1cm} (2-6)

Fig. 2.2 Y-parameter representation for two-port network

Fig. 2.2 shows the two-port network for the Y-parameters and their representations are derived in the following equations.

$$I_1 = Y_{11}V_1 + Y_{12}V_2$$ \hspace{1cm} (2-7) \\
$$I_2 = Y_{21}V_1 + Y_{22}V_2$$ \hspace{1cm} (2-8)
Based on (2-7) and (2-8), all the Y-parameters can be extracted by shorting of port 1 and 2 in Fig. 2.2 and their corresponding equations are derived in (2-9) to (2-12).

\[Y_{11} = \frac{I_1}{V_1} \bigg|_{V_2=0} \] \hspace{1cm} (2-9)

\[Y_{12} = \frac{I_1}{V_2} \bigg|_{V_1=0} \] \hspace{1cm} (2-10)

\[Y_{21} = \frac{I_2}{V_1} \bigg|_{V_2=0} \] \hspace{1cm} (2-11)

\[Y_{22} = \frac{I_2}{V_2} \bigg|_{V_1=0} \] \hspace{1cm} (2-12)

Fig. 2.3 H-parameter representation for two-port network

Fig. 2.3 shows the two-port network for the H-parameters and their representations are derived in the following equations.

\[V_1 = H_{11}I_1 + H_{12}V_2 \] \hspace{1cm} (2-13)

\[I_2 = H_{21}I_1 + H_{22}V_2 \] \hspace{1cm} (2-14)

Based on (2-13) and (2-14), all the H-parameters can be extracted by opening of port 1 and shorting of port 2 in Fig. 2.3 and their corresponding equations are derived in (2-15) to (2-18).
In order to obtain the Z, Y and H-parameters for the above three networks, ports 1 and 2 are required to be open or short-circuited as shown above. At DC and low frequency measurement, an open circuit is considered as a true open circuit and the current flowing through the port is zero. But for RF measurement, the open circuit of the port may not be a true open circuit. As frequency increases, the impedance of an open circuit decreases due to the parasitic capacitances of the test structure. The current flowing through the port will therefore not be zero. As for the short-circuiting of the port during RF measurement, the reactance may not be small as the effect of the parasitic inductances will become more dominant as frequency increases and hence there will be a voltage drop in the short-circuited ports. Therefore, it is clear that a true open and short circuit conditions are very difficult to achieve for RF measurement. Furthermore, in order to determine the current and voltage of a RF signal, it will require very fast and accurate voltage and current meter and the placement of the probe pins on the pads may also lead to measurement repeatability issue. Hence, to avoid the above issues, S-parameters that relate the incident signal to the transmitted and reflected signal power are measured. Note that the S-parameters can be converted to Z, Y or H-parameters as long as the network is operating in the linear region.

\[
H_{11} = \left. \frac{V_1}{I_1} \right|_{V_2 = 0} \quad (2-15)
\]

\[
H_{12} = \left. \frac{V_1}{V_2} \right|_{I_1 = 0} \quad (2-16)
\]

\[
H_{21} = \left. \frac{I_2}{I_1} \right|_{V_2 = 0} \quad (2-17)
\]

\[
H_{22} = \left. \frac{I_2}{V_2} \right|_{I_1 = 0} \quad (2-18)
\]
The two-port network for the S-parameter analysis is shown in Fig. 2.4.

![Fig. 2.4 S-parameter representation for two-port network](image)

The above two-port model adopts the convention that “a” is the incident signal and “b” is the reflected signal. The S-parameter can be described by the following equations.

\[
\begin{align*}
 b_1 &= S_{11} \times a_1 + S_{12} \times a_2 \\
 b_2 &= S_{21} \times a_1 + S_{22} \times a_2
\end{align*}
\] (2-19) (2-20)

\(S_{11} \) is defined as the input reflection coefficient with the output port matched to \(Z_0 \). \(S_{21} \) is defined as the forward transmission gain or loss with the output port matched to \(Z_0 \). \(S_{12} \) is defined as the reverse transmission or isolation with the input port matched to \(Z_0 \). \(S_{22} \) is defined as the output reflection coefficient with the input port matched to \(Z_0 \).

By terminating ports 1 and 2 with \(Z_0 \), the incident, reflected and transmitted signal power can be measured and the S-parameters can be calculated as follows.

\[
S_{11} = \left. \frac{b_1}{a_1} \right|_{a_2=0}
\] (2-21)
\[S_{12} = \frac{b_1}{a_2a_1=0} \quad (2-22) \]

\[S_{21} = \frac{b_2}{a_1a_2=0} \quad (2-23) \]

\[S_{22} = \frac{b_2}{a_2a_1=0} \quad (2-24) \]

2.3 Smith Chart and Polar Plot

2.3.1 Smith chart for \(S_{xx} \)

The smith chart is a transformation of the complex impedance plane \(R \) to the complex reflection coefficient \(\Gamma \) (rho) using the following equation:

\[\Gamma = \frac{R - Z_0}{R + Z_0} = \frac{R - 50}{R + 50} \quad (2-25) \]

\(Z_0 \) is defined as the characteristic impedance of 50 \(\Omega \).

Fig. 2.5 Relationship between \(S_{xx} \) and the complex impedance of a two-port
Fig. 2.5 shows the complex impedance (left) and smith chart (right) plot. The complex reflection coefficient can be calculated and drawn using (2-25). This figure shows a square with corners (0/0) Ω, (50/0) Ω, (50/j50) Ω and (0/j50) Ω in the complex impedance plane and its equivalent in the smith chart with $Z_0 = 50$ Ω. By observing the transformation above, we can conclude the following statements:

(i) S_{xx} on the real axis represent ohmic resistor.
(ii) S_{xx} above the real axis represent inductive impedance.
(iii) S_{xx} below the real axis represent capacitive impedance.
(iv) S_{xx} curves in the smith chart turn clockwise with increasing frequency.

2.3.2 Polar plot for S_{xy}

![Polar plot for S_{12} and S_{21}]

The S_{21} and S_{12} represent the forward transmission and reverse transmission coefficient respectively. When there is no signal transmitted, S_{21} will be zero. When there is signal transmitted, the magnitude of S_{21} will be greater than zero. When the magnitude of S_{21} is greater than zero but less than one, it implies that the signal is damped from port 1 to port 2. When the magnitude of S_{21} is greater than one, this implies that there is amplification in the signal transmitted. When the real part of S_{21} is negative, this implies than the phase is inverted.
Note than the parameter S_{xy} will turn in the clockwise direction with increasing frequency.

2.4 Unity Short-Circuited Current Gain and Unilateral Power Gain Frequency

2.4.1 Unity short-circuited current gain frequency (f_T)

f_T is defined as the frequency when the short-circuited current gain of the device drops to unity.

$$Short\text{-}circuited\ current\ gain = \frac{i_{out}}{i_{in}}\bigg|_{V_z=0}$$

(2-26)

For a simplified small-signal model for a MOSFET, the short-circuited current gain is derived as in (2-27).

$$\frac{i_{out}}{i_{in}} = g_m \frac{V_{in}}{i_{in}} = \frac{g_m}{j\omega(C_{gs} + C_{gd})}$$

(2-27)

By substituting (2-27) to be equal to one, the parameter f_T is derived and shown in (2-28).

$$f_T = \frac{g_m}{2\pi (C_{gs} + C_{gd})}$$

(2-28)

From (2-17), it is found that the parameter H_{21} is actually equivalent to the short-circuited current gain and by performing a conversion from the de-embedded S-parameters to H-parameters, the calculated H_{21} can be used for the extraction of f_T.

Basically, f_T can be extracted by either the direct measurement or the extrapolation method. The direct measurement method is only possible when the device’s f_T is lower than the measurement tool limitation. Hence, by directly
measuring the S-parameters and converting it to the H-parameters, the calculated H_{21} parameter can be used for the extraction of f_T. When the device’s f_T is larger than the measurement tool limitation, the extrapolation method is used for the extraction. In the extrapolation method, the H_{21} parameter versus frequency plot is extrapolated at a frequency point where it observed a -20 dB/decade and the intercept of the frequency axis is equivalent to f_T.

2.4.2 Unilateral power gain frequency (f_{MAX})

f_{MAX} is defined as the frequency when the unilateral power gain is equivalent to one and it is given as follows,

$$f_{\text{MAX}} = \frac{f_T}{2 \sqrt{g_d R_G + 2 \pi f_T R_G C_{GD}}} \quad (2-29)$$

Unilateral power gain can be obtained when the input of the transistor is conjugate-matched to the input signal source and the load is also conjugate-matched to the transistor’s output impedance, and an appropriate network is used to cancel off the effect of feedback from the output to the input. It is given as shown in (2-30) and (2-31). Note that the parameter k is known as the stability coefficient.

Unilateral power gain = \[
0.5 \left| \frac{S_{21}}{S_{12}} - 1 \right|^2
\]

\[
\begin{aligned}
&= \frac{0.5 \left| \frac{S_{21}}{S_{12}} - 1 \right|^2}{\frac{S_{21}}{S_{12}} - \text{real} \left(\frac{S_{21}}{S_{12}} \right)} \\
&\quad k = \left(\frac{1 - |S_{11}|^2 - |S_{22}|^2 + |S_{11} + S_{22} - S_{12} \cdot S_{21}|^2}{2 \cdot |S_{12}| \cdot |S_{21}|} \right)
\end{aligned}
\]

$\quad (2-30)$

$\quad (2-31)$

Similarly, f_{MAX} can be extracted by direct or extrapolation method. The measurement tools limitation will limit which method to use for the f_{MAX}
extraction. Note that at low frequency, the unilateral power gain is usually unstable and hence, f_{MAX} should only be extrapolated at higher frequency region.

2.5 Types of Noise in Transistor

2.5.1 Thermal noise

Thermal noise is also known as Johnson [37] or Nyquist [38] noise and it is explained by the Brownian motion of thermally agitated charge carriers that generally move in random direction and generate a randomly varying current or voltage. The amount of noise is usually characterized in terms of mean square or root mean square values. The thermal noise is quantified by the available noise power (P_{NA}) as shown in (2-32), where k is the Boltzmann’s constant (1.38×10^{-23} J/K), T is the absolute temperature in Kelvins and Δf is the noise bandwidth in Hertz [39].

$$P_{\text{NA}} = kT\Delta f$$ \hspace{1cm} (2-32)

From (2-32), the available noise power of the thermal noise is frequency independent and it increases with the temperature or the noise bandwidth. Note that thermal noise is also commonly known as white noise.

2.5.2 Shot noise

Shot noise normally occurs in diode and bipolar transistor. It is generated when the charge carriers cross potential barriers randomly with a DC current flow. The total DC current flow and bandwidth affect the noise spectral density of shot noise as shown in (2-33)

$$\overline{\overline{i}} = 2qI\Delta f$$ \hspace{1cm} (2-33)
where $\overline{i_n^2}$ is the root mean square noise current, q is the electronic charge (1.6×10^{-19} C), I is the DC current value in amperes and Δf is the noise bandwidth in Hertz [39].

Note that the shot noise also appears to be frequency independent as with the thermal noise.

2.5.3 Generation and recombination noise

In the semiconductor structure, there are traps and recombination centers in the lattice. When the free electrons move randomly in the semiconductor structure, the continuous trapping and de-trapping process of free electrons generate a fluctuation in the number of charge carrier per unit time. The fluctuation of the charge carriers affect the conductance of the semiconductor and in turn generate a fluctuation of the current flowing through it. The noise generated from this kind of mechanism is known as the generation and recombination noise.

2.5.4 Flicker noise

Many theories have been presented to explain the flicker noise behavior. The two main theories are the random fluctuation of the carriers in the channel [40]-[43] and mobility fluctuation [44], [45]. Based on the carrier fluctuation [42], [43] and mobility fluctuation [44], [45] theory, the noise voltage power spectral density can be shown as in (2-34) and (2-35) respectively. Note that K_1 in (2-34) is bias independent while in (2-35), $K(V_{GS})$ is a bias dependent parameter. Their corresponding noise current power spectral density can be found using (2-36).

\[
S_{vgs} = \frac{K_1}{C_{ox}^2} \frac{1}{W_{total} \cdot L_g} \frac{1}{f^\alpha} \tag{2-34}
\]
\[
S_{vg} = \frac{K(V_{GS})}{C_{ox}} \frac{1}{W_{total} \cdot L_{g}} \cdot \frac{1}{f} \tag{2-35}
\]

\[
S_{id} = g_{m}^2 \cdot S_{vg} \tag{2-36}
\]

2.5.5 Noise parameters and linear two-port noise theory

Before the noise parameters and noise theory are discussed, it is important for us to be clear of the definition for some basic noise terms. Noise figure \((NF)\) is defined as the signal to noise ratio at the input divided by the signal to noise ratio at the output and it is used as a measure on the noise performance of a transistor or a whole circuit block. The parameter \(NF\) is governed by the famous noise equation as given in (2-37) and it basically consists of three noise parameters, namely the minimum noise figure \((NF_{\text{min}})\), the normalized noise resistance \((r_{n})\) and the optimum source reflection coefficient \((\Gamma_{\text{opt}})\). Note that \(\Gamma_{s}\) is the input source reflection coefficient. The parameter \(NF_{\text{min}}\) is defined as the minimum noise figure achievable when \(\Gamma_{s}\) is matched to \(\Gamma_{\text{opt}}\) and \(r_{n}\) is defined as the normalized noise resistance (normalized to \(50 \, \Omega\)) that shows the rate of change of \(NF\) with respect to the mismatched between \(\Gamma_{s}\) and \(\Gamma_{\text{opt}}\). From (2-37). By knowing the three noise parameters and the input source reflection coefficient the transistor or system’s \(NF\) can be calculated. Note that \(\Gamma_{\text{opt}}\) is a complex number and hence it has both the real and imaginary part. Therefore, the number of noise parameters is sometimes referred as the four noise parameters.

\[
NF = NF_{\text{min}} + \frac{4r_{n} |\Gamma_{s} - \Gamma_{\text{opt}}|^2}{(|1 - |\Gamma_{s}|^2| \cdot |1 + \Gamma_{\text{opt}}|^2)} \tag{2-37}
\]
In [46], it is shown that a noisy two-port network can be represented using a noiseless two-port network with two noise current sources as shown in Fig. 2.7(a) and these two noise current sources are usually correlated.

![Diagram](attachment:image.png)

Fig. 2.7 Noisy two-port network representation

By utilizing the Y-parameters and the noise current sources i_1, i_2 and their correlation term $i_1^* i_2^*$ in Fig. 2.7(a), its equivalent two-port network in Fig. 2.7(b) with a noise voltage and current source can be derived. By converting to the noise source representation as shown in Fig. 2.7(b), the noise parameters can be easily derived from a single frequency measurement of the two-port noise factor as a function of input mismatch [47]. In [46], the method to extract i, u and Y_{cor} in Fig. 2.7(b) was reported as follows.

\[i = i_{nn} + u \cdot Y_{cor} \quad (2-38) \]

\[i^* u^* = Y_{cor} |u|^2 \quad (2-39) \]
\[u = -\frac{1}{Y_{21}} i_2 \]
\[i = i_1 - \frac{Y_{11}}{Y_{21}} i_2 \]

\[Y_{\text{cor}} = Y_{11} - Y_{21} \frac{i_1 i_2^*}{|i_2|^2} = G_{\text{cor}} + jB_{\text{cor}} \]

Based on the above equations, the noise power of \(u \) and \(i \) can be derived as follows,

\[|\bar{u}|^2 = \frac{|i_2|^2}{|Y_{21}|^2} = 4kT\Delta fR_u \]
\[|\bar{i}|^2 = |\bar{i}_1|^2 + |i_2|^2 \frac{Y_{11}}{Y_{21}} |^2 - 2 \text{Re} \left(\bar{i}_1 i_2 \frac{Y_{11}^*}{Y_{21}} \right) = 4kT\Delta fG_i \]

From (2-41) to (2-42), the noise parameters can be calculated as shown in [46].

\[R_n = R_u \]
\[G_{\text{opt}} = \sqrt{\frac{G_i}{R_n} - B_{\text{cor}}^2} \]
\[B_{\text{opt}} = -B_{\text{cor}} \]
\[NF_{\text{min}} = 1 + 2 \cdot R_n \left(G_{\text{cor}} + G_{\text{opt}} \right) \]

Note that \(G_{\text{opt}} \) and \(B_{\text{opt}} \) are defined as the optimum source conductance and susceptance respectively.

2.6 Summary

The Y, Z and H parameters were discussed and studied. Due to the various difficulties to measure the Y, Z and H parameters at RF frequency, S-parameters are used to characterize the RF devices. The S-parameters can be obtained by...
supplying a signal at port 1 and monitor the transmitted and reflected signal at port 2 and port 1 respectively. The S-parameters is not unique for RF circuit; it can be easily converted to Y, Z or H parameters if required. The definition and extraction methods for f_T and f_{MAX} are presented. The different types of noise that exist in the semiconductor are also given. The definition of the noise parameters and the linear two-port noise theory are presented and discussed.
Chapter 3

DEVICE CHARACTERIZATION

3.1 Introduction

Device characterization is a very important process for RF device modeling. The inaccuracy of the characterization results will introduce additional error in the developed models. When performing circuit simulation with these models, inaccurate simulation results are produced that can cause fabricated circuits fail to meet their electrical specifications. Therefore, it is very critical to have the necessary knowledge on how to obtain accurate device characterization results. The process of device characterization involves the DC, low and high frequency test measurements, the device layout and the pads and interconnects structure design. In order to achieve accurate device characterization, measurement system calibration must be done to remove the parasitic that exist in the measurement system. By shifting of the measurement reference plane with the various reported de-embedding techniques, the intrinsic device’s performance can be extracted.

3.2 DC Measurement

During DC measurement, the parameter analyzer such as the HP4156C and HP4142 are commonly used to measure the device’s DC curves. The source monitor unit (SMU) in the parameter analyzer can force voltage or current and measure the resultant current or voltage at the probe terminal with good resolution and accuracy. The probing used for the measurement is normally a low leakage single pin probe that is Kelvin-connected so as to remove the parasitic resistances
from the SMU, cables and connectors. Depending on the test structure design, sometimes RF probes can be used for the DC measurement when the measurement difference is small as compared to the DC probes. During low current measurement, high resolution SMU (HRSMU) and longer integration are required for more accurate measurement. For measurement of large current flow, medium power SMU (MPSMU) and shorter integration time can be used to reduce the measurement time without compromising the accuracy of the measurement. For very large current flow that exceeds the current compliance of the HRSMU and MPSMU, the high power SMU (HP-SMU) can be used for the measurement. The maximum current compliance for both of the HRSMU and MPSMU is 0.1 A while the HP-SMU it is 1 A. Note that when measuring large current flow, heating of the device and the current path will occur that will increase the parasitic resistance in the current path. Hence, pulse IV measurement system maybe require to prevent the device and instrument from heating up and change the intrinsic DC characteristics.

3.3 RF Measurement

As the RF measurement sweep for a range of frequency and biasing points, the time require for this kind of measurement is usually very much longer than the DC measurement case. Hence to prevent wasting of the precious measurement time to measure a “dead” device, its DC curves are measured first to ensure that the device is working before starting the RF measurement.
3.3.1 S-parameter measurement system

Fig. 3.1 shows the complete system for the S-parameter measurement. The function of each block is described as follows.

HP8510 network analyzer is used as a control and display unit of the measurement system. It controls the setting of the AC signal power, attenuation level and many others setting. It also allows the display to change to any of the display settings available in the box. During the measurement setup, it is always very difficult to decide the level of AC signal power to supply to the DUT. There are two possible scenarios that may occur when the signal power level is set too low. Firstly the signal source is not ideal; thus it has a certain frequency response. At higher frequency range, the signal power will start to drop and this will cause
calibration issue and inaccurate measurement as the supplied power is not set at the specified level at higher frequency range. Secondly, the S-parameters when measured at low signal power setting will be coupled with very high noise and the measured data will not be “clean”. When the signal power is set too high, non-linear distortion and gain compression may occur and cause the measured S-parameters to be inaccurate. Therefore, there are two ways to determine the signal power level for RF measurement. Firstly, by measuring the S-parameters for a range of power level setting and when the S-parameters are almost unchanged with the change in power level setting, that range of power level setting can be used for the measurement. Secondly, when the DC curves are measured with the signal source turns on, if the signal power level is set too high, it will affect the measured R_{out} versus V_d and G_m vs V_g plots. Therefore, by tuning the power level setting until the measured DC plots remain unchanged; this power level setting can be used for the RF S-parameter measurement. Although the attenuation setting can be used to reduce the signal power level, it is also not an ideal attenuator. Hence, it will observe a behavior change when frequency increases. Therefore, in order to tackle the problem with signal power change with frequency, HP8510 provides a power slope setting whereby the source signal power can be vary when frequency increases.

The HP8341B RF synthesizer is basically a high frequency signal generator that provides the signal power to the DUT. By supplying the signal power to the input and output terminals, the forward and reverse transmission gain or loss and the input and output impedance can be measured.
The S-parameter test set is used to acquire the input and reflected signal power at the DUT for both ports. It is controlled by HP8510 so that all the four S-parameters can be measured without having to physically reversing the DUT.

The bias-T is used to couple the AC signal and DC bias to the DUT. It consists of an inductor and a capacitor in the DC and AC signal path respectively. The inductor serves like a RF choke that allows only the AC signal to pass through while the capacitor will block the DC component in its path.

3.3.2 Network analyzer calibration

The purpose of performing network analyzer calibration is to move the reference plane directly from the network analyzer terminals to the probe pins and by doing so, all the errors contributed by the measurement system, cables, bias-T and probe pins can be removed. There are many different calibration techniques available for the network analyzer. They are the Short-Open-Load-Thru (SOLT), Thru-Reflection-Line (TRL), Line-Reflection-Match (LRM) and Line-Reflect-Reflect-Match (LRRM) and the associated error correction calculations. For the different calibration procedures, the known specific standard terminations have to be measured. In our measurement, LRRM technique was used as it can provide high performance calibration with fixed probe separation. In addition, the calibration process is simple and automated.
Fig. 3.2 shows the various different known specific standard terminations. These structures are fabricated on ceramic substrate and are used during the calibration procedure. As these calibration standards are not ideal, the SHORT structure is not an ideal short but it has a rather small inductance. Similarly, the OPEN is not an ideal open but it corresponds to a capacitor between the ground-signal-ground (GSG) probe pins. Therefore, these errors must be calibrated before the S-parameter measurement of the DUT can begin. After all the standard terminations are measured, the correction terms will be calculated and stored in the network analyzer as calset. Note that this calset will contain the correction terms correspond to RF power, frequency range, averaging settings of the network analyzer etc.
When the S-parameter of the DUT is measured, the data will have to be corrected inside the network analyzer using the calset and then transfer to the modeling software and display there.

3.3.3 Probe configuration and device layout

The probe used for the RF measurement is the ground-signal-ground (GSG) RF probe with pitch size of 100 µm.

![RF GSG probes used in measurement](image)

Fig. 3.3 RF GSG probes used in measurement

From Fig. 3.3, the three probe tips are in-line and spaced 100 µm apart. The two outer pins are mainly for grounding while the center pin is the signal pin. Note that before the calibration process of the network analyzer, the GSG probe must be checked to ensure that all the probe tips are in-line. Secondly, by tuning the manipulator, the probe pins must be aligned horizontally so that all the three pins
will be in contact with the bond pads at the same time. Thirdly, make sure that all the three pins can provide a “good” contact on the bond pads before the measurement begins.

The RF MOSFET used in the measurement is processed by 0.18 µm, 0.25 µm and 90 nm technology. Multi-finger configuration was used for the transistor to reduce the gate resistance so that lower noise and higher f_{MAX} can be achieved. Substrate contacts are also implemented to protect the whole transistor so as to improve the noise performance. Fig. 3.4 shows an example of the RF transistor layout design.

Fig. 3.4 RF transistor layout design
3.3.4 De-embedding methods

During high frequency measurement, the parasitic from the bond pads and interconnect lines must be de-embedded to obtain the intrinsic DUT characteristics. The two most widely used methods are the OPEN and OPEN-SHORT de-embedding technique.

Dummy structures are layout to have only the bond pads and interconnect lines but without any active implant. These dummy structures are used to de-embed the parasitic that comes from the bonding pads and interconnect lines.

3.3.4.1 OPEN de-embedding

OPEN de-embedding is the simplest way to de-embed the parasitic and is often used for frequency range up to 10 GHz. In this method, the impedance of all the parasitic series resistance and inductance are assumed to be negligible for frequency less than 10 GHz.

Fig. 3.5 OPEN structure layout and its equivalent circuit

Fig. 3.5 shows the physical layout and its equivalent circuit with the DUT. The resistance Rp1 and Rp2 represent the ohmic losses due to the silicon substrate.
Cp1 and Cp2 represent the coupling capacitance between the signal and ground pads. Cp3 represents the coupling capacitance between the signal pad at port 1 and signal pad at port 2. The S-parameters for the OPEN structure are measured and converted to Y-parameters and manipulated as below:

\[
Y_{DUT} = Y_{TOTAL} - Y_{OPEN} \tag{3-1}
\]

\[
S_{DUT} = S(Y_{DUT}) \tag{3-2}
\]

\(Y_{TOTAL}\) represents the Y-parameters that include both the DUT and open parasitic while \(Y_{OPEN}\) represents the Y-parameters that include only the OPEN structure. \(S_{DUT}\) represents the S-parameters of the DUT only.

3.3.4.2 OPEN-SHORT de-embedding

OPEN-SHORT de-embedding is another de-embedding technique that can be use if the accuracy of the OPEN de-embedding method is not enough. It is normally used for frequency range above 10 GHz.

Fig. 3.6 SHORT structure layout and its equivalent circuit
Fig. 3.6 shows the physical layout and its equivalent circuit of the DUT. The parallel parasitic has the same meaning as in the OPEN structure. The resistances Rs1, Rs2 and Rs3 represent the ohmic losses of the interconnect lines. Ls1, Ls2 and Ls3 represent the parasitic inductance of the interconnect lines. The S-parameters for both the OPEN and SHORT structure are measured and manipulated as below:

Step 1: De-embed from OPEN structure

\[
Y_{dut \, open} = Y_{total} - Y_{open} \tag{3-3}
\]
\[
Y_{short \, open} = Y_{short} - Y_{open} \tag{3-4}
\]

Step 2: Convert to Z parameters

\[
Z_{dut \, open} = Z(Y_{dut \, open}) \tag{3-5}
\]
\[
Z_{short \, open} = Z(Y_{short \, open}) \tag{3-6}
\]

Step 3: De-embed from SHORT structure

\[
Z_{dut} = Z_{dut \, open} - Z_{short \, open} \tag{3-7}
\]

Step 4: Convert to S-parameters

\[
S_{dut} = S(Z_{dut}) \tag{3-8}
\]

In steps 1 and 2, the OPEN parasitic are de-embedded for both the “SHORT” and “DUT + OPEN and SHORT parasitic”.

In step 3, the “SHORT without OPEN parasitic” is then de-embedded for the “DUT without OPEN parasitic”.

Finally in step 4, the “DUT without both OPEN and SHORT parasitic” are converted back to S-parameters to get the intrinsic transistor performance.
3.3.5 De-embedding technique used and results

By performing the steps given in section 3.3.4.2, the S-parameters of the intrinsic DUT can be de-embedded from the OPEN and SHORT structures as shown in Fig. 3.7. Basically, the de-embedding process removes the parallel and series parasitics in the DUT by using the OPEN and SHORT structures. It is shown that in Fig. 3.7(a) and (b), the de-embedded S_{11} and S_{22} data show an increase in the negative reactance due to the removal of inductances and capacitances parasitics as shown in Fig. 3.6. At higher frequency, the magnitude of S_{21} will decrease and tend towards zero due to the transistor capacitance shorting all the voltage transmission. Hence, the removal of the parasitic capacitance changes the S_{21} parameter curve as shown in Fig. 3.7(c). The S_{12} parameter is also known as the reverse transmission gain and this gain is normally not used and its value is very small even before or after de-embedding of the parasitics. Hence, it is of the least importance among the four measured S-parameters.
Before de-embedding

After de-embedding

S_Gate_D_m/spar/freq

(b)

After de-embedding

Before de-embedding

REAL [E+0]

(c)
3.4 Flicker Noise Measurement and Test Structure

Flicker noise mainly affects the low frequency performance of the transistor but the impact of flicker noise cannot be neglected in certain RF circuits such as mixer and oscillator because it can up-convert the low frequency noise to high frequency that can affect the circuit’s phase noise performance [48]. For example, the low frequency noise in the current source of a VCO can be up-converted and appears as phase noise. Poor phase noise will directly affect the transceiver’s bit error rate (BER) and its adjacent channel rejection performance. Therefore, it is important to study the flicker noise behavior of the RF transistor. Furthermore, in order to perform the high frequency noise modeling of the RF transistor, the parasitic resistances and the flicker noise of the transistor has to be
modeled well as both of them will contribute to the overall noise figure of the RF transistor at both low and high frequency region.

Many theories have been presented to explain the flicker noise behavior. The two main theories are the random fluctuation of the carriers in the channel [40]-[43] and mobility fluctuation [44], [45]. Based on the carrier fluctuation [42], [43] and mobility fluctuation [44], [45] theory, the noise voltage power spectral density can be shown as in (3-9) and (3-10) respectively. Note that K_i in (3-9) is bias independent while in (3-10), $K(V_{GS})$ is a bias dependent parameter. Their corresponding noise current power spectral density can be found using (3-11).

\[
S_{vj} = \frac{K_i}{C_{ox}} \frac{1}{W_{total} \cdot L_g} \frac{1}{f^\gamma} \quad (3-9)
\]

\[
S_{vj} = \frac{K(V_{GS})}{C_{ox}} \frac{1}{W_{total} \cdot L_g} \frac{1}{f} \quad (3-10)
\]

\[
S_{id} = g_m^2 \cdot S_{vj} \quad (3-11)
\]

3.4.1 Flicker noise measurement system

![Flicker noise measurement system](attachment:image.png)

Fig. 3.8 Flicker noise measurement system
Fig. 3.8 shows the flicker noise measurement system. The function of each block is described as follows.

NoisePro [49] is the window based flicker noise measurement software that is installed in the PC. By entering all the measurement and extraction settings into the measurement software, it can send and receive information to the rest of the measurement instruments via the general purpose interface bus (GPIB) cables. The software allows both the DC and flicker noise measurement to be performed on the DUT and it is able to extract and simulate the flicker noise model parameters to obtain the noise spectral density of the DUT.

IV meter such as the HP4142B or Agilent 4156C parameter analyzer [50] are used to provide the DC biasing supply required by the DUT with the source measurement unit (SMU). The SMU is able to source and monitor the voltage or current flowing through the terminal so that biasing condition of the DUT can be known during the flicker noise measurement process.

BTA9812A noise analyzer [51] has a detachable pre-amplifier and filter unit which can be placed closer to the DUT in the measurement chamber. The pre-amplifier is battery operated for optimal low noise measurement. The biasing voltage supply from the IV meter will contain noise and they are being filtered off by the RC filters in the detachable unit. RC filters are used to avoid causing instability problems of the SMUs. By changing the resistor in each filter, the time constant of the filter can be changed. Long filter time constant will produce more accurate noise measurement but the time required for the noise measurement will be larger due to longer filter response time and settling time required to wait for the filter’s output to be stabilized. The pre-amplifier contains both the voltage and
current noise amplifier. In general DUTs with low output resistance should be measured with a voltage amplifier, while DUTs with high output resistance should be measured with a current amplifier.

The dynamic signal analyzer used in this experiment is SR780 [52]. It is mainly used to measure the amplified noise signal from the DUT and the measured noise spectral density is then feedback to the PC host that control the whole measurement system via GPIB connection [53].

3.4.2 Test structure

As the flicker noise measurement is performed at low frequency region, typically less than 1 MHz, the parasitics from the bond pads, interconnects and test structure design will not appear and affect the flicker noise measurement. Hence, the test structure design for the DUT to be measured for flicker noise can used either the DC or RF transistor test structure as shown in Fig. 3.9.

![Fig. 3.9 (a) DC and (b) RF transistor test structures](image)

3.4.3 Measurement results

The typical flicker noise measurement results comprise of the measured DC and noise current spectral density. By simulating the model parameters, the
simulated DC and flicker noise results can be obtained and compared with the measured results. The measured and simulated DC and noise current spectral density characteristics for the DUT are shown in Figs. 3.10 and 3.11.

Fig. 3.10 Measured (symbol) and simulated (solid line) DC results

Fig. 3.11 Measured (red) and simulated (green) noise current spectral density
From (3-9) to (3-11), it is clear that the flicker noise model is strongly dependent on the model DC characteristics. Therefore, it is expected that the flicker noise model should be scalable as the DC model in terms of the device geometry and biasing points. Furthermore, since the flicker noise measurement is done at low frequency region, the layout parasitic should not come into play and affect the measured results.

3.5 High Frequency Noise Measurement and Test

Structure

From the classical RF noise model from Van Der Ziel [54], [55], the high frequency noise of a transistor can be described by two correlated current noise sources, the drain noise current i_{nd} and the induced gate noise current i_{ng}. The induced gate noise is caused by the capacitive coupling from the channel noise current. The mean-square representation for drain current noise and gate noise are shown in (3-12) and (3-13) respectively. Note that c is the correlation factor between the drain and gate noise sources.

\[
\overline{i_{nd}^2} = 4kTg_{d0}\Delta f
\]

\[
\overline{i_{ng}^2} = 4kT\delta \left(\frac{\omega^2 C_{gs}^2}{5g_{d0}}\right) \Delta f
\]

\[
c = \frac{i_{ng}i_{nd}^*}{\sqrt{i_{ng}^2i_{nd}^2}}
\]

In (3-12), the parameter g_{d0} is the drain-source conductance at zero V_{DS} and γ is the noise factor and has a value of unity at zero V_{DS}, while in long channel devices, it decreases to a value of 2/3 in saturation region. Note that for short channel devices operating in the saturation region, γ can be considerably higher
than the long channel value. In (3-13), the parameter \(\delta \) is the gate noise coefficient and it is given a value of 4/3 in [54].

In [56], [57], the approximated expression for minimum noise factor (\(F_{\text{min}} \)) is derived as shown in (3-15). In the next section, we will relate this expression to our measured \(NF_{\text{min}} \) parameter. Noted that \(NF_{\text{min}} \) is the equivalent of \(F_{\text{min}} \) in decibel (dB).

\[
F_{\text{min}} = 1 + \frac{f}{f_{\text{MAX}}} \sqrt{P + R - 2C \sqrt{RP}} \cdot \sqrt{1 + \left(2 \frac{f_{\text{MAX}}}{f_c}\right)^2 g_m (R_s + R_t + R_i)}
\]
(3-15)

\[
P = \frac{i_{\text{nd}}^2}{4kT g_m \Delta f}
\]
(3-16)

\[
R = \frac{i_{\text{ng}}^2}{4kT \left(\frac{\omega^2 C_{gs}^2}{g_m}\right) \Delta f}
\]
(3-17)

\[
C = \text{Im} \left(\frac{i_{\text{ng}} \cdot i_{\text{nd}}^*}{\sqrt{i_{\text{ng}}^2 \cdot i_{\text{nd}}^*}} \right)
\]
(3-18)

\[
f_c = \frac{g_m}{2 \cdot \pi \cdot C_{gs}}
\]
(3-19)

The \(P, R \) and \(C \) noise parameters used in (3-15) are related to the drain and gate noise current sources as shown in (3-16)-(3-19).
3.5.1 High frequency noise measurement system

Fig. 3.12 ATN NP5B noise parameter and S-parameter device characterization system

Fig. 3.12 shows the ATN NP5B system that is used for the HF noise parameters and S-parameters measurement. The whole system is basically a combination of two sub-systems, HP8510C vector network analyzer (VNA) system and HP8970 noise figure measurement system. The NP5 mainframe is used as a control to switch between the S-parameters and noise measurement system.

The S-parameters measurement system consists of HP8510C VNA, HP8517B S-parameter test-set and HP83650B synthesizer. Basically, the VNA controls the test-set and the synthesizer so that the input and output signal power can be measured to obtain the S-parameters. The detail discussion of the S-parameter measurement system can be found in Section 3.3.1 of this thesis.

The noise parameters measurement system consists of HP8970B noise figure meter and HP8971C noise figure test-set. There are two frequency
configuration modules that can be selected during the high frequency noise measurement. The first frequency module range from 0.3 to 6 GHz and the second is from 2 to 26.5 GHz. The mainframe controls and drives the external connected mismatch noise source (MNS) and the remote receiver module (RRM) during the noise measurement. The internal component connection of the MNS consists of an electronic solid-state multi-state tuner, bias Tee and RF switches that switch between the VNA and the noise source connected at the input of the MNS module.

In the RRM module, it has a broadband low noise amplifier (LNA) that will lower the system noise while amplifying the output signal. Consequently, it provides a low second stage noise figure for the measurement system that improves the noise measurement accuracy. It also has a bias Tee and RF switches that allows the output signal to be connected either to the S-parameter test-set or the noise figure test-set for measurement.

The DC biasing required by the DUT is supplied from HP4142 DC source and monitor unit (SMU). All the above instruments are controlled by the PC host which uses the ATN NP5 system software.

The instrument setting used for the S-parameter measurement system is the same as the discussion in Section 3.3.1. The only difference is the instrument settings are entered into the NP5 system software whereby it transfers all these settings to the instruments through GPIB cables. In order to improve the HF noise characterization accuracy, it performs more noise figure measurements at different source impedance states. Therefore, the noise measurement time is usually very much longer than the S-parameter and DC measurement time. Hence, the number of measurement points and biasing combinations has to be compromised in order not to over stress the DUT. Furthermore, it is a common practice to measure the
DUT DC characteristics first so that to ensure the DUT is operating normally before the HF noise measurement commences.

3.5.2 Test structure

Unlike in the flicker noise measurement, the HF noise is performed at 0.3 to 26.5 GHz. At such frequency region, the layout parasitic will come into play and affect the DUT intrinsic characteristics. Hence, the S-parameters and HF noise are usually measured in the same RF DUT test structure as shown in Fig. 3.9. As the layout parasitic from the bond pads and interconnects will contribute to the measured S-parameters and HF noise measurement, the de-embedding process has to be done for both measurements to obtain the intrinsic behavior of the DUT.

3.5.3 System calibration and verification

In order to perform accurate S-parameters and HF noise measurement in the ATN NP5 system, the system calibration as directed by its software has to be performed in sequence as follows.

1. **Input SHORT, OPEN and LOAD (SOL) standards calibration**

 By connecting a THRU structure in place for the DUT, the S_{22} parameter measurement of the NP5 system is performed with the SOL standard at the input of the MNS module. This will help to find the loss of the MNS module.

2. **System noise source gamma calibration**

 By connecting the noise source to the input of the MNS module and turning it on and off, the same S_{22} parameter measurement is performed with the THRU structure; the reflection coefficient of the noise source can be extracted. This measured result is used to correct the mismatch of the noise diode.

3. **System noise source noise figure calibration**
This calibration determines the system noise figure from the noise diode contribute back into the system. If any of the noise measurement frequency points exceed 2 GHz then peaking of the YIG filter is required in this calibration. The purpose of peaking or fine tuning the YIG filter is to match the pass band response of the noise figure test-set. However, the peaking of the YIG filter is only required when the measurement frequency points and range have changed, the noise figure test-set is turned off or the ambient temperature has varied above ±5 ºC since the last peaking. During the peaking process, it should be observed that the first noise figure NF1 from the calibration results has to be the lowest.

4. Network analyzer calibration

The network analyzer calibration is actually the S-parameter calibration and it can utilize any technique supported by the network analyzer or any third party calibration software. The following techniques such as the Short-Open-Load-Thru (SOLT), Line-Reflect-Match (LRM), Thru-Reflect-Line (TRL) or Line-Reflect-Reflect-Match (LRRM) can be used to calibrate the network analyzer. After the calibration is done, it is advisable to check the calibrated S-parameters using the known standards from the Impedance Standard Substrate (ISS). By physically checking the Thru line phase change, the quality of the calibration can be checked and redo if large phase change is observed when the Thru line is probed. Note that the reference plane for the S-parameters is the same as the noise measurement system.

5. Thru line delay calibration

After the network analyzer calibration, the NP5 system will do a Thru line verification to calculate and display the Thru line delay of 1 pico-second. After this
verification, the software system will continue the rest of the noise system calibration unattended (fully software controlled).

6. RRM calibration

This calibration determines the gamma presented to the DUT at the output reference plane.

7. MNS calibration

This calibration determines the gamma presented to the DUT at the input reference plane.

8. Noise parameter calibration

This is the final stage of the noise system calibration. Similar to stages 6 and 7, the calibration runs fully automated. At the end of this calibration stage, the calibration data is saved and the noise system is ready to perform S-parameter and HF noise measurements.

Before commencing the HF noise measurement, it is important to verify the calibration by measuring a known standard or DUT. For example, the Thru line can be measured for its S-parameters and HF noise. Typically, the loss of a Thru must be within ±0.1 dB and the NF_{min} must be within ±0.2 dB. If the above tolerance is not met, this implies that the S-parameter or the noise calibration is not done well and require to be redone. Instead of a Thru line, a known passive DUT such as an attenuator can be measured to verify the system calibration. By verifying the known standard at the beginning and ending of the measurement session, the verification results can confirm that the measured noise and S-parameters are all accurate and reliable. Fig. 3.13 shows an example of a Thru line measured for its gain and noise parameters at the beginning and ending of the measurement session and from the measured results, it is clear that the tolerance of
the measured Thru line loss and its NF_{min} values are within specification and this will assure that all the measured data collected within this measurement session should be reliable.

3.5.4 High frequency noise de-embedding method

In order to obtain the intrinsic noise performance of a transistor, the pads and interconnects parasitic that contribute to the overall noise has to be de-embedded. In this section, the high frequency noise de-embedding method using the standard OPEN and SHORT structures are presented [58].

Step 1:

Measure the S-parameters of a DUT $[S^{\text{DUT}}]$, OPEN $[S^{\text{OPEN}}]$ and SHORT $[S^{\text{SHORT}}]$ structure, and convert them to Y-parameters $[Y^{\text{DUT}}, Y^{\text{OPEN}}, Y^{\text{SHORT}}]$ with the below transformation equation.
$[Y] = \begin{bmatrix}
(1 - S_{11})(1 + S_{22}) + S_{12}S_{21} & -2S_{12} \\
-2S_{21} & (1 + S_{11})(1 - S_{22}) + S_{12}S_{21}
\end{bmatrix}
Z_0 \cdot \begin{bmatrix}
(1 + S_{11})(1 + S_{22}) - S_{12}S_{21}
\end{bmatrix}
(3-20)

Step 2:

Measure the noise parameters of a DUT \([NF_{min}^{DUT}, Y_{opt}^{OPEN}, R_n^{SHORT}]\) structure, and calculate the correlation matrix \([C_A^{DUT}]\) with

$$[C_A^{DUT}] = 2kT_0 \begin{bmatrix}
R_n^{DUT} & \frac{NF_{min}^{DUT}}{2} - 1 - R_n^{DUT} Y_{opt}^{DUT} & 0 \\
-1 - R_n^{DUT} Y_{opt}^{DUT} & R_n^{DUT} \left| Y_{opt}^{DUT} \right|^2 & 0
\end{bmatrix}
(3-21)$$

Note that \(T_0\) is the standard reference temperature of 290K and the asterisk symbol denotes the complex conjugate.

Step 3:

Convert the \([C_A^{DUT}]\) matrix to its \([C_Y^{DUT}]\) with

$$[C_Y^{DUT}] = \left[T^{DUT} \right] [C_A^{DUT}] \left[T^{DUT} \right]^\dagger
(3-22)$$

$$[T^{DUT}] = \begin{bmatrix}
-Y_{11}^{DUT} & 1 \\
-Y_{21}^{DUT} & 0
\end{bmatrix}
(3-23)$$

Note that \(^\dagger\) denotes the Hermitian conjugation of the element.

Step 4:

Calculate the correlation matrix \([C_Y^{OPEN}]\) of the OPEN structure with

$$[C_Y^{OPEN}] = 2kT\Re\left(Y^{OPEN}\right)
(3-24)$$

Where \(k\) is the Boltzmann constant and \(T\) is the absolute temperature.

Step 5:

Subtract the parallel parasitic from \([Y^{DUT}]\) and \([Y^{SHORT}]\)

$$[Y_I^{DUT}] = [Y^{DUT}] - [Y^{OPEN}]
(3-25)$$

$$[Y_I^{SHORT}] = [Y^{SHORT}] - [Y^{OPEN}]
(3-26)$$
Step 6:
De-embed $[C_{Y^{DUT}}]$ from the parallel parasitic with

$$
[C_{Y^{DUT}}^{YI}] = [C_{Y^{DUT}}] - [C_Y^{OPEN}]
$$

(3-27)

Step 7:
Convert the $[Y_i^{DUT}]$ and $[Y_i^{SHORT}]$ to $[Z_i^{DUT}]$ and $[Z_i^{SHORT}]$ with

$$
[Z] = \frac{1}{Y_1 Y_{22} - Y_{12} Y_{21}} \begin{bmatrix} Y_{22} & -Y_{12} \\ -Y_{21} & Y_{11} \end{bmatrix}
$$

(3-28)

Step 8:
Convert $[C_{Y_i^{DUT}}]$ to $[C_{Z_i^{DUT}}]$ with

$$
[C_{Z_i^{DUT}}] = [Z_i^{DUT}] \left[C_{Y_i^{DUT}}^{YI}\right]^{\dagger}
$$

(3-29)

Step 9:
Calculate the correlation matrix $[C_{Z_i^{SHORT}}]$ of the SHORT structure after de-embedding the parallel parasitic with

$$
[C_{Z_i^{SHORT}}] = 2kT \Re\{[Z_{Z_i^{SHORT}}]\}
$$

(3-30)

Note that $\Re()$ represents the real part of the element.

Step 10:
Subtract the series parasitic from $[Z_i^{DUT}]$ to get the Z-parameters $[Z^{TRANS}]$ of the intrinsic transistor with

$$
[Z^{TRANS}] = [Z_i^{DUT}] - [Z_i^{SHORT}]
$$

(3-31)

Step 11:
De-embed $[C_{Z_i^{DUT}}]$ from the series parasitic to get the correlation matrix with $[C_Z]$ of an intrinsic transistor with

$$
[C_Z] = [C_{Z_i^{DUT}}] - [C_{Z_i}^{SHORT}]
$$

(3-32)

Step 12:
Convert the $[Z^\text{TRANS}]$ of the intrinsic transistor to its chain matrix $[A^\text{TRANS}]$ with

$$[A] = \frac{1}{Z_{21}} \begin{bmatrix} Z_{11} & (Z_{11}Z_{22} - Z_{12}Z_{21}) \\ 1 & Z_{22} \end{bmatrix}$$

(3-33)

Step 13:

Transform $[C_Z]$ to $[C_A]$ with

$$[C_A] = [T_A] [C_Z] [T_A]^{\dagger}$$

(3-34)

$$[T_A] = \begin{bmatrix} 1 - a_{11}^{\text{TRANS}} \\ 0 \end{bmatrix}$$

(3-35)

Step 14:

Calculate the noise parameters of an intrinsic transistor from the noise correlation matrix in the chain representation $[C_A]$ using the following expressions

$$NF_{\min} = 1 + \frac{1}{kT_0} \left(\Re(C_{12A}) + \sqrt{C_{11A}C_{22A} - (\Im(C_{12A}))^2} \right)$$

(3-36)

$$Y_{opt} = \frac{\sqrt{C_{11A}C_{22A} - (\Im(C_{12A}))^2} + i(\Im(C_{12A}))}{C_{11A}}$$

(3-37)

$$R_n = \frac{C_{11A}}{2kT_0}$$

(3-38)

Where $\Im()$ represents the imaginary part of the element and i is the imaginary unit.

3.6 Summary

The various device characterization systems were discussed and presented. By performing network analyzer calibration, the measurement reference plane can be moved from the instruments terminals directly to the probe pins. When the device is measured for its S-parameters, the network analyzer will automatically remove the contribution from the system and display the measured device characteristics. In order to obtain the intrinsic device behaviour, the effects from...
the pads and interconnects has to be removed by using the de-embedding process. The flicker noise and high frequency noise measurement system are discussed and presented. The calibration of the high frequency noise system is presented and verified by measuring the standard THRU structure in the ISS. By performing high frequency noise de-embedding, the noise contribution from the pads and interconnect structures can be removed and the intrinsic noise behaviour can be extracted.
Chapter 4

CMOS RF MODELING

4.1 Introduction

In the past, GaAs and bipolar transistors are usually chosen for RF circuits due to their high unity gain frequency and excellent RF properties. As CMOS process technology continues to improve, its unity gain frequency has increased to a level that is comparable to its GaAs and bipolar counterparts. The improved unity current gain frequency and noise figure of the CMOS transistor coupled with the lower process cost and higher device integration show that CMOS technology has great potential in RF applications. In order to build RF circuit using CMOS devices, accurate and reliable RF CMOS transistor models are required.

In the past, most commercial MOSFET models including the BSIM models are developed mainly for digital and low frequency analog applications. Through much effort from the BSIM development team, they have managed to improve the BSIM model to cater to digital, low frequency and RF modeling requirements. The recent improvement in BSIM3v3 and BSIM4 RF models demonstrate great potential in RF transistor modeling.

4.2 RF Parasitic in MOSFET

In the DC and low frequency MOSFET models, the parasitic at the gate and substrate structures are normally neglected as their effects are usually small in that frequency range. The source and drain parasitic resistances are also treated as “virtual” components and are only included to model the voltage drop in the I-V equation [22]. However, in radio frequency range, the effect of these parasitic can
no longer be neglected as they affect quite significantly in the device performance and must be considered in the equivalent circuit of the device.

4.2.1 Gate resistance modeling

At DC and low frequency range, the gate resistance is seen only as the poly-silicon sheet resistance. However, at radio frequency range, the effective gate resistance will change due to the distributed effects observed at the gate terminal [59]. In order to model the gate resistance accurately at RF, the gate electrode and the channel must be treated as a distributed structure and their combined resistance will be the effective gate resistance seen at the gate terminal.

\[R_G = R_{G,\text{poly}} + R_{G,\text{NQS}} \] \hspace{1cm} (4-1)

\[Z_m = \frac{N}{j\omega C_{\text{PW}}} + \frac{\rho_{\text{poly}} W}{3N} + \frac{j\omega L_{\text{DW}}}{3N}, \quad \text{Single contacted gate} \] \hspace{1cm} (4-2)
\[Z_{in} = \frac{N}{j\omega C_{pw}} + \frac{\rho_{poly} L}{12N} + \frac{j\omega L_{sw}}{12N}, \quad \text{Double contacted gate} \quad (4-3) \]

By treating the gate terminal as a distributed transmission line, the gate impedance can be derived as shown in (4-2) and (4-3) where \(N \) is the number of fingers, \(C_p \) is the gate capacitance, \(\rho_{poly} \) is the gate sheet resistance, \(L \) and \(w \) is the length and width of a single finger, and \(L_s \) is the series inductance of the gate terminal. Note that \(Z_{in} \) is the input impedance seen at the gate terminal and a detailed derivation can be obtained in [24]. From the above equations, it is observed that the gate resistance increases with the width of the transistor. Therefore, to reduce the gate resistance, multi-finger and narrow transistor is used in circuit design. Furthermore, utilizing double-contacted gate structure can further reduce the gate terminal resistance.

4.2.1.2 Channel reflected gate resistance \((R_{G,NQS})\)

At frequency close to or above the unity current gain frequency, the carriers in the channel of the transistor will not be able to react immediately to the input signal. This effect is known as the non-quasi-static (NQS) effect and the channel will become like a distributed RC network as shown in Fig. 4.1. The distributed channel resistance will be reflected to the gate through the capacitance network and increases the gate effective resistance. Note that this NQS channel resistance is bias and geometry dependence.

4.2.2 Source and drain resistances modeling

Fig. 4.2 shows the source and drain resistances network in a transistor.
Fig. 4.2 Source and drain parasitic resistances network

Basically, the source and drain parasitic consist of via, salicide, contact and lightly doped drain (LDD) resistances. Normally, the salicide and via resistances are small when compared to the LDD and contact resistances. Therefore, the LDD and contact resistances dominant the whole of source and drain parasitic. Since the LDD resistance is bias dependent, hence the final source and drain resistance will also experience some biasing effect. But as the channel length continues to scale down for 0.18 \(\mu \text{m} \) technology and below, the LDD doping concentration will increase with more advance technology. Therefore, the biasing effect on the source and drain resistance will be diminishing. Assuming that the biasing effect of the source and drain resistances is negligible, their parasitic resistances can be represented with (4-4) and (4-5) respectively.

\[
R_S = R_{S0} + \frac{r_{sw}}{N*W} \quad \text{(4-4)}
\]

\[
R_D = R_{D0} + \frac{r_{dw}}{N*W} \quad \text{(4-5)}
\]

\(R_{S0} \) and \(R_{D0} \) represent the series resistance components without width dependence while the \(r_{dw} \) and \(r_{sw} \) represent the parasitic drain and source resistances with unit width, respectively.
4.2.3 Substrate resistances modeling

![Substrate resistances modeling](image)

Fig. 4.3 Different substrate configuration (a) 5-resistor, (b) 4-resistor, (c) 3-resistor, (d) 2-resistor and (e) 1-resistor network
Fig. 4.3 shows all the five different configuration of the substrate network reported to characterize the substrate coupling effect at HF region. Due to the complexity of the parameter extraction and analysis, the 4- and 5-resistor networks are seldom use in the substrate modeling. The 1- and 2-resistor networks have fewer components and therefore are easier for parameter extraction but they become less accurate when operating frequency increases. The 3-resistor network is a compromise among these networks and can ensure accuracy up to 10 GHz while maintaining a simple analysis and parameter extraction.

Based on the fact that the depletion region below the gate and surrounding the source and drain diffusions is dependent on the gate and drain bias condition, therefore the substrate resistance is also bias dependent [27].

4.2.4 Parasitic capacitances modeling

Fig. 4.4 shows all the parasitic capacitances of a MOSFET and they can be divided into the following parts:

1) C_{FO}: Outer fringing capacitance between the polysilicon gate and the source and drain.

2) C_{FI}: Inner fringing capacitance between the polysilicon gate and the source and drain.

3) C_{GSO}, C_{GDO} and C_{GBO}: Overlap capacitances between the polysilicon gate and the heavily doped region in the source, drain and bulk. They are relatively independent of the biasing due to the high doping concentration.

4) C_{GSL}, C_{GDL}: Overlap capacitances between the polysilicon gate and the lightly doped region in the source and drain. They are dependent on the biasing due to the lightly doped region in the source and drain.

5) C_{JS}, C_{JD}: Junction capacitances at the source and drain region.
6) \(C_{\text{SUB}} \): Substrate capacitance.

![Diagram of MOSFET with parasitic capacitances](image)

Fig. 4.4 Parasitic capacitances in MOSFET

Most of the parasitic capacitances are included in the models for digital and analog application [60]. Although most of the models have already considered the above parasitic capacitances, additional capacitor can be added as sub-circuit if the intrinsic capacitance model is not accurate enough to cover for short channel effects. The substrate capacitance is only considered if the operating frequency is much higher than 10 GHz.

4.3 BSIM3 – RF Model

To apply the BSIM3v3 model in RF simulation, sub-circuit components must be added to simulate the parasitic effect [9] as discussed in section 4.2. The implementation of the BSIM3v3 core model and the sub-circuit components is known as the macro-modeling approach. As the NQS effect and all the parasitic
capacitances models are already built into the BSIM3v3 core model, this makes it suitable for RF simulation. But as BSIM3v3 model is initially designed to simulate for DC and low frequency region, it has no parasitic resistance models and this will affect the model accuracy and fitting when it is used as a RF macro model.

Fig. 4.5 shows the RF BSIM3v3 macro model that consists of the core model and its sub-circuit components. In the macro model, the Rg component is added to model the gate resistance and it is used to fit the input admittance of the transistor. The substrate resistances Rsub1, Rsub2 and Rsub3 model the substrate resistances and they are used to fit the output admittance of the transistor. The internal source and drain junction diodes are replaced with external diodes Djdb_area, Djdb_perim, Djsb_area and Djsb_perim. These external diodes are used to model the internal junction capacitance for the source and drain junctions.

Fig. 4.5 RF BSIM3v3 macro model
The external inductances \(L_g, L_s \) and \(L_d \) are added to model the terminal inductance and improve the model fitting if the gate and substrate sub-circuit components are unable to produce a good fitting model. The \(C_{gs_ext} \) and \(C_{gd_ext} \) are additional parasitic capacitances that are added if the internal capacitance model is not adequate to cover short channel effects of the transistor and the various biasing conditions.

Although the conventional BSIM3v3 macro model can be used to model RF transistor, its generated RF models are usually valid only for discrete sizes. For discrete RF models, the number of modeled device sizes is limited and hence circuit optimization is usually impossible. Furthermore, when a different device size is needed for the circuit simulation that is not found in the process design kit (PDK), there is no way to predict the circuit performance using that device size. Hence, a better modeling approach is required to generate scalable RF models that can alleviate all the problems of using the conventional approach in transistor modeling. Furthermore, scalable RF models can be used to build better and powerful PDK that can shorten the circuit development time and optimize RF circuit design at the same time. But as the number of device sizes that a scalable RF model covers is larger, the model verification time will be longer and hence the conventional way to quantify the accuracy of the developed RF model must be improved.
4.4 BSIM4 – RF Model

Fig. 4.6 BSIM4 RF model

Fig. 4.6 shows the equivalent circuit of a BSIM4 RF model. It includes both the gate and substrate resistances in its core model so that this model can be use to run RF simulation.

4.4.1 Gate resistance model

BSIM4 provides several gate resistance configurations so as to provide greater flexibility in modeling the gate resistance. The selection of the gate resistance configuration is controlled by the parameter RGATEMOD.

When RGATEMOD = 1, a gate electrode resistance is appended to the intrinsic transistor gate terminal as shown in the Fig. 4.8. The gate electrode resistance is given by the following equation:
\[
R_{g, \text{electrode}} = \frac{RSHG \left(XGW + \frac{W_{eff, CJ}}{3NGCON} \right)}{NGCON(L - XGL)\text{NF}}
\] (4-6)

\(RSHG\) represent the gate polysilicon sheet resistance. \(NGCON\) is the number of gate contact for each gate finger; it can be either one if the gate finger is contacted from only one side or two if the gate finger is contacted at both sides. \(XGW\) is the distance between the gate contact to the channel edge, and \(XGL\) is the difference between the specified \(L\) in the MOSFET instance statement and the physical gate length.

When \(RGATEMOD = 2\), a channel reflected gate resistance \(R_{g, crg}\) is added to the gate terminal as shown in Fig. 3.8. This \(R_{g, crg}\) is used to model the distributed RC effect of the channel region and therefore can be described as the first-order non-quasi-static effect component. Note that this resistance is not a physical resistance and has no thermal noise. This resistance is given by the following equation:

\[
R_{g, crg} = \frac{1}{XRCRG1 \left(\frac{I_{DS}}{V_{DS, eff}} + XRCRG2 \frac{kT}{q} \mu_{eff} \frac{W_{eff}}{L_{eff}} C'_{ox, IV, NF} \right)}
\] (4-7)

Where \(XRCRG1\) and \(XRCRG2\) are used to correct the \(R_{g, crg}\) resistance. \(C'_{ox, IV}\) is the per-area capacitance approximately equal to the \(C'_{ox, inv}\) (per unit area of the oxide capacitance at inversion condition).

The gate resistance configuration for \(RGATEMOD = 3\) is similar to \(RGATEMOD = 2\) except that the location of the overlap capacitance is different.
Fig. 4.7 Geometrical details for the gate terminal in BSIM4

(a) NGCON = 1

(b) NGCON = 2

RGATEMOD = 0

RGATEMOD = 1
4.4.2 Substrate resistance model

The substrate resistance network can be activated by the parameter RBODYMOD. When RBODYMOD = 0, no substrate resistance is generated. When RBODYMOD = 1, all the five resistances as shown in the Fig. 4.9 are present simultaneously. A minimum conductance, GBMIN is added in parallel to all the five resistors. This is to prevent the resistor value from becoming so small and cause convergence problem to arise.

Fig. 4.8 Different gate resistance configuration with respect to RGATEMOD
Fig. 4.9 Five-substrate resistances network in BSIM4

The main disadvantage of this substrate network is non-scalability. All the five-resistors have no geometry dependence and when the transistor size has changed or the number of finger is changed, all the five resistors value must be extracted again.

4.5 Summary

All the RF parasitics in a MOSFET are presented and discussed. The RF models for BSIM3v3 and BSIM4 are also introduced and presented. Although BSIM3v3 and BSIM4 RF models can be used to model RF transistors, they have some limitations. Specifically, their generated RF models are usually in discrete size making circuit optimization is impossible. For those device sizes that are not modeled or fabricated, the developed discrete RF models cannot be used to predict the device performance. Some of the model parameters like the substrate network in BSIM4 have only a fixed value and hence, the developed RF model is not able to scale for RF simulation. Therefore, there is an urgent need to develop new scalable RF models for circuit optimization. In parallel with it, new verification
techniques must also be developed to improve and shorten the overall scalable model verification and development time, respectively.
Chapter 5

RFCMOS UNIT WIDTH OPTIMIZATION

TECHNIQUE

5.1 Introduction

As CMOS processing technology continues to advance, its radio-frequency (RF) properties such as unity short-circuit current gain frequency \(f_T \), unilateral power gain frequency \(f_{MAX} \) and the noise figure improves [3],[4],[61]-[65] relentlessly. It has been reported that the \(f_T \) of a 0.13 \(\mu \)m gate length MOS transistor can reach 80 GHz region [61]. The down scaling of channel length has allowed higher integration density and the possibility of integrating digital, analog and RF circuits into a single chip [66], [67], making CMOS technology a cost effective solution for fabricating RFIC.

One of the most commonly used components in RF circuit design is the RFCMOS transistor. In order to optimize the transistor’s RF characteristics, its layout design methodology has been studied and researched extensively [68]-[72]. Although different foundries, integrated device manufacturers (IDM) and many fab-less semiconductor companies use various transistor layout designs, typical RF transistors are designed with multi-fingered and double-contacted gate configuration. The layout design of the transistor is normally symmetry with special guard ring added to isolate any interference from other components in the circuit.

In multi-fingered transistor design, the size of the transistor is mainly controlled by the finger number \(N_f \), unit width \(W_f \) and channel length \(L_g \) of the
transistor. For most RF circuit design, transistors with smallest gate length are always used due to their fast response and high drain current. Therefore, RF circuit designer will need to select transistors based on either N_f or W_f. By optimizing per finger unit width with respect to f_T, f_{MAX}, minimum noise figure (NF_{min}) and flicker noise, the best W_f of the transistor can be selected to use in a specific circuit application such as low noise amplifier (LNA), voltage controlled oscillator (VCO) and mixer. The ability to select and use the optimized layout for the transistor can ensure that the designed RF circuit produces the best performance at the first design cycle and this greatly reduces the RF circuit development time. This methodology when applied to a certain process or technology can help IDM and foundry select optimal W_f for transistors to optimize circuit performance and also save large amount of SPICE model development time.

The following figure of merits (FOMs) f_T, f_{MAX}, NF_{min} and flicker noise spectral density have been commonly used in [65], [68], [73], [74] to characterize the performance of RFCMOS transistor but these FOMs are normally presented with respect to the change in technology or channel length. In [69], only the f_T optimization with W_f is shown while in [4] and [72], the f_T, f_{MAX} and NF_{min} optimization presented were based on large width transistors. Due to transistor’s parasitic changes with respect to W_f, their effects towards each individual FOM are different. Hence, it is important to study these four FOMs with respect to W_f on different transistor sizes so as to obtain an optimized width per finger based on either one or all the four FOMs.
5.2 Design Experiment and Test Structure Layout

In this section, a study on the four FOMs with respect to the transistor’s \(W_f \) is done for small (48 µm), medium (120 µm) and large (240 µm) total width transistors and a new FOM is proposed for the study of the transistor’s HF noise. All of the transistor’s \(f_T, f_{\text{MAX}}, NF_{\text{min}} \) and flicker noise spectral density are measured at the maximum trans-conductance \((g_m) \) operating point of the transistor. The test structures consist of thin gate transistors with different total width of 48, 120 and 240 µm with four different \(W_f \) variations of 4, 8, 12 and 24 µm and a channel length of 0.18 µm. The measured results show that the optimized \(W_f \) for \(f_T, f_{\text{MAX}} \) and \(NF_{\text{min}} \) do not coincide at the same point and hence some trade-off is required when selecting the transistor’s \(W_f \) for different circuit applications.

Table 5.1 Unit width optimization test structures fabricated in 0.18 µm

<table>
<thead>
<tr>
<th>Total Width (µm)</th>
<th>Unit Width (µm)</th>
<th>Total Number of Finger</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>48</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>48</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>48</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>120</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>120</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>120</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>120</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>240</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>240</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>240</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>240</td>
<td>24</td>
<td>10</td>
</tr>
</tbody>
</table>

An example of the test structure layout is shown in Fig. 5.1. The transistor is designed with multi-fingered and double-contacted gate configuration with
guard ring included for isolation and interferences from external components when used in a circuit.

Fig. 5.1 Designed test structure layout for a 15-finger thin gate NMOS transistor

5.3 Unit Width Optimization on \(f_T \) and \(f_{MAX} \)

5.3.1 \(f_T \) definition and extraction

\(f_T \) is defined as the unity current gain frequency at which the short circuit current gain of the transistor becomes unity and it is shown in (5-1).

\[
\omega_T = 2 \cdot \pi \cdot f_T = \frac{g_m}{C_g} \quad (5-1)
\]

\[
C_g = C_{gs} + C_{gb} + C_{gd} \quad (5-2)
\]

\[
H_{21} = \frac{I_{out}}{I_{in}} \quad (5-3)
\]
The short circuit current gain equation (5-3) is used for the extraction of f_T. It can be easily obtained by performing a 2-port conversion into H-parameters from the measured de-embedded S-parameters of the transistor. In this section, the extraction of f_T is based on the extrapolation of the H_{21} curves at 10.25 GHz where it has a slope of -20 dB/decade. The extrapolated line will cross the frequency axis at 0 dB for H_{21} and the X-intercept is the estimated f_T of the transistor. Note that C_g is the overall capacitances looking into the gate terminal, which includes the gate-to-source (C_{gs}), gate-to-body (C_{gb}) and gate-to-drain (C_{gd}) overlap capacitances.

Fig. 5.2 Measured H_{21} (dB) versus Frequency for an NMOS transistor with 10 fingers and W_f of 12 µm

Fig. 5.2 shows an example of the measured H_{21} (dB) versus frequency plot at $V_{gs}=1.05$ V and $V_{ds}=1.8$ V. By extrapolating at 10.25 GHz, the X-interception is the extracted f_T of the transistor.
5.3.2 \(f_{\text{MAX}} \) definition and extraction

\(f_{\text{MAX}} \) is defined as the frequency at which the ratio of the load power to input power becomes unity and from [3], it is derived to be as shown in (5-4).

\[
f_{\text{MAX}} = \sqrt{\frac{f_r}{8\pi R_e C_{\text{gd}}}} \quad (5-4)
\]

\[
GU = \frac{0.5 \left| \frac{S_{21}}{S_{12}} - 1 \right|^2}{k \left| \frac{S_{21}}{S_{12}} \right| - \text{real} \left(\frac{S_{21}}{S_{12}} \right)} \quad (5-5)
\]

\[
k = \frac{\left(1 - |S_{11}|^2 - |S_{22}|^2 + |S_{11} + S_{22} - S_{12} \cdot S_{21}|^2 \right)}{2 |S_{12}||S_{21}|} \quad (5-6)
\]

The extraction of \(f_{\text{MAX}} \) is done using the unilateral power gain (\(GU \)) as shown in (5-5). This power gain can be obtained when the input of the transistor is conjugate-matched to the input signal source, the load is also conjugate-matched with the transistor output impedance, and an appropriate network is used to cancel the effect of feedback from the output to the input [75]. As frequency increases, \(GU \) decreases and when it reaches unity, the frequency is the maximum transistor operating frequency. At low frequency region, the measured \(GU \) is normally very unstable and their corresponding slope is not at -20 dB/decade. Hence, the S-parameters measurement is performed up to maximum equipment capability of 50 GHz and uses the data from the higher frequency region to extrapolate and obtain the \(f_{\text{MAX}} \) value.
Fig. 5.3 Measured GU (dB) versus Frequency for an NMOS transistor with 10 fingers and W_f of 12 µm

Fig. 5.3 shows an example of the measured GU (dB) versus frequency plot at V_{gs}=1.05 V and V_{ds}=1.8 V. By extrapolating at 40.85 GHz, the X-interception is the extracted f_{MAX} of the transistor.

5.3.3 Experimental results and discussion

After reviewing the methodology of both definition and extraction f_T and f_{MAX}, S-parameters measurement is performed on the designed set of thin gate NMOS transistors fabricated in a 0.18 µm CMOS technology with channel length of 0.18 µm and varying W_f of 4, 8, 12 and 24 µm and total width of 48, 120 and 240 µm as shown in Table 5.1. De-embedding of their corresponding OPEN and SHORT structures are performed to obtain the true transistor RF performance [76].
Fig. 5.4 Extracted f_T and f_{MAX} versus unit width for total width of (a) 48 μm, (b) 120 μm and (c) 240 μm

- f_T
- f_{MAX}
Fig. 5.5 Extracted (a) maximum g_m and C_g, (b) R_g and C_{gd} versus unit width for total width of 48, 120 and 240 µm

Fig. 5.4 shows the extracted f_T and f_{MAX} values for total width of 48, 120 and 240 µm test structures as shown in Table 5.1. The extraction is performed at maximum g_m biasing condition whereby V_{gs}=1.05 V and V_{ds}=1.8 V. From the plots, the extracted f_T shows similar trend for all the three total width transistors. Fig. 5.5 (a) and (b) show the extracted maximum g_m and C_g values and the R_g and C_{gd} values versus unit width for the three total widths transistors.

It is well known that g_m and C_g from (5-1) are directly proportional to the transistor’s width and hence their ratio will result in f_T to be independent of the transistor’s width. But from Fig. 5.4, it shows that the extracted f_T changes with the transistor’s W_f. For smaller W_f of 4 and 8 µm transistors, their extracted f_T is smaller than the transistors with W_f of 12 and 24 µm. Such behavior of f_T versus W_f is due to the parasitic capacitances that exist in the different W_f layout transistor. For the same total width, smaller W_f transistors will have more fingers and hence
the amount of overlap extrinsic parasitic capacitances will be larger when compare
to large W_f transistors that have smaller finger number. In Fig. 5.5(a), the overall
gate capacitance C_g which includes all the parasitic overlap capacitances increases
with decreasing W_f for all the three total width transistors. This clearly indicates
that transistor with small W_f will have more fingers and cause higher overlap
parasitic capacitances. As for the extracted g_m in Fig. 5.5(a), it increases slightly
with decreasing W_f at constant total width. Due to the self-heating effect, the
increasing trend of g_m with decreasing W_f is more obvious in large total width
transistor. This is because large total width transistor with small W_f has higher
number of source and drain diffusions as compared to the same total width
transistor with larger W_f. Hence, with more source and drain diffusions, the drain
current is distributed more evenly. This means that less current will flow through
per diffusion. Thus, the heat generated at each diffusion region and its diffusion
resistance change due to temperature will be smaller. Therefore, transistor with
smaller W_f will have higher g_m due to less self-heating. Furthermore, it can be
observed that the changes in the extracted g_m for a fixed total width is small, so
only the parasitic overlap capacitances in C_g affect the f_T versus W_f plot in Fig. 5.4.
The extrinsic overlap parasitic capacitances for C_{gs}, C_{gb} and C_{gd} are shown in Fig.
5.1. Therefore, to optimize W_f based on f_T, the width per finger cannot be chosen to
be too small. It is observed from Fig. 5.4 that f_T optimization for W_f happens at
about 12 µm for all the three sets of total width transistors. Hence, by increasing
W_f above 12 µm will not improve the f_T of the transistor significantly.

From (5-4), it can be deduced that f_{MAX} can be lower or higher than f_T based
on the layout of the transistor. In Fig. 5.4, for the three total widths, the extracted
f_{MAX} is observed to be increasing with decreasing W_f. This behavior of f_{MAX} is
mainly caused by the change in R_g, f_T and C_{gd} with respect to the change in W_f. For the same total width with W_f decreasing, the finger number of the transistor increases and since R_g is proportional to (W_f/N_f), R_g will decrease and cause f_{MAX} to increase. At the same time, when the finger number increases, the overlap parasitic capacitances (gate-to-drain, gate-to-source and gate-to-body) will increase and from (5-1) and (5-2), the transistor’s f_T will drop and C_{gd} (intrinsic and extrinsic capacitances) will increase and from (5-4), these two parameters will cause f_{MAX} to decrease. Hence, based on the above analysis, depending on the transistors’ total width and W_f, certain parasitic effects (R_g and extrinsic overlap capacitances) will be more dominant than the other, hence influencing the final f_{MAX} trend when W_f and total width change. Fig. 5.5(b) shows the trend of R_g and C_{gd} versus unit width for three total widths. In Fig. 5.4(a) and (b), the trend of f_{MAX} versus W_f is dominated mainly by the effect from R_g while for Fig. 5.4(c), the extrinsic overlap parasitic capacitances dominant over R_g causes the trend of f_{MAX} versus W_f to change. In addition to that, the extracted f_{MAX} value decreases with increasing total width size for the same W_f; this can be explained by the increase in the overlap parasitic capacitances in C_g and C_{gd} as shown in Fig. 5.5(a) and (b) for larger total width size transistor that has a larger finger number at a fixed W_f. Therefore, based on Fig. 5.4, it is observed that to optimize the transistor layout using f_{MAX}, the transistor’s W_f should be chosen to be small.

This study of the W_f effect on f_T and f_{MAX} is important and it shows that a wrong selection of the W_f for transistor layout will cause either f_T or f_{MAX} to suffer. Since the trend of f_T and f_{MAX} versus W_f is different, some trade-off is needed when selecting the best W_f value for transistor to be used in a specific application. Although both f_T and f_{MAX} are commonly used to compare the performance of the
transistor but in circuit design such as VCO and transistor gain stages, the power amplification capability is of more important and hence the f_{MAX} optimization for the transistor W_I will be very crucial in these applications.

5.4 Unit Width Optimization on High Frequency Noise

The HF noise measurements are performed on-wafer using ATN NP5 Microwave Noise Parameter System. All the three sets of total width transistors are measured at the maximum g_{m} condition and the frequency range is from 2 to 26.5 GHz. All the measured noise parameters are de-embedded with their corresponding OPEN structures using the de-embedding feature in the NP5 system. This embedding procedure can be found in [77], whereby the pad and interconnect parasitic capacitances are de-embedded.

5.4.1 HF noise definition and theory

From the classical RF noise model from Van Der Ziel [54], [55], the high frequency noise of a transistor can be described by two correlated current noise sources, the drain noise current (i_{nd}) and the induced gate noise current (i_{ng}). The induced gate noise is caused by the capacitive coupling from the channel noise current. The mean-square representation for drain current noise and gate noise are shown in (5-7) and (5-8) respectively. Note that c is the correlation factor between the drain and gate noise sources.

$$\overline{i_{nd}^2} = 4kT g_{m0} \Delta f$$ (5-7)

$$\overline{i_{ng}^2} = 4kT \delta \left(\frac{\omega^2 C_{gs}^2}{5 g_{m0}} \right) \Delta f$$ (5-8)

$$c \equiv \frac{i_{ng} \cdot i_{nd}}{\sqrt{i_{ng}^2 \cdot i_{nd}^2}}$$ (5-9)
In (5-7), the parameter g_{do} is the drain-source conductance at zero V_{DS} and γ is the noise factor and has a value of unity at zero V_{DS} and, in long channel devices, it decreases to a value of $2/3$ in saturation region. Note that for short channel devices operating in saturation region, γ can be considerably higher than the long channel value. In (5-8), the parameter δ is the gate noise coefficient and it is given a value of $4/3$ in [54].

In [56], [57], the approximated expression for minimum noise factor (F_{min}) is derived as shown in (5-10). In the next section, we will relate this expression to our measured NF_{min}. Noted that NF_{min} is equivalent to F_{min} in decibel (dB).

\[
F_{\text{min}} \approx 1 + \frac{f}{f_{\text{MAX}}} \sqrt{P + R - 2CRP} \cdot \sqrt{1 + \left(2 \frac{f_{\text{MAX}}}{f_c}\right)^2 g_m(R_s + R_t + R_i)}
\]

(5-10)

\[
P = \frac{i_{nd}^2}{4kTg_{m}\Delta f}
\]

(5-11)

\[
R = \frac{i_{ng}^2}{4kT \left(\frac{\omega^2 C_{gs}^2}{g_m}\right)\Delta f}
\]

(5-12)

\[
C = \text{Im} \left(\frac{i_{ng} \cdot i_{nd}^*}{\sqrt{i_{ng}^2 \cdot i_{nd}^2}}\right)
\]

(5-13)

\[
f_c = \frac{g_m}{2 \cdot \pi \cdot C_{gs}}
\]

(5-14)

The P, R and C noise parameters used in (5-10) are related to the drain and gate noise current sources as shown in (5-11)-(5-13).
5.4.2 Experimental results and discussion

Fig. 5.6 shows the transistor’s NF_{min} versus frequency plot for different W_f with total width of 48, 120 and 240 µm. All the three plots show that transistors with W_f of 24 µm exhibit the highest NF_{min} while the NF_{min} characteristics for transistors with W_f of 4, 8 and 12 µm overlap each other and cannot be differentiated clearly. These plots show an important observation that is by optimizing the W_f of 24 µm transistors to a smaller W_f of 4, 8 or 12 µm at the same total width, the NF_{min} response can be greatly improved. Furthermore, for W_f less than 12 µm, the improvement in NF_{min} is not significant.

Note that the extracted NF_{min} plots for the three total widths transistor in Fig. 5.6 show very close results. The geometry dependence of f_c, g_m and R_g can be shown to be proportional to $\left(1/L_e^2\right)$, $(N_f \cdot W_f/L_e)$ and $(W_f/N_f \cdot L_e)$ respectively and by substituting them into (5-10) will result in F_{min} to be proportional to $(W_f \cdot L_e)$. From the above analysis, F_{min} is found to be independent of N_f and this explains why the measured NF_{min} results for the three total widths are so close. Furthermore from the geometry dependence of F_{min}, it is expected that transistors with the largest W_f will have the highest noise level and this is clearly shown in the measurement results when W_f of 24 µm exhibits the highest NF_{min} values.

From Fig. 5.6, it is also observed that for frequency range less than 5 GHz, all the extracted NF_{min} values are found to be overlapping and fluctuating without any clear trend with respect to W_f change. Hence, the extracted NF_{min} for less than 5 GHz cannot be use to study the W_f effect on the transistor noise. Furthermore, the NF_{min} for W_f of 4, 8 and 12 µm for the whole frequency range is also overlapping and hence the extracted NF_{min} results cannot be used to study the effect of W_f. Due to the above observations, it is difficult to study the W_f effect of the transistor on its
HF noise performance and hence there is a need to propose a new FOM to assist in this study for the W_f optimization.
5.5 Proposal of New Figure of Merit for HF Noise

In order to study the transistor’s W_f effect on its HF noise performance, a new FOM is proposed as shown in (5-15), where F_{min} is in the minimum noise factor in (5-10) and R_n is the normalized noise resistance defined in a linear two-port noisy network [78]. In [79], the parameter R_n can be derived and simplified as shown in (5-16) and the parameter γ is as discussed in (5-7). For long channel devices, the parameter α is equal to unity and it decreases gradually with the channel length [79].

$$FOM = F_{\text{min}} \cdot R_n$$ \hspace{1cm} (5-15)
\[R_n = \frac{\gamma d_0}{g_{m}^2} = \frac{\gamma}{\alpha} \frac{1}{g_{m}} \] (5-16)

\[\alpha = \frac{g_{m}}{g_{d_0}} \] (5-17)

By multiplying parameters \(F_{\text{min}} \) and \(R_n \) together, the resultant equation is as shown in (5-18).

\[
FOM = \frac{\gamma}{\alpha} \left(\frac{1}{g_{m}} \right)^\text{term1} + f \cdot K_1 \cdot \frac{\gamma}{\alpha} \sqrt{\frac{16\pi^2}{g_{m}^2} \left[R_c C_{G} + C_{G}^{-1} \left(R_s + R_g + R_i \right) \right]}^\text{term2}
\]

\[K_1 = \sqrt{P + R - 2C \sqrt{RP}} \] (5-19)

By extracting the small signal parameters for all the devices under comparison and substituting them back into (5-18), the calculated \(FOM \) can be obtained. Fig. 5.7 shows the measured and calculated \(FOM \) \(F_{\text{min}} \cdot R_n \) versus frequency for different \(W_f \) transistors at constant total width of 48, 120 and 240 \(\mu \text{m} \). There are three important observations from this \(FOM \) versus \(W_f \) and total width change. Firstly, its value is found to be increasing with \(W_f \) and decreasing when the transistor’s total width increases. Note that for the noise figure in Fig. 5.6, only the \(NF_{\text{min}} \) trend with \(W_f \) is observed, there is no change in the \(NF_{\text{min}} \) when the total width changes. The \(FOM \) behavior with respect to the total width and \(W_f \) can be explained by studying the geometry dependences of \(\text{term1} \) and \(\text{term2} \) in (5-18). By substituting the geometry dependence of all the parameters into (5-18), it is clear that \(\text{term1} \) and \(\text{term2} \) are proportional to \((L_s / N_f \cdot W_f) \) and \((L_s^2 / N_f) \) respectively. By adding the proportionality of these two terms, the resultant
geometry dependence of the proposed FOM is found to be \(\frac{L_g}{N:W_f}(1+W_f \cdot L_g) \).

Therefore, based on the above analysis for the proposed FOM, it is expected that at the same constant total width with \(W_f \) increases, the proposed FOM will increase and when \(W_f \) is fixed with increasing total width, the proposed FOM will decrease. Hence, this analysis on the geometry dependence of the proposed FOM can explain the measurement results as shown in Fig. 5.7. Secondly, it is also observed that the FOM has both increasing and decreasing trend with respect to frequency. The increasing and decreasing trend is mainly due to the contribution from term2 and term1 of (5-18) respectively. Note that in term2, there exists a frequency variable so it will naturally contribute the increasing trend of the FOM with frequency. As for term1, it is in fact equivalent to \(R_n \) and in [77], it is found that \(R_n \) is inversely proportional to \(|Y_2|^2 \) and as frequency increases; \(|Y_2|^2 \) will increase and cause \(R_n \) to fall-off with frequency. Finally, it is observed that the calculated FOM is closely matched to the measured FOM values and this confirms that the derived FOM equation in (5-18) is correct and reliable.
In Fig. 5.7, the transistor with \(W_f \) of 4 \(\mu \)m for the three total widths shows

- Unit Width = 24 \(\mu \)m
- Unit Width = 12 \(\mu \)m
- Unit Width = 8 \(\mu \)m
- Unit Width = 4 \(\mu \)m

Symbols : Measured
Dotted line : Calculated

In Fig. 5.7, the transistor with \(W_f \) of 4 \(\mu \)m for the three total widths shows
the lowest FOM and this implies that it has the lowest noise level when compared to the noise of the other W_f transistors. Note that such observation is not observable in Fig. 5.6 as the extracted NF_{min} for 4, 8 and 12 µm are all overlapping. Therefore, it is clear that the proposed FOM can help to differentiate the noise level behavior for different W_f transistor especially for frequency range less than 5 GHz.

Hence, by only considering the HF noise optimization, the transistor’s W_f should be chosen as 4 µm as they show the lowest noise. Note that the f_T of a transistor with W_f of 4 µm is the lowest while its f_{MAX} is at the highest level. Hence from Fig. 5.4, if the optimum f_T and f_{MAX} performance is required, the W_f should be chosen at about 12 µm. From Fig. 5.7, the noise for W_f of 12 µm is only slightly higher and comparable to the 4 µm case. Hence, it can be concluded that for the optimization of f_T, f_{MAX} and HF noise, the optimum W_f to use for a transistor for this 0.18 µm CMOS technology is at about 12 µm.

5.6 Unit Width Optimization on Flicker Noise

Flicker noise mainly affects the low frequency performance of the transistor but the impact of flicker noise cannot be neglected in certain RF circuit such as mixer and VCO because it can up-convert the low frequency noise to high frequency that can affect the circuit phase noise performance. For example the phase noise in a VCO will directly affect the adjacent channel rejection and transmitter signal purity during receiving and transmitting of signals. Furthermore, it can affect the bit error rate performance of a phased-shift keyed digital transmission system. Therefore, it is important to study the flicker noise behavior with respect to the change in W_f of the RF transistor.

Many theories have been presented to explain the flicker noise behavior.
The two main theories are the random fluctuation of the carriers in the channel [40]-[43] and mobility fluctuation [44], [45]. Based on the carrier fluctuation [42], [43] and mobility fluctuation [44], [45] theories, the noise voltage power spectral density S_{vg} can be shown as in (5-20) and (5-21) respectively. Note that K_l in (5-20) is bias independent while in (5-21), $K(V_{GS})$ is a bias dependent parameter. Their corresponding noise current power spectral density can be found using (5-22).

$$S_{vg} = \frac{K_l}{C_{ox} \cdot L_g \cdot W_{total}} \cdot \frac{1}{f^c} \quad (5-20)$$

$$S_{vg} = \frac{K(V_{GS})}{C_{ox} \cdot L_g \cdot W_{total}} \cdot \frac{1}{f} \quad (5-21)$$

$$S_{id} = g_m^2 \cdot S_{vg} \quad (5-22)$$

$$S_{id} \propto \frac{W_{total}^2}{L_g^2} \cdot \frac{1}{W_{total} \cdot L_g} = \frac{W_{total}}{L_g^3} \quad (5-23)$$

5.6.1 Experimental results and discussion

Fig. 5.8 shows the measured flicker noise versus frequency plot with varying W_f at fixed total width of 48, 120 and 240 µm. The noise measurement is done at the maximum g_m biasing condition. It is observed that the W_f variation does not affect the flicker noise performance for the RF transistor for the same total width condition. Furthermore, the flicker noise current power spectral density S_{id} is also found to increase with the total width. In (5-20) or (5-21), it is clear that S_{vg} is inversely proportional to the total width of the transistor (W_{total}) and while in (5-22), S_{id} is directly dependent on the transistor’s g_m which is also proportional to W_{total}. By substituting (5-21) to (5-22), the geometry dependence of S_{id} can be
derived as in (5-23) and it is clearly shown that it is directly dependent on the transistor’s W_{total}. Therefore, as W_{total} increases, it is expected that S_{id} to increase and this is observed in Fig. 5.8. Since the measurement frequency for the flicker noise is low, the RF parasitic due to the W_f changes will not appear to affect the transistor’s flicker noise behavior. Therefore, it is expected that S_{id} shows no dependency with W_f for the same total width condition.
5.7 Circuit Application Discussion

From the analysis of f_T, f_{MAX}, NF_{min}, the proposed $FOM = F_{min} \cdot R_n$ and flicker noise spectral density, the unit width optimization technique can assist designers to select the optimized layout transistors for a specific circuit application such as LNA, VCO or mixer that required either low NF_{min}, high f_T or f_{MAX}.

5.7.1 Transistor selection for LNA design

The LNA is usually the first stage of a receiver and it generally requires low noise figure and high gain transistors in its circuit design. Based on Friss equation [80], the first stage of the receiver will determine the whole receiver noise performance; hence the noise in the LNA must be minimized. The transistor size used for this LNA design is usually large so as to provide enough gain to reduce the noise in the subsequent stages. The number of fingers for the chosen transistor
must be large, hence minimizes its gate resistance. This will cause the amplified
gate noise at the output of the LNA to be small. Therefore, the transistor’s W_f to
use for LNA design should be small so that maximum number of finger can be
achieved for a constant total width transistor. This conclusion coincides with the
analysis that is conducted in section 5.4.

5.7.2 Transistor selection for VCO design

For VCO design, the main considerations are low phase noise and low
power. Since the transistor’s flicker noise will contribute to the output phase noise,
the selected transistor in the VCO design should have low flicker noise spectral
density. From Fig. 5.8, it can be observed that the flicker noise is directly
dependent on the device size and drain current and it is independent of the
transistor’s W_f. Therefore, small total width transistor size with small W_f should be
chosen for the VCO design so that it exhibits low flicker noise spectral density and
high f_{MAX} as presented in Fig. 5.8 and Fig. 5.4 respectively. Furthermore, using
small total width for the transistor also ensure low power consumption for the
VCO.

5.7.3 Transistor selection for Mixer design

The mixer is mainly used in RF transceiver for up and down conversion of
signals. In mixer design, the trade-off for conversion gain, linearity, power
consumption and noise figure have to be studied so as to achieve the design
specifications for the circuit. The noise figure for the mixer is generally large due
to the switching term during the up and down conversion. By designing a mixer
with low noise figure, the gain of the LNA can be low. Hence, from Fig. 5.7,
transistor with small W_f can provide the lowest noise level and highest f_{MAX}, which allows higher operating frequency range for the mixer.

5.8 Summary

In this chapter, the trend of extracted f_T and f_{MAX} versus W_f is studied and from the measurement results, it is clear that for the optimization of both FOMs, some trade-offs are required. As the measured NF_{min} for W_f of 4, 8 and 12 μm cannot reveal their noise behaviors with respect to W_f, a new FOM $F_{\text{min}} \cdot R_n$ is proposed. From the calculated $F_{\text{min}} \cdot R_n$, it clearly shows that it can be used to optimize the transistor noise when selecting the best W_f value to be used in low noise applications. The flicker noise spectral density with varying W_f shows no optimization can be done for W_f as at such low frequency range, the RF parasitic will not appear and affect the transistor’s flicker noise. This experiment has shown that the optimization technique is feasible and can be used to help designers to select the optimized layout transistors that are optimized specifically for certain applications such as LNA, VCO and mixer that have low NF_{min}, high f_T or f_{MAX} requirements. Furthermore, by applying this optimization technique to existing and future technologies, modeling engineers from foundry and IDM can understand the RF characteristics of the process and select to model only a small range of optimized W_f transistors which will shorten the model development time.
Chapter 6

SIMPLE AND ACCURATE EXTRACTION METHODOLOGY FOR RF MOSFET VALID UP TO 20 GHz

6.1 Introduction

The fast growth of RF wireless communication market has lead to the shortening of design cycle time for RF circuits. Therefore, the time required for developing a RF model and the accuracy of its parameter extraction technique become very important as the development time will directly impact the time to market of these RF chips. Hence in this chapter, a simple and accurate parameter extraction methodology is proposed and demonstrated to be accurate up to 20 GHz.

Up to today, the more commonly used method is by macro modeling approach. In this approach, sub-circuits are added to the BSIM core model to model the RF parasitic components of the MOSFET [9], [81]. The sub-circuit components are usually extracted from the measured S-parameters of the transistor using Z or Y parameters analysis on the proposed small-signal equivalent circuit [25], [26], [29], [82].

Presently, there are many different extraction techniques reported [25], [26], [29], [82] for RF MOSFET modeling. In [82], no substrate resistances are included in the small-signal equivalent circuit. Thus fitting of the output admittance will be difficult. The method in [25] requires S-parameter measurement
up to about 40 GHz. High frequency measurement of the S-parameter is very difficult to achieve and it requires very good calibration of equipment and measurement of de-embedding structures. Furthermore, there is no substrate network in its equivalent circuit. The approach in [26] is by direct extraction on its equivalent circuit using Y-parameters analysis in the linear and saturation region. Its substrate-coupling network is obtained by local optimization to fit the equivalent substrate admittance. Therefore, no analytical equations are derived for the substrate-related components. In [29], all the parameters are extracted using a linear regression approach by performing Y-parameters analysis on the small-signal equivalent circuit. In this technique, the source and drain resistances are omitted in the equivalent circuit for simplicity and ease of parameter extraction. As a result the accuracy of the extracted values for the gate resistance R_g and the transconductance are compromised. Furthermore, without the source and drain resistances, the small-signal model gives inaccuracy in noise simulations.

To circumvent the above-mentioned problems from the existing extraction techniques [25], [26], [29], [82], a new RF parameter extraction technique using the small-signal equivalent circuit in Fig. 6.1 is presented. It includes three terminal resistances for the gate, source and drain, a substrate network to characterize the substrate effect at high frequency and a transcapacitance to ensure that the small-signal model maintains charge conservation [83]. The RF macro model for a 0.18 µm 5-finger NMOS transistor is developed using this extraction technique and good fitting is observed between the measured and simulated results for frequency up to 20 GHz. The extracted and optimized RF parameter values are close, which implies that this method is reliable and accurate. The procedure for the extraction is simple and fast and can be implemented easily for RF MOSFET
modeling. The RF macro model includes a BSIM4 model with all its internal
terminal resistances, substrate resistances and capacitance-related parameters
deactivated. The extrinsic components are added to model the parasitic effect at
high frequency during the simulation.

6.2 Measurement Setup

The device under test (DUT) was an NMOS transistor with a channel width
per finger $W = 8 \, \mu m$, a channel length $L = 0.18 \, \mu m$ and the number of finger $NF = 5$. It was fabricated using Chartered Semiconductor Manufacturing Ltd’s 0.18 \, \mu m CMOS Analog/RF technology process. S-parameters were measured using the HP8510 network analyzer and GSG RF probes for a frequency range from 50 MHz to 20 GHz. The system calibration was performed first so as to get the cal-set for the network analyzer and LRRM method was used for the calibration. After the measurement system was calibrated, the RF transistor and its de-embedding structures were measured. In this measurement, OPEN and SHORT de-embedding structures were used to remove the pad and interconnect parasitic.

6.3 Model

![New small-signal RF equivalent circuit](image)

$C_m = C_{dg} - C_{gd}$

Fig. 6.1 New small-signal RF equivalent circuit
Fig. 6.1 shows the proposed new small-signal equivalent circuit. All the components are physically based and a new approach will be introduced to extract all the RF parameters. The intrinsic source and substrate are assumed to be shorted and hence, this model is suitable for transistor that has the source and body terminal tied together.

The resistance R_g represents the effective lumped gate resistance that consists of both the electrode resistance and the distributed channel resistance [59]. It has been reported that a simple gate resistance model has been found accurate up to $\frac{1}{2}$ of f_T [31]. The resistances R_s and R_d represent the effective source and drain resistances that consist of the via, salicide, contact and LDD resistances [84].

The capacitances C_{gs} and C_{gd} represent the effective gate-to-source and gate-to-drain capacitances and consist of both the intrinsic and overlap capacitance of the transistor. C_{sd} represents the source-to-drain capacitance. C_{gd} and C_{dg} represent the two non-reciprocal capacitances caused by the drain and gate biasing respectively. C_{gd} is the capacitance effect on the gate due to the drain while C_{ds} is the capacitance effect on the drain due to the gate terminal. C_m represents the transcapacitance that takes care of the different effects of the gate and the drain on each other in terms of charging currents [29]. It has also been reported that the transcapacitance ensures charge conservation [83] in the model and helps to model the Y_{12} and Y_{21} parameter more accurately [29]. The parameters g_m and g_{ds} represent the transconductance and the output conductance of the transistor respectively. The parameters C_{jd} and R_{subd} represent the drain junction capacitance and the drain-to-substrate resistance respectively. They contribute greatly for the
output admittance Y_{22}. Note that C_{jd} consists of both the junction capacitance and the intrinsic drain-to-body capacitance.

6.3.1 Extraction of terminal resistances R_g, R_d and R_s

The extraction of the terminal resistances is done by performing Z-parameter analysis on the equivalent circuit at the linear region of the transistor. It is proposed that the extraction of the resistances be done at $V_{gs} = 1.8$ V and $V_{ds} = 0$ V. At this biasing condition, the transconductance and transcapacitance are both close to zero. Since V_{ds} is grounded, there is no drain current and therefore, the output conductance g_{ds} and the capacitance C_{sd} can be neglected. In addition, there is no voltage drop across R_d and R_s. Therefore, the potential of the intrinsic drain and source node is the same and C_{jd} and R_{subd} can be removed from the equivalent circuit. Thus the equivalent circuit can be simplified as shown in Fig. 6.2.

![Simplified small-signal equivalent circuit at $V_{gs} = 1.8$ V and $V_{ds} = 0$ V](image)

By applying Z-parameter analysis on the above circuit, the following equations are obtained.

$$Z_{11} = R_g + R_s + \frac{1}{j\omega C_{gs}}$$ (6-1)
Note that at this biasing condition the capacitances C_{gs} and C_{gd} are equal. From the above Z-parameter equations, the terminal resistances and the gate-to-source and gate-to-drain capacitances are extracted using equations (6-4)-(6-7).

$$R_t = \text{real}(Z_{12}) \quad (6-4)$$

$$R_s = \text{real}(Z_{11} - Z_{12}) \quad (6-5)$$

$$R_d = \text{real}(Z_{22} - Z_{12}) \quad (6-6)$$

$$C_{gs} = C_{gd} = \text{imag}(Z_{12}) \quad (6-7)$$

Although parameters C_{gs} and C_{gd} can be solved using equation (6-7), they are not used in the RF model because RF transistors do not operate at this biasing condition.

6.3.2 Extraction of intrinsic parasitic components

The extracted gate resistance in equation (6-5) is then de-embedded from the Z-parameters measured at the desired operating biasing condition of the transistor. It has been reported that poles due to the terminal source and drain resistances are at a much higher frequency than the typical transit frequency [27]. Therefore, they can be neglected when calculating the Y-parameters of the equivalent circuit. With the three terminal resistance removed, the equivalent circuit can be simplified as shown in Fig. 6.3.
By performing Y-parameters analysis on the circuit in Fig. 6.3, the following Y-parameter equations are obtained.

\[Y_{11} = j\omega(C_{gs} + C_{gd}) \] \hspace{0.5cm} (6-8)

\[Y_{12} = -j\omega C_{gd} \] \hspace{0.5cm} (6-9)

\[Y_{21} = g_m - j\omega C_{gd} \] \hspace{0.5cm} (6-10)

\[Y_{22} = g_{ds} + \frac{\omega^2 C_{gd}^2 R_{subd}}{1 + \omega^2 R_{subd}^2 C_{jd}^2} + j\omega C_{gd} + j\omega C_{ds} + \frac{j\omega C_{jd}^2}{1 + \omega^2 R_{subd}^2 C_{jd}^2} \] \hspace{0.5cm} (6-11)

From the above Y-parameter equations, the rest of the RF parasitic parameters are obtained using equations (6-12)-(6-16).

\[g_m = \text{real}(Y_{21}) \bigg|_{\omega=0} \] \hspace{0.5cm} (6-12)

\[g_{ds} = \text{real}(Y_{22}) \bigg|_{\omega=0} \] \hspace{0.5cm} (6-13)

\[C_{gd} = -\frac{\text{imag}(Y_{12})}{\omega} \] \hspace{0.5cm} (6-14)

\[C_{gs} = \frac{\text{imag}(Y_{11}) + \text{imag}(Y_{12})}{\omega} \] \hspace{0.5cm} (6-15)
For the extraction of the substrate components, R_{subd} and C_{jd}, Y_{sub} is defined as follows:

$$Y_{sub} = Y_{22} - g_{ds} - j \omega C_{sd} - j \omega C_{jd}$$

$$= \frac{\omega^2 C_{jd}^2 R_{subd}}{1 + \omega^2 R_{subd}^2 C_{jd}^2} + \frac{j \omega C_{jd}}{1 + \omega^2 R_{subd}^2 C_{jd}^2}$$ \hspace{1cm} (6-17)$$

By plotting $\omega^2/\text{real}(Y_{sub})$ versus ω^2, the substrate resistance R_{subd} can be obtained from the slope of the plot.

$$\frac{\omega^2}{\text{real}(Y_{sub})} = \omega^2 R_{subd} + \frac{1}{R_{subd} C_{jd}^2}$$ \hspace{1cm} (6-18)$$

The drain junction capacitance C_{jd} is obtained as follows:

$$C_{jd} = \left(\frac{\omega^2 R_{subd}}{\text{real}(Y_{sub})} - \omega^2 R_{subd}^2 \right)^{-1/2}$$ \hspace{1cm} (6-19)$$

The source-to-drain capacitance C_{sd} is obtained as follows:

$$C_{sd} = \frac{\text{imag}(Y_{22})}{\omega} - C_{jd} = \frac{C_{jd}}{1 + \omega^2 R_{subd}^2 C_{jd}^2}$$ \hspace{1cm} (6-20)$$

6.4 Extraction and Simulation Results

The extraction of the transconductance g_m and output conductance g_{ds} at $V_{gs} = V_{ds} = 1.2$ V is shown in Fig. 6.4. The parameters g_m and g_{ds} are obtained from the Y-intercept as shown in the plot and the extracted values are 19.83 mS and 1.58 mS respectively.
Fig. 6.4 Extraction of the transconductance g_m and output conductance g_{ds} at

$$V_{gs} = V_{ds} = 1.2 \text{ V}$$

Fig. 6.5 Extraction of R_{subd} at $V_{gs} = V_{ds} = 1.2$ V from the plot of $\omega^2/\text{real}(Y_{sub})$ versus ω^2

Fig. 6.5 shows the plot for $\omega^2/\text{real}(Y_{sub})$ which is linearly proportional to ω^2, as predicted in equation (6-18). R_{subd} is extracted from the slope with a value of 433 Ω.
Fig. 6.6 Extraction of R_g, R_d and R_s at $V_{gs}=1.8$ V and $V_{ds}=0$ V

Fig. 6.6 shows the plot for the terminal resistances versus frequency. It is observed that the terminal resistances are almost frequency independent. From the plot, the terminal resistances R_g, R_d and R_s are found to be 7.7 Ω, 9.4 Ω and 9.0 Ω respectively. Note that the extracted source and drain resistance values are about the same and the small discrepancy of 0.4 Ω could be due to the accuracy of the measurement tool.

Fig. 6.7 Frequency plot for C_{gs}, C_{gd}, C_{dg}, C_{jd} and C_{sd} extracted at $V_{gs} = V_{ds} = 1.2$ V

Fig. 6.7 shows the plot for C_{gs}, C_{gd}, C_{dg}, C_{jd} and C_{sd} extracted at $V_{ds} = V_{ds} = 1.2$ V. From the plot, these components remain almost constant throughout the
frequency range. This implies that the de-embedding of the pad and interconnect parasitic are done correctly and the extraction routine is robust and reliable. It is also observed that the C_{dg} is in fact different from C_{gd}.

Before simulating for the S-parameters, DC modeling for the transistor must first be modeled well. This is because the transconductance g_m and output resistance r_{ds} at DC condition will affect the S-parameter at low frequency range. Therefore, if the DC characteristics are not well fitted, it will be very difficult to achieve good fitting for the S-parameters at low frequency range. Note that the reciprocal of r_{ds} is equivalent to the output conductance g_{ds}.

Before the DC I-V curves are fitted with BSIM4 model, the RF parasitic components must first be extracted and included into the macro model as sub-circuit components. At DC condition, the current through the gate is very small; therefore the gate resistance will not affect the I-V curve very much. As for the source and drain resistances, they must be included into the macro model during DC modeling of the I-V curves. This is because when the drain current is large, the potential drop across the source and drain resistances will be large too, therefore their effective terminal voltages will be reduced. As for all the RF parasitic capacitors, they will be treated as open-circuit at DC operating condition.

After the DC fitting of the I-V characteristics, transconductance and output resistance of the 5-finger NMOS transistor, the macro model is then used in the simulation for its S-parameters. The simulation is done at $V_{gs} = V_{ds} = 1.2$ V, which is the same biasing condition used during the extraction of the RF parasitic components. Since the extracted component values are obtained mainly by the line regression method, the values extracted are only estimated. In order to achieve the
best fit for the simulated and measured S-parameter data, an optimization for all the RF component values must be done.

Table 6.1 shows the extracted parameter values and the optimized parameter values for a 5-finger NMOS transistor with a channel length of 0.18 µm and a channel width of 8 µm. From Table 6.1, it is observed that the extracted values are actually quite close to the optimized values. This further shows that the proposed extraction method is accurate and reliable.

Table 6.1 Extracted and optimized parameter values for a 5-finger NMOS transistor with \(L = 0.18 \) µm and \(W = 8 \) µm at \(V_{gs} = V_{ds} = 1.2 \) V

<table>
<thead>
<tr>
<th>RF parameters</th>
<th>Extracted values</th>
<th>Optimized values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g_m), mS</td>
<td>19.83</td>
<td>19.8</td>
</tr>
<tr>
<td>(g_{ds}), mS</td>
<td>1.58</td>
<td>1.53</td>
</tr>
<tr>
<td>(C_{dg}), fF</td>
<td>24.3</td>
<td>24.3</td>
</tr>
<tr>
<td>(R_g), Ω</td>
<td>7.7</td>
<td>8.2</td>
</tr>
<tr>
<td>(R_d), Ω</td>
<td>9.4</td>
<td>9.4</td>
</tr>
<tr>
<td>(R_s), Ω</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>(C_{gs}), fF</td>
<td>40</td>
<td>42.77</td>
</tr>
<tr>
<td>(C_{gd}), fF</td>
<td>16</td>
<td>16.16</td>
</tr>
<tr>
<td>(R_{subd}), Ω</td>
<td>433</td>
<td>380</td>
</tr>
<tr>
<td>(C_{jd}), fF</td>
<td>26.6</td>
<td>28.68</td>
</tr>
<tr>
<td>(C_{sd}), fF</td>
<td>40</td>
<td>35.93</td>
</tr>
</tbody>
</table>
Re(Y₁₁) and Im(Y₁₁) (S)

(a)

Re(Y₁₂) and Im(Y₁₂) (S)

(b)

Re(Y₂₁) and Im(Y₂₁) (S)

(c)
Simulated and measured Y-parameters data for a 5-finger NMOS transistor with length 0.18 µm and width 8 µm at $V_{gs} = V_{ds} = 1.2$ V

- Measurement data
- Proposed model
- BSIM3v3_model

Fig. 6.8 shows the simulation results for the Y-parameters obtained using the proposed equivalent circuit shown in Fig. 6.1 at $V_{gs} = V_{ds} = 1.2$ V bias condition. The proposed model is also compared with the BSIM3v3 macro model. It is clear from Fig. 6.8 that the simulation data matches well with the measured data. The proposed model is also found to be as good as the BSIM3v3 macro model.

The BSIM3v3 macro model used in Fig. 6.8 is generated using the standard ICCAP BSIM3v3 modeling package with curve fitting technique. It has terminal resistance and inductance at the gate, drain, source and substrate terminals. External capacitances are added between the gate-to-source and gate-to-drain terminals to compensate any inaccuracy in the internal capacitance model. External diodes are also added to model the drain and source junction with the substrate.
Fig. 6.9 Simulated and measured results for $10 \times \log_{10}(|H_{21}|^2)$ versus Frequency in log scale for a 5-finger NMOS transistor with length 0.18 μm and width 8 μm at $V_{gs} = V_{ds} = 1.2$ V

○ Measurement data
— Proposed model

Fig. 6.9 shows the simulated and measured results for the magnitude of H_{21} obtained using the proposed equivalent circuit. The cut-off frequency (f_T) can be extracted from the X-intercept in Fig. 6.9. It is observed that the simulated and the measured results are in close agreement.

The proposed extraction methodology is also applied to an NMOS transistor with finger number of 5, channel width per finger of 8 μm and channel length of 0.25 μm. The gate and drain-bias dependences for the extracted capacitances and R_{subd} are shown in Figs. 6.10 and 6.11 respectively.
Fig. 6.10 Gate bias dependence on the extracted (a) Capacitances and (b) R_{subd} of a 5-finger NMOS transistor with length 0.25 µm and width 8 µm biased at $V_{ds} = 1.2$ V
Fig. 6.11 Drain bias dependence on the extracted (a) Capacitances and (b) R_{subd} of a 5-finger NMOS transistor with length 0.25 µm and width 8 µm biased at $V_{gs} = 1.2$ V

The capacitances C_{gd}, C_{gs}, C_{jd} and C_{dg} consist of the intrinsic and overlap capacitance. The intrinsic capacitance is normally bias dependent while the overlap capacitance is bias independent. Therefore as seen in Fig. 6.10(a), when V_{gs} increases, the channel charges built-up and increases the intrinsic component of the extracted capacitances. Note that C_{gs} and C_{dg} has strong gate-bias dependence while C_{gd} only increase slightly with the gate bias. This is because at saturation condition, C_{gd} is dominated by the overlap capacitance. Note that C_{sd} is not affected by the gate bias. From Fig. 6.10(b), it is observed that R_{subd} remains almost constant for $V_{gs} > 0.9$ V. Therefore, it is concluded that at strong inversion region, the extracted parameters are almost constant with gate bias.

From Fig. 6.11(a), it is observed that as V_{ds} increases; there is a small increase in C_{gs}. This is because the transistor is approaching the saturation region and the channel is entering “pinched-off” when V_{ds} reaches $V_{gs} - V_{th}$. When the channel is approaching “pinch-off” condition, the channel charge in the source side
increases and hence the intrinsic capacitance of C_{gs} also increases. As for C_{gd}, when the channel is approaching “pinch-off” condition, the charge in the intrinsic drain region decreases causing the intrinsic capacitance C_{gd} to decrease. The slight drop in C_{jd} is due to the increase in the drain junction depletion thickness when V_{ds} increases. From Figs. 6.11(a) and (b), it is observed that at high V_{ds} bias, the extracted parameters remain almost constant.

Therefore, from Figs. 6.10 and 6.11, it is concluded that by biasing the transistor at strong inversion region ($V_{gs} > 0.9$ V) and at high V_{ds} bias ($V_{ds} > 0.9$ V), the extracted RF parameter values are almost constant and the developed RF macro model is valid for that range of biasing condition.

6.5 Summary

A novel extraction technique for obtaining the RF parasitic parameters for a 0.18 µm MOSFET is presented. All the RF parameters are extracted analytically using Z and Y parameter analysis. The technique is simple and straightforward and can be implemented into a circuit simulation environment very easily. The extracted and optimized parameter values are in close agreement with the measurement data. The method is reliable as excellent agreement between the simulated and measured result is achieved up to 20 GHz. Furthermore, the gate and drain-bias dependences of the extracted RF parameter values are almost constant for $V_{gs} > 0.9$ V and $V_{ds} > 0.9$ V. Therefore, the RF macro model developed using this technique is valid for the above range of biasing condition.
Chapter 7

SCALABLE RFCMOS TRANSISTOR
MODELING AND ITS VERIFICATION
TECHNIQUE FOR RF CIRCUIT DESIGN

7.1 Introduction

The relentless scaling down of CMOS technologies has greatly improved the RF performance of MOSFET. It has been reported that for a technology node of 90 nm, high f_T of 209 GHz and f_{MAX} of 248 GHz are achieved [85]. Furthermore, the scaling down of the transistor has brought about lower NF_{min} and it is now comparable to the reported SiGe BJT process [85], [86]. The improved RFCMOS performance coupled with its lower cost has motivated circuit designers to integrate digital, mixed-signal and RF transceiver blocks into a single chip [87]-[91]. However, for these RF chips to operate at higher frequency regions, the circuit design specifications have to be more stringent and this will require accurate and scalable RFCMOS model that can be simulated accurately at high frequency regions. Furthermore, by employing scalable RFCMOS model into the process design kit (PDK), the circuit design environment is improved and this can help circuit designers in their circuit optimization to shorten the design cycle and time to market of these RF chips.

Most of the RF models developed today are based on the macro modeling approach. In this approach, sub-circuit components are added to the transistor’s core model to model the RF parasitic of MOSFET structure [9], [81] and the core
model used are usually the commercially available models such as BSIM3v3 [92] and BSIM4 [60]. The sub-circuit components are extracted from the measured S-parameters of the transistor but the extracted values of these RF components can be different when different extraction technique is used. All the existing RF parameter extraction technique is based on the transistor’s small-signal equivalent circuit analysis. Therefore to characterize a RF MOSFET, all its RF parasitic elements must be included into the small-signal equivalent circuit. Although it has been demonstrated that by including the sub-circuit components into the core model can accurately simulate the transistor’s RF characteristics, such developed model is normally for discrete transistor sizes. In order to generate a geometry scalable RFCMOS model, the extracted sub-circuit component values must be studied for its geometry dependency and by formulating equations to capture their physical effects at high frequency regions; a physical scalable RFCMOS model can be generated. Presently, some publications are reported for the scalable RF MOSFET modeling [93]-[95] but these publications [93], [95] do not show all the geometry scalable equations of the sub-circuit components. In [94], the formulated equations for these sub-circuit components were empirical and have no physical meaning and furthermore, only one device size of f_T and f_{MAX} plot are presented.

In this experiment, the geometry dependences of the RF sub-circuit components are studied and the formulation of these RF components is done based on their physical effects and the geometry of the layout structure. The scalable transistor’s RF characteristics with respect to its layout geometry, biasing and frequency are demonstrated with good accuracy between the measured and simulated results. Presently, there is no proposed standard technique for quantifying the quality of a developed scalable RF model. Hence, a new technique
is proposed to help modeling engineers to verify and check the developed scalable RF model for their scalability and accuracy. By utilizing this proposed technique, the model geometry scalability with respect to the transistor’s unit width (W_f) and finger number (N_f) are checked to ensure that the formulated geometry equations are correct. Furthermore, by plotting the proposed accuracy plots, the error population of the developed model is verified and ensured that they are below the error’s specification of the developed model. In most RF circuit design, optimal noise performance is one of the critical specifications that require circuit designers to fulfill. Hence, it is critical that the developed scalable RF model is able to predict the noise performance of the transistor accurately. In this chapter, the RF noise model is developed and simulated to show its accuracy in predicting the measured noise performance. The scalable RF model was developed for a 90 nm process with channel length of 70 nm for a frequency range of 50 MHz to 49.85 GHz. The devices under test (DUT) are NMOS transistors with varying N_f of 4, 8, 16, 24, 32, 48 and 64, W_f of 1, 2.5 and 5 µm and at fixed channel length L_g of 70 nm. As RFCMOS technology advances, the requirement for the circuit design’s operating frequency is getting higher and hence, only short channel length transistors can achieve the higher operating frequency with the required gain. By studying the geometry dependence of the RF sub-circuit components for the above DUTs, the physical geometry equations with fabrication process parameters are formulated and from the comparison between the extracted and calculated component values show excellent agreement for all the above combination of N_f and W_f. Note that the calculated values are computed from the developed scalable equations formulated for each parasitic component and the extracted values are
obtained from the best fitted component values used to minimize the error between the measured and simulated S-parameters.

7.2 Scalable RF MOSFET Modeling

![RF equivalent sub-circuit model](image)

Fig. 7.1 RF equivalent sub-circuit model

Fig. 7.1 shows the proposed RF equivalent sub-circuit model. All the sub-circuit components are physically based and can be used for transistor that has the source and body terminal tied together and grounded.

The resistance R_{gate} represents the effective lumped gate resistance that consists of both the electrode resistance and the distributed channel resistance [59]. The resistances R_s and R_d represent the effective source and drain resistance that consists of the metal line, via and contact resistances.

The capacitance $C_{gs,\text{ext}}$ and $C_{gd,\text{ext}}$ represent the effective gate to source and gate to drain capacitance and consist of both the overlap and fringing capacitance...
between the terminals. C_{ds} represents the drain to source fringing capacitance between the metal lines that connect to the source and drain diffusions. As the internal junction capacitances of the core model are turned off, the external diodes D_{jdb}, $D_{jdb_{\text{perim}}}$, D_{jsb} and $D_{jsb_{\text{perim}}}$ are added as the junction capacitances to connect the substrate resistance network. D_{jdb} stands for the area intensive diode while the $D_{jdb_{\text{perim}}}$ stands for the perimeter intensive diode and the definition is the same for the source to body junction diodes. The parameters R_{sub1}, R_{sub2} and R_{sub3} represent the substrate network resistances. Finally, C_{subg} and R_{subg} are defined as the gate to substrate capacitance and resistance over the shallow trench isolation (STI) region.

![Fig. 7.2 Simplified RF NMOS layout](image)

Fig. 7.2 shows the simplified layout of the RF NMOS transistor. The transistor has a multi-finger configuration with double contacted gate poly structure. Dummy gate poly is added to improve the gate structure formation and metal 1 and 2 are used for the connection of the gate terminal. The source
diffusions are connected using the metal 1 layer and shorted to the body terminal or P-well while the drain diffusions are pulled out using the metal 3 layer.

In order to extract physical sub-circuit components in the macro model, all the physical layers and their geometries that are used to form the structure of the transistor must be known. The extraction technique used to extract the sub-circuit components values is as shown in [34].

7.2.1 Gate resistance modeling

Fig. 7.3 shows the simplified polysilicon gate structure and its distributed parasitic resistances. At RF frequency region, R_{gate} is influenced by three physical effects. The three effects are the distributed gate electrode resistance $R_{g,poly,W_f}$, the non-quasi-static (NQS) effect in the channel $R_{g,eh}$ [59], [96] and the polysilicon gate extension of the active region $R_{g,poly,W_ext}$ as shown in (7-1).

\[
R_{gate} = R_{g,poly,W_f} + R_{g,eh} + R_{g,poly,W_ext}
\]

(7-1)
In [24], the distributed effect of the gate electrode has been studied and the following equations have been derived to calculate the distributed gate electrode resistance.

\[R_{g,poly,W_f} = \frac{\rho_{poly} \cdot W_f / L_g}{3 \cdot N_f}, \text{ Single contacted gate} \]

\[R_{g,poly,W_f} = \frac{\rho_{poly} \cdot W_f / L_g}{12 \cdot N_f}, \text{ Double contacted gate} \]

In (7-2) and (7-3), the variable \(N_f \) is the number of finger, \(\rho_{poly} \) is the gate sheet resistance, and \(L_g \) and \(W_f \) is the channel length and unit width of a single finger. The factor of 1/3 and 1/12 are used in (7-2) and (7-3) to account for the distributed gate resistance effect and the different gate connection configuration at the ends of the gate structure. As the gate electrode of the DUTs are double contacted at both ends as shown in Fig. 7.3, the resistance \(R_{g,poly,W_f} \) in (7-3) is used in the gate resistance modeling.

The polysilicon gate extension \(W_{ext} \) as shown in Fig. 7.3 contribute to the total gate resistance as shown in (7-4). Note that \(W_{ext} \) is divided by 2 in (7-4) as the polysilicon gate extension regions at both ends are connected in parallel as shown in Fig. 7.3.

\[R_{g,poly,W_{ext}} = \frac{\rho_{poly} \cdot \left[W_{ext} / 2 \right]}{N_f \cdot L_g} \]

At RF frequency region, the channel will behave like a distributed RC network as shown in Fig. 7.3. The distributed channel resistance will reflect to the gate through the capacitance network and increases the total gate resistance. Note that this NQS channel resistance is bias and geometry dependence. However, it is reported that a simple gate resistance can model the distributed gate resistance
effect and it is accurate up to $1/2f_T$ for a MOSFET without any significant NQS effects [27]. Hence, only a geometry dependent NQS channel resistance is assumed to contribute to the total gate resistance as shown in (7-5).

$$R_{g,ch} = \frac{x_1 \cdot L_g}{N_f \cdot W_f} \quad (7-5)$$

Note that the variable x_1 is defined as a factor of the channel sheet resistance that is reflected to the gate structure.

Fig. 7.4 shows the comparison between the extracted and calculated R_{gate} versus N_f and W_f plots. It is observed that R_{gate} is inversely proportional to N_f and there exists a minimum R_{gate} at the W_f of 2.5 μm. The N_f and W_f dependence of R_{gate} can be explained by considering (7-1) to (7-5). From (7-2) to (7-5), the three physical effects on the gate resistance are inversely proportional to N_f and this explains the trend of R_{gate} versus N_f. As shown in (7-3), the resistance $R_{g,poly,W_f}$ is directly proportional to W_f, but in (7-5), the resistance $R_{g,ch}$ is inversely proportional to W_f. The W_f effect on the resistance $R_{g,poly,W_f}$ and $R_{g,ch}$ will compete with each other and cause R_{gate} to have a minimum point as shown in Fig. 7.4. Therefore, based on the proposed physical geometry equation, the calculated and extracted R_{gate} resistance matches well with the change in N_f and W_f of the transistor.

Note that the metal connection to the gate poly structure is assumed to negligible when compared to the gate poly resistance and hence, the metal resistance component is not included into the above gate resistance modeling.
7.2.2 Source and drain resistance modeling

The resistances R_s and R_d shown in Fig. 7.1 are defined as the effective resistances that consist of the metal line, via and contact resistances as depicted in the layout in Fig. 7.5. It is assumed that the source and drain resistances in BSIM3v3 model only models the active region of the parasitic resistances. Based on the layout below, the following equations can be derived to represent R_s and R_d.

Fig. 7.4 Extracted and calculated R_{gate} versus (a) N_f and (b) W_f
Fig. 7.5 Source and drain metal structure

\[R_s = \frac{\rho_m \cdot l_1 + R_{\text{con}}}{x_1 n_{\text{con}}} \] \hspace{1cm} (7-6)

\[R_d = \frac{\rho_m \cdot l_2 + (R_{\text{con}} + R_{\text{via1}} + R_{\text{via2}})}{x_2 n_{\text{con}}} \] \hspace{1cm} (7-7)

The variables, \(\rho_{m1} \) and \(\rho_{m2} \), represent the sheet resistances for metal layers 1 and 3; the variables, \(R_{\text{con}} \), \(R_{\text{via1}} \) and \(R_{\text{via2}} \), represent the contact, via1 and via2 resistances; and \(n_{\text{con}} \), \(n_{\text{diff,source}} \) and \(n_{\text{diff,drain}} \) is the number of contacts, and the source and drain diffusions in the transistor.

Fig. 7.6 shows the comparison between the extracted and calculated \(R_s \) and \(R_d \) versus \(N_f \) plots. It is observed that both resistances are inversely proportional to \(N_f \) and there exists a minimum point of resistance value at a \(W_f \) of 2.5 \(\mu \text{m} \). From (7-6) and (7-7), the \(n_{\text{diff,source}} \) and \(n_{\text{diff,drain}} \) are noted to be proportional to \(N_f \). Hence, \(R_s \) and \(R_d \) resistances show the inverse proportionality with \(N_f \). From Fig. 7.5, the
variables l_1, l_2 and n_{con} are proportional to the W_f of the transistor and when they are applied to (7-6) and (7-7), the W_f effect on both l_1 and l_2 will compete with n_{con} and caused a minimum resistance level to occur at W_f of 2.5 µm.

![Graph](image1)

(a)

![Graph](image2)

(b)

Fig. 7.6 Extracted and calculated (a) R_s and (b) R_d versus N_f

7.2.3 Gate to substrate capacitance and resistance modeling

The components C_{subg} and R_{subg} that are shown in Fig. 7.1 are defined as the gate to substrate capacitance and resistance over the STI region, respectively, and they are shown in the cross sectional structure in Fig. 7.7. The dotted enclose region in Fig. 7.7 are the gate area that is on top of the STI region generating the
parasitic components C_{subg} and R_{subg} and based on the layout geometry, the following equations are formulated.

$$C_{\text{subg}} = C_{M1,\text{STI}} \cdot a_{M1} + C_{M2,\text{STI}} \cdot a_{M2}$$ \hspace{1cm} (7-8)

The variables, $C_{M1,\text{STI}}$ and $C_{M2,\text{STI}}$, are the parasitic capacitances per unit area of metals 1 and 2 over the STI region, while the variable a_{M1} and a_{M2} are the area of the dotted enclosed region of metals 1 and metal 2 as shown in Fig. 7.7.

$$R_{\text{subg}} = \frac{R_{\text{substrate,STI}}}{N_f}$$ \hspace{1cm} (7-9)

Fig. 7.7 Gate to substrate capacitance and resistance structure
From (7-8), it is shown that C_{subg} is mainly contributed by the parasitic capacitances due to the layer of gate metals 1 and 2 over the STI region. The extracted $C_{M1,\text{STI}}$ and $C_{M2,\text{STI}}$ in (7-8) represent the capacitance per unit area (fF/µm2) of the enclosed metals 1 and 2 regions as shown in Fig. 7.7 respectively. As the dielectric thickness between the metal 2 and the substrate is higher than that of metal 1, it is expected that the extracted $C_{M1,\text{STI}}$ is higher than that of $C_{M2,\text{STI}}$. Since there is some area under the enclosed metals 1 and 2 regions that is overlapped with the poly-silicon gate, the proposed equation (7-8) may overestimate C_{subg} slightly and a small capacitance may be required to be subtracted from the above equation.

C_{subg} and R_{subg} are extracted using Seneca and Substrate storm [97] that simulate the layout structure as shown in Fig. 7.7. Based on the extracted results of R_{subg}, it is found that it is only dependent on N_f and it is formulated as shown in (7-9). Note that the extracted $R_{\text{substrate,STI}}$ is defined as the substrate parasitic resistance under the STI region.
Fig. 7.8 Extracted and calculated (a) C_{subg} and (b) R_{subg} versus N_f

Fig. 7.8 shows the comparison between the extracted and calculated C_{subg} and R_{subg} versus N_f plots. It is observed that C_{subg} is proportional to N_f while R_{subg} is inversely proportional to N_f. In (7-8), C_{subg} is dependent on a_{M_1} and a_{M_2}. When N_f increases, these two areas will increase and cause C_{subg} to increase.

Based on the layout structure in Fig. 7.7, it is observed the length of l_x is proportional to N_f. By using the simple resistance equation, which is the multiple of the sheet resistance and the number of squares, it is obvious that the number of squares in the signal flow path of R_{subg} is inversely proportional to the length of l_x. Hence, R_{subg} will decrease with increasing N_f.

Note that the metals 1 and 2 regions as shown in Fig. 7.7 should generate a resistor at the input of the gate poly structure. But it is assumed that the metal resistances are usually negligible when compared to the gate poly resistance and hence, it is omitted in the Section 7.2.1 of the gate resistance modeling.
7.2.4 Gate to source and gate to drain capacitance modeling

The capacitances C_{gs_ext} and C_{gd_ext} in Fig. 7.1 represent the overlap and fringing capacitances between the gate to source and gate to drain terminals as shown in Fig. 7.9. Based on the above layout structure, it is obvious that the amount of overlap capacitance is dependent on the number of source and drain metal lines that overlaps the gate metal while the fringing capacitances depend on the separation distance between the source/drain metal lines to gate poly-silicon structure and the W_f of the transistor. Since the separation distance between the source/drain metals lines to the gate poly-silicon structure is fixed, therefore the fringing capacitance is only dependent on transistor’s W_f. Based on the above analysis, the following equations are formulated.

$$C_{gs_ext} = C_{M2_M1_gs_overlap} \cdot n_{diff_source} + C_{M1_Poly_fringing} \cdot N_f \cdot W_f \quad (7-10)$$

Note that $C_{M2_M1_gs_overlap}$ is the overlap capacitance (fF) between the gate (metal 2) and source (metal 1) metal lines and $C_{M1_Poly_fringing}$ is the fringing capacitance per unit width (fF/µm) between the gate structure (poly-silicon) and the source (metal 1) metal lines.

$$C_{gd_ext} = C_{M3_M1_gd_overlap} \cdot n_{diff_drain} + C_{M1_Poly_fringing} \cdot N_f \cdot W_f \quad (7-11)$$

Note that $C_{M3_M1_gd_overlap}$ is the overlap capacitance (fF) between the gate (metal 1) and drain (metal 3) metal lines and $C_{M1_Poly_fringing}$ is the fringing capacitance per unit width (fF/µm) between the gate structure (poly-silicon) and the drain (metal 1) metal lines. It is assumed that the fringing capacitances from the metal 2 and metal 3 lines of the drain metal structure to the poly-silicon gate is
small and negligible when compare to the metal 1 to the poly-silicon gate fringing capacitance.

![Fig. 7.9 Gate to source and gate to drain capacitance structure](image)

As the dielectric separation between the metal 3 (drain) and metal 1 (gate) is larger than the case of metal 2 (gate) and metal 1 (source), it is expected that $C_{M2-M1,gs_overlap}$ to be larger than $C_{M3-M1,gd_overlap}$. Furthermore, the extracted $C_{M1-Poly,gs_fringing}$ must be close to the extracted $C_{M1-Poly,gd_fringing}$ or slightly smaller.
Fig. 7.10 Extracted and calculated (a) $C_{gs, ext}$ and (b) $C_{gd, ext}$ versus N_f

Fig. 7.10 shows the comparison between the extracted and calculated $C_{gs, ext}$ and $C_{gd, ext}$ versus N_f plots. It is observed that both capacitances are proportional to N_f and W_f and the extracted $C_{gs, ext}$ capacitance is slightly larger than $C_{gd, ext}$. In (7-10) and (7-11), the N_f dependence in both of the capacitances are due to the variables $n_{diff, source}$ and $n_{diff, drain}$ and since $n_{diff, source}$ has 1 more diffusion than the $n_{diff, drain}$, the extracted $C_{gs, ext}$ capacitance is expected to be slightly larger than $C_{gd, ext}$. The W_f dependence as shown in Fig. 7.10 is mainly due to the fringing capacitance effect in (7-10) and (7-11).
7.2.5 Drain to source capacitance modeling

C_{ds} is defined as the fringing capacitance between the metal lines that connect the source and drain diffusions. The location of the fringing capacitance is indicated in the Fig. 7.11. It is based on the cross section view of A-A’ indicated in Fig. 7.9. Based on the layout structure, it is predicted that the fringing capacitance is proportional to N_f and W_f of the transistor. Hence, the following equation is formulated for C_{ds}.

$$C_{ds} = C_{ds_{_{fringing}}} \cdot N_f \cdot W_f$$ \hspace{1cm} (7-12)

Fig. 7.11 Drain to source capacitance structure

Note that $C_{ds_{_{fringing}}}$ is the fringing capacitance per unit width (fF/µm) between the metal lines of the source and drain metal structure.

Fig. 7.12 Extracted and calculated C_{ds} versus N_f
In Fig. 7.12, the comparison between the extracted and calculated C_{ds} shows that the proposed formulated equation can accurately predict the change in N_f and W_f. Note that as N_f and W_f increases, the amount of fringing capacitance between the source and drain metal increases. Hence, it is observed that C_{ds} has an increasing trend with N_f and W_f as shown in Fig. 7.12.

7.2.6 Substrate resistances modeling

By using the cross section view of A-A’ in Fig. 7.9, the substrate resistances network is added into the structure to indicate the location of the parasitic as shown in Fig. 7.13. C_{jsb} and C_{jdb} are the junction capacitances that are replaced by the junction diodes as shown in Fig. 7.1. R_{sub2} and R_{sub3} represent the substrate resistances under the channel while R_{sub1} connects the intrinsic bulk node to the body terminal. Based on the layout structure, it is predicted that R_{sub2} and R_{sub3} are proportional to $\frac{L_g}{N_f \cdot W_f}$ while R_{sub1} is inversely proportional $N_f \cdot W_f$.

Hence, the following equations are formulated for the substrate resistances. Note that the layout of the body contact structure is a ring that encompasses the active region of the transistor.
In (7-13) and (7-14), the variable $\rho_{\text{substrate}}$ is the substrate resistivity ($\Omega\cdot\mu\text{m}$) and $\rho_{\text{substrate, sheet}}$ is the substrate sheet resistance ($\Omega/\text{number of square}$) under the active region. The parameter XJ represents the source and drain junction depth and its value can be found in the BSIM3v3 model parameters. Note that it is assumed that the distance from the intrinsic bulk node to the source and drain contact is equivalent to $L_g/2$ and it is applied to (7-14) as shown above.

It is observed in Fig. 7.14 that the substrate resistances are inversely proportional to N_f and W_f. This is mainly due to the substrate resistance networks that are all connected in parallel with N_f fingers and the substrate resistance has a large W_f path whereby the signal flow through the substrate region. The comparison between the extracted and calculated substrate resistances shows that the proposed formulated equations (7-13) and (7-14) can accurately predict the change in N_f and W_f.

\[
R_{\text{sub1}} = \frac{\rho_{\text{substrate}}}{N_f \cdot (W_f + 2 \cdot XJ)} \quad (7-13)
\]

\[
R_{\text{sub2}} = R_{\text{sub3}} = \frac{\rho_{\text{substrate, sheet}}}{N_f \cdot (W_f + 2 \cdot XJ)} \left(\frac{L_g}{2} \right) \quad (7-14)
\]
7.3 S-parameters Modeling Results

The devices under test (DUT) are thin gate NMOS with fixed L_g of 70 nm, W_f of 1, 2.5 and 5 µm and N_f of 4, 8, 16, 24, 32, 48, and 64. The S-parameters are measured using the HP8510 network analyzer with GSG RF probes for a frequency range from 50 MHz to 49.85 GHz at various bias combinations of the gate to source V_{gs} and drain to source V_{ds} potentials. After the system calibration is performed using LRRM technique, the RF transistor and its de-embedding structures are measured. In this measurement, the standard OPEN and SHORT de-embedding structures are used to remove the pad and interconnects parasitic [76].

In order to demonstrate the scalability of the RF model, the measured and simulated S-parameters and f_T plots are presented in this section. Fig. 7.15 to Fig. 7.17 shows the measured (symbol) and simulated (dotted line) results for fixed W_f of 1 µm with varying N_f of 8, 24 and 64 at the biasing range of $V_{gs} = 0.3, 0.55, 0.95$ and 1.2 V and $V_{ds} = 0.3, 0.5, 0.8$ and 1.2 V. From the comparison between the measured and simulated results, it is observed that the proposed scalable RF model can accurately predict the measured results and show the scalability of N_f. The W_f
scalability of the proposed scalable RF model is demonstrated with good accuracy in Fig. 7.16, 7.18 and 7.19 for fixed N_f of 24 with varying W_f of 1, 2.5 and 5 µm.

Fig. 7.15 Measured and simulated results for NMOS transistor with N_f of 8, W_f of 1 µm and L_g of 70 nm
Fig. 7.16 Measured and simulated results for NMOS transistor with N_f of 24, W_f of 1 µm and L_g of 70 nm
Fig. 7.17 Measured and simulated results for NMOS transistor with N_f of 64, W_f of 1 µm and L_g of 70 nm
Fig. 7.18 Measured and simulated results for NMOS transistor with N_f of 24, W_f of 2.5 μm and L_g of 70 nm
Fig. 7.19 Measured and simulated results for NMOS transistor with N_f of 24, W_f of 5 µm and L_g of 70 nm
Hence, as demonstrated in Fig. 7.15 to Fig. 7.19, the proposed scalable RF model is shown to be geometry and biasing scalable for the S-parameters and \(f_T \) for the frequency range from 50 MHz to 49.85 GHz.

Basically, \(S_{11} \) constitutes the gate resistance and capacitance when looking into the gate terminal. But at low frequency, \(S_{11} \) is dominated by the gate capacitances and is proportional to \(N_f \) and \(W_f \) as shown in (7-10) and (7-11). From Fig. 7.15 to Fig. 7.19, the measured \(S_{11} \) shows a strong capacitance behaviour which is dependent on the transistor’s \(N_f \) and \(W_f \). Similarly looking into port 2, the \(S_{22} \) parameter consists of the diffusion and channel resistances, the drain junction parasitics and the drain-to-gate and drain-to-source capacitances. In (7-11) and (7-12), the drain related capacitances are shown to be directly proportional to \(N_f \) and \(W_f \). As the device size increases, the plotted \(S_{22} \) result will show a higher capacitance curve and the biasing and geometry effect on the diffusion and channel resistances will cause the \(S_{22} \) to shift in the resistance axis of the smith chart. Since \(S_{21} \) is defined as the forward transmission gain, the transistor’s gain will also increases as \(N_f \) or \(W_f \) increases and this is observed in the Fig. 7.15 to Fig. 7.19. Generally, the magnitude of \(S_{12} \) is small but it should still vary with respect to \(N_f \) and \(W_f \) and as frequency increases, the impedance of the parasitic capacitances will drop and this will cause the reverse transmission gain to increase. The parameter \(f_T \) is shown to be proportional to \(g_m/C_g \) in (5-1). Since \(g_m \) and \(C_g \) is proportional to \(N_fW_fL_g \) and \(N_fW_fL_g \) respectively, it can be derived that \(f_T \) is proportional to \(1/L_g^2 \) and is independent of the transistor’s \(N_f \) and \(W_f \). But in Fig. 7.15 to Fig. 7.19, the measured \(f_T \) plots shows slight difference as \(N_f \) and \(W_f \) varies, the differences can be contributed by the parasitic capacitances from the test structures and also the self-heating effect for larger size transistors that will affect the measured \(g_m \) values.
7.4 Proposed Scalable Model Verification Technique

In a scalable RFCMOS model, there are many different variables that determined the scalability of the RF model. The developed model file has to be scalable for a certain range of geometry, biasing and frequency variables. In the past, the conventional way to verify the accuracy of a model provided by the foundry is by monitoring the simulated and measured plots for the DC, S-parameters and f_T. If the conventional method is used for verifying the scalable RFCMOS model, there will be many plots that are required to be generated and it will be very tedious to verify the scalable model’s accuracy. Furthermore, presently there is no published methodology as of how to quantify the developed model’s accuracy provided by the foundry. Hence, a new technique is proposed here to verify the scalability and quantify the accuracy of RFCMOS models. This proposed verification technique is crucial to both the modeling engineers and the model file end users as it helps them to monitor the quality of the developed model and at the same time, the model file can be checked for any errors in the coded geometry equations of the parasitic sub-circuit components. Furthermore by using this proposed technique, the amount of verification time required to check the developed model file is reduced and thus reducing the overall model development time.

In this proposed technique, the model accuracy and continuity plots are generated to monitor the device geometry, biasing and frequency variables of the RF model. From these two types of plots, the quality of the developed model and the coded model file will be inspected and the final verified model file will be error free and reliable to use.
Fig. 7.20 Model Accuracy for NMOSFETs with different N_f and W_f of 1, 2.5 and 5 µm at $V_{gs} = 0.95$ V and $V_{ds} = 0.8$ V

Fig. 7.20 shows the model accuracy plots for NMOS transistors with different values of N_f, of 4, 8, 16, 24, 32, 48 and 64 and W_f of 1, 2.5 and 5 µm extracted at $V_{gs} = 0.95$ V and $V_{ds} = 0.8$ V respectively. The calculated absolute errors between the measured and simulated data for the DC characteristics, S-parameters and f_T at the various frequency points are presented in the model accuracy plot. The DC characteristics include the extracted drain current, G_m and R_{out} while the 2-port S-parameters (S_{11}, S_{12}, S_{21} and S_{22}) are extracted at the three frequency points of interest. For the extraction of the transistor’s f_T, the extrapolation method is used at the same frequency points as the S-parameters. If it is desired to check the higher frequency range, more columns of box plot can be incorporated into the model accuracy plot but more time will be required to collect these data to generate the accuracy plot for model verification.
From the box plot, it is observed that 10% to 90% of the DC, S-parameters and f_T error population are within ±10%. Note that most of the f_T error population is within ±10% but there are a few data points that have slightly higher than 10% error. The higher f_T error data points may be contributed by the extrapolation technique used to extract f_T. By generating the proposed model accuracy plot, the quality of the developed RF model in terms of its accuracy is monitored for all the fabricated device sizes at DC and the various frequency points of interest. Furthermore, by plotting at the other biasing points, the model accuracy of the RF model can be checked for those important biasing region.

Fig. 7.21 Model Continuity for G_m and Y_{21} for NMOSFETs with different N_f and W_f of 1, 2.5 and 5 µm at $V_{gs} = 0.95$ V and $V_{ds} = 0.8$ V

Fig. 7.21 shows the model continuity plot for the parameter G_m and Y_{21} versus different N_f and W_f of 1, 2.5 and 5 µm extracted at $V_{gs} = 0.95$ V and $V_{ds} = 0.8$ V. The red and blue symbols shows the measured G_m and Y_{21} extracted at 50 MHz for all the fabricated DUTs while the red and blue lines show the simulated G_m and Y_{21} extracted at 50 MHz for the whole range N_f from 4 to 64. From the plot, it is
observed that the simulated G_m (blue line) and Y_{21} (red line) overlaps each other and this observation implies that the RF model is continuous from DC to RF region. Furthermore, the simulated transistor’s gain (red and blue lines) can accurately predict the measured data (red and blue symbols) as the N_f and W_f changes and their calculated absolute errors are within the error specification of ±10 %. It is also observed that the simulated G_m and Y_{21} scale linearly with N_f for all the three W_f. By plotting the proposed model continuity plot at other biasing points, the N_f, W_f and biasing effect on the RF model are monitored at both the DC and low frequency region. In the case when the coded equations of the sub-circuit components in the model file are incorrect, the model accuracy and continuity plots will immediately reflect the incorrect effects of the wrong equations and this will alert the modeling engineer to check the coded model file again.

The proposed model accuracy and continuity plots can also be used as one of the model acceptance criteria whereby its accuracy and continuity can be checked before accepting and using the developed RF model file for circuit simulation.

7.5 RF Noise Modeling Results

The high frequency noise model equations are implemented into the transistor’s core models and the circuit simulators. When the implemented noise model equations under-estimate the noise performance of the transistor [98], it is usually very difficult for the modeling engineers to go directly into the core models to change the model’s equations. Similar changes will also be required for the circuit simulators to recognize the change in the noise model equations. Such modifications to the core model and the circuit simulators can only be done by the
software vendors. Hence, in order to compensate the under-estimation of the compact noise models, it is proposed to add in additional noise sources into the RF model using the sub-circuit approach [99]. In this research, the noise implementation is done using a BSIM3v3 compact model.

7.5.1 Noise source implementation

Fig. 7.22 shows the RF equivalent circuit model with added enhanced noise current $\overline{i_{de}^2}$ and induced gate noise current $\overline{i_g^2}$. Note that the correlation noise current $i_g i_d^*$ is not added into the RF model because most circuit simulators are unable to process the correlation noise sources.

In Fig. 7.23, the component values of R_{de}, R_{ind} and C_{ind} of the implemented noise sources are extracted using the derived equations in [99].

Although the equivalent circuit model in Fig. 7.22 is different from the proposed equivalent circuit model in [99], similar technique to implement the noise sources can be applied. The additional noise current $\overline{i_{de}^2}$ and $\overline{i_g^2}$ are implemented with current control current source (CCCS) and their noise current is determined by the component values of R_{de}, C_{ind} and R_{ind} at each biasing point. The current of the CCCS is set to zero so that it will not affect the DC and AC characteristics of the RF small-signal model. The added CCCS will only contribute the required noise current that can compensate the under-estimation of the BSIM3v3 model. By using Verilog-A, the CCCS can be coded with the required biasing and geometry dependences so that scalable HF noise modeling can be achieved. By setting up the geometry and biasing variables as shown in the Verilog-A function in Appendix A, equations can be formed to calculate the components values of R_{de}, C_{ind} and R_{ind} at each biasing point and geometry.
combination. HF noise simulation is then setup to simulate the model file with the Verilog-A function to obtain the simulated HF noise parameters for comparison with the measured data.

Fig. 7.22 RF equivalent circuit model with added enhanced noise current $\overline{i_{de}^2}$ and induced gate noise current $\overline{i_g^2}$

Fig. 7.23 Equivalent noise circuit (a) $\overline{i_{de}^2}$ and (b) $\overline{i_g^2}$ that generate additional noise current [99]
7.5.2 Measured and simulated noise parameters

The implemented noise sources together with the RF model are simulated and compared with the measured noise parameters in Fig. 7.24. By performing the noise source implementation [99] as shown in this section, the simulated (solid line) noise parameters fit closely to the measured results throughout the whole frequency range. By using Verilog-A, the biasing dependences can be coded into the CCCS component as shown in Appendix A so that the added noise source will vary when the biasing is changed. From Fig. 7.24, it is shown that the simulated noise parameters can vary with biasing and able to predict the measured results well.
Fig. 7.24 Measured (symbol) and simulated (solid line) noise parameters versus frequency for transistor with N_f of 32, W_f of 5 μm and L_g of 70 nm

(Extracted $V_{ds} = 1.2$ V @ $V_{gs} = 0.55, 0.95$ and 1.2 V)

In order to demonstrate the accuracy of the generated HF noise model, the simulated noise circles (dotted line) and the measured noise figures (symbol) at the other source impedance states are also plotted in Fig. 7.25. It is observed that the simulated noise circles can closely predict the measured noise figures at various source impedance states. Thus, it demonstrates the accuracy of the simulated noise parameters.
Fig. 7.25 Simulated noise circles and measured noise figures at different source impedance states for transistor with N_f of 32, W_f of 5 μm and L_g of 70 nm (Extracted at $V_{ds}=1.2$ V, $V_{gs}=0.55$ V and frequency = 5 GHz)

7.6 Summary

In this chapter, the physical formation of the sub-circuit parasitic is discussed with respect to its layout structure. The scaling effect of the device geometry is accounted for in the proposed scalable equations for each of the parasitic components. By implementing the proposed scalable equation for the parasitic components into the conventional sub-circuit RF model, a scalable RFCMOS sub-circuit model can be generated and shown to be valid up to 49.85 GHz. Although the proposed equation of the parasitic sub-circuit components are classical, which mainly make use of the material’s sheet resistance and capacitance
per unit area but in this chapter, it has demonstrated that such simple equations are sufficient to model the parasitic components when the transistor geometry layout changes. Furthermore, in most of the reported papers, the parasitic equations are usually not compiled and discussed in a single publication and the accuracy of the model is usually demonstrated with one or two device’s sizes. However, in this chapter, all of the sub-circuit parasitic are discussed and formulated and the scalable sub-circuit model is simulated with frequency for a range of N_f, W_f and biasing points. The excellent fitting between the measured and simulated results shows that the generated scalable RF model is scalable for the range of the transistor’s N_f, W_f and biasing points.

By using the proposed verification technique, the time required to verify a scalable RFCMOS model can be reduced greatly and the verification step can also ensure that the developed model is error free. Therefore, it is more robust and reliable to use in RF circuit design. It is shown that by implementing the noise sources using Verilog-A in section 7.5, the biasing and geometry dependence of the noise parameters can be predicted accurately as presented in Fig. 7.24 and Fig. 7.25.
Chapter 8

A SCALABLE RFCMOS NOISE MODEL

8.1 Introduction

The geometry scalability of RFCMOS models have allowed circuit designers to have more flexibility in choosing the device sizes that they need in the circuit design. However, the model simulation capability for the transistor’s high frequency (HF) noise performance is still limited by the BSIM core model that under-estimates the HF noise for short channel devices. In order to obtain accurate HF noise simulation, noise sources are proposed to be added into the RF model to compensate the under-estimation from the BSIM core model. By monitoring the trend of the noise sources and implementing them using Verilog-A, accurate and scalable HF noise modeling can be achieved. Furthermore, the scalable HF noise model allows more powerful PDK to be developed so that the optimum device size based on its DC, S-parameters and noise performances can be selected to use in critical RF block such as the low noise amplifier (LNA).

Although HF noise modeling has been widely studied and researched, in most of the published papers, they mainly demonstrated HF noise model fitting at a fixed device size and a few biasing points [71], [98]-[102]. The objective of this research is to demonstrate scalable HF noise modeling for RFCMOS transistor for a wide range of geometry sizes, biasing and frequency points. In this chapter, a brief review on the measurement theory is presented to study the measurement setup limitations that may explain the irregular fluctuation of the measured NF_{min} versus frequency for small device sizes and low biasing points. By using a Matlab
program, the pads and interconnects noise are de-embedded to obtain the true
device noise parameters. The extracted noise sources versus the transistor’s
graphy and biasing points can be plotted and explained by using the classical RF
noise model and this further proves that the extracted noise sources results are
reliable. Finally, by simulating the scalable HF noise model, the measured and
simulated noise parameters are plotted for a range of geometry, biasing and
frequency points. In addition to demonstrate the accuracy of the developed noise
model, the measured noise figures at other source impedance states are plotted
together with the simulated noise circles in the smith chart.

8.2 HF Noise Measurement and Parasitic De-embedding

8.2.1 Test setup and parasitic de-embedding

The measurement system ATN NP5 is used for HF noise and S-parameters
measurement and its setup is as shown in Fig. 3.12. The frequency module of 2 to
26.5 GHz was used. In this study, the devices under test (DUT) are thin gate
NMOS transistors that have a fixed channel length (L_g) of 70 nm, unit width (W_f)
of 1, 2.5 and 5 µm and finger number (N_f) of 4, 16, 32, and 64. The RF transistor
and its standard OPEN and SHORT de-embedding structures were measured at
various bias combinations of the gate to source (V_{gs}) and drain to source (V_{ds})
potentials for a range of frequency points. By using the reported technique in [76]
and [77], the pads and interconnects parasitic that contributed to the measured HF
noise and S-parameters can be removed to obtain the intrinsic transistor
characteristics.
Fig. 8.1 Noise parameters (a) NF_{min} and r_n and (b) $\text{real}(\Gamma_{\text{opt}})$ and $\text{imag}(\Gamma_{\text{opt}})$ before (solid line) and after (symbols) de-embedding of the pads and interconnects parasitic for transistor with N_f of 32, W_f of 5 μm and L_g of 70 nm at $V_{gs} = 0.95$ V and $V_{ds} = 1.2$ V
Fig. 8.1 shows the four noise parameters before and after de-embedding of the pads and interconnects parasitic. It is shown that the effect of the pads and interconnects affect the noise parameters slightly. This is because in the test structures, the design of the pads and interconnects are shielded with ground metal and it has been published in the literature that such layout design is capable of shielding the wafer surface from the substrate’s noise that can degrade the measured noise figure of the DUT [103].

![Simplified RF NMOS layout](image)

Fig. 8.2 Simplified RF NMOS layout

Fig. 8.2 shows the simplified layout of the RF NMOS transistor. The transistor has a multi-finger configuration with double contacted gate poly structure. Dummy gate poly is added to improve the gate structure formation and metals 1 and 2 are used for the connection of the gate terminal. The source diffusions are connected using the metal 1 layer and shorted to the body terminal or P-well while the drain diffusions are pulled out using the metal 3 layer.
8.2.2 ATN NP5 measurement theory

Basically, the transistor’s noise figure \(F \) is dependent on the four noise parameters and the source reflection coefficient \(\Gamma \) as shown in (8-1).

\[F = F_{\text{min}} + \frac{4 \cdot r_n |\Gamma_s - \Gamma_{\text{opt}}|^2}{(1 - |\Gamma_s|^2) |1 + \Gamma_{\text{opt}}|^2} \]
(8-1)

The variable \(F_{\text{min}} \) is the linear term of minimum noise figure when the complex source reflection coefficient \(\Gamma_s \) is matched to the optimum complex source reflection coefficient \(\Gamma_{\text{opt}} \) and \(r_n \) is the normalized noise resistance which is a measure of how sensitive the transistor’s noise figure to the source mismatch from \(\Gamma_{\text{opt}} \). It is obvious that for low noise transistor performance smaller \(F_{\text{min}} \) and \(r_n \) are desirable. From (8-1), the noise parameters that need to be extracted are \(F_{\text{min}}, r_n \) and the real and imaginary terms of \(\Gamma_{\text{opt}} \). In principle, since four variables are required to be extracted, only four measurements at different \(\Gamma_s \) are required. But in practice, sixteen measurements are done to increase the accuracy of the noise parameters extraction.

During the noise measurement, the measured noise figure includes both the measurement system and the DUT. In order to obtain the noise parameters of the DUT, the noise contribution from the measurement system \(F_{\text{sys}} \) has to be determined during the calibration stage so that it can be removed automatically by the measurement software. During noise measurement, the total noise figure \(F_{\text{total}} \) at different source impedance states is measured and by using the Friss cascade equation [80] in (8-2), the DUT noise figure \(F_{\text{dut}} \) can be calculated. Note that \(G_{\text{dut}} \) is the available gain of the DUT.
\[F_{\text{dut}} = F_{\text{total}} - \frac{F_{\text{sys}} - 1}{G_{\text{dut}}} \]

(8-2)

As the ATN measurement system uses Friss equation to extract the noise figure of the DUT, the measurement accuracy will be greatly dependent on the measured \(G_{\text{dut}} \). For example, if \(F_{\text{sys}} \) is large and \(G_{\text{dut}} \) is small, the second term in (8-2) will be large and \(F_{\text{dut}} \) will be the subtraction of two large numbers; hence this will lead to \(F_{\text{dut}} \) to be very sensitive to measurement errors. Furthermore, the accuracy of measured \(F_{\text{dut}} \) will in turn affect the extraction of \(F_{\text{min}} \) parameter in (8-1). Therefore, it is expected that for measurement of small device sizes with low \(G_{\text{dut}} \) values, their \(F_{\text{min}} \) are typically less than 1 dB. Thus, the extraction of \(F_{\text{min}} \) will be a challenge under such conditions.

(a)
Fig. 8.3 Noise parameters (a) NF_{min} and r_n and (b) real(Γ_{opt}) and imag(Γ_{opt}) before (solid line) and after (symbols) de-embedding for transistor with N_f of 32, W_f of 1 μm and L_g of 70 nm at $V_{gs} = 0.95$ V and $V_{ds} = 1.2$ V.

Fig. 8.3 shows the extracted noise parameters for a transistor with N_f of 32, W_f of 1 μm and L_g of 70 nm. The extraction of the noise parameters were done at the same biasing condition as in Fig. 8.1. It is shown that the extracted NF_{min} becomes fluctuating and doesn’t have a clear upward trend with respect to the frequency. However, the extraction of the parameter r_n and Γ_{opt} are not affected in the measurement. It is suspected that such extracted behavior of the NF_{min} parameter is due to the measurement limitation of the ATN system as discussed in (8-2). Hence, due to the measurement system limitation, the extraction of the NF_{min} for small device sizes and low biasing points will have such irregular trend of NF_{min} versus frequency.
Fig. 8.4 shows the measured and simulated DC characteristics for the transistor with N_f of 32, W_f of 1 μm and L_g of 70 nm. The measured DC results show that the device used for the noise measurement is operating correctly. Another possible explanation for the fluctuation in the extracted NF_{min} is that the source impedance state used for the noise measurement falls either in the “conditionally stable” or “unstable” region. This will cause errors in the measured noise figures for each of the source impedance states during the noise measurement. As the NF_{min} is extracted from these measured noise figures, the fitted NF_{min} curve may contain such errors and cause it to fluctuate as shown in Fig. 8.3(a).
Fig. 8.4 DC characteristics (a) g_m versus V_{gs} and (b) I_{ds} versus V_{ds} with measured (symbols) and simulated (solid line) data for transistor with N_f of 32, W_f of 1 µm and L_e of 70 nm

8.3 Noise Source Extraction

Fig. 8.5 Proposed RFCMOS model with extrinsic parasitic resistance noise, intrinsic induced gate noise (i_{g}^{2}) and channel thermal noise (i_{th}^{2})
Fig. 8.5 shows a RFCMOS model that has all the extrinsic parasitic components and their corresponding resistance noise, the intrinsic induced gate \(\overline{i_g^2} \) and channel thermal \(\overline{i_d^2} \) noise sources. By using the reported noise source extraction technique in [104], the intrinsic noise source, \(\overline{i_g^2}, \overline{i_d^2} \) and their cross-correlation term \(\overline{i_g i_d^*} \) can be extracted from the measured S-parameters and noise measurements. In this extraction technique, the measured noise parameters are de-embedded from its pads and interconnect noise and by using the correlation matrix in [105] and [106], the extrinsic parasitic resistance noise sources can be de-embedded and obtain the intrinsic noise portion as indicated in Fig. 8.5. The \(\overline{i_g^2}, \overline{i_d^2} \) and \(\overline{i_g i_d^*} \) can be calculated using the equations given in [104]. As the extraction technique uses the extrinsic resistances for the noise de-embedding, the accuracy of the extracted \(\overline{i_g^2}, \overline{i_d^2} \) and \(\overline{i_g i_d^*} \) will strongly dependent on the accuracy of the extrinsic resistances values. Hence, it is crucial that the small-signal RF transistor model must be modeled accurately before the noise source extraction can be done.

In the classical RF noise model from Van Der Ziel [54], [55], the expression for \(\overline{i_d^2} \) and \(\overline{i_g^2} \) are given as shown in (8-3) and (8-4) respectively.

\[
\overline{i_d^2} = 4kT \gamma_{ds} \Delta f \quad (8-3)
\]

\[
\overline{i_g^2} = 4kT \delta \left(\frac{\omega^2 C_{gs}^2}{5g_{ds}0} \right) \Delta f \quad (8-4)
\]

\[
\overline{i_g i_d^*} = c \cdot \sqrt{\overline{i_g^2 i_d^2}} \quad (8-5)
\]

In (8-3), the parameter \(g_{ds} \) is the drain-source conductance at zero \(V_{ds} \). \(\gamma \) is the noise factor and has a value of unity at zero \(V_{ds} \). In long channel devices, \(\gamma \)
decreases to a value of 2/3 in saturation region. Note that for short channel devices that operate in saturation region, \(\gamma \) can be considerably higher than the long channel value. In (8-4), the parameter \(\delta \) is the gate noise coefficient and it is given a value of 4/3 in [54]. The factor \(c \) in (8-5) represents the correlation between the noise \(\bar{i}_d^2 \) and \(\bar{i}_g^2 \). By studying the geometry dependence of \(g_{ds} \) and \(C_{gs} \) in (8-3) and (8-4), it is found that \(\bar{i}_d^2 \), \(\bar{i}_g^2 \) and \(\bar{i}_d \bar{i}_g \) is proportional to \(\frac{N_f W_f}{L_g} \), \(N_f W_f L_g^3 \) and \(N_f W_f L_g \), respectively. Furthermore in terms of frequency \((f) \) dependences, it is clear that \(\bar{i}_g^2 \) is frequency independent while \(\bar{i}_d^2 \) and \(\bar{i}_d \bar{i}_g \) is proportional to \(f^2 \) and \(f \) respectively. The frequency and geometry dependences plots for the noise sources are shown in Figs. 8.6 and 8.7. The plots in Figs. 8.6 and 8.7 clearly validate the above discussion on the frequency and geometry dependences of the noise sources.
Fig. 8.6 Extracted noise sources (a) $\overline{i_d}$, (b) $\overline{i_g}$ and (c) $\overline{i_g i_d}$ versus frequency for transistors with N_f of 4, 16, 32 and 64 at fixed W_f of 5 μm and L_g of 70 nm

(Extracted at $V_{gs}=0.55$ V and $V_{ds}=1.2$ V)
Fig. 8.7 Extracted noise sources (a) $\overline{v_{dd}^2}$, (b) $\overline{v_{ds}^2}$ and (c) $\overline{v_{dd} \cdot v_{ds}^*}$ versus W_f for transistors with N_f of 4, 16, 32 and 64 at fixed L_g of 70 nm (Extracted at $V_{gs}=0.55$ V, $V_{ds}=1.2$ V and frequency = 5 GHz)

\bigcirc Finger 4 \times Finger 16 \square Finger 32 \triangle Finger 64
Fig. 8.8 Extracted noise sources (a) \bar{i}_d^2, (b) \bar{i}_g^2 and (c) $\bar{i}_g \bar{i}_d$ versus V_{gs} for transistors with N_f of 4, 16, 32 and 64 at fixed W_f of 5 μm and L_g of 70 nm

(Extracted at $V_{ds}=1.2$ V and frequency = 5 GHz)
The biasing dependence of the extracted noise sources i_d^2, i_g^2 and $i_g i_d^*$ is shown in Fig. 8.8. It is shown that i_d^2 increases with V_{gs} as in Fig. 8.8(a). This is mainly due to the higher output conductance when V_{gs} increases at a fixed V_{ds} biasing point [100]. As i_g^2 is mainly the coupled thermal noise from the channel through the gate capacitance to the gate structure, it is strongly dependent on the gate capacitance and is less sensitive to the biasing applied in the channel. Hence in Fig. 8.8(b), it shows that i_g^2 has little changes when V_{gs} increases. Note that the correlation noise $i_g i_d^*$ follows the V_{gs} dependence of i_d^2.

8.4 High Frequency Noise Modeling

In most compact models, their high frequency noise model equations are implemented into their core models and circuit simulators are designed to recognize these model equations when it perform simulations using these models. When the implemented noise model equations under-estimate the noise performance of the transistor [98], it is usually very difficult for modeling engineers to go into the core models to change the model’s equations and such changes may require similar modifications to be done on the device simulators which only the software vendor can carry out. Hence, in order to compensate the under-estimation of the compact noise models, it is proposed to add in additional noise sources into the RF model using the sub-circuit approach [99]. In this study, the noise implementation is done using a BSIM3v3 compact model.
8.4.1 Noise source implementation

Fig. 8.9 RF equivalent circuit model with added enhanced noise current $\overline{i_{de}^2}$ and induced gate noise current $\overline{i_g^2}$.

Fig. 8.9 shows the RF equivalent circuit model with added enhanced noise current $\overline{i_{de}^2}$ and induced gate noise current $\overline{i_g^2}$. Note that the correlation noise current $\overline{i_i i_d}$ is not added into the RF model because most circuit simulators are unable to process the correlation noise sources.
In [99], the following equations are derived to extract the component values of R_{de}, R_{ind} and C_{ind} of the equivalent noise circuits as shown in Fig. 8.10.

\[
R_{de} = \frac{4kT}{\overline{i_d^2} - \overline{i_{dBSIM}^2}} \quad (8-6)
\]

\[
C_{ind} = 100 \cdot \frac{P_{ind} \cdot f_{max}}{8kT\pi} \quad (8-7)
\]

\[
R_{ind} = \frac{P_{ind}}{16kT\pi^2 C_{ind}^2} \quad (8-8)
\]

\[
P_{ind} = \frac{\overline{i_g^2}}{f^2} \quad (8-9)
\]

Note that $\overline{i_{dBSIM}^2}$ is the simulated channel thermal noise current of the BSIM3v3 core model and f_{max} is the maximum frequency for the noise model to be valid.
Although the equivalent circuit model of Fig. 8.9 is different from the proposed equivalent circuit model in [99], similar technique to implement the noise sources can be applied. The additional noise current i_{de}^2 and i_g^2 are implemented with current control current source (CCCS) and their noise current is determined by the component values of R_{de}, C_{ind} and R_{ind} at each biasing point. The current of the CCCS is set to zero so that it will not affect the DC and AC characteristics of the RF small-signal model. The added CCCS will only contribute the required noise current that can compensate the under-estimation of the BSIM3v3 model. By using Verilog-A, CCCS can be coded with the required biasing and geometry dependences so that scalable HF noise modeling can be achieved.

The same modeling approach for the scalable HF noise model can be applied to the RF circuit design tools such as Cadence, Advanced Design System (ADS) and Microwave Office (MWO). In their circuit simulators, the CCCS component can be described with geometry and biasing equations and they are added into the RFCMOS model to generate the required additional noise current during the HF noise simulation. Therefore, accurate and scalable HF noise simulation can be achieved and give better prediction for noise performance of the designed RF circuit blocks.

8.4.2 Measured and simulated noise parameters

The implemented noise sources together with the RF model are simulated and compared with the measured noise parameters in Fig. 8.11. In this simulation, the Cadence Spectre simulator is used for the simulation of the HF noise parameters.
(a) [Graph showing NF vs Frequency with two models: RF model (Noise sources added) and RF model (No noise sources added).]

(b) [Graph showing Zn vs Frequency with two models: RF model (Noise sources added) and RF model (No noise sources added).]

(c) [Graph showing real (Gmn) vs Frequency with two models: RF model (Noise sources added) and RF model (No noise sources added).]
Fig. 8.11 Measured (symbol) and simulated (solid and dash line) noise parameters versus frequency for transistor with N_f of 32, W_f of 5 μm and L_g of 70 nm (Extracted at $V_{gs}= 1.2$ V and $V_{ds}= 1.2$ V)
Fig. 8.12 Measured (symbol) and simulated (solid line) noise parameters versus frequency for transistor with N_f of 32, W_f of 5 µm and L_g of 70 nm

(Extracted V_{ds} = 0.5 V @ V_{gs} = 0.55, 0.95 and 1.2 V)
Fig. 8.13 Measured (symbol) and simulated (solid line) noise parameters versus frequency for transistor with N_f of 32, W_f of 5 μm and L_g of 70 nm

(Extracted $V_{ds} = 1.2$ V @ $V_{gs} = 0.55, 0.95$ and 1.2 V)

Fig. 8.11 provides a comparison between the measured and simulated noise parameters versus frequency for transistor with N_f of 32, W_f of 5 μm and L_g of 70 nm. It is observed that the simulated (dash line) noise parameters for the RF model with no additional noise sources added under-estimated the following noise parameters NF_{min}, r_n and $\text{imag}(\Gamma_{opt})$. By performing the noise source implementation [99] as shown in this section, the simulated (solid line) noise parameters fit closely to the measured results throughout the whole frequency range. By using Verilog-A, the V_{gs} and V_{ds} biasing dependences can be coded into the CCCS component so that the added noise source will vary when the biasing is changed. The biasing dependences of the noise parameters are shown in Figs. 8.12 and 8.13. It is shown that the simulated noise parameters can vary with biasing and able to predict the measured results well.
Fig. 8.14 Simulated noise circles and measured noise figures at different source impedance states for transistor with N_f of 32, W_f of 5 μm and L_g of 70 nm (a) $V_{ds} = 1.2$ V, $V_{gs} = 0.55$ V and (b) $V_{ds} = V_{gs} = 1.2$ V (Extracted at frequency = 5 GHz)
In order to demonstrate the accuracy of the generated HF noise model, the simulated noise circles (dotted line) and the measured noise figures (symbol) at the other source impedance states are plotted in Fig. 8.14. It is observed that the simulated noise circles can closely predict the measured noise figures at various source impedance states. Thus, it demonstrates the accuracy of the simulated noise parameters.

Due to the possibility of measurement system limitation as discussed in the section 8.2.2, it is very difficult to measure very good NF_{\min} data for small width devices at the various biasing conditions. However, it is shown in Fig. 8.3 that the measured parameters r_n and Γ_{opt} are not affected in the measurement. Therefore, in order to show the geometry scalability of the developed HF noise model, the simulated noise circles for the small devices are plotted with their measured noise figures at the other source impedance states for comparison. As r_n and Γ_{opt} are not affected by the measurement system, its geometry (N_f and W_f) and biasing dependences are plotted to show the scalability of the developed HF noise model. Note that in the comparison of the measured noise figures with the simulated noise circles plot, the sixteen source impedance states are selected from a full set of three hundred and fifty three impedance states pre-determined by the mismatch noise source at each frequency point and the selection criteria is fully controlled by the measurement software. Hence, the selected sixteen states for each frequency point may not be the same states for all the different device measurement at each biasing point.
Fig. 8.15 Simulated noise circles and measured noise figures at different source impedance states for transistor (a) $N_f = 4$, $W_f = 1 \, \mu m$, (b) $N_f = 64$, $W_f = 1 \, \mu m$, (c) $N_f = 4$, $W_f = 2.5 \, \mu m$, (d) $N_f = 64$, $W_f = 2.5 \, \mu m$, (e) $N_f = 4$, $W_f = 5 \, \mu m$ and (f) $N_f = 64$, $W_f = 5 \, \mu m$ at fixed L_g of 70 nm (Extracted at $V_{gs} = V_{ds} = 1.2 \, V$ and frequency = 5 GHz)
Fig. 8.15 shows the simulated noise circles and measured noise figures at the other source impedance states for various transistors’ geometry N_f and W_f. It has shown that the simulated noise circles can predict accurately for small (N_f of 4 with W_f of 1, 2.5 and 5 µm) and large (N_f of 64 with W_f of 1, 2.5 and 5 µm) transistors. This further demonstrates that all the noise parameters NF_{min}, r_n and Γ_{opt} are simulated accurately for the above geometry range.

In Figs. 8.16 and 8.17, the measured and simulated noise parameters r_n and Γ_{opt} are plotted versus biasing and transistor’s geometry respectively. Both figures show that the simulated results can predict the measured values for the above range of biasing, N_f and W_f. Therefore, from the plots presented in Figs. 8.12 to 8.17, it has demonstrated that a scalable HF noise model was achieved in this work for various biasing and transistor’s geometry.
Fig. 8.16 Measured (symbol) and simulated (dash line) noise parameters versus biasing for transistors with W_f (1, 2.5 and 5 μm) at fixed N_f of 32

(Extracted at $V_{ds} = 1.2$ V and frequency = 5 GHz)

W_f \triangle 1μm \square 2.5μm \bullet 5μm
Fig. 8.17 Measured (symbol) and simulated (dash line) noise parameters versus transistors’ geometry with N_f (4, 16, 32 and 64) and W_f (1, 2.5 and 5 μm) (Extracted at $V_{gs} = V_{ds} = 1.2$ V and frequency = 5 GHz)

8.5 Summary

The HF noise model is normally demonstrated for one or few device sizes and some biasing points for a range of frequency in most reported works. But in order for the HF noise model to be applicable to the industry, it has to be able to simulate for a wide range of geometry, biasing and frequency points. Hence, in this research, the scalability of the HF noise model is demonstrated with excellent accuracy for up to 26 GHz for the four key noise parameters, i.e., NF_{\min}, r_n, real(Γ_{opt}) and imag(Γ_{opt}) at different geometrical combination of N_f and W_f, and at a broad range of biasing points.
Furthermore, to show the accuracy of the developed scalable HF noise model, its simulated noise circles are plotted against the measured noise figures at other source impedance states. Very good fit is achieved between the measured and simulated results. The effect of the metal ground shielding on the pads and interconnects shows that it is able to shield the transistor from the substrate noise sources. The fluctuating of the measured NF_{min} versus frequency trend for the small devices is explained with the measurement theory and set-up. Although the NF_{min} parameter is fluctuating with frequency, the other three noise parameters (r_n, real(Γ_{opt}) and imag(Γ_{opt})) can be used to demonstrate the HF noise model fitting between the simulated and the measured results.

Finally, the scalability of the HF noise model can help circuit designers to optimize their designs and run accurate simulations to ensure circuit performances are within the chip specifications before sending them for fabrication. This can greatly enhance the chance of first time success in tape-out and reduce the design cycle time for RF chips that have critical noise requirements.
Chapter 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

The relentless improvement in CMOS technology has greatly improved its RF characteristics which make it a viable technology for realizing many RF applications. But to optimize the current circuit design process, RF models development must also be improved. Currently, most foundries provide discrete sizes for RF models in their PDK and this will limit the device selection available for circuit designers and result in non-optimized RF circuits. By generating accurate and scalable RFCMOS models, the designed circuits can be optimized during the simulation process and achieve single tape-out success. This will certainly reduce the time to market for the developed RF chips.

This thesis presents a systematic way to study the RFCMOS transistor performance and its RF modeling technique. The RFCMOS transistor is studied for its RF performance with respect to its layout design and the extraction technique to extract the RF parasitic components from the transistor structure. The scalable RFCMOS transistor and noise modeling techniques are demonstrated with their proposed model verification technique.

In this study, a unit width (\(W_f\)) optimization technique is shown, based on their unity short-circuit current gain frequency (\(f_T\)), unilateral power gain frequency (\(f_{MAX}\)) and high frequency (HF) noise for RFCMOS transistors. Our results show that the trend for the above figure of merits (FOMs) with respect to changes in \(W_f\) is different; hence some trade-offs are required to obtain the
optimum W_f value. During the HF noise analysis, a new FOM is proposed to study the W_f effect on the HF noise performance. In the experiment, flicker noise of the transistor is also measured and the results show that changes in W_f at fixed total width do not affect the noise spectral density at low frequency range. In conclusion, an optimum W_f value of 12 µm is found with respect to f_T for the 0.18 µm process and the smallest W_f transistor should be used in RF circuit design for optimum f_{MAX} and HF noise performance. This technique enables RF engineers to optimize the transistor’s layout and help to select the optimum W_f value for transistors used in specific circuit design such as low noise amplifier (LNA), voltage controlled oscillator (VCO) and mixer. Furthermore, by using layout optimized transistors in RF circuit, optimal circuit’s performance can be easily achieved and this greatly reduces the circuit development time. In the aspect of RF device modeling, by knowing the optimum W_f for a particular process or technology, the number of transistors to model is reduced and this greatly shortens the RF modeling development time for existing and future technologies.

After studying the effect of various parasitic components that exist in the RF transistor layout structure, a new extraction technique to extract the parasitic values is proposed. An accurate and simple parameter extraction technique for deep sub-micron MOSFET’s using a conventional MOSFET model with three-terminal resistances for the gate, source and drain, as well as a simple substrate coupling network and a non-reciprocal capacitor is shown. This extraction technique utilizes both Z- and Y-parameters analysis on the proposed small-signal equivalent circuit. The RF simulation is done using the BSIM4 DC core model with the extracted parasitic component values. Analytical equations are derived for all the RF parasitic and linear regression technique is used to extract their values.
Transcapacitance is utilized in the model to ensure charge conservation and good fitting of the Y_{21} and Y_{12} parameters. The extracted and optimized RF parasitic values are in close agreement, which implies that little or no optimization is required using this new technique. Hence, this extraction methodology can be implemented easily for RF MOSFET modeling and excellent agreement has been obtained between the simulated and measured results up to 20 GHz.

The proposed extraction technique is also utilized to extract parasitic components for the 90 nm RF transistors. The parasitic components are extracted and studied for its geometry dependence with respect to its layout structure. Physical geometry equations are proposed to represent these parasitic components and by implementing them into the RF model, a scalable RFCMOS model that is valid up to 49.85 GHz is demonstrated. A new verification technique is proposed to verify the quality of the developed scalable RFCMOS model with its accuracy and continuity plots. From the accuracy plot, it shows that the absolute error between the measured and simulated DC, S-parameters and f_T results are within ±10 %. The continuity plot also shows that the developed model is DC to RF continuous and it scales linearly with respect to the transistor’s finger number. Hence, by plotting and analyzing the accuracy and continuity plots, both the quality of the developed scalable model file and the coded geometry equations are verified and confirmed with no errors. Thus, making the proposed scalable model file highly reliable to use. Furthermore, the RF noise modeling is also developed and the fitting between the measured and simulated noise parameters has shown excellent agreement within the noise modeling frequency range. By utilizing the reported geometry equations for the RF parasitic, scalable RFCMOS modeling can be implemented easily for the other technology nodes.
The high frequency (HF) scalable noise modeling of RF MOSFET for a 90 nm technology node is also demonstrated. The extracted noise sources are studied for their geometry and biasing dependences. By implementing additional noise sources into the small-signal RFCMOS model, accurate HF noise simulation for the transistor can be achieved. Verilog-A is used for the coding of the additional noise sources into the RFCMOS model and the added noise source will compensate the under-estimation of channel thermal noise from the BSIM3v3 core model. Simulated noise circles and the measured noise figures are plotted at other source impedances show that all the noise parameters are simulated accurately. The biasing and geometry dependences of the measured and simulated noise parameters are presented to demonstrate the scalability of the developed HF noise model. The scalability feature in HF noise model can be implemented into the process design kit (PDK) so that more powerful PDK can be developed for circuit designers to optimize and simulate their circuit designs that require stringent noise specifications. The accurate noise simulation can ensure better chance of design success and reduce the number of tape-outs and design cycle time.

9.2 Recommendations

The author has reviewed his own work extensively, and proposes the following for potential future research:

(i) Presently, all the measurements and extraction techniques are based on two-port analysis. As CMOS devices are basically a four-terminal structure, it is important to research on how to perform three-port S-parameter measurements and develop three-port extraction techniques. However, the three-port S-parameter measurement and parameter extraction are still not well established yet.
(ii) The HF noise measurement system has limitations when performing measurement for small device sizes and at low biasing conditions. This will cause HF noise measurement of the transistor at sub-threshold or threshold region to be very difficult. In order to achieve low power consumption for RF circuits, the operating circuit conditions must be set lower. Hence, there is a need to study on how to obtain accurate and reliable HF noise measurement for small devices at low biasing conditions. The temperature measurement and modeling of the HF noise parameters are also exciting topic for research.
References

[52] StandfordResearchSR780. [Online].
http://www.thinksrs.com/products/SR780.htm

Circuits, Cambridge University Press, United Kingdom, 1st Edition,

vol. 32, issue 7, pp. 419-422, July 1944.

International Conference on Microelectronic Test Structures, vol. 12,

parameters of silicon MOSFET transistors,” IEEE MTT-S International

[83] M. Calvo, P. Winson and A. D. Snider, “Mechanistic Interpretation of the
1993.

Journal of High Speed Electronics and Systems, vol. 11, no. 4, pp. 1007-

[85] K. Kuhn, R. Basco, D. Becher, M. Hattendorf, P. Packan, I. Post, P.
Vandervoorn and I. Young, “A comparison of state-of-the-art NMOS and
SiGe HBT devices for analog/mixed-signal/RF circuit applications,”
Symposium on VLSI Technology Digest of Technical Papers, pp.224-225,

Author’s Publications

Appendix A

Verilog-A Codes for Current Control Current Source

The implementation of CCCS using Verilog-A is demonstrated in the RF model shown below.

```verbatim
//*****************************************************
//*  Device summary of model file                     *
//*****************************************************
//* Model name    Gate Length(um) *
//* Gate Width per finger(um)  Finger No. *
//*****************************************************
//* n12_f04_64w1_51007  0.07(simulate=0.071)               *
//* 1,1.75,2.5,3.75,5        4 to 64(Even) *
//*
//* BSIM3V3 RF Subcircuit Model for 1.2 NMOS LVHS *
//* Transistor *
//*
//* The subcircuit consists of DC MOS transistor core* *
//* with BSIM3v3.2 model and parasitic elements to *
//* predict both DC & RF characteristics *
//*
//* APPLICATION NOTES *
//*
//* 1. Transistor sizes used to generate this *
//*   scalable RFMOS model *
//*   Number of Fingers = 4, 8, 16, 24, 32, 48, 64 *
//*   Finger width = 1, 1.75, 2.5, 3.75 and 5um *
//* 2. The Range of Finger values supported by this *
//*   model is from 4 - 64 Even Fingers only *
//* 3. The Range of Finger width values supported by *
//*   this model is from 1 - 5um only *
//* 4. To use this model, please specify the *
//*   parameter "f" and "wf"
//*   For example 4 finger transistor, f=4 and width* *
//*   of 1um, wf=1 *
//* 5. This model support 25, -30 and 125 Deg C *
//*
//* Device information *
//* Device Name: n12_f04_64w1_51007 *
//* Structure : Multi-Finger *
//* Gate length of one finger: 0.07u *
//* Gate width of one finger : 1.0 to 5.0u *
```
// * Finger No.: 04 to 64 (Even Fingers only) *
// ***
// NOTE:
// Terminals are D G S B
subckt n12_f04_64w1_51007 (1 2 3 4)
parameters f=32 wf=2.5 lg=0.071

+temp_rs_rd=3E-3
+temp_rg=2E-3
+temp_cg=10E-6
+temp_rsub=-1E-3
+temp_csd=4E-3
+temp_csubg=10E-6
+rd1=(((0.096*(wf+0.728)/0.14)+(27/(3.3873*wf)))/(f/2))
 (1+temp_rs_rd(temp-25))
+rs1=(((0.09*(wf+0.462)/0.12)+(20/(3.3873*wf)))/((f/2)+1))
 (1+temp_rs_rd(temp-25))
+cgd1=(((0.115162453*(f/2))+(f*wf*0.05701627561)+0.3383392)
 (1+temp_cg(temp-25)))*e-15
+cgs1=(((0.286151054*)((f/2)+1))+(f*wf*0.05774928500)+0.2894813
 (1+temp_cg(temp-25))*e-15
+rg1=(((5.87*wf)/(lg*f*12))+((793.18*lg)/(wf*f))+((5.87
 *(0.26/2))/(lg*f)))*(1+(temp_rg*(temp-25)))
+x1=(((2*(0.1+0.405+0.07)))+(((f/2)+1)*0.41)+((f/2)*0.41
)+(f*0.07))*0.37)+(2*0.82*1.1)
+x2=(((2*(0.1+0.405+0.07)))+(((f/2)+1)*0.41)+((f/2)*0.41
)+(f*0.07))*0.46)+(2*0.82*(wf+0.035))
+csbg1=((1.0603988*x1)+(1.0603988*0.0688332272*x2)-
 2.651286696)*(1+temp_csubg*(temp-25))*e-15
+rsbg1=(3872/f)*(1+temp_rsub*(temp-25))
+csg1=(f*(0.09193*wf))*(1+temp_csd*(temp-25))*e-15
+rsubb1=(8880)/(f*(wf+0.56))*(1+temp_rsub*(temp-25))
+rsub22=(1100*lg/(2*f*(wf+0.56)))*(1+temp_rsub*(temp-
 25))
+rsub33=(1100*lg/(2*f*(wf+0.56)))*(1+temp_rsub*(temp-
 25))

//
+f_d_area=((wf*0.41)*(f/2)*((-1)**f)==1))*e-12
+f_d_perim=((2*0.41)*(f/2)*((-1)**f)==1))*e-06
+g_d_area=1e-15
+g_d_perim=((2*wf)*(f/2)*((-1)**f)==1))*e-06
+f_s_area=((wf*0.41)*((f+2)/2)*((-1)**f)==1))*e-12
+f_s_perim=((2*0.41)*((f+2)/2)*((-1)**f)==1))*e-06
+g_s_area=1e-15
+g_s_perim=((2*wf)*((f+2)/2)*((-1)**f)==1))*e-06
ahdl_include
"/home/modeling/model_file/thin_nmos/spectre_file/rs_rd_all.va"
// ---
// Model Card for core BSIM3v3.24 n-type devices
// ---
model
bsim_mos_transistor bsim3v3
+ level = 11
+ version = 3.2
+ type = n
+ paramchk = 1
+ mobmod = 1
+ capmod=2
+ noimod = 2
+ minr = 1e-30
+ tm = 25
+ tox = 2.52e-09
+ toxm = 2.54e-09
+ nch = 4.04e+17
+ xj = 2.803e-07
+ vth0 = 0.2351
+ k1 = 0.2536
+ k2 = 0.04544
+ k3 = -1.833
+ k3b = 0.2582
+ w0 = -3.21e-08
+ nlx = 2.087e-07
+ dvt0 = 10.32
+ dvt1 = 2.681
+ dvt2 = -0.15
+ dvt0w = 0.11
+ dvt1w = 1e+06
+ dvt2w = -0.032
+ eta0 = 0.5577
+ etab = 0
+ dsub = 1.21
+ u0 = 0.0271
+ ua = -2.331e-09
+ ub = 3.769e-18
+ uc = 2.3e-10
+ vsat = 1.127e+05
+ a0 = 6.324
+ ags = 0.8478
+ b0 = 0
+ b1 = 0
+ keta = -0.1038
+ a1 = 5.04e-08
+ a2 = 0.99
+ rdsw = 98.96
+ prwb = 0.2
+ prwg = -0.3
+ wr = 1
+ wint = 5e-09
+ w1 = 0
+ wln = 1
+ ww = 0
+ wnn = 1
+ wwl = -1e-23
+ dwg = 8.67e-09
+ dwb = 7.4e-09
+ lint = -3.567e-10
+ ll = -2.19e-10
+ lln = 0.2
+ lw = 0
+ lwn = 1
+ lwl = 0
+ vo = -0.1329
+ nfactor = 2.755
+ cit = -0.00628
+ cdsc = 0.0416
+ cdscb = -0.0139
+ cdscd = 0.0139
+ pclm = 0.868
+ pdiabc1 = 0.1
+ pdiabc2 = 0.01272
+ pdiabc3 = -0.6756
+ drou = 4.103
+ pscbe1 = 6.9e+08
+ pscbe2 = 1.86e-10
+ pvag = 0.4512
+ delta = 0.01
+ alpha0 = 0
+ alpha1 = 0
+ beta0 = 30
+ js = 6.35e-08
+ jsw = 1.19e-13
+ mj = 0.301
+ pb = 0.689
+ cjs = 6.9e-11
+ mjs = 0.001
+ pbsw = 1
+ cgsd = 2.767e-10
+ cgso = 2.767e-10
+ cgbd = 1e-13
+ cgsd = 0
+ lvofccv = 0 + wvoff = 0
+ lacde = 0 + wnfactor = 7.023e-07
+ lmoin = 0 + wcit = 0
+ lclc = 0 + wcdsc = 0
+ lcle = 0 + wcdscb = 0
+ lelm = 0 + wcddsc = 0
+ lkt1 = 0 + wpclm = -8e-08
+ lkt1l = 0 + wpdiblc1 = 0
+ lkt2 = 0 + wpdiblc2 = 0
+ lute = 3e-08 + wpdiblc2b = 0
+ lua1 = 0 + wdrout = 0
+ lub1 = 0 + wpvag = 0
+ luc1 = 0 + wdelta = 0
+ lat = 0 + walpha0 = 0
+ lprt = 0 + walpha1 = 0
+ wnch = 0 + wnfactor = 7.023e-07
+ wxj = 0
+ wvth0 = -1.062e-08 + wbeta0 = 0
+ wk1 = 0 + wcgsl = 0
+ wk2 = 0 + wcgdl = 0
+ wk3 = 0 + wckappa = 0
+ wk3b = 0 + wcdf = 0
+ ww0 = 0 + wncf = 0
+ wnlx = 0 + wnlcx = 0
+ wdvt0 = 0 + wnlx = 0
+ wdvt1 = 0 + wnlx = 0
+ wdvt2 = 0 + wnlx = 0
+ wdvt0w = 0 + wnlx = 0
+ wdvt1w = 0 + wnlx = 0
+ wdvt2w = 0 + wnlx = 0
+ weta0 = 3.55e-08 + wnlx = 0
+ wetab = 0 + wnlx = 0
+ wdsusb = 0 + wnlx = 0
+ wu0 = -1.207e-08 + wnlx = 0
+ wua = 0 + wnlx = 0
+ wub = -8.693e-25 + wnlx = 0
+ wv = 0 + wnlx = 0
+ wvsat = 0.0108 + wnlx = 0
+ wa0 = 0 + wnlx = 0
+ wags = 0 + wnlx = 0
+ wb0 = 0 + wnlx = 0
+ wb1 = 0 + wnlx = 0
+ wketa = 0 + wnlx = 0
+ wal = 0 + wnlx = 0
+ wa2 = 0 + wnlx = 0
+ wrds = -8.77e-06 + wnlx = 0
+ wprwb = 0 + wnlx = 0
+ wprwg = 0 + wnlx = 0
+ wwr = 0 + wnlx = 0
+ wdgc = 0 + wnlx = 0
+ wdwb = 0 + wnlx = 0
+ pdvt1w = 0
+ pdvt2w = 0
+ peta0 = 0
+ petab = 0
+ pdsub = 0
+ pu0 = 0
+ pua = 0
+ pub = 0
+ puc = 0
+ pvsat = 0
+ pa0 = 0
+ pags = 0
+ pb0 = 0
+ pb1 = 0
+ pketa = 0
+ pa1 = 0
+ pa2 = 0
+ prdsw = 0
+ pprwb = 0
+ pprwg = 0
+ pwr = 0
+ pdwg = 0
+ pdwb = 0
+ pvoff = 0
+ pnsfactor = 0
+ pcit = 0
+ pcdsc = 0
+ pcdscb = 0
+ pcdscd = 0
+ ppclm = 0
+ ppdiblc1 = 0
+ ppdiblc2 = 0
+ ppdiblc3 = 0
+ pdout = 0
+ ppscbe1 = 0
+ ppscbe2 = 0
+ ppvag = 0
+ pdelta = 0
+ palpha0 = 0
+ palphal = 0
+ pbeta0 = 0
+ pcgs1 = 0
+ pcmd1 = 0
+ pckappa = 0
+ pcf = 0
+ pnoff = 0
+ pvoffcv = 0
+ pacde = 0
+ pmoin = 0
+ pclc = 0
+ pcle = 0
+ pelm = 0
+ pkt1 = 0
+ pkt1l = 0
+ pkt2 = 0
+ pute = 0
+ pual = 0
+ pub1 = 0
+ pucl = 0
+ pat = 0
+ ppert = 0
+ xl = 0
+ rsh = 9.5
+ wmin = 3e-07
+ ldif = 0
+ rs = 0
+ xw = 0
+ lmin = 7e-08
+ wmax = 1
+ rd = 0
+ imelt = 0.01
+ rsc = 1
+ nj = 1
+ hdif = 1.25e-07
+ lmax = 1.01e-05
+ rdc = 0
+ ngate = 1e+23
+ nqsmod = 0
+ vfbcv = -0.9641
+ imax = 0.01

213
//***
// diode model for n+/psub drain field (spectre level 1)
//***
model np_field diode
+ level=1 tnom=25
+ cj=10.12e-04
+ cjsw=0.69e-010
+ vj=0.689 vjsw=1
+ mjsw=0.001 pta=0.00175
+ tlev=1 tlevc=1
+ cta=0.000942 ctp=0
+ ptp=0

//***
// diode model for n+/psub drain gate edge (spectre
// level 1)
//***
model np_gate diode
+ level=1 tnom=25
+ cj=1e-18
+ cjsw=2.96e-010
+ vj=0.689 vjsw=1.85
+ m=0.301
+ mjsw=1.4 pta=0.00175
+ tlev=1 tlevc=1
+ cta=0.000942 ctp=0.00121
+ ptp=0.002

// ! Do not change the *.SUBCKT and .ENDS statement !
// .SUBCKT bsim_ac_pel 1 2 3 4
//--------- Gate network -------------------------------
 cgd_ext (20 10) capacitor c=cgd1
 cgs_ext (20 30) capacitor c=cgs1
 rgate (2 20) resistor r=rg1
 csubg (2 21) capacitor c=csubg1
 rsubg (21 4) resistor r=rsubg1
 //
 irde (10 30) cccs probe=vde gain=1
 rde (1 2 3 99 0) rs_va1 wf1=wf ff1=f
 vde (99 0) vsource dc=0
 //
 irind (20 30) cccs probe=vind gain=1
 rind (1 2 3 97 0) rs_va1 wf1=wf ff1=f
 cind (1 2 3 98 97) cs_va1 wf1=wf ff1=f
 vind (98 0) vsource dc=0
 //
//--------- Drain network -------------------------------
 rd (1 10) resistor r=rd1
 //--------- Source network -----------------------------
 rs (3 30) resistor r=rs1
 //--------- Substrate network --------------------------

// Diodes are for n-type MOS transistors
//
djdb (12 10) np_field area=f_d_area perim=f_d_perim
djdb_perim (12 10) np_gate area=g_d_area
perim=g_d_perim
//
djsb (32 30) np_field area=f_s_area perim=f_s_perim
djsb_perim (32 30) np_gate area=g_s_area
perim=g_s_perim
//
csd (30 10) capacitor c=csd1
rsub1 (4 40) resistor r=rsub11
rsub2 (12 40) resistor r=rsub22
rsub3 (32 40) resistor r=rsub33
//
// --------- Ideal mos transistor ---------------------
--
main (10 20 30 40) bsim_mos_transistor l=lg*1e-06
w=wf*1e-06 m=f ad=0 as=0 pd=0 ps=0
nrs=0.205e-06/(wf*1e-06) nrd=0.205e-06/(wf*1e-06)
ends n12_f04_64w1_51007
//

The Verilog-A function coded for the additional noise sources are implemented as
below.

//verilog-a model for variable resistor used in MOS
//transistor
`include "constants.h"
`include "discipline.h"

module rs_va (n1, n2, n3, n5, n6);
electrical n1, n2, n3, n5, n6;
inout n1, n2, n3, n5, n6;
parameter real wf1=1, ff1=4;
real rs,vds,vgs,v1;
real rs,vds,vgs,v1;

analog begin
vds=V(n1,n3);
vgs=V(n2,n3);
$vstrobe("vgs = %g", vgs);
$vstrobe("vds = %g", vds);
rs=(0.07)/(ff1*(wf1)*(-1.005994E-4+(8.496604E-5+1.1565107E-5*vds)*(0.4528141+1.8697878986*vgs)));
$vstrobe("nf = %g", ff1);
$vstrobe("wf = %g", wf1);
$vstrobe("vgs = %g", vgs);
$vstrobe("vds = %g", vds);
$vstrobe("rde = %f", rs);
I(n5,n6) <+ white_noise(4*`P_K*$temperature/rs, "thermal");
end
endmodule

module rs_va1 (n1, n2, n3, n5, n6);
electrical n1, n2, n3, n5, n6 ;
inout n1, n2, n3, n5, n6;
parameter real wf1=1, ff1=4;
real rs1,vds,vgs,v1;
analog begin
vds=V(n1,n3);
vgs=V(n2,n3);
$vstrobe("vgs = %g", vgs);
$vstrobe("vds = %g", vds);
rs1=(0.07)/(ff1*(wf1)*(-4.699882E-2+
(0.21827+2.5297357E-3*vds)
*(0.2144156+0.005809465*vgs)));
$vstrobe("nf = %g", ff1);
$vstrobe("wf = %g", wf1);
$vstrobe("vgs = %g", vgs);
$vstrobe("vds = %g", vds);
$vstrobe("rind = %f", rs1);
V(n5,n6) <+ white_noise(4*`P_K*$temperature*rs1, "thermal");
end
endmodule

module cs_va1 (n1, n2, n3, n5, n6);
electrical n1, n2, n3, n5, n6 ;
inout n1, n2, n3, n5, n6;
parameter real wf1=1, ff1=4;
real cs,vds,vgs,v1;
analog begin
@ (initial_step)
vds=V(n1,n3);
vgs=V(n2,n3);
$vstrobe("vgs = %g", vgs);
$vstrobe("vds = %g", vds);
cs=(ff1*(wf1)*(1.51937+2.71542157*vgs)*1E-15);
$vstrobe("nf = %g", ff1);
$vstrobe("wf = %g", wf1);
$vstrobe("vgs = %g", vgs);
$vstrobe("vds = %g", vds);
$vstrobe("cind = %g", cs);
I(n5,n6) <+ ddt(cs*V(n5,n6));
end
endmodule