Building Robust Trust Model for Multi-agent Systems

WENG JIANSHU

School of Computer Engineering

A thesis submitted to the Nanyang Technological University in fulfilment of the requirement for the degree of Doctor of Philosophy

2008
Abstract

In multi-agent systems, modeling of trust equips agents with the ability to establish trust in one another based on their personal previous interaction experiences. In the case that agents’ personal interaction experiences are not sufficient to establish trust, third-party testimonies are usually sought and aggregated. However, the presence of unfair testimonies deteriorates the performance of trust models. Unfair testimonies are testimonies deviating from agents’ real behaviors that are perceived by the testimony receivers. The mitigation of the adverse effects of unfair testimonies is a fundamental problem in the research on trust modeling in multi-agent systems.

This thesis presents the research into making trust models robust in the presence of unfair testimonies. It proposes an uncertainty-based testimony-filtering method to mitigate the adverse effects of unfair testimonies. The proposed filtering method is then revamped with a novel credibility model. The revamped model not only improves the effectiveness of the filtering method, but is also general enough to be applied to the existing trust models. Unlike most of the existing methods, the proposed credibility model does not require any additional mechanism or knowledge other than the testimonies shared among the agents. Empirical evaluations also show that our proposal consistently outperforms related work.

This work also goes beyond the existing methods in that it discards the common assumption of the existing methods that each agent would obtain testimonies from all other agents directly in the system. Instead, we propose a credibility-aware referral process on top of the credibility model. The credibility-aware referral process facilitates agents’ testimony discovery in an efficient manner, in which more credible agents are iteratively requested to discover testimonies by testimony discovery initiator. Furthermore, this thesis proposes an approach to counteract malicious referrers during testimony discovery. The presence of malicious referrers aggravates the adverse effects of unfair testimonies. This effect is simply ignored in the existing methods.
The proposed research can be applied in many application domains. Some typical domains include (1) e-commerce systems such as the online auction website eBay.com where people can transact with other people geographically located thousands of miles away, (2) Peer-to-Peer content sharing networks with which digital contents can easily be shared among users widely distributed in different locations around the world, (3) the Grid with which various computing resources can be shared among various users and institutions, and (4) massive multi-player online role playing games (MMORPGs) in which various user avatars interact with each other.
Acknowledgments

This thesis would not be possible without the help of many people.

First and foremost, I would like to express my gratitude to Assistant Professor Chunyan Miao, my supervisor, for her invaluable guidance and persistent support for my research. I also owe a lot to Professor Angela Goh, as my co-supervisor, who has contributed so many invaluable suggestions for my research. I would also like to express my gratitude to her for her warm encourage for my research.

I am deeply in debt to the love and support of my family. I would like to give my deepest appreciation to my fiancee, Yijing Lin. She is the greatest source of comfort and encouragement for me. Without her support and encouragement, I will not be able to continue my Ph.D study. Appreciations are also given to my grandparents and sisters for their persistent support. I would never go this far without their support.

Thanks also go to School of Computer Engineering, Nanyang Technological University for providing scholarships to support my doctoral study. I would also like to thank administrative and technical staffs of School of Computer Engineering who are always kind enough to help in their respective roles.

Last but not least, I want to thank all my friends, especially Zhuowei Li, Qiankun Zhao, and Baoyao Zhou, for their helps, both in life and research, and also the happiness they have shared with me.

Thank you all!
Contents

Abstract .. i
Acknowledgments .. iii
List of Figures .. ix
List of Tables .. xi

1 Introduction ... 1
 1.1 Definition of Trust ... 1
 1.1.1 Trust Information ... 4
 1.2 Trust in Multi-Agent Systems ... 5
 1.2.1 Agents and Multi-Agent Systems 5
 1.2.2 Example Scenario of Trust in Multi-Agent Systems 8
 1.2.3 Difference between Machine Learning 10
 1.3 Research Scope and Motivations .. 12
 1.4 Contributions ... 16
 1.5 Outline of the Thesis .. 18

2 Literature Review ... 21
 2.1 Factors of a Computational Trust Model 21
 2.1.1 Paradigm of the Model ... 22
 2.1.2 Sources of Trust Information 23
 2.1.3 Granularity of Trust Information 23
 2.1.4 Context-dependence .. 25
 2.1.5 Methods to Tackle Unfair Testimonies 26
 2.2 Centralized Computational Trust Models 27
2.2.1 eBay Trust Model ... 27
2.2.2 Jurca and Faltings ... 28
2.3 Decentralized Computational Trust Models 29
 2.3.1 Models without Method to Tackle the Unfair Testimonies 29
 2.3.1.1 FIRE .. 29
 2.3.2 Models with Endogenous Method to Tackle the Unfair Testimonies ... 31
 2.3.2.1 Beta Reputation System 31
 2.3.3 Models with Exogenous Method to Tackle the Unfair Testimonies ... 32
 2.3.3.1 Abdul-Rahman and Hailes 32
 2.3.3.2 ReGreT .. 33
 2.3.3.3 Yu And Singh 35
 2.3.3.4 Kafali and Yolum 36
2.4 Summary ... 39

3 An Uncertainty-based Method To Filter Unfair Testimonies 43
 3.1 Introduction .. 43
 3.2 The Basic Trust Model .. 44
 3.2.1 Notations ... 44
 3.2.2 Maintaining Personal Interaction Experiences 45
 3.2.3 Making the Trust Evaluation 46
 3.2.4 Aggregating Third-party Testimonies 47
 3.3 Extension with the Uncertainty-based Testimonies Filtering 48
 3.4 Experimental Study ... 51
 3.4.1 Experimental Methodology 51
 3.4.2 The Results ... 54
 3.4.2.1 Comparison with Whitby et al.’s Proposal 56
 3.5 Discussion .. 59
Coping with Unfair Testimonies: A General Credibility Model

4 Introduction

- **4.1 Introduction**
- **4.2 Notations**
- **4.3 Maintaining the Witness’ Profile**
 - 4.3.1 Preprocessing the Testimonies
 - 4.3.2 The Organization of the Profile
- **4.4 Measuring the Credibility**
 - 4.4.1 The Derivation of the Credibility Metric
 - 4.4.2 Bootstrapping of the Profile and Credibility
 - 4.4.3 Evolution of the Credibility
- **4.5 Testimony Filtering and Aggregation**
- **4.6 Experimental Study**
 - 4.6.1 Methodology
 - 4.6.2 Results
- **4.7 Summary**

5 Empirical Evaluation of the Credibility Model

- **5.1 Introduction**
- **5.2 Design of TrustBed**
 - 5.2.1 Interactions among Agents
 - 5.2.2 Provider Population Configuration
 - 5.2.3 Consumer’s Cost and Gain
 - 5.2.4 Presence of Unfair Testimonies
- **5.3 Methodology**
 - 5.3.1 Comparison with Related Work
 - 5.3.2 Measurement Metrics
- **5.4 Experimental Setup**
- **5.5 Effectiveness in the Presence of Individual Unfair Testimonies**
- **5.6 Effectiveness in the Presence of Collusive Unfair Testimonies**
- **5.7 Influence of Value of Z**
List of Figures

2.1 Taxonomy of the review trust models .. 27

3.1 Examples of beta distribution ... 46

3.2 Uncertainty-based testimonies filtering and aggregation 51

3.3 Adverse effect of the unfair testimonies: (a) without unfair testimonies; (b) with badmouthing testimonies .. 55

3.4 The trust model in the presence of unfair testimonies 55

3.5 Effectiveness in the presence of ballot-stuffing testimonies 57

3.6 Effectiveness in the presence of badmouthing testimonies 58

4.1 Agent’s profile of giving testimonies ... 67

4.2 Agent \(a_w\)’s profile after 3 successful testimony-reporting 69

4.3 A special case leading to 0/0 when evaluating credibility 71

4.4 Agent \(a_w\)’s profile after its first successful testimony-reporting 72

4.5 Procedure to update credibility ... 73

4.6 Agent \(a_w\)’s profile after 5 successful testimony-reporting 75

4.7 The credibility model .. 77

4.8 Comparison of the credibility model and the filtering method in the presence of ballot-stuffing testimonies .. 81

4.9 Comparison of the credibility model and the filtering method in the presence of badmouthing testimonies .. 82

5.1 Average gain of each group without unfair testimonies 99

5.2 Average gain of each group in the presence of individual unfair testimonies

ix
5.3 Performance of different groups in the presence of various configurations of individual unfair testimonies .. 101

5.4 Performance of different groups in the presence of various configurations of collusive unfair testimonies: (a) gain; (b) collusion power .. 104

5.5 Influence of parameter Z ... 106

6.1 Referral Process .. 118

6.2 Credibility-aware referral process ... 120

6.3 Example of referral process .. 121

6.4 Referral process with the incorporation of referrer’s referral-credibility 124

6.5 Examples of the reversed referral chains 126

6.6 Spreading activation based referral-credibility update 128

6.7 Example of referral-credibility update 129

6.8 Performance of different groups in the presence of various combination of malicious referrers and collusive unfair testimonies: (a) 20% malicious referrers; (b) 40% malicious referrers; (c) 60% malicious referrers; 132

6.9 The Complete Trust Model ... 134
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Computational Trust Models</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison of performance without unfair testimonies</td>
<td>83</td>
</tr>
<tr>
<td>4.2</td>
<td>POU w.r.t. different ratios of witness giving unfair testimonies</td>
<td>84</td>
</tr>
<tr>
<td>5.1</td>
<td>Interaction among Agents in TrustBed</td>
<td>90</td>
</tr>
<tr>
<td>5.2</td>
<td>Configurations of providers’ willingness</td>
<td>90</td>
</tr>
<tr>
<td>5.3</td>
<td>Population of the providers</td>
<td>91</td>
</tr>
<tr>
<td>5.4</td>
<td>Experiment parameters</td>
<td>98</td>
</tr>
<tr>
<td>5.5</td>
<td>Comparison of performance without unfair testimonies</td>
<td>99</td>
</tr>
<tr>
<td>5.6</td>
<td>Performance of each group in the presence of individual unfair testimonies Pos100100</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>Parameters of ART testbed and competition</td>
<td>109</td>
</tr>
<tr>
<td>5.8</td>
<td>Parameter settings of ART competition 2006</td>
<td>110</td>
</tr>
<tr>
<td>5.9</td>
<td>Results of ART competition 2006</td>
<td>112</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

Trust has long been a research topic in various fields of study such as sociology, economics, and philosophy. It has also become an emerging research area in the discipline of computer science [BK02, RHJ04, JIB07]. This chapter gives an introduction to the concept of trust, the extension of trust into the multi-agent systems, the scope of the research documented in this thesis, and the contribution of this thesis.

1.1 Definition of Trust

Trust is an ubiquitous concept that underlies each interaction in our every-day life. For example, a person trusts that his parents will support him, and his friends will be kind to him and will not hurt him. When he transacts with other persons, he trusts that his transaction partners will give him the goods after receiving the payments. He trusts not only individual but also institutions. For example, he can leave his letters and parcels at the post office because he trusts that the post office will send them to the destination in good condition. It is not an exaggeration to say that trust is the “glue” that makes interactions between people possible and keeps human society functioning.

As shown above, trust plays an important role in regulating interactions. Nevertheless, trust remains an abstract concept. It is still not clear what trust is and how trust is established or measured. Historically, trust has long been a research topic in various disciplines such as sociology, economics, and philosophy. Since trust is the subject of research in multiple disciplines, it is not surprising to see different working definitions of trust in the literature (see [MC96] for a general
CHAPTER 1. INTRODUCTION

review). A comprehensive discussion of the definitions of trust is beyond the scope of this thesis. Instead, we review a number of well-recognized definitions.

One of the most well recognized definitions is proposed by Deutsch [Deu62] which states that:

“(a) An individual is confronted with an ambiguous path, a path that can lead to an event perceived to be beneficial or to an event perceived to be harmful; (b) he perceives that the occurrence of these events is contingent on the behavior of another person; and (c) he perceives the strength of a harmful event to be greater than the strength of a beneficial event.

If he chooses to take an ambiguous path with such properties, he makes a trusting choice. Otherwise he makes a distrustful choice.”

To have a better understanding of this definition, we revisit the example at the beginning of this chapter.

Example 1.1 A person is now making the decision whether to transact with another person. The outcome of the transaction can be beneficial or harmful. If his transaction partner defaults the obligations after receiving his payment, the outcome of the transaction is harmful since he receives nothing in return for his payment. On the other hand, the outcome of the transaction would be beneficial since he receives something to compensate his payment. He might gain more if there is value added to the goods. Since his transaction partner has his own interests, and can do anything to maximize his own gain, the transaction partner may be tempted to default in the transaction. Under such a circumstance, if he still opts to complete the transaction, he makes a trusting choice. Otherwise, he makes a distrustful choice.

This definition describes the nature of trust. From the definition itself as well as the above example, it can be seen that trust is primarily about one individual’s decision-making in the presence of ambiguity or uncertainty of his interaction partner’s behavior. Although Deutsch’s definition answers the question of “what is trust”, it does not explain how trust can be established.
(or simply measured). Another definition of trust proposed by Diego Gambetta [Gam88] can be cited to answer this question.

Diego Gambetta’s definition [Gam88] interprets trust as

“a particular level of the subjective probability with which an agent assesses that another agent or group of agents will perform a particular action, both before he can monitor such action and in a context in which it affects his own actions”.

According to this definition, the uncertainty, which is in the nature of trust, can be measured as the expectation that the interaction partner would take a particular action. For example, the person in the above example can make the trusting choice based on the expectation that his transaction partner would ship the goods. And such an expectation can be measured as the subjective probability that the partner would ship the goods. This definition usually serves as the theoretical foundation of the research on trust models in multi-agent systems (MAS) [RHJ04], whose main focus is to equip the software agents with the ability to quantify the trust they should place in their interaction partners.

People usually interact in multiple contexts. Consequently, the action (as in Gambetta’s definition [Gam88]) can be taken in any context. Bernard Barber’s definition of trust [Bar83] describes the context of the actions by defining trust as:

“(a) the expectation of technically competent role performance (e.g. expert knowledge, technical facility, or everyday routine performance);

(b) expectations that the natural order (both physical and biological) and the moral social order will persist and be more or less realized;

(c) expectations of fiduciary obligation and responsibility, that is, that some others in our social relationships have moral obligations and responsibility to demonstrate a special concern for other’s interests above their own.”

This definition proposes that trust is context-dependent. It can happen in various contexts from the everyday routine performance to fiduciary obligation and responsibility, from natural
order to social order. Moreover, trust in one context does not necessarily imply trust in another context. For example, an individual, say A, may trust another individual B completely in transactions related to selling breads but may not trust B when it comes to transactions of selling cars.

In summary, some common understanding of the concept of trust can be observed from the above-mentioned definitions:

- Trust is essentially about one individual’s uncertainty relating to another individual’s behavior in future interactions.

- The uncertainty about an individual’s behavior can be measured as the expectation that it would take a particular action (or behave cooperatively in general).

- Since the action can occur in any context, trust is generally context-dependent. That is, an agent may not necessarily trust another agent with the same degree in different contexts.

1.1.1 Trust Information

Trust information refers to that which can be used by an individual to evaluate the trust it should place in its interaction partner. As discussed, trust is essentially about dealing with the uncertainty relating to the interaction partner’s behavior. In this aspect, trust information is sought to reduce the uncertainty about the interaction partner’s behavior. Normally, the most direct information available for the trust evaluation is an individual’s previous personal interaction experience with a partner. In human society, factors such as the interaction partners’ body language or eye contact in physical interactions can also be taken into account.

It is possible that an individual does not have previous interaction experience with the interaction partner or the past interaction experience is not sufficient to reduce the uncertainty about the partner’s behavior. In this case, third-party testimonies about their past interaction experience with the same interaction partner would improve the uncertainty in the interaction partner. In other words, the effect of the third-party testimonies is to reduce an individual’s uncertainty about its interaction partner’s behavior and to make it more certain of its trust in its interaction
CHAPTER 1. INTRODUCTION

partner [BK95]. In human society, people can also rely on reports from formal institutions. For example, in monetary-related transactions, people can rely on reports from third-party credit report bureaus to make trust evaluations.

Since the testimonies are provided on a subjective basis, the testimony-receivers cannot control the sincerity and fairness of the testimonies. There exists the presence of unfair testimonies, i.e. testimonies deviating from an individual’s real behaviors that are perceived by the testimony-receiver. Given this, the third-party testimonies should not be utilized blindly. Instead, the testimony-receiver should choose different strategies in dealing with the third-party testimonies based on the fairness of the testimonies. The fairness of the testimonies is according to the view of the testimony-receiver. It should be considered as the subjective measurement of the testimony’s usefulness, which is interpreted as whether it has reduced the testimony-receiver’s uncertainty.

There are also cases that testimonies increase the testimony-receiver’s uncertainty about the interaction partners’ future behavior. In such cases, the testimonies can also be considered as “useful” in some sense, because they help the testimony-receiver to avoid the corresponding interaction partners due to its increased uncertainty about the interaction partners. Nevertheless, such testimonies do not really contribute to the purpose of trust evaluation, which is to help individuals identify the right interaction partners. Hence, this thesis only considers the testimony that has reduced the testimony-receiver’s uncertainty as useful, and measures its usefulness accordingly.

1.2 Trust in Multi-Agent Systems

Trust has also become a relevant research topic in the domain of computer science in recent years, especially multi-agent systems [BK02, RHJ04, JIB07].

1.2.1 Agents and Multi-Agent Systems

First of all, we introduce the concept of agent since it is the main building block of a multi-agent system (MAS). A widely recognized definition of agent is [Woo97]:
An agent is an encapsulated computer system situated in some environment and capable of flexible, autonomous action in that environment in order to meet its design objectives.

According to this definition, agents are generally considered to have the following characteristics [WJ95, Jen01]:

- clearly identifiable problem-solving entities with well-defined boundaries and interfaces;
- situated (embedded) in a particular environment over which they have partial control and observability - they receive inputs related to the state of their environment through sensors and they act on the environment through effectors;
- designed to fulfill a specific role - they have particular objectives to achieve;
- autonomous - they have control both over their internal state and over their own behavior;
- capable of exhibiting flexible problem-solving behavior in pursuit of their design objectives - being both reactive (able to respond in a timely fashion to changes that occur in their environment) and proactive (able to opportunistically adopt goals and take the initiative).

Other than these characteristics, agents are usually assumed to be rational. That is, agents will take whatever action that is expected to maximize their gains. On the other hand, irrational agents have unpredictable behaviors, and are usually excluded from the research in MAS.

Recent years have seen an increasing number of software agents being developed to extend the region of human interaction within environments such as the Internet [HJL03]. Such agents, with their autonomous reasoning and decision-making capability, can engage in complex interactions on behalf of their owners, which can be human or institutions. Agents usually live in a society of agents. Such a society of agents is termed as a multi-agent system (MAS) [Woo02]. According to [Syc98], the characteristics of a MAS are that:

1. each agent has incomplete information or capabilities for solving the problem and, thus, has a limited viewpoint; 2. there is no system global control; 3. data are decentralized; and 4. computation is asynchronous.
In short, a MAS is an open and decentralized computer system. Here, “open” primarily means that (1) participating agents in a MAS are owned by different stakeholders, each of whom has different aims and objectives [RHJ04], and (2) there is no central entity to control participating agents’ behaviors. Within a MAS, several agents interact and work together with one another to solve problems that are beyond the capability of each individual agent [Jen01, JSW98].

Multi-agent system, with its decentralized nature and independent participants’ autonomous reasoning and decision-making capabilities, has emerged as a natural model for large-scale computer systems in recent years [RHJ04]. Many systems that can be modeled as a MAS. Some typical examples include (1) e-commerce systems such as the online auction website eBay.com where people can transact with other people who are geographically located thousands of miles away [RZ02], (2) Peer-to-Peer content-sharing networks with which digital contents can be shared among peers widely distributed in different locations around the world [DdVP+02], (3) the Grid with which various computing resources can be shared among users [FKT01], and (4) massive multi-player online role playing games (MMORPGs) in which various user avatars interact with each other [Smi04].

Due to the open nature of MAS, there may be unreliable agents that do not fulfill the obligations hitherto agreed with other agents. There may also be agents that intentionally default their interaction partners to maximize their own interests. Hence, there is a risk when an agent engages in interactions with other agents. Moreover, the risk may even be intensified by the characteristics of interactions in a MAS which are unseen in human society. For example, software agents are able to transact without human intervention in a MAS (e.g. the online auction website such as eBay.com), which intensifies the risk that agents would default by not shipping the items after receiving the payments [RZ02, Nat05]. Hence, trust, which is essential in regulating the interaction in human society, needs to be maintained to regulate the interactions in online agent-mediated environments [BK02, RHJ04, JIB07]. The next subsection shows a scenario of trust in MAS and discusses different types of trust in MAS.
1.2.2 Example Scenario of Trust in Multi-Agent Systems

In order to show the importance of trust in multi-agent systems, an example scenario\(^1\) is given in this subsection. The scenario, based on an agent-mediated supply chain, outlines the interactions that may be involved in the domain of agent-mediated business process management. The scenario involves different stakeholders (e.g. distributors, sellers and buyers) that are mediated by agents. Agents wrap Web Services, which facilitates the automated business process management. A purchasing agent at the Bob Company (BC in short) broadcasts a solicitation for 100 PCs needed within 2 days. David Company (DC in short), a distributor, has an agent that subscribes to such solicitations. DC’s agent then starts to looks for possible suppliers:

1. DC’s agent is instructed to look for some reliable suppliers. It also has the information about the acceptable cost for this request.

2. DC’s agent contacts a directory service to get a list of all the available suppliers.

3. DC’s agent forwards the solicitation of BC to all the available suppliers. Agents of those interested suppliers respond with their current inventory levels.

4. For those agents who respond, DC’s agent contacts agents of other distributors, with whom it has cooperated before, and asks them to give opinions of the past transaction experiences with those suppliers. DC’s agent then collects the opinions, aggregates them with its own past transaction experience to evaluate those suppliers’ reliability.

5. DC’s agent contacts the one whose current inventory level is able to fulfill the request, and asks for its offer of price. There are also cases that the request must be fulfilled by more than one supplier because any single supplier is not able to fulfill the request. In this case, DC’s agent would aggregate the services provided by more than one supplier to fulfill the request. In both cases, DC’s agent, as a rational agent, would select those reliable suppliers according to the evaluations in Step 4. At the same time, before engaging in

\(^1\)This example scenario is adapted from the vision of agent-powered Web which is set out by Dr. Jay M. Tenenbaum in [Ten05].
further interaction with the supplier(s), D\textsc{c}'s agent asks the supplier(s) to provide digital certificate(s) signed by a recognized certificate authority (CA) to show they are really who they claim to be.

6. D\textsc{c}'s agent and the agent(s) of the supplier(s) negotiate the details regarding how to fulfill the request, such as the amount and price.

7. D\textsc{c}'s agent reaches an agreement with the suppliers, and informs B\textsc{c}'s purchasing agent that it can fulfill the request.

8. Upon being informed by D\textsc{c}'s agent, B\textsc{c}'s agent asks for approval from the manager, whose agent automatically approves the order because it falls within D\textsc{c}'s contractual guidelines and credit limit. After that, B\textsc{c}'s agent places order with D\textsc{c}'s agent.

9. After receiving the order from B\textsc{c}'s agent, D\textsc{c}'s agent informs B\textsc{c}'s agent that it accepts the order. Then B\textsc{c}'s agent notifies the financial department to pay D\textsc{c} electronically.

This scenario fits well into the scope of MAS in that the participating agents are owned by different stakeholders (e.g. the agent owned by B\textsc{c}, D\textsc{c}, and those suppliers), and they all have their own objectives. For D\textsc{c}'s agent, the environment is full of uncertainty in that it is not sure whether the other agents are reliable. For example, the agents owned by the supplier(s) may not fulfill their obligations. Nevertheless, a transaction is still possible, thanks to the trust among the various agents and/or non-agent entities and institutions. In fact, trust occurs in almost every step of an agent's interaction. For example:

- In Step 1, D\textsc{c} knows the capability of its agent, and trusts that the agent is competent in completing the task of finding suitable supplier(s).

- In Step 2, D\textsc{c}'s agent trusts that the directory service would return a list with correct and complete information about the suppliers.

- In Step 4, D\textsc{c}'s agent trusts that most of the distributors' agents it contacts would share their opinions honestly.
In Step 5, DC’s agent trusts that the certificate system is robust enough and the supplier’s agent will not forge a faked certificate.

In Step 9, upon accepting the order, DC’s agent trusts that the suppliers would not default their obligation specified in the agreement (in Step 7) to fulfill the request. It also trusts that the electronic payment service would really debit credit into the correct accounts.

1.2.3 Difference between Machine Learning

Machine learning is concerned with creating algorithms that can improve their performance at certain task as they acquire experience or data [Mit97]. In general, machine learning algorithms extract rules and patterns out of massive data sets (i.e. training data), and the derived rules and patterns are generalized enough to be applied on future data (i.e. test data) which usually has the similar statistical characteristics as the training data. Common machine learning algorithms can be organized into following types, based on the outcome of the algorithms:

- Supervised learning, in which the training data consists of pairs input and desired output. The algorithms need to generate a function that maps inputs to desired outputs, so that it is able to predict the corresponding output for any new valid input after seeing a number of training examples. The output can be a continuous value (i.e. regression) or a class label (i.e. classification).

There are cases that input data without corresponding output is abundant but those with output are expensive to obtain. In this case, the learning algorithms can actively query for the output. This form of supervised learning is called active learning [CGJ96]. The number of training data needed in active learning is often much lower than that required in normal supervised learning.

- Unsupervised learning, in which the desired outputs of the training data are not available or not used. One typical form of unsupervised learning is clustering, in which similar inputs are grouped together.
CHAPTER 1. INTRODUCTION

- Reinforcement learning algorithms attempt to find a policy that guides the agent’s action in different environment states in order to maximize long-term reward [SB98]. Every action has some impact in the environment, and the environment provides feedback that guides the learning algorithm [SB98].

Nevertheless, there are fundamental differences between trust modeling and machine learning in that:

- As discussed above, machine learning extracts generalized rules and patterns out of a set of training data. Based on different set of training data, different set of rules would be extracted. On the other hand, the primary concern of trust modeling is to design a metric that can be applied by agents to measure their interaction partners’ trustworthiness based on past their behaviors. The metric itself does not depend on the agents’ behaviors.

- Machine learning concerns about the generalization capability of the extracted rules and patterns. That is, the rules and patterns must be applicable on new data, which is not observed in the training data set. However, in trust modeling, one agent’s trustworthiness cannot be used on another agent. Instead, different agents’ trustworthiness need to be measured individually based on their behavior, though with same trust metric. Additionally, even for same agent, its trustworthiness will be updated every time a new interaction is finished, instead of using one value (derived based on past interactions) for all new interactions.

- Trust modeling might seem to be related to reinforcement learning: the agents’ trustworthiness gets updated every time a new interaction is finished, like what the reinforcement learning algorithm does to revise the policy when a new feedback is received. The attempt of reinforcement learning is to find a policy to guide agent’s action in different environment states. However, as a rational agent, each agent’s action policy has already been set, i.e. to choose the partner with highest trustworthiness to interact with. Past interactions with other agents help to find the right interaction partner, but not to obtain the action policy.
1.3 Research Scope and Motivations

It is seen from the example scenario in Section 1.2.2 that trust occurs in many steps of an agent’s interaction. The occurrence of trust in the example scenario (and MAS in general) can be classified into the following four main categories:

- Trust between agents and their owners. This category of trust is related to the owner’s expectation of the agents’ capabilities in fulfilling the delegated tasks. For example, when David Company instructs its agent to find suitable suppliers, it trusts that the agent is able to handle this task, and will try the best to maximize its interests. According to Grandison and Sloman’s classification of trust [GS00], this category of trust falls in the scope of the delegation trust.

- Trust among agents. This category of trust covers an agent’s expectation that another agent would take a particular action (or in general, behave cooperatively in MAS). It is established based on agents’ past behavior. For example, in Step 9, DC’s agent trusts that the suppliers would fulfill its obligations based on their behavior in the past transactions. This category of trust is termed as the service provision trust in Grandison and Sloman’s classification [GS00], and it basically captures agents’ reliability in providing certain services.

- Trust on the infrastructure. This category of trust covers the trust that an agent must place in the entities and systems of the infrastructure, which do not act like agents. Examples of such entities and systems include the certification system, the electronic payment system, and the directory service in the example scenario. For instance, DC’s agent trusts that the certification system is robust enough to counter the agents’ attempts to forge certificates; and it also trusts that the directory service would return a list of service providers with correct and complete information. This category of trust is the infrastructure trust in Grandison and Sloman’s classification [GS00].

- Trust produced by the ownership of certificates. This category of trust covers the expectation that another agent is able to show the ownership of a digital certificate. It depends on
the trust on the certification system, which is part of the *infrastructure trust*. Generally, this category of trust is related to certificate-based authentication and authorization. It makes an agent believe that it is interacting with some one that the latter claims to be, but not some one else. This category of trust is the *certification trust* in Grandison and Sloman’s classification [GS00].

As discussed before, trust is introduced to reduce the risks that agents take when interacting with other agents, and to regulate the interactions among agents in a MAS. Hence, among those categories, this thesis mainly studies the trust between the (software) agents, i.e. the service provision trust. That is, our research focuses on agents’ ability to evaluate their interaction partners’ trustworthiness, which capture their reliability in providing certain service.

The other categories of trust are considered outside the scope of this thesis because:

- Since agents usually act on behalf of their owners to complete some delegated tasks, the owner’s understanding and expectation of the agents’ capabilities is a prerequisite for the decision to delegate a task to the agent. Hence, trust between agents and their owners can naturally be assumed. Otherwise, their owners would not delegate the tasks to the agents.

- The infrastructure trust and certificate trust are usually policies implemented by agents’ owners. Hence, agents are forced to trust the directory service, the payment system, and the certificate system since they are only acting on behalf of their owners. They cannot change the policies. Furthermore, those policies do not influence the interactions among agents too.

Recent years have seen a significant body of work on trust modeling in MAS. Many computational trust models have been proposed to equip the agents with the ability to evaluate their interaction partners’ trustworthiness, i.e. the ability to quantify the service provision trust they should place in their interaction partners (see [RHJ04, JIB07] for a general review).

The measurement of trustworthiness depends on availability of the trust information in MAS. However, the nature of MAS has invalidated some trust information that is usually used in human
society. For example, the interaction partners’ body language and eye contact during the course of interaction are no longer available due to the lack of physical contact in the interactions in MAS. Reports from formal institutions are generally unavailable since such kind of central authority is difficult to build and maintain because of the open and decentralized nature of MAS. Nevertheless, the following mechanisms are available in MAS:

- **Historical interactions storage for the participating agents.**

 Agents are designed with the capability to store the historical interactions with other agents, which serves as a repository of previous experiences. Each entry in an agent’s memory is basically that agent’s feedback of its partner’s behavior in one specific interaction.

- **Sharing of historical interactions.**

 Instead of storing historical interactions only for an agent’s own use, the agent is able to exploit the communication infrastructure of MAS to share its historical interaction experience with other agents.

The deployment of these two mechanisms has made two sources of trust information available in MAS: (a) the truster agent’s private information that is obtained from its past personal interaction experiences with the trustee agent, and (b) testimonies reported by third-parties regarding their past interactions with the same trustee. In this thesis, *truster* is used to refer to the agent who is evaluating the trust it should place in another agent, while that agent whose trustworthiness is being evaluated is called as the *trustee*. The general idea of the computational trust models is that the trustee’s past behaviors can be used as evidences to evaluate its trustworthiness. Such evidence is from two sources, i.e. it is either perceived by the truster itself or testified by other agents.

Source (a) is the most reliable information since it is based on an agent’s own experience. However, agents’ private trust information is insufficient to reduce its uncertainty about the interaction partners’ behavior. For example, when an agent just enters a MAS, it would have few interactions with other existing participating agents, or even no interactions. Moreover, during
an agent’s participation in a MAS, one would not expect that this agent would meet frequently with other agents [RZ02, BK02]. In all those scenarios, source (a) becomes insufficient due to the lack of interactions. In this case, agents usually aggregate source (b) to collect more evidences. [BK95].

However, a problem arises when third-party testimonies are taken into account. That is, there exists the presence of unfair testimonies, i.e. testimonies deviating from the trustee’s real behaviors that are perceived by the truster. It is reiterated that unfairness of the testimony is according to the view of the truster. It should be viewed as the subjective measure of the usefulness of the testimonies. Unfair testimonies can happen because of the differing views of the witness (i.e. the agent that reports testimony on the trustee) and the truster. As in the real world, a restaurant may be excellent for a customer, but may be terrible for another. It can also happen because of the differing and conflicting interests due to the fact that agents in a MAS usually represent various stakeholders. Some agents may lie deliberately when they are asked by others for opinions on the trustees, if they can benefit from doing so. In both cases, the unfair testimonies, if combined blindly, can bias the truster’s evaluation of trust on the trustee, and deteriorate the performance of the trust models [JIB07, Del00, WJI04].

An example is presented here to show the adverse effect of unfair testimonies. Consider an online transaction website such as eBay.com as an example. A buyer B is deciding whether to engage in a transaction with seller S. B has no previous interaction experiences with S. Hence, B collects testimonies reported by others\(^2\), among whom there is a number of S’s friends. S’s friends intentionally give unfairly positive testimonies. As eBay.com evaluates S’s trustworthiness as a summary of all the ratings that S has received from the other agents over the past few months (one month, 6 months, and 12 months), these unfairly positive testimonies given by its friends will definitely increase the number of positive ratings that S has accumulated. This will consequently assist S to gain a trustworthiness higher than it deserves. The manipulated outcome of trust evaluation might lead to B’s wrong decision to transact with S. This could result in monetary loss of B if S is a malicious seller who usually defaults its obligations to ship the item after receiving

\(^2\)In fact, in eBay.com, every agent’s testimonies are already shared with the public.
the payments. As this simple example shows, the presence of unfair testimonies does deteriorate the performance of the computational trust models.

One may argue that the trust model used by eBay.com is naive so that it is susceptible to the presence of unfair testimonies. However, according to recent research, the presence of the unfair testimonies is a common problem faced by every computational trust model [JIB07]. At the early stage of the research on trust modeling in MAS, researchers primarily focused on setting up infrastructure to make trust information available in MAS and designing models to equip agents with the ability to evaluate trust quantitatively based on the available information. They usually assume that every agent would tell the truth when sharing testimonies, and ignore the presence of unfair testimonies. As MAS continue to grow and mature, they depend more on trust to regulate the interactions. Making the trust models in MAS robust in the presence of unfair testimonies deserves an extensive study. How to mitigate or even avoid the adverse effect of unfair testimonies is a problem that every computational trust model should address. It has also been identified as one of the fundamental problems in the research on trust modeling in MAS [JIB07].

Motivated by the need to mitigate the adverse effect of unfair testimonies, the ultimate goal of this thesis is to propose a generic method which can be applied to most computational trust models to make them robust in the presence of unfair testimonies.

1.4 Contributions

By accomplishing the goal set out in the previous section, the research presented in this thesis has made the following contributions:

(i) Although recent years have seen several attempts to mitigate the adverse effect of unfair testimonies, the proposals are generally not readily applicable in realistic settings as they require additional mechanisms or knowledge which is not always available in real environments, e.g. those in [JF03, SM03]. This research proposes a testimony-filtering method to address the adverse effect of the unfair testimonies. The filtering method grounds itself on the traditional interpretation of trust as dealing with the uncertainty about trustee’s
behavior, and identifies the possible unfair testimonies by measuring the uncertainty that each testimony contains. Compared with the existing work, this filtering method does not require any additional information and mechanism other than the testimonies exchanged among agents. Moreover, experimental results show that it outperforms related work, both in terms of the processing time and the effectiveness in mitigating the adverse effect of the unfair testimonies.

(ii) The filtering method is then modified to incorporate a novel credibility model. The credibility model equips the truster with the ability to evaluate an agent’s (i.e. witness’) credibility. In this thesis, a witness’ credibility is essentially the evaluation of the witness’ testimonies’ usefulness in reducing the truster’s uncertainty about the trustee’s behavior. The credibility metric is derived according to the effect of third-party testimonies in the traditional research of trust, which is to make the truster “more certain of its trust” on the trustees [BK95].

Then the testimonies are filtered and aggregated according to the corresponding witnesses’ credibility to mitigate the adverse effect of the unfair testimonies. A conservative view towards the testimonies is employed in aggregating the testimonies to further mitigate the adverse effect of unfair testimonies, which considers each testimony as a possible unfair testimony in the first place and adjusts it thereafter based on the corresponding witness’ past testimonies.

In this thesis, trust and credibility are two different, though related, concepts. The truster’s evaluation of trust in the trustee captures its uncertainty about the trustee’s behavior, while its evaluation of an agent’s (i.e. witness’) credibility is the evaluation of the witness’ testimonies’ usefulness in reducing the truster’s uncertainty. Correspondingly, the credibility model is decoupled from the trust model. Thus, it can be applied to most trust models, which makes it a generic solution to the problem caused by the presence of unfair testimonies.

(iii) Unlike the existing work, which usually assumes that the agents would directly ask all the other agents in a MAS for testimonies, this thesis discards this assumption and proposes a
credibility-aware referral process on top of the proposed credibility model. The credibility-aware referral process facilitates agents’ testimony discovery in an efficient manner, in which more credible agents are iteratively requested to discover testimonies by the testimony discovery initiator.

During the referral process, there may be some agents who are fair but recommend agents who give unfair testimonies. Such agents are termed as malicious referrers. The presence of the malicious referrers aggravates the adverse effect of the unfair testimonies. However, the presence of malicious referrers is generally left unaddressed in current research on trust modeling in MAS. This research also goes beyond merely addressing the presence of the unfair testimonies, and is the first to address this issue. An approach is proposed to counteract the malicious referrers based on the theory of spreading activation [CL75].

The proposed research is applicable to the general context of multi-agent systems (MAS). That is, it can be applied to systems that can be modeled as multi-agent systems (MAS), e.g. e-commerce systems, the Peer-to-Peer content-sharing networks, the Grid and so on.

1.5 Outline of the Thesis

This thesis is organized in the following manner.

- Chapter 2 reviews the notable work in the research on trust in MAS, and discusses the methods they employed to address the presence of unfair testimonies.

- Chapter 3 introduces trust into MAS by exploiting a widely used basic trust model, and then proposes a filtering method to mitigate the adverse effect of the unfair testimonies.

- Chapter 4 revamps the design of the filtering method with a novel credibility model.

- Chapter 5 empirically evaluates the effectiveness of the credibility model.

- Chapter 6 presents the credibility-aware referral process, which facilitates the agents to find relevant witnesses. Moreover, this chapter presents an approach to address the existence
of malicious referrers, which is left unaddressed in current research on trust modeling in MAS.

- Finally, Chapter 7 outlines the possible directions for future work, and concludes the thesis.
Chapter 2

Literature Review

After Marsh’s seminal work in [Mar94], which formally introduced trust as a measurable property in the domain of computer science, there has been a significant body of work in the research on trust modeling in the MAS. Many computational trust models have been proposed, which equip the agents with the ability to quantitatively evaluate the trust they should place in their interaction partners.

This chapter gives a review of a number of notable works in the research on trust modeling in MAS and studies how they address the presence of unfair testimonies.

2.1 Factors of a Computational Trust Model

The term “computational trust model” implies that the trust models adopt a probabilistic view of trust. That is, as discussed in Section 1.1, trust is considered as an agent’s subjective evaluation of the probability that its interaction partner would take a particular action in future interactions. There is another view of trust, namely, cognitive view, which models trust as made up of underlying beliefs, and where trust is a function of the degrees of those beliefs. To the best of our knowledge, there is currently only one trust model that adopts such a cognitive view of trust, which is proposed by Castelfranchi and Falcone [CF98]. A major disadvantage of this model is that it only gives an analysis of the underlying components of trust, but does not provide a feasible and practical approach to quantify trust based on those components. Hence, it is not suitable for MAS in general, and is not included in this review.
Besides the view of trust that is adopted, there are other factors for building a computational trust model. Before the review, we first identify a set of such factors.

2.1.1 Paradigm of the Model

The first factor that needs consideration is the paradigm of the model, namely, whether the model is centralized or decentralized. Most of the existing models are decentralized to cope with the decentralized and open nature of MAS. There is also a small number of models that are centralized.

If a decentralized trust model is deployed in MAS, each individual agent maintains past interaction experience with the other agents in its own memory. It also evaluates the trustworthiness of the other agents without depending on the computation of a central entity. The trust evaluation is always conducted by one agent on another agent. The two agents involved in the trust evaluation are called **truster** and **trustee** respectively. The one who is evaluating the trustworthiness of another agent is the **truster**, while the one whose trustworthiness is being evaluated by the **truster** is the **trustee**. Since each truster evaluates the trustee based on its own information regarding the trustee’s past behavior, trust is considered as a subjective property of the trustee, and different trusters can have different perceptions of a trustee.

If a centralized trust model is deployed, agents do not maintain past interaction experiences with the other agents in their own memories. Instead, a central repository is set up to collect and store agents’ past interaction experiences. There is also a central entity that evaluates the trustworthiness of other agents based on the experiences stored in the central repository. Every time an agent needs to evaluate trust on its interaction partner, it will turn to the central entity, who evaluates the trustworthiness of the trustee and reports the outcome to the truster (i.e., the agent who contacts the central entity for trust evaluation). Different trusters share the same trustworthiness of a trustee. This information is updated each time any agent updates the central repository with new interaction experience with the trustee. The centralized trust models are usually applied in scenarios where participating agents in MAS have a common point for interaction, such as the online transaction website like eBay.com, or where the agents’ capabilities are too limited to carry out the trust evaluations by themselves.
2.1.2 Sources of Trust Information

As stated in Chapter 1, there are two primary sources of trust information that agents can use to evaluate trust on their interaction partners, namely, the personal interaction experience and the third-party testimonies. It is noted that such classification of sources of trust information is only applicable to decentralized models. In centralized models, the central entity will carry out the trust evaluations based on the available information maintained by the central repository. The available information for the central entity is always testimonies reported by all the participating agents in MAS.

The personal interaction experience is the most direct source of information for evaluating trust. This is because it is maintained by the trusters themselves and a rational agent would not hide any interaction experience from itself and cheat itself. There are also cases when truster agents’ personal interaction experiences are not sufficient to evaluate trust in their interaction partners due to the lack of interactions. For example, an agent may have rarely or never interacted with another participating agent. In this case, agents would like to hear from the testimonies from a third-party regarding their interaction experiences with the same trustee. However, aggregating third-party testimonies induces the presence of unfair testimonies, which usually biases the trusters’ trust evaluations and deteriorates the performance of the trust model. Some trust models do not incorporate this source of information to avoid the adverse effect caused by unfair testimonies.

Other than these two commonly-used sources of information, the social relationships between the agents (e.g. from same organization, or a friendship relationship) may also be taken into account in a number of models, e.g. [SM03, HJS06b]. The number of the models that use this kind of information is limited since such information is not always available in realistic settings. Inclusion of such information increases the models’ dependence on additional mechanisms.

2.1.3 Granularity of Trust Information

After choosing the trust information, another factor that needs to be considered is the granularity of trust information. Trust information is essentially the feedback of the agents’ behavior in the
past interactions, and is usually represented in the form of ratings. The ratings can be coarse-grained or fine-grained.

Ratings can be coarse-grained, e.g. binary ratings. With the application of binary ratings, the behavior of an agent in an interaction is either “good” (denoted as 1) or “bad” (denoted as 0). The advantage of binary ratings is that it supports the use of the beta-family of probability density functions (PDFs), which provides a solid mathematical basis for evaluating trust.

Some models use finer-grained ratings, such as ordinal (or nominal) ratings with a scale larger than 2. Finer-grained ratings allows a better discrimination of the agents’ behaviors. In general, the ability of the ratings to discriminate agents’ behaviors is enhanced with the extension of the rating scale. In some models, the ratings are also associated with text labels, such as very trustworthy, trustworthy, untrustworthy, and very untrustworthy.

There are also models that apply continuous ratings drawn from a bounded range. Normally, the range would be [0, 1] to capture the probabilistic nature of trust. Continuous ratings have the finest granularity, and provide the richest expressive power in discriminating agents’ behavior. Nevertheless, usage of continuous ratings requires extra overhead to maintain the trust information. In the models that use discrete ratings, the trust information can be maintained efficiently by only storing the counts of corresponding ratings instead of keeping individual rating after each interaction. In contrast, each rating must be kept if the ratings are continuous, which causes extra storage overhead for the agents.

It is noted that the granularity of trust information is not directly related to the granularity of the outcome of trust evaluation (i.e. the trustworthiness of the trustee). For example, the outcomes of the trust evaluations in the Beta Reputation System take continuous values, while the trust information used to make the trust evaluations is binary.

Other than the numeric ratings, there are also cases that free-text based user comments are used. They can be viewed as trust information with the highest granularity. However, such information would not be available in all scenarios. There are many scenarios that such information not hard to obtain and maintain, e.g. peer-to-peer content-sharing networks. Moreover, the free-text based comments, if available, are usually present together with ratings of certain granularity.
as discussed above. They are usually optional and complimentary to the ratings. For example, in eBay.com, the buyer can choose to leave comment, but the rating is always required from the buyer when he give feedback for the seller. Moreover, to understand those user comments usually depends on NLP (natural language processing) techniques, which is beyond the scope of this thesis. Therefore, this thesis only puts focus on the rating-based trust information.

2.1.4 Context-dependence

The models can either be context-dependent or context-independent. A context-dependent model equips the agents with the ability to deal with more than one context and to maintain different trustworthiness for each trustee in different contexts considered. A context-independent model, on the other hand, only enables agents to maintain a single trustworthiness for each trustee without the discrimination of contexts.

As discussed in Section 1.1, trust, by its nature, is context-dependent. Hence, ideally, trust models should enable agents to maintain different trustworthiness for their interaction partners in different contexts considered. However, the ability to deal with multiple contexts rests on the availability of trust information in different contexts. This introduces the overhead of maintaining information in more than one context for the agents. Moreover, the ability to deal with multiple contexts normally increases the complexity of the models. Therefore, there is usually a trade-off between the ability to support multiple contexts and the extra maintenance overhead and increase of complexity.

In the literature, the number of existing trust models that deal with multiple contexts is limited. Most existing models only handle single context. This is reasonable and practical because most MASs focus on specific domains with agents performing limited and similar tasks. This makes it possible to generalize agents’ behaviors into one single context. For example, consider there is a hierarchy of contexts, “service” is the parent context, while “storage service” and “communication service” are two child classes of “service”. “Storage service” and “communication service” are two child classes of “service”.

\footnote{Here, context refers to the settings in which agents’ interactions are carried out. For example, there can be a context of “storage service”, in which agents interact with each other for storage service. Similarly, there can be another context of “communication service”.

25
service” are two different contexts, since an agent’s behavior in providing storage service does not necessarily imply anything about its behavior in providing communication service. However, if we do not differentiate the service an agent provides, we can consider its behaviors in “storage service” and “communication service” uniformly as “service”. Thus, agents’ behaviors in two contexts can then be generalized in one single context as “service”. Such a generalization has its advantage: agents’ interactions with others in different contexts are now fused into one single context. The result is an accumulation of more trust information, and hence a reduction in uncertainty in the trustees’ behavior.

2.1.5 Methods to Tackle Unfair Testimonies

As discussed earlier, the presence of unfair testimonies has an adverse effect on the performance of the computational trust models. A computational trust model is expected to be able to mitigate the adverse influence of the unfair testimonies. It is noted that this factor is only applicable to models that aggregate others’ testimonies.

Although the importance of mitigating the adverse effect of unfair testimonies is well recognized [JIB07], at the early stage of the research, trust models usually assume that all the agents would tell the truth when sharing the testimonies and ignore the presence of unfair testimonies, for example, work by Marsh [Mar94]. Recent years have seen several attempts to address this issue. According to Jøsang et al.’s classification in [JIB07], the methods to address the presence of unfair testimonies can be classified into two general categories: either endogenous methods or exogenous methods. An endogenous method is one that identifies the unfair testimonies by analyzing and comparing the testimonies themselves. In general, endogenous methods implicitly assume that unfair testimonies would be a minority amongst all the available testimonies. Based on this assumption, a testimony is considered as a possible unfair testimony if it deviates in some way from what the majority says. On the other hand, exogenous methods operate independently of the majority opinion, and use externally determined “fairness” of a testimony to choose the strategy in dealing with that testimony.
Having identified the factors that a computational trust model should consider, the next section presents a review of notable trust models in literature. The reviewed models are first classified into two main categories based on the paradigm of model, and then further classified into sub-categories depending on the factor of method to tackle the unfair testimonies (mainly for the decentralized models). A taxonomy of the reviewed models along the aforementioned two factors is given below:

![Figure 2.1: Taxonomy of the review trust models](image)

2.2 Centralized Computational Trust Models

In this section, we review a number of centralized computational trust models.

2.2.1 eBay Trust Model

A typical example of centralized model is the one used in eBay.com. In eBay.com, users give ratings to report their transaction partners’ behaviors, which are stored and maintained by a centralized repository. There are 3 possible ratings, namely, negative, neutral, and positive. The ratings are given without discrimination of contexts. That is, ratings are given as feedback of a seller’s general behavior without the discrimination of the items sold. Hence, the trustworthiness of a trustee is context-independent. The trustworthiness of a trustee is derived as the sum of the ratings that it has accumulated over the past 1 month, 6 months, and 12 months respectively. The trustworthiness of users is shared among all the members in the eBay
community, so that all the members in the community can know about their potential partners’ behaviors.

It is not uncommon that some users in the eBay community would give unfair ratings for or against certain users. Since the trustworthiness is obtained by summation of all the ratings a trustee has accumulated, this model is susceptible to the presence of unfair ratings. However, this model does not have explicit mechanisms to address the presence of unfair ratings.

2.2.2 Jurca and Faltings

In the model proposed by Jurca and Faltings [JF03, JF04], the trustworthiness of agents are evaluated by R-agent. R-agent is a special type of agent in MAS, and acts as the central entity, whose task is to collect and aggregate ratings about normal agents’ behavior to evaluate the trustworthiness. The ratings used to generate the trustworthiness are binary. Trustworthiness of an agent is generated as the average of all the ratings (regardless of the contexts) that this agent has accumulated over time. After the evaluations, the results will be sold back to normal agents when requested. Although the trustworthiness of the agents are evaluated by R-agents centrally, there is more than one R-agent distributed in MAS. Therefore, this model can be considered as a mixed model, but not a pure centralized model.

This model employs a preventive mechanism to tackle the presence of unfair ratings. It proposes a payment mechanism to incentivize agents to tell the truth when reporting ratings. This mechanism rewards agents who tell the truth when reporting ratings, and penalizes those who give unfair testimonies. By doing so, agents who tell the truth will gradually gain money, while those who give unfair testimonies will gradually lose money. Hence, this payment mechanism prevents the presence of unfair testimonies by making it rational for agents to share fair testimonies. However, in order to maintain this property, the payment mechanism is required to be separated from the one used to regulate agents’ ordinary interactions. Nevertheless, in realistic settings, it is not practical to establish two separate payment systems that can be accepted by agents representing different stakeholders.
CHAPTER 2. LITERATURE REVIEW

2.3 Decentralized Computational Trust Models

As the centralized model manages trust for all the agents in a centralized manner, it somewhat contradicts the decentralized nature of MAS. Centralized models do not support subjective trust evaluations. That is, different trusters see the same trustworthiness of a trustee. This makes it hard for the models to keep up with the trend that multi-agent systems are moving towards the open architecture. Such centralized models may be suitable for scenarios in which agents have same point of interaction, or those in which agents have limited capabilities. However, the central authority will easily be overloaded and become the single-point of failure when the number of participating agents grows.

Agents’ capabilities, both in terms of memory, and reasoning and decision-making ability, have improved significantly in recent years. More and more computational trust models are designed to equip the agents with the ability to carry out trust evaluations individually. This section reviews a number of notable decentralized models, and the reviewed models are further classified based on the methods to tackle unfair testimonies.

2.3.1 Models without Method to Tackle the Unfair Testimonies

In general, models that are unable to tackle unfair testimonies are generally impractical since their performance will be adversely affected by the presence of unfair testimonies. Nevertheless, there is one noteworthy model that utilizes trust information other than the two commonly-used sources, i.e. personal interaction experiences and third-party testimonies.

2.3.1.1 FIRE

The FIRE model proposed by Huynh et al. [HJS06b] is a context-dependent model. In this model, the overall trust on a trustee is made up of four components: interaction trust, witness reputation, role-based trust, and certified reputation. Different sources of trust information are used to derive different components of trust. The first two components of trust are based on the personal interaction experiences and third-party testimonies.
Role-based trust is deduced from a set of predefined role-based rules. Role-based rules are domain-specific rules which define trust based on the social relationships between the two agents. For example, an agent may be preset to trust any other agent that is owned by the same user, or to trust another agent if it is a member of a well-known organization. Role-based trust in FIRE can be considered as a combination of the system reputation and neighborhood reputation in the ReGreT².

The main contribution of FIRE is that it introduces the concept of Certified Reputation [HJS06a], which is obtained from the third-party references provided by the trustee. Traditionally, the truster needs to actively collect third-party testimonies on the trustee. With the introduction of third-party references provided by the trustee, the burden of obtaining trust information is moved from the truster to the trustee.

Except for the role-based trust, which deduces trust based on predetermined rules, the other three components determine trust from information about the trustee agent’s past behaviors. All three components obtain trust as a weighted mean of all the available ratings with the rating recency as weight. The recency of a rating is obtained based on the time difference between the current time and the time when the rating is collected. After each component finishes the evaluation, an overall trust value is obtained as a weighted mean of all the trust evaluations from the four individual components. The weights assigned to each component is predefined and fixed.

The introduction of the certified reputation increases this model’s availability in various settings. It overcomes the difficulties that the other models usually encounter, such as a new agent’s lack of interaction experiences with the existing agents and the difficulty in finding witnesses to share testimonies. However, this model depends on the social relationship to evaluate the role-based trust. This increases the dependence on the extra mechanism to make such information available. Furthermore, this model assumes that all the agents are honest when sharing testimonies or giving references. Mechanisms are needed to protect it from adverse influence of unfair testimonies (for the component of witness reputation) or references (for the component of certified reputation).

²ReGreT model is discussed in later section
2.3.2 Models with Endogenous Method to Tackle the Unfair Testimonies

2.3.2.1 Beta Reputation System

A typical decentralized model with an endogenous method to tackle the presence of unfair testimonies is the Beta Reputation System\(^3\), which is proposed by Josang et al. [JI02, WJI04]. It is a context-independent model.

With this model, an agent gives a positive rating of 1 to its interaction partner if the partner behaves cooperatively and it is satisfied with the partner’s behavior in the interaction. Otherwise, a negative rating of 0 is given. The interaction experience with a trustee is basically a summary of the past ratings on that trustee, which is obtained as the counts of positive rating and negative rating (#positive and #negative) in past interactions with that trustee. Sometimes older ratings are gradually forgotten with a decaying factor. Thus, the newer ratings exert a larger impact in calculating #positive and #negative than older ratings.

The behavior encountered by each individual agent is a binary event, which is modeled by a Beta distribution. Beta distribution is usually used to represent the posterior probabilities of binary events [CB90]. This provides a sound mathematical ground for agents to evaluate trust. The beta-family of probability density function (PDF) is a set of continuous functions indexed by two parameters \(\alpha\) and \(\beta\). In this model, \(\alpha\) is set to be #positive + 1, and \(\beta\) is set to be #negative + 1. As discussed in Chapter 1, trust is basically the expectation that the agent would behave cooperatively in future. Therefore, a truster’s evaluation of the trustee’s trustworthiness is quantified as the expectation value of the Beta distribution, which is given by

\[
\frac{\alpha}{\alpha + \beta} = \frac{#\text{positive} + 1}{#\text{positive} + #\text{negative} + 2}.
\]

Other than depending on its private interaction experiences, the truster also aggregates third-party’s testimonies when it is evaluating the trustee’s trustworthiness. A testimony given by an agent is in the form of the counts of positive and negative ratings in this agent’s previous interactions with the trustee. The aggregation is done by summing all the counts of positive and negative ratings in the testimonies and the counts of positive and negative ratings in the truster’s personal interaction experiences. The trustee’s trustworthiness is derived based on the aggregated #positive and #negative.

\(^3\)The original design of Beta Reputation System does not have a mechanism to address the unfair testimonies. It is then improved with an endogenous method.
Since the aggregation is simply a linear combination of the truster’s private interaction experience and third-party testimonies, the trust evaluations are easily manipulated by unfair testimonies. However, the original design of Beta Reputation System does not show how it is able to tackle the presence of unfair testimonies. Although the original design lacks a mechanism to tackle the presence of unfair testimonies, it is the foundation of many computational trust models, such as TRAVOS [TPJL06] and the work in [Mui03].

Whitby et al. improve the original design of Beta Reputation System with an endogenous method to tackle the presence of unfair testimonies [WJI04]. This method first generates a majority opinion by aggregating all the available testimonies. The majority opinion, as an aggregation of individual testimony, also represents a Beta distribution. It identifies the possible unfair testimony by testing whether a testimony is outside the q quantile and $(1 - q)$ quantile of the majority opinion. If the test outcome is positive, the testimony is considered as a possible unfair testimony and will be discarded. Then the majority opinion is generated again with the remaining testimonies before a new round of unfair testimonies filtering starts. This process continues until no testimony can be discarded.

This filtering method implicitly assumes that unfair testimonies would be a minority among all the available testimonies. Consequently, it becomes inefficient when the majority of the testimonies are unfair. Moreover, this method is time-consuming because of its iterative nature.

2.3.3 Models with Exogenous Method to Tackle the Unfair Testimonies

2.3.3.1 Abdul-Rahman and Hailes

Abdul-Rahman and Hailes’s model [ARH00] takes into account both the personal interaction experiences and third-party testimonies. This model is context-dependent. The trust information is given in the form of ratings with labels: Very Trustworthy, Trustworthy, Untrustworthy, and Very Untrustworthy.

Although this model takes into account both the personal interaction experience and third-party testimonies, the trust evaluations are based on the testimonies only. The personal interaction experiences are used only to determine the witness agents’ recommender trust. Truster agent x’s
evaluation of a witness agent i’s recommender trust is determined based on the historical semantic distances between agent i’s testimonies on the trustees and agent x’s personal experiences with the same trustees. Agent i’s recommender trust would be high if the historical semantic distances are small, and vice versa.

This model acknowledges the existence of unfair testimonies. The influence of unfair testimonies is mitigated by assigning different weights to testimonies given by different agents. The weights are determined based on their corresponding recommender trust. Moreover, this model is one of the first attempts to adjust testimony before aggregation. The adverse influence of unfair testimonies is further reduced by adjusting the testimonies from different agents based on historical semantic distances. For example, truster agent x receives a testimony from agent i, which states that the trustee agent y is Very Trustworthy. But agent x finds out later that after the interaction with agent y its own trust evaluation is only Trustworthy. In this case, the semantic distance between x and i is defined as -1. Subsequently, when agent i gives another testimony to agent x, agent x will adjust the testimony accordingly before aggregating the testimony.

The problem of the method to address the presence of unfair testimonies is that it predefined the weights assigned to witnesses with various levels of recommender trust in an ad-hoc manner. Furthermore, the adjustment of testimony only takes into account the semantic distance in the last recommendation. Such a treatment is not sufficient to represent the true difference between the views of the truster and the witness.

2.3.3.2 ReGreT

ReGreT [SM03] is a context-dependent model (context is called aspect in this model). It takes into account both the personal interaction experiences (termed as impressions in this model) and third-party testimonies. Other than these two sources of information, it also considers information derived from the social structure among agents.

Agent x’s direct trust on agent y is obtained based on x’s previous impressions on y. Each impression is agent x’s subjective evaluation of the outcome of an interaction in a certain aspect. The outcome of the evaluation is in the form of continuous rating in the range of $[-1, 1]$. The
direct trust on agent y in a specific aspect is calculated as the weighted mean of all the ratings associated with that aspect. Each rating is weighted according to its recency, i.e., a more recent rating is assigned a higher weight, and vice versa. ReGreT also measures the reliability of each direct trust evaluation. The reliability measurement is obtained based on two factors: the number of ratings taken into account when generating the evaluation and the deviation of the ratings. If the agent has a reliable direct trust evaluation, it will use it as the final evaluation of trust. Otherwise, it will also use reputations. There are four types of reputation taken into account, namely, witness reputation, neighborhood reputation, system reputation, and default reputation.

Witness reputation is obtained by aggregating third-party testimonies. To obtain neighborhood reputation, the truster first obtains its direct trust on the agents in the trustee’s neighborhood. Then a set of predefined fuzzy rules is used to generate the neighborhood reputation based on the direct trust on the trustee’s neighbors and their relationship with the trustee. The system reputation is predetermined according to the trustee’s social roles. If there is totally no information available about the trustee, default reputation is used as the last resort. Default reputation is a predefined constant.

ReGreT acknowledges the existence of unfair testimonies when deriving the witness reputation. The adverse effect of unfair testimonies is reduced by generating the witness reputation as the weighted mean of all the available testimonies. The weight is determined based on the social structure among the witness, the truster, and the trustee, and a set of predefined fuzzy rules are used to determine the weights for the witness agents.

The ReGreT model depends on the social structure to obtain the witness reputation (and neighborhood reputation and system reputation as well). However, such information is not always available in MAS. To make such social information available, extra mechanism is needed. For example, each agent needs to explicitly maintain a social network. This increases the model’s dependence on additional mechanisms. Furthermore, the description of the ReGreT model in [SM03] does not specify how such information is made available to the agent. Thus, the method to address the presence of unfair testimonies is not readily applicable in realistic setting.
2.3.3.3 Yu And Singh

The model proposed by Yu and Singh [YS02] takes into account both private interaction experiences and third-party testimonies. It is a context-dependent model.

In this model, private interaction experiences and testimonies are sets of ratings that reflect the quality of the past interactions. Only interactions within a fixed temporal window are considered in the trust evaluations. Each agent x defines a lower bound ω_i and an upper bound Ω_i. With ω_i and Ω_i, agent x separates the whole distribution of the available ratings into three regions, namely, (1) the region of ratings that contributes to agent x’s evaluation that the trustee y is untrustworthy, (2) the region that contributes to the evaluation that the trustee has no clear classification between untrustworthy and trustworthy, and (3) the region that contributes to the evaluation that the trustee is trustworthy. Then the ratings in different regions are counted to derive a basic probability assignment (bpa) over the distribution of the ratings. Finally, trustworthiness is evaluated based on the bpa using the Dempster-Shafer theory of evidence [Sha76, Dem68]. Trustworthiness in this model is in fact a set of three values, which correspond to the probabilities that the quality of future interaction with the trustee will fall in the aforementioned three regions.

Most of the notable work assumes that an agent would ask for testimonies from all the other agents in MAS. Such an assumption is hard to hold since there is usually a large number of agents within a MAS. The communication cost would be prohibitively high if each individual agent asks for testimonies from every other agent. This model is the only existing work that proposes an approach for agents to collect testimonies efficiently. When agent x is evaluating the trustworthiness of agent y, it sends out queries to its neighbors. A neighbor is an agent that agent x has direct connection with. One of its neighbors, upon receiving the query, will return testimony to x if it did interact with y before. Otherwise, it will return referrals. Similarly, those referrals, when queried by x, can provide testimonies or generate referrals iteratively.

The presence of unfair testimonies is addressed by introducing a variant of the Weighted Majority Algorithm (WMA) [LW94] called WMA Continuous (WMC) [YS03]. With WMC, each agent maintains a weight for each of the witnesses whose testimonies have been aggregated before. The weight basically captures how useful the witness agent is in giving testimonies. In
order to apply the WMC, the testimonies (in the form of bpa over ratings) are converted to a scalar rating first. The weight is initialized as 1. Then it is updated each time the witness agent’s testimony (now in the form of rating) is aggregated by the truster agent. If the testimony given by the witness (denoted as \(a_w \)) is similar to the truster’s (denoted as \(a_s \)) evaluation of trust (it is also converted to scalar rating) in the trustee after interacting with that trustee, the witness’ weight remains unchanged. Otherwise, as a penalty, the witness’ weight (denoted as \(TT_{s,w} \)) is decreased with the following formula:

\[
TT'_{s,w} = TT_{s,w} \cdot \theta
\]

where \(TT'_{s,w} \) is the witness’ weight after update, \(\theta \) denotes the amount of the penalty. It is determined according to the distance between agent \(a_w \)’s testimony (denoted as \(TP_{w,o} \)) and agent \(a_s \)’s post-interaction direct trust (denoted as \(TP_{s,o} \)) in the same trustee, and it can be any value that satisfies:

\[
\delta |TP_{w,o} - TP_{s,o}| \leq \theta \leq 1 - (1 - \delta)|TP_{w,o} - TP_{s,o}|
\]

In [YS03], the upper bound \(1 - (1 - \delta)|TP_{w,o} - TP_{s,o}| \) is chosen.

Then, with each witness agent’s weight evaluated, third-party testimonies are aggregated as a weighted mean of all the collected testimonies.

Although this work does not depend on extra mechanism and knowledge, a primary problem is that WMC is too sensitive to unfair testimonies. That is, every testimony that is not exactly the same as the truster’s evaluation of trust on the trustee will be considered as unfair, and the witness’ weight will be decreased accordingly. Such a sensitive strategy would reduce the fair testimonies’ contribution to the trust evaluations. This makes it even less effective than the strategy of not applying WMC in the case of few agents giving unfair testimonies.

2.3.3.4 Kafali and Yolum

Kafali and Yolum’s work does not propose a complete trust model. Instead, it focuses on the factor of methods to tackle unfair testimonies, and proposes an exogenous method to combat unfair testimonies in the context of ART testbed\(^4\) [OKY06].

\[^4\text{ART testbed: http://www.lips.utexas.edu/art-testbed/}\]
ART testbed simulates the interactions among agents in an art appraisal domain, in which agents function as painting appraisers with varying levels of expertise in different artistic eras. In the context of ART testbed, the trustee is in fact the painting, which is not a living object and does not have its own behavior. The trustworthiness of the trustee is basically the true value of the painting, and it is set randomly by the testbed, instead of being determined based on its past behaviors. The appraising agent (i.e. the truster) is assigned a number of paintings whose values are to be appraised. If the appraising agent does not have enough expertise to complete the appraisal, it can in turn buy opinions (i.e. third-party testimonies) from other appraiser agents. An appraiser agent may provide unfair testimonies regarding the values of paintings. Hence, before the appraising agent requests for opinions, it evaluates the reputation of other appraiser agents, and chooses those more reputable to request opinions from in order to tackle the unfair testimonies. An agent’s reputation basically captures the usefulness of this agent’s opinions [FKM+05, FKM+06, OKY06]. To evaluate an agent’s reputation, the appraising agent would also buy others’ reports on this agent’s reputation. Similarly, the appraising agent evaluates the sociability of other appraisers before requesting for reputation reports. An agent’s sociability denotes the usefulness of this appraiser’s reputation reports [FKM+05, FKM+06, OKY06]. The appraising agent’s final appraisal of the painting, i.e. the truster’s evaluation of the trustee’s trustworthiness, is derived as a weighted mean of all the opinions bought from other appraisers, with corresponding opinion provider’s reputation as weight.

Kafali and Yolum’s work proposes a method to combat unfair testimonies (both in the opinions about paintings and reputation reports). This method is similar to Yu and Singh’s proposal [YS03], which adjusts an agent’s reputation and sociability based on the distance between the true value of the painting and the agent’s opinion. Upon knowing the true values of the paintings (i.e. the trustworthiness of the trustee), the appraising agent (i.e. the truster) updates its evaluation of other appraiser agents’ reputation and sociability, which is conducted as follows:

\[
\text{Agent.Rep} = \text{Agent.Rep} \times (1 + ((1 - \text{Agent.Rep}) \times \text{UpdateMargin}))
\]

\[
\text{Ref Agent.Soc} = \text{Ref Agent.Soc} \times (1 + ((1 - \text{Ref Agent.Soc}) \times \text{UpdateMargin})) \tag{2.3}
\]
where $UpdateMargin$ is positive if the difference between the true value and the appraising agent’s final appraisal of the painting (i.e. the appraisal error) is smaller than a threshold, and it is negative otherwise. In the above equations, $Agent$ denotes an opinion provider (i.e. witness) who gives opinion on the painting to the appraising agent (i.e. truster), and $RefAgent$ denotes a reputation provider who is previously consulted by the appraising agent to get reputation about $Agent$. $Agent.Rep$ represents $Agent$’s reputation, while $RefAgent.Soc$ denotes $RefAgent$’s sociability. Eq. (2.3) makes sure an agent’s reputation and related referring agent’s sociability are increased gradually if its opinion is close to the painting’s true value.

Eq. (2.3) is applicable in the situation when the appraisal error is smaller than a threshold (i.e. $UpdateMargin$ is positive). When the appraisal error is larger than the threshold (i.e. $UpdateMargin$ is negative), $Agent$’s reputation and corresponding $RefAgent$’s sociability are updated as follows:

$$Agent.Rep = Agent.Rep \times (1 + UpdateMargin)$$
$$RefAgent.Soc = RefAgent.Soc \times (1 + UpdateMargin) \quad (2.4)$$

With Eq. (2.4), an agent’s reputation and corresponding referring agent’s sociability are updated downward if it is possibly giving unfair opinions (i.e. the appraisal error is larger than the threshold). It is noted that in Eq. (2.4) an agent’s reputation (or sociability) is updated downward faster than when it is increased (as in Eq. (2.3)). By doing so, it is able to quickly identify an agent who has continuously given unfair opinions (or reputation reports).

To combat the unfair testimonies, when the appraising agent requests opinions, it sorts all the available appraisers according to their reputation, and directs the requests to the top n appraisers from the sorted list.

This work does not depend on additional mechanism or knowledge to combat the unfair testimonies, and it is successful in the context of ART testbed. However, the description of its strategy in [OKY06] fails to make clear some key points of the strategy, which makes it an ad-hoc approach to the problem caused by the presence of unfair testimonies. For example,
• The rules to update agent’s reputation and sociability are determined in an ad-hoc manner. It does not elaborate how these rules (Eq. (2.3) and (2.4)) are derived;

• *UpdateMargin* is important in the reputation and sociability update (Eq. (2.3) and (2.4)). Its value depends on the chosen threshold. However, it does not specify how this threshold is determined;

• The appraising agent chooses the top \(n \) appraisers with the highest reputation to request the opinions from. Nevertheless, the determination of \(n \) remains unclear in [OKY06].

Finally, we summarize the models reviewed in this chapter in Table 2.1.

2.4 Summary

The need to mitigate the adverse effect of unfair testimonies is a fundamental problem in trust modeling in MAS [JIB07]. However, there are still models that simply ignore the presence of unfair testimonies, such as Marsh’s work [Mar94]. From the review carried out in this chapter, it is clear that the existing work is not readily applicable in realistic settings.

Against this background, this thesis aims to propose a generic approach that is applicable to most computational trust models to mitigate the adverse effects of unfair testimonies. The goal of this thesis is not to propose a new trust model. Instead, it focuses on method to tackle unfair testimonies. It assumes the following factors that were identified in Section 2.1.

• **The Paradigm**

 Since the centralized models somewhat contradict the decentralized nature of MAS, this thesis does not consider the trust models with the centralized paradigm. The proposed research is applicable to the trust models with the decentralized paradigm.

• **Sources of Trust Information**

 This research is applicable to the trust models that utilize personal interaction experiences and third-party testimonies. Third-party reference can be considered as a special type of third-party testimony. Thus, this research is also applicable to trust models with the inclusion of the third-party references.
<table>
<thead>
<tr>
<th>Models</th>
<th>Paradigm</th>
<th>Source of Trust Information</th>
<th>Information Granularity</th>
<th>Context Dependence</th>
<th>Method to Tackle Unfair Testimonies</th>
</tr>
</thead>
<tbody>
<tr>
<td>eBay Trust Model</td>
<td>Centralized</td>
<td>Personal Experiences + Testimonies</td>
<td>3-level discrete ratings</td>
<td>Context-Dependent</td>
<td>N/A</td>
</tr>
<tr>
<td>Jurca and Faltings [JF03, JF04]</td>
<td>Centralized</td>
<td>Personal Experiences + Testimonies</td>
<td>Binary ratings</td>
<td>Context-Dependent</td>
<td>Depending on additional payment mechanism<sup>a</sup></td>
</tr>
<tr>
<td>FIRE [HJS06b]</td>
<td>Decentralized</td>
<td>Personal Experiences + Testimonies + Social Structure + Third-party References</td>
<td>Continuous in the range [-1, 1]</td>
<td>Context-Dependent</td>
<td>N/A</td>
</tr>
<tr>
<td>Beta Reputation System [JI02]</td>
<td>Decentralized</td>
<td>Personal Experiences + Testimonies</td>
<td>Binary ratings</td>
<td>Context-Independent</td>
<td>Endogenous<sup>b</sup></td>
</tr>
<tr>
<td>Abdul-Rahman and Hailes [ARH00]</td>
<td>Decentralized</td>
<td>Personal Experiences + Testimonies</td>
<td>4-level discrete ratings</td>
<td>Context-Independent</td>
<td>Exogenous</td>
</tr>
<tr>
<td>Yu and Singh [YS02]</td>
<td>Decentralized</td>
<td>Personal Experiences + Testimonies</td>
<td>Continuous in the range [0, 1]</td>
<td>Context-Dependent</td>
<td>Exogenous</td>
</tr>
<tr>
<td>ReGreT [SM03]</td>
<td>Decentralized</td>
<td>Direct Experiences + Testimonies + Social Structure</td>
<td>Continuous in the range [-1, 1]</td>
<td>Context-Dependent</td>
<td>Exogenous and depending on additional social relationship information</td>
</tr>
<tr>
<td>Kafali and Yolum [OKY06]</td>
<td>Decentralized</td>
<td>N/A<sup>c</sup></td>
<td>N/A<sup>c</sup></td>
<td>N/A<sup>c</sup></td>
<td>Exogenous</td>
</tr>
</tbody>
</table>

^aThis payment mechanism incentivizes agents to share fair testimonies.

^bThe original design does not address the presence of unfair testimonies. Whitby et al. have proposed an endogenous method to improve the original design in [WJI04].

^cThis work only focuses on the factor of methods to tackle unfair testimonies.

Table 2.1: Computational Trust Models
The social structure information is not always available in MAS. The inclusion of social structure information increases the applicability of the trust models at the cost of increasing the models’ dependence on additional mechanisms to make such information available. Nevertheless, the inclusion of social structure information in trust models does not affect the applicability of the proposed approach, since it does not depend on social structure information. Hence, this research is also applicable to trust models with the inclusion of the social structure information provided that third-party testimonies are also included.

- **Granularity of Trust Information**

 This research is applicable to the trust models with any granularity of the trust information, since the application of ratings with different granularity does not impact the agents’ behavior in giving testimonies.

- **Context-dependence**

 Trust, by its nature, is a context-dependent concept. Hence, a trust model should ideally be able to deal with multiple contexts to capture the context-dependent notion of the concept. However, in Table 2.1, there also exists a number of context-independent models which generalize agents’ behaviors in multiple contexts into one single context. In fact, what makes a model context-dependent is its ability to make use of the trust information collected in multiple contexts and provide trust evaluations associated with different contexts. This is because trust models usually apply the same method to evaluate trustworthiness in different contexts based on the available information. In this respect, whether a model is context-dependent or context-independent does not have an impact over the applicability of the proposed approach. Therefore, the proposed approach is applicable to both context-dependent and context-independent trust models.

The following chapters document our effort to achieve the goal set out for this thesis.
Chapter 3
An Uncertainty-based Method To Filter Unfair Testimonies

In view that the presence of unfair testimonies would deteriorate the performance of the computational trust models, a fundamental problem in the research on trust modeling in MAS is to mitigate the adverse effect of the unfair testimonies. This chapter proposes an uncertainty-based method to address this problem, and also evaluates its effectiveness.

3.1 Introduction

Avoidance or mitigation of the adverse effect caused by the presence of unfair testimonies is a fundamental issue in trust modeling in MAS [JIB07]. Nevertheless, as reviewed in Chapter 2, this issue is left unaddressed in some trust models since they assume that agents would always tell the truth when reporting testimonies. Although there have been several attempts to address this issue in recent years, they are not readily applicable in realistic settings, e.g. those in [JF03, SM03]. Those models depend on extra mechanisms or knowledge, which are not always available in realistic settings.

This chapter proposes a filtering method to reduce the adverse effect of unfair testimonies. Apart from the testimonies exchanged among agents, it does not require any extra mechanism or knowledge. Recall that trust is basically about one individual’s uncertainty about another individual’s behavior in future interactions. In light of such an interpretation of trust, this filtering method measures the quality of each testimony based on the uncertainty it contains, and then
filters the testimony by checking its quality against the quality of the truster’s current belief about the trustee.

Before presenting our proposal to filter the unfair testimonies, we introduce trust into MAS by exploiting an existing basic trust model, namely the Beta Reputation System (BRS) [JI02, JHF03]. This basic trust model is then extended with the proposed filtering method to mitigate the adverse effect of unfair testimonies. BRS is a typical model that uses binary ratings. A significant advantage of using BRS is that binary ratings support the use of the beta-family of probability density functions (PDFs). This provides a solid mathematical basis for evaluating trust.

As discussed in Section 2.4, to reduce the complexity of the basic trust model, this thesis makes an assumption that the trust model would generalize the agents’ behaviors into one single context, though the proposed approach is applicable to both context-dependent and context-independent trust models.

This chapter is organized as follows. Section 3.2 introduces the basic trust model. This basic trust model is then extended with the filtering method to mitigate the adverse effect of unfair testimonies in Section 3.3. The filtering method is evaluated in Section 3.4. Finally, a discussion of the proposed filtering method is presented in Section 3.5 to conclude this chapter.

3.2 The Basic Trust Model

In this section, the main components of the basic trust model are described. For the ease of presentation, we first present some notations which will be used throughout this thesis.

3.2.1 Notations

We denote the set of all agents in MAS as \(A = \{a_1, a_2, \ldots, a_n\} \), where \(a_i (i = 1, \ldots, n) \) is an agent in the set. Before an agent interacts with another agent, it will evaluate the trust it should place in the latter. The one who is making the evaluation is the truster, while the one whose trustworthiness is being evaluated is the trustee. The truster is denoted as agent \(a_s \), while the trustee is denoted as agent \(a_o \). \(a_s \)’s evaluation of trust it should place in \(a_o \) is denoted as \(TP_{s,o} \).
An agent who reports a testimony on trustee agent a_o to truster agent a_s is called a witness of agent a_o, and is denoted as agent a_w. $W_{s,o}$ is used to denote the set of such witness agents that give testimonies on agent a_o to agent a_s.

As discussed earlier in Section 1.1, trust is basically about dealing with uncertainty of the trustee’s behavior, which can be represented as the subjective evaluation of the probability that the trustee would behave cooperatively in future interactions. Hence, “predicting (the trustee’s) future behavior” and “evaluating trust (on the trustee)” are used interchangeably sometimes in this thesis.

3.2.2 Maintaining Personal Interaction Experiences

For agent a_s, a_o’s behavior in an interaction can either be satisfactory or unsatisfactory. Whether an interaction is satisfactory or unsatisfactory is based on a_s’s own expectation of a_o’s behavior in the interaction. In general, a_s considers the interaction satisfactory if a_o behaves cooperatively and unsatisfactory otherwise. After an interaction with a_o is finished, a_s records in its memory a rating of positive for a_o if its behavior is satisfactory. Otherwise, a negative rating is recorded. Truster agent a_s’s rating for the trustee agent a_o in an interaction t can be represented as:

$$r^t_{s,o} = \begin{cases} r^+ & \text{if } a_o \text{'s behavior is satisfactory} \\ r^- & \text{otherwise} \end{cases}$$

(3.1)

Here, r^+ and r^- denote the positive and negative rating respectively, which can be represented as follows:

$$r^+ = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad r^- = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

(3.2)

Instead of maintaining ratings of all the past interactions, each agent only maintains a summary of ratings for the past interactions. The summary of ratings is basically a summation of all the recorded ratings in its memory, which is calculated as:

$$R^{T_c}_{s,o} = \begin{bmatrix} P^{T_c}_{s,o} \\ N^{T_c}_{s,o} \end{bmatrix} = \sum_{t=1}^{T_c} r^t_{s,o}.$$

(3.3)

Here T_c is the time index of the interaction for which a_o’s trustworthiness is evaluated. t is the time index of the interaction after which a rating was recorded. $P^{T_c}_{s,o}$ and $N^{T_c}_{s,o}$ denote the counts of a_o’s satisfactory and unsatisfactory behavior respectively in a_s’s memory.
Agents may change their behaviors over time. Therefore, it is desirable that agents’ past behaviors should be gradually forgotten. A decaying factor (λ) is usually applied to control the rate that agents’ past behaviors are forgotten over time. Moreover, a truster usually maintains a summary of ratings for the past transactions within a window of size W. With these two factors applied, the summary rating can be obtained as:

$$R_{s,o}^c = \left[\frac{D_{s,o}^c}{N_{s,o}^c} \right] = \sum_{t=T_c-W+1}^{T_c} \lambda^{T_c-t} \cdot r_{s,o}^t, \quad \lambda < 1$$

(3.4)

3.2.3 Making the Trust Evaluation

Agent a_o’s behavior in an interaction is a binary event, i.e. either satisfactory or unsatisfactory, and a_s’s evaluation of a_o’s trustworthiness is basically the subjective probability that a_o would behave satisfactorily (i.e. behave cooperatively) in future. The probability of such binary events can be represented by the beta family of probability density functions (PDF). The beta family of PDF is a set of continuous functions indexed by two parameters α and β [CB90]. α and β are two parameters controlling the shape of the beta distribution. Examples of beta distributions with various values of α and β are shown in Figure 3.1.

![Figure 3.1: Examples of beta distribution](image-url)
The probability density function (PDF) of the beta distribution is given by [CB90]:

\[
f(X|\alpha, \beta) = \frac{1}{B(\alpha, \beta)} X^{\alpha-1} (1 - X)^{\beta-1};
\]

\[0 < X < 1, \alpha > 0, \beta > 0\]
(3.5)

where \(B(\alpha, \beta)\) is the beta function. The expectation value of the beta distribution is calculated with the following formula:

\[
E(X|\alpha, \beta) = \frac{\alpha}{\alpha + \beta}
\]

(3.6)

Now consider how agent \(a_s\) can evaluate its trust on \(a_o\) based on the recorded ratings of agent \(a_o\). In this case, the values of shape parameters \(\alpha\) and \(\beta\) are basically the total counts of satisfactory and unsatisfactory interactions with agent \(a_o\) in agent \(a_s\)'s memory. Prior to any interaction with \(a_o\), \(a_s\)'s uncertainty about \(a_o\) is maximized, since \(a_o\) has equal probabilities of behaving satisfactorily or unsatisfactorily. Hence, the initial setting for \(\alpha\) and \(\beta\) are \(\alpha = \beta = 1\), which makes \(E(X|\alpha, \beta) = 0.5\). Then after an interaction with agent \(a_o\), \(a_s\) obtains a new observation regarding \(a_o\)'s behavior. Based on standard techniques in Bayesian analysis, the values of parameters \(\alpha\) and \(\beta\) are updated by adding the counts of agent \(a_o\)'s satisfactory and unsatisfactory behavior to the initial values of \(\alpha\) and \(\beta\) respectively. According to [JI02, JHF03], that is done by:

\[
\alpha = 1 + P_{T_c}^{s,o},
\]

\[
\beta = 1 + N_{T_c}^{s,o}
\]

(3.7)

which is basically a Laplace-estimator [Ces90]. Then agent \(a_s\)'s trust on agent \(a_o\), i.e. the probability that \(a_o\) would behave cooperatively, is calculated as the expectation value of the beta distribution as follows:

\[
TP_{s,o} = \frac{\alpha}{\alpha + \beta} \approx \frac{1 + P_{T_c}^{s,o}}{2 + P_{T_c}^{s,o} + N_{T_c}^{s,o}}
\]

(3.8)

3.2.4 Aggregating Third-party Testimonies

When a truster agent evaluates the trust that it should place in a trustee agent, it will also seek third-party testimonies on experience in interacting with the same trustee.
Each agent, when contacted by the truster agent, shares its own personal interaction experiences with the same trustee agent, which are also in the form of summary rating as in Eq. (3.4). In light of the new observations of the trustee agent’s behaviors in the testimonies, the truster agent a_s updates parameters α and β of the beta distribution representing the trustee’s behavior:

$$\alpha = 1 + \sum_{w \in W_{s,o}} P^T_{c_w} + \sum_{w \in W_{s,o}} P^T_{c_w},$$

$$\beta = 1 + \sum_{w \in W_{s,o}} N^T_{c_w} + \sum_{w \in W_{s,o}} N^T_{c_w}$$

(3.9)

where $W_{s,o}$ is the set of witness agents, a_w is one of the witnesses in the set $W_{s,o}$, and $P^T_{c_w}$, $N^T_{c_w}$ are the numbers of positive and negative ratings in a_w’s testimony. Then the truster agent updates its evaluation of $TP_{s,o}$ with the new value of α and β according to Eq. (3.8).

3.3 Extension with the Uncertainty-based Testimonies Filtering

Third-party testimonies are sought to reduce the truster’s uncertainty regarding the trustee’s behavior. However, if the third-party testimonies are aggregated blindly, the trust evaluations are easily biased by the presence of unfair testimonies. In the basic trust model presented in Section 3.2, agent a_s is now evaluating its trust on agent a_o, and asks for testimonies on a_o from the other agents. Some may give unfairly positive testimonies to agent a_s. Since the basic trust model aggregates testimonies by summing the counts of positive ratings and negative ratings directly, those unfairly positive testimonies will increase the value of α in Eq. (3.9). This would lead to the increase in a_s’s evaluation of trust on a_o according to Eq. (3.8).

In order to mitigate the adverse effect of unfair testimonies, we extend the basic trust model with a proposal to filter the unfair testimonies. The basic idea of the proposed filtering method is as follows. Since the fairness of a testimony is a subjective measure of the usefulness of the testimony, it is reasonable for a rational agent to aggregate testimonies that do not deviate (within an acceptable range) from what it currently believes about the trustee. Hence, before a new testimony is aggregated, the truster first measures the qualities of both its current belief about the
trustee and the yet-to-be-aggregated testimony on the trustee. Truster’s current belief about the
trustee is generated with its personal interaction experience and already-aggregated testimonies.
If the new testimony shows a significant quality divergence from the quality of the current belief,
the testimony deviates from what the truster perceives in some way. Thus it is considered as a
possible unfair testimony and it will be filtered.

As discussed in Section 1.1, the truster’s evaluation of trust on the trustee agent basically cap-
tures its uncertainty regarding the trustee agent’s behavior. Therefore, the quality of the testimony
(as well as the truster agent’s current belief), based on which the trust evaluation is made, can be
measured based on the “amount” of uncertainty it contains. Given this, entropy, a common mea-
urement of information uncertainty [CT91], is employed as the basis to measure the testimony
quality.

The entropy of a discrete random variable V is calculated as:

$$H(V) = - \sum Pr(v_i) \log(Pr(v_i))$$ \hspace{1cm} (3.10)

where v_i is a possible value of V, and $Pr(v_i)$ is the probability of V taking the value v_i.

Suppose V can take n different values v_1, v_2, \cdots, v_n. The maximum uncertainty H_{max} occurs
when $Pr(v_1) = \cdots Pr(v_i) = \cdots Pr(v_n)$, while the minimum uncertainty H_{min} occurs when V
always takes only one possible value v_i [CT91].

Since binary ratings are employed in the basic trust model, uncertainty (about the trustee’s
behavior) contained in each testimony R can be measured as:

$$H(R) = - Pr(\alpha) \log(Pr(\alpha)) - Pr(\beta) \log(Pr(\beta))$$ \hspace{1cm} (3.11)

where $Pr(\alpha)$ and $Pr(\beta)$ are given by:

$$Pr(\alpha) = \frac{\alpha}{\alpha + \beta}, \quad Pr(\beta) = \frac{\beta}{\alpha + \beta}. \hspace{1cm} (3.12)$$

Here α and β are given by Eq. (3.7), which are basically one plus the positive counts and neg-
ative counts respectively in the received testimony. In the case of binary ratings, the maximum
uncertainty $H_{max}(R)$ occurs when $Pr(\alpha) = Pr(\beta)$, i.e. testimony R is generated with equal
presence of satisfactory and unsatisfactory encounters in the past W interactions. The minimum uncertainty $H_{\text{min}}(R)$ occurs when testimony R is generated with only positive or negative ratings in the past W interactions (W is the window size in Eq. (3.4)).

Then, the quality of testimony R is measured according to the uncertainty it contains as follows:

$$Q(R) = 1 - \frac{H(R) - H_{\text{min}}}{H_{\text{max}} - H_{\text{min}}} = \frac{H_{\text{max}} - H(R)}{H_{\text{max}} - H_{\text{min}}}$$

(3.13)

The quality of the truster a_s's personal interaction experience with the trustee a_o, denoted as $Q(R_{s,o})$, is measured similarly. When measuring $Q(R_{s,o})$, α and β become one plus the positive counts and negative counts respectively in the truster’s own experience with the trustee.

The testimonies filtering and aggregation starts with evaluating the quality of the truster’s current belief about the trustee. Before aggregating any testimony, the truster’s current belief about the trustee is generated with only the truster a_s’s personal interaction experience with the trustee. In other words, the quality of the current belief $Q(R_M)$ is initialized as $Q(R_M) = Q(R_{s,o})$. After that, truster a_s considers each new testimony R as a possible unfair testimony if:

$$|Q(R) - Q(R_M)| > \varepsilon$$

(3.14)

where $Q(R)$ is the quality of the yet-to-be-aggregated new testimony R, and $Q(R_M)$ is the quality of truster agent a_s’s current belief about trustee a_o. ε is the filtering threshold ($\varepsilon \in [0, 1]$), which controls the sensitivity to the presence of unfair testimonies. With a larger ε, the truster is less sensitive to the unfair testimonies, whereas with a smaller ε, the truster is more sensitive.

If the testimony is considered to be a possible unfair testimony, it is discarded. Otherwise, it is aggregated by the truster a_s to update its current belief about trustee a_o, and the quality of the current belief ($Q(R_M)$) is updated accordingly. The same process is carried out on each new testimony. The complete procedure to filter and aggregate testimonies is shown in Figure 3.2.
CHAPTER 3. AN UNCERTAINTY-BASED METHOD TO FILTER UNFAIR TESTIMONIES

Procedures Testimonies Filtering \((s, o)\)

\(a_s\): the truster agent,

\(a_o\): the trustee agent,

\(a_w\): the agent whose testimony is currently being processed by \(a_s\).

1: \(a_s\) measures the quality of its personal interaction experience with \(a_o\), i.e. \(Q(R_{s,o})\) using Eq. (3.13)
2: \(a_s\) initializes the quality of its current belief about \(a_o\) as \(Q(R_M) = Q(R_{s,o})\)
3: for all testimonies do
4: \(a_s\) measures the quality of the testimony reported by \(a_w\), i.e. \(Q(R_{w,o})\) using Eq. (3.13)
5: if \(|Q(R_{w,o}) - Q(R_M)| > \varepsilon\) then
6: \(a_s\) discards \(a_w\)’s testimony
7: else
8: \(a_s\) aggregates \(a_w\)’s testimony, and update \(\alpha\) and \(\beta\) using Eq. (3.9)
9: \(a_s\) updates the quality \((Q(R_M))\) of its current belief about \(a_o\) accordingly
10: end if
11: end for
12: \(a_s\) evaluates trust on agent \(a_o\) with the current belief

Figure 3.2: Uncertainty-based testimonies filtering and aggregation

3.4 EXPERIMENTAL STUDY

A number of experiments has been conducted to evaluate the performance of the proposed testimony-filtering method. Since the validity and effectiveness of the basic trust model have already been studied in [JI02, JHF03], the focus of the experiments is to investigate the effectiveness of the extension, namely the uncertainty-based testimony-filtering method.

3.4.1 EXPERIMENTAL METHODOLOGY

The experiments are conducted by simulating interactions among 100 agents. Those agents are separated into two sets: there are 99 agents in Set A and the rest is in Set B. The agent in Set B provides services that the agents in Set A need to use. The agents in Set A are called the service consumers, while the agent in Set B is called the service provider. Each consumer in Set A carries out 1000 interactions with the same provider in Set B\(^1\). After each interaction, the consumer gives a rating to its interaction partner, i.e. the service provider, and the rating is stored

\(^1\)This may not be the case in the realistic settings, in which there are usually more than one service provider, and an agent usually has few interactions with same interaction partner [RZ02]. However, this configuration facilitates an intensive study of the unfair testimonies and the proposed filtering method’s effectiveness, which is the focus of the experiments.
locally in its memory. The consumer gives a positive rating if the provider behaves cooperatively (e.g. provides a good service). Otherwise, it gives a negative rating.

Beta Reputation System is applied by the consumers to evaluate the trustworthiness of the providers before each interaction. The number of ratings that are taken into account when generating the rating summary is set as 10, i.e. $W = 10$ in Eq. (3.4). A decaying factor is applied, and it is set to 0.9, i.e. $\lambda = 0.9$ in Eq. (3.4). The threshold of the filtering is set to 0.3, i.e. $\varepsilon = 0.3$ in Eq. (3.14).

The experiments simulate the provider by controlling its behaviors with its willingness. The provider’s willingness is essentially the probability that it would behave cooperatively with the consumer agent. It takes values in the range of $[0, 1]$. The higher the willingness, the more likely the provider will behave cooperatively, and vice versa. In real settings, the provider’s willingness will change from one interaction to another due to many reasons, e.g. the change in the cost to provide a high-quality service. Such willingness fluctuation is also simulated in the experiments. Before each experiment, an initial willingness is assigned to the provider. The value of the initial willingness is varied to simulate the providers with different nature. In the experiments, initial willingness can be 0.9, 0.5 or 0.1, which corresponds to the provider **highly willing to behave cooperatively**, **willing to behave cooperatively**, and **reluctant to behave cooperatively** respectively\(^2\). Then in each of the subsequent interactions with the consumers, it can change its willingness. The willingness change each time is always ≤ 0.2, and the updated value is restricted to remain in the range of $[0, 1]$. Three strategies of willingness change are simulated in the experiments, namely, increasing or decreasing from the one in last interaction, or remaining the same as the one in last interaction. The provider has an equal probability of choosing one of the three fluctuation strategies. That is, the probability that the provider would choose one of the three strategies in each interaction is set to 1/3. Similar method to simulate providers’ behavior has also been applied in research work that studies the performance of Beta Reputation System, e.g [JHF03].

\(^2\)As the provider’s behavior fluctuates around its “initial willingness”, we use the value of ”initial willingness” to refer to and differentiate various categories of providers.
The purpose of the experiments is to study the proposed filtering method’s effectiveness in mitigating the adverse effect of unfair testimonies. To facilitate the study, two types of unfair testimonies are simulated in the experiment:

- **Ballot-stuffing.** When generating the testimony, an agent, with a probability p_{unfair}, changes its rating in each interaction to be positive regardless of its real experience with the provider in this interaction. This will make the derived testimony unfairly positive.

- **Badmouthing.** When generating the testimony, an agent, with a probability p_{unfair}, changes its rating in each interaction to be negative regardless of its real experience with the provider in this interaction. This will make the testimony unfairly negative.

The consumer’s evaluation of trust on the provider is basically a subjective prediction of the probability that the provider would behave cooperatively in future. On the other hand, the probability that provider would behave cooperatively is controlled by its willingness. Therefore, the consumers’ evaluations of trust on the provider should reflect its true willingness if the evaluations are not influenced by the unfair testimonies. Hence, the effectiveness of the proposed filtering method can be measured on the basis of the difference between the evaluation of trust and the provider’s willingness, which can be quantified as the *mean absolute error* (MAE):

$$MAE = \frac{\sum_{I \in \mathcal{I}} |TP_{s,o} - L_o|}{||\mathcal{I}||}$$

(3.15)

where \mathcal{I} is the set of all the interactions, and $TP_{s,o}$ and L_o stand for the consumer agent’s evaluation of trust on the provider and the provider’s willingness in the corresponding interaction respectively. The average of all consumers’ MAE is obtained as final measurement of the effectiveness of the proposed filtering method. A lower value of MAE implies that the proposed filtering method is more effective in mitigating the adverse effect of the unfair testimonies, and vice versa.

In order to study the proposed filtering method’s effectiveness in a more objective manner, it is also compared with other related work. The closest related work is Whitby et al.’s proposal in [WJI04]. This work is also an extension of the Beta Reputation System, and also
applies a filtering method to mitigate the adverse effect of the unfair testimonies. As discussed in Section 2.3.2.1, Whitby et al.’s proposal first generates a majority opinion by aggregating all the available testimonies. Then it identifies the possible unfair testimony by testing whether a testimony is outside the \(q \) quantile and \((1-q) \) quantile of the majority opinion. If the test outcome is positive, the testimony is considered as a possible unfair testimony and will be discarded. Then the majority opinion is generated again with the remaining testimonies before a new round of testimonies filtering. In the experimental studies, the quantile parameter is set as \(q = 0.01 \), since \(q = 0.01 \) is a good choice as reported in [WJI04].

Comparisons have been conducted to examine these two methods’ effectiveness in various configurations. An experiment configuration is made up of three factors, namely the provider’s initial willingness \((IL)\), \(p_{unfair} \), and the ratio of unfair testimonies, i.e. percentage of consumers that give unfair testimonies. As discussed earlier in this section, the initial willingness controls the behavior of the provider. \(p_{unfair} \) controls the “strength” of each unfair testimony. That is, the higher the \(p_{unfair} \) is, the more individual ratings are modified. Consequently, this implies that the unfair testimony deviates more from the trustee agent’s real willingness, and vice versa. \(p_{unfair} \) takes a value of high (0.9), medium (0.5), or low (0.1). The ratio of unfair testimonies is taken from the set of \(\{0.1, 0.4, 0.7, 1\} \). A higher ratio indicates that there will be more agents giving unfair testimonies, and vice versa. Five individual experiments are run with each experiment configuration, and the average of the results obtained in the five experiments is taken as the final result of the corresponding configuration.

3.4.2 The Results

Before presenting the main experimental results, we first show the adverse effect of unfair testimony. Figure 3.3 shows the provider’s willingness and one consumer’s evaluations of trust on the provider over the 1000 interactions both with and without the presence of unfair testimonies, more specifically, *bad-mouthing* unfair testimonies. In both cases, the initial willingness of the provider is set as 0.9. Figure 3.3 (a) shows the results in configuration with \(p_{unfair} = 0.5 \) and unfair ratio as 70%.
CHAPTER 3. AN UNCERTAINTY-BASED METHOD TO FILTER UNFAIR TESTIMONIES

Figure 3.3: Adverse effect of the unfair testimonies: (a) without unfair testimonies; (b) with badmouthing testimonies

It is observed in Figure 3.3 (a) that the consumer’s evaluations of trust are close to the provider’s willingness without the presence of unfair testimonies. However, in Figure 3.3 (b), there is an obvious difference between the evaluations of trust and the willingness in the presence of badmouthing unfair testimonies. This observation clearly shows that the presence of unfair testimonies does affect the evaluations.

Figure 3.4: The trust model in the presence of unfair testimonies

Figure 3.4 illustrates the consumer’s evaluations of trust on the provider and the provider’s willingness in the presence of badmouthing unfair testimonies but with the proposed filtering method applied. Compared with Figure 3.3 (b), a smaller distance between the evaluations of trust and willingness can be observed, which shows that the proposed filtering method does mitigate the adverse effect of the unfair testimonies.
Experiments were then conducted to study the effectiveness of the proposed filtering method in various experimental configurations. The proposed filtering method’s effectiveness (in terms of MAE) in different experimental configurations are plotted as lines with labels suffixed by “(O)” in Figures 3.5-3.6. We also measure the effectiveness of our proposal against Whitby et al.’s proposal in [WJI04]. Effectiveness (in terms of MAE) of Whitby et al.’s proposal are plotted in Figure 3.5-3.6 with labels suffixed by “(W)”.

It is observed in Figure 3.5-3.6 that MAE increases (i.e. effectiveness decreases) with the increase of unfair testimonies ratio. Generally, the proposed filtering method achieves a MAE of less than 0.1 when fewer than 50% consumers give unfair testimonies\(^3\) (i.e. unfair testimonies ratio $\leq 50\%$). However, when more than 50% consumers give unfair testimonies, an obvious increase of the MAE (i.e. a reduced effectiveness) is observed. This is because the proposed filtering method basically depends on what the public says about the trustee (i.e. the current belief generated by aggregating third-party testimonies) to filter the testimonies. However, even the public opinion cannot reflect the provider’s true behavior when more than 50% consumers give unfair testimonies.

It is also noted that MAE increases correspondingly with an increase of p_{unfair}. With the increase of p_{unfair}, each individual rating is more susceptible to be manipulated when the consumer generates the testimonies, which results in the testimonies being more deviant from the provider’s real willingness. Thus, the unfair testimonies becomes more powerful in biasing the public opinion. Consequently, the proposed filtering method becomes less effective since it depends on public opinion to filter the testimonies.

3.4.2.1 Comparison with Whitby et al.’s Proposal

Similar increasing trends with the increase of unfair testimony ratio and p_{unfair} are also observed with Whitby et al’s proposal [WJI04]. Nevertheless, the proposed method still outperforms Whitby et al’s proposal in most of the configurations that are studied by the experiments.

\(^3\)There are exceptions, which will be discussed later.
Figure 3.5: Effectiveness in the presence of ballot-stuffing testimonies
CHAPTER 3. AN UNCERTAINTY-BASED METHOD TO FILTER UNFAIR TESTIMONIES

Figure 3.6: Effectiveness in the presence of badmouthing testimonies

(a) IL=0.1

(b) IL=0.5

(c) IL=0.9

58
In configurations where fewer than 50% consumers give unfair testimonies, the effectiveness improvement over Whitby et al.’s proposal is less obvious. When more than 50% consumers give unfair testimonies, the improvement becomes more obvious.

The proposed filtering method is also more effective than Whitby et al.’s proposal in terms of processing time. The proposed method takes about 0.02 second on average to process all the testimonies from the other 99 consumers in each interaction. However, with identical experiments setting (Intel Xeon CPU 3.0GHz and 2GB memory), Whitby et al.’s proposal takes about 1.5 seconds on average. This is primarily due to the iterative nature of Whitby et al.’s proposal, which processes each testimony more than once before the truster consumer derives its final evaluation of trust on the provider. For this reason, it does not scale well with the increase in the number of available testimonies. In contrast, the proposed method processes every testimony only once, which makes it scale linearly with the increase in the number of available testimonies.

Such a disparity in performance is mainly due to the difference in the strategies employed to exploit public opinion. Whitby et al’s proposal generates public opinion by aggregating testimonies before filtering. The public opinion is already biased by the unfair testimonies, which makes it easier for the unfair testimonies to escape the filtering. In contrast, the proposed filtering method examines each testimony before it is aggregated to generate a new majority opinion. A possible unfair testimony is discarded before it can bias the majority opinion. Only a testimony that is close to (within an acceptable range) the truster’s current belief (i.e. the public opinion) is aggregated.

3.5 Discussion

In this chapter, we introduce trust into MAS by exploiting an existing basic trust model, i.e. Beta Reputation System (BRS). As a starting point in this research to tackle the presence of unfair testimonies, this chapter proposes a testimony-filtering method to mitigate the adverse effect of unfair testimonies, and examines its effectiveness in the context of the BRS.

An obvious advantage of the proposed testimony-filtering method is that it works by analyzing the testimonies directly. It does not require any additional mechanism or information used in other
existing methods, such as the incentive method used in Jurca and Faltings’ model [JF03, JF04] and the method used in ReGreT model [SM03]. We also study the effectiveness of the proposed uncertainty-based filtering method by comparing it with Whitby et al.’s proposal [WJI04], which is a typical endogenous filtering method to tackle unfair testimonies. Experimental results show that the proposed filtering method outperforms Whitby et al.’s proposal in terms of both the processing time and the effectiveness to mitigate the adverse effect of the unfair testimonies. Although the effectiveness of the proposed filtering method is studied in the context of the BRS, it can easily be adapted in trust models that use non-binary ratings. The testimony quality can be measured with the same criterion (i.e. Eq. (3.10)) because it employs entropy as the basis of the testimony quality measurement.

Despite the advantages the proposed uncertainty-based filtering method has, there is still room for improvement. For example, the effectiveness of the filtering method depends on the selection of the filtering threshold ε. A careful selection of ε is necessary in order to apply the method to different scenarios. An adaptive criterion is preferred. The proposed filtering method can easily be adapted to trust models that use non-binary ratings. However, this assumes that the witnesses share the raw counts of satisfactory and unsatisfactory interactions directly with the trustees as testimonies. This hampers its wider applicability to other trust models that do not share raw experience as testimonies.

Moreover, we only discuss the observations about the p_{unfair} and unfair testimonies ratio in Section 3.4.2, and leave out the influence of the initial willingness (IL) and the type of unfair testimonies. In fact, it can be seen that there is a change in the proposed filtering method’s effectiveness when the provider’s willingness varies. The observations from Figure 3.5-3.6 show that:

- If the provider’s willingness is low, i.e. its willingness is fluctuating around $IL = 0.1$, the proposed filtering method is more effective in the presence of more than 50% badmouthing unfair testimonies than in the presence of same ratios of ballot-stuffing unfair testimonies when the p_{unfair} is high, e.g. $p_{\text{unfair}} \geq 0.5$ (see Figure 3.5(a)).
• If the provider’s willingness is high, i.e. its willingness is fluctuating around $IL = 0.9$, the proposed filtering method is more effective in the presence of more than 50% ballot-stuffing unfair testimonies than in the presence of same ratios of badmouthing unfair testimonies when the p_{unfair} is high, e.g. $p_{\text{unfair}} \geq 0.5$ (see Figure 3.6(c)).

These two observations are primarily due to a high value of p_{unfair}, which would “swap” the value of $\Pr(\alpha)$ and $\Pr(\beta)$ in Eq. (3.12). This makes the unfair testimonies’ qualities very close to, or even the same as, the consumer’s current belief about the provider. For example, suppose the consumer’s current belief closely reflects the provider’s willingness and indicates that the provider has provided satisfactory services in 8 out of 10 past interactions. In this case, $\Pr(\alpha) = (8 + 1)/(10 + 2) = 0.75$, and $\Pr(\beta) = (2 + 1)/(10 + 2) = 0.25$. A consumer with high value of p_{unfair} giving badmouthing testimonies may report that the provider has provided unsatisfactory services in 8 out of 10 past interactions, which makes $\Pr(\alpha) = 0.25$ and $\Pr(\beta) = 0.75$. Although the values of $\Pr(\alpha)$ and $\Pr(\beta)$ are swapped in these two cases, both the qualities of the consumer’s current belief and the badmouthing testimony are $-0.75 \log(0.75) - 0.25 \log(0.25)$. Thus, the badmouthing unfair testimony escapes the test in Eq. (3.14). For the same reason, the ballot-stuffing unfair testimonies with high p_{unfair} would escape the filtering when the provider’s willingness is low, i.e. willingness fluctuating around $IL = 0.1$.

As these observations show, to mitigate the adverse effect of unfair testimonies, only measuring the quality of an individual testimony’s based on the degree of uncertainty does not always suffice. A possible alternative is to measure the quality (or usefulness) of the witness’ testimony based on how much this witness’ testimonies has reduced the truster’s uncertainty regarding the provider’s behavior. The rationale here is that if the witness’ testimonies are useful in reducing the uncertainty of the truster in the past, the same witness’ new testimonies should also be useful too. Such a measurement of the quality (or usefulness) of third-party testimony is consistent with the effect of third-party testimonies. For instance, as pointed out in [BK95], the effect of third-party testimonies is to make the truster more certain of its trust on the interaction partners.

Inspired by the alternatives to improve the proposed uncertainty-based testimony-filtering method, the following chapter revamps it with a credibility model.
Chapter 4

Coping with Unfair Testimonies: A General Credibility Model

Chapter 3 proposes an uncertainty-based testimony-filtering method to mitigate the adverse effect of unfair testimonies. Despite the merits that the proposed uncertainty-based filtering method has, there is still room for improvement. This chapter revamps this filtering method with a novel credibility model. The proposed credibility model measures the witness agent’s credibility based on the usefulness of its past testimonies, and then filters and aggregates the testimonies according to corresponding witness’ credibility.

4.1 Introduction

In Chapter 3, an uncertainty-based testimony-filtering method is proposed to address the adverse effect of unfair testimonies. A potential improvement is to measure the quality or usefulness of a witness’s testimonies based on how much the witness’s testimonies have reduced the truster’s uncertainty regarding the trustee’s behavior.

Measuring such reduction of uncertainty requires the witness’s past testimonies on the trustees and the truster’s own evaluations of trust on the corresponding trustees. However, in the basic trust model and the filtering method presented in Chapter 3, the testimonies reported by a witness as well as the truster’s own evaluation of trust on the trustees are not stored after they are aggregated to evaluate the overall trust on the trustees. This makes it impossible to calculate such reduction of uncertainty.
To solve this problem, we revamp the uncertainty-based filtering method with a credibility model. The credibility model has a profile-building component, which records the information about witness agent’s past testimonies, as well as the truster’s own past evaluations of trust on the corresponding trustees. Then a credibility metric is designed to measure the witness’s credibility, i.e. how much the witness’s testimonies have reduced the truster’s uncertainty about the trustees. As discussed in Section 1.1.1, the usefulness of a witness’s testimony can be measured based on how much the witness has reduced the truster’s uncertainty in the past with its successful testimonies-reporting. Intuitively, if a witness’s testimonies are useful in the past in reducing the truster’s uncertainty, its new testimony is also likely to be useful. Such a measurement of usefulness is defined as the witness’s credibility in this thesis. Finally, the testimonies are filtered according to the credibility of corresponding witnesses. Furthermore, the remaining testimonies are aggregated with different weights according to the corresponding witnesses’ credibility to further reduce the adverse effect of unfair testimonies.

It is noted in this thesis that trust and credibility, though related, are considered as two different concepts. The truster’s evaluation of trust on the trustee captures its uncertainty about the trustee’s behavior. However, the truster’s evaluation of an agent’s (i.e. witness’s) credibility is a subjective evaluation of the usefulness of the latter’s testimonies in reducing the uncertainty. Correspondingly, the trust model refers to the model that is used by the agent to evaluate trust on the trustee, whereas the credibility model refers to the model that is used to evaluate the credibility of witness agent. The proposed credibility model does not explicitly require a specific trust model to be employed by the agents. The proposed credibility model is therefore applicable to a wide range of trust models, though this thesis continues to use the basic trust model presented in Section 3.2.

This chapter presents the design of the proposed credibility model. Section 4.2 introduces the notations used in this chapter. Section 4.3 presents the profile-building component of the credibility model. After that, the design of the credibility metric is presented in Section 4.4. Section 4.5 discusses the component to filter and aggregate the testimonies. Finally, Section 4.7 summarizes this chapter.
4.2 Notations

Other than the notations defined in the previous chapter (see Section 3.2.1), we introduce some new notations for the ease of presentation.

Before each interaction with trustee agent \(a_o \), truster \(a_s \) will evaluate its trust on the trustee. The trust evaluation is a combination of \(a_s \)’s own direct trust on \(a_o \) and third-party testimonies. The direct trust on \(a_o \) is derived based on truster \(a_s \)’s personal interaction experiences with \(a_o \), and is denoted as \(TP_{s,o} \). The trust evaluation with a combination of \(TP_{s,o} \) and third-party testimonies is called truster \(a_s \)’s overall trust in \(a_o \), which is denoted as \(TA_{s,o} \).

\(TA_{s,o} \) is the pre-interaction trust evaluation in that it is calculated before truster agent \(a_s \) interacts with trustee agent \(a_o \). If truster agent \(a_s \) determines to interact with trustee \(a_o \) after the pre-interaction trust evaluation, it will evaluate the trustee’s trustworthiness again with new observation of the trustee’s behavior in the interaction. This is called the post-interaction trust evaluation, and it contains only the truster’s direct trust on the trustee, i.e. it is made only with truster’s personal interaction experience with the trustee (including the new experience in the interaction).

After the truster obtains the post-interaction trust evaluation, it will update the profiles of those witnesses who have reported testimonies when making the pre-interaction evaluation, and re-evaluates the witnesses’ credibility accordingly. The truster agent \(a_s \)’s evaluation of a witness agent \(a_w \)’s credibility is denoted as \(TT_{s,w} \).

We reiterate that, trust and credibility are two different concepts, though related. Truster \(a_s \)’s evaluation of trust in trustee \(a_o \), i.e. \(TP_{s,o} \) or \(TA_{s,o} \) captures \(a_s \)’s uncertainty about \(a_o \)’s future behavior. However, \(a_s \)’s evaluation of agent \(a_w \)’s (as a witness of agent \(a_o \)) credibility, i.e. \(TT_{s,w} \) is a subjective evaluation of the usefulness of \(a_w \)’s testimonies in reducing the uncertainty.

4.3 Maintaining the Witness’ Profile

The credibility model contains three primary components: (1) a component used by the truster to maintain a profile for the witness agent; (2) a metric with which the truster evaluates the
CHAPTER 4. COPING WITH UNFAIR TESTIMONIES: A GENERAL CREDIBILITY MODEL

witness agent’s credibility; and (3) a component with which the truster filters and aggregates the testimonies. This section discusses the profile maintenance. The other components are discussed in the subsequent sections.

4.3.1 Preprocessing the Testimonies

With the decoupling of credibility and trust, the proposed credibility model does not require any specific trust model to evaluate the trust. However, the basic trust model assumes that the witnesses share the raw counts of satisfactory and unsatisfactory interactions with the trustees as testimonies. This form of testimony is specific to the Beta Reputation System, whereas there exist trust models that do not apply this form of testimonies. Therefore, we discard this assumption by changing the form of testimonies. That is, instead of sharing the counts of positive and negative experience directly as testimony, the witness’s evaluation of the direct trust on the trustee is shared as testimony. Such form of testimonies is commonly-used in most of the existing trust models. For example, all the models reviewed in Chapter 2 other than the model proposed by Abdul-Rahman and Hailes (see Section 2.3.3.1) employ continuous ratings to represent the outcome of trust evaluations. It is also consistent with the nature of trust as the subjective probability that the trustee would behave cooperatively.

We have seen the advantages of changing the form of testimonies. However, due to trust’s probabilistic nature, the testimony usually takes continuous values in the range of $[0, 1]$ after the changing, thus requiring more overhead than in the basic trust model in maintaining and storing the testimonies. In the basic trust model, the testimonies can easily be maintained and stored by only updating the counts of positive and negative ratings (see Section 3.2). To address this issue, the credibility model pre-processes the continuous testimonies to become discrete ratings with a scale of Z before they are stored in the witness’s profile. The preprocessing retains the benefit of maintaining and storing the testimonies in the basic trust model, which will be discussed in the next subsection. The preprocessing is done by (1) choosing a scale for the discrete ratings (denoted as Z), (2) stratifying the continuous range of $[0, 1]$ into Z bins, and (3) representing the testimonies using the indices of the corresponding bins which contain the testimonies.
4.3.2 The Organization of the Profile

After the preprocessing, agent a_s maintains the profile for a witness agent a_w in the form of a contingency table as shown in Figure 4.1. It is basically an alignment of the agent a_w’s past testimonies and the truster a_s’s own post-interaction evaluations of direct trust on the corresponding trustees. It is noted that, the truster will use a table to maintain the witness agent’s past testimonies on all trustees.

![Figure 4.1: Agent’s profile of giving testimonies](image)

In Figure 4.1, Z denotes the scale of the ratings used to represent the testimonies. N is the number of successful testimony-reporting by witness agent a_w. A successful testimony-reporting means that (1) the testimony reported by agent a_w has been used by a_s in the pre-interaction trust evaluation, and (2) a_s interacts with that trustee after the pre-interaction trust evaluation. If condition (1) is met but condition (2) is not, the testimony-reporting is not successful, and it will not be recorded in the profile.

Each cell n_{ij} records the number of successful testimony-reporting in which a_w’s testimonies are j while a_s’s post-interaction direct trust on the same trustees are i. $n_{ij} = 0$ if there is no such testimony-reporting. R_i records the total count of testimony-reporting in which agent a_s’s post-interaction direct trust on the trustees are i, while C_j records the total count of testimony-reporting in which agent a_w’s testimonies are j. In other words, R_i is the sum of the cells in the

1. This scale and the scale of trust information that are used to evaluate trust are not related. For example, a trust model can use binary ratings to evaluate trust, while the outcomes of the trust evaluation (i.e. the testimonies) can be discretized to ratings with a scale of 5.
row \(i \), and \(C_j \) is the sum of the cells in the column \(j \), i.e.

\[
R_i = \sum_{j=1}^{Z} n_{ij}, \quad C_j = \sum_{i=1}^{Z} n_{ij}, \quad \sum_{i} R_i = \sum_{j} C_j = N
\]

(4.1)

Preprocessing the testimonies to discretize the ratings makes the update of the profile easier. That is, when the witness makes a new successful testimony-reporting, the profile can be updated by just increasing one of the cells in the profile instead of storing the testimony directly. For example, witness agent \(a_t \) has reported a testimony as 0.25 to truster agent \(a_s \) on trustee agent \(a_o \), while \(a_s \)'s own post-interaction direct trust on \(a_o \) is 0.15. Suppose the testimonies are discretized into \(Z = 5 \) bins, \(a_t \)'s testimony and \(a_s \)'s post-interaction direct trust are pre-processed to discrete ratings 2 and 1 respectively. Correspondingly, the profile can be updated by increasing the value of cell \(n_{12} \) by 1. Moreover, since a witness’s credibility will be measured based on its profile, discrete values in its profile are generally more computationally tractable than continuous values.

An example of the profile is shown below.

Example 4.1 Suppose the testimonies are discretized to ratings with a scale of 5. A witness agent \(a_w \) has made 3 successful testimony-reporting to truster agent \(a_s \):

(i) Agent \(a_w \) gave 2 testimonies of 5 on two trustees, and \(a_s \)'s post-interaction direct trust on the corresponding trustees are 3, i.e. \(n_{35} = 2 \).

(ii) Agent \(a_w \) gave another testimony of 4 on a trustee, and \(a_s \)'s post-interaction direct trust on the corresponding trustee is 4, i.e. \(n_{44} = 1 \).

After these 3 successful testimony-reporting, \(a_s \) maintains the profile for agent \(a_w \) as shown in Figure 4.2.

4.4 Measuring the Credibility

On the basis of the information recorded in the profile, credibility of the witness agent can be measured.
4.4.1 The Derivation of the Credibility Metric

Suppose, \(a_w \)'s testimonies are the only information available for truster agent \(a_s \) to make the pre-interaction trust evaluations, and agent \(a_s \) has built a profile of witness agent \(a_w \) to capture \(a_w \)'s past testimony-reporting. The truster agent \(a_s \)'s pre-interaction evaluations of trust on the trustees can be considered as an activity to predict its post-interaction direct trust on the trustee in the following two cases [GK54]:

Case (1): \(a_s \) makes the evaluations given no testimony from witness \(a_w \).

Case (2): \(a_s \) makes the evaluations given \(a_w \)'s testimonies.

In **Case (1)**, since agent \(a_s \) has the information about its past post-interaction direct trust, it cannot be worse off by predicting its post-interaction direct trust on the trustee based on its past experiences in interacting with other trustees, even though \(a_w \) has no testimony. More specifically, \(a_s \) predicts its direct trust on the trustee as a particular rating \(i \) with a probability \(R_i/N \). By doing so, the proportion of the consistent predictions in the long run is \(\sum_i (R_i/N)^2 \) [GK54]. Here, a prediction is consistent when the truster’s pre-interaction evaluation of trust is equal to its post-interaction evaluation of direct trust on the corresponding trustee\(^2\).

In **Case (2)**, in light of witness \(a_w \)'s testimony, the probability that \(a_s \) predicts its direct trust on the trustee as a particular rating \(i \) is essentially the posterior probability of \(i \)'s occurrence given

\(^2\)Eq. (3.15) measures the quality of trust evaluation by calculating the distance between the trust evaluation and the trustee’s real behavior. Similarly, the distance between truster’s pre-interaction trust evaluation and the trustee’s real behavior is measured here. However, because the credibility model has pre-processed the trust evaluations (i.e. testimonies) into discrete ratings, the distance is measured by determining whether the two ratings are same, which is interpreted as consistency here.
a_w’s testimony of j’s presence in the profile. If we denote the prior probability of testimony j’s occurrence as \(P(j) \) and the posterior probability of i’s occurrence given j as \(P(i|j) \), according to Bayes’ theorem, we have

\[
P(i|j) = \frac{P(j|i)P(i)}{P(j)} = \frac{n_{ij}R_i}{N} \frac{R_i}{N} = \frac{n_{ij}}{C_j/N}
\]

In other words, \(a_s \) predicts its direct trust on the trustee as \(i \) with a probability as \((n_{ij}/C_j) \). In this case, the proportion of the consistent predictions in the long run is \(\sum_i \sum_j \left(\frac{n_{ij}^2}{C_j} \right) / \left(\frac{C_j}{N} \right) = \frac{1}{N} \sum_i \sum_j (n_{ij}^2/C_j) \) [GK54].

Recall that credibility of the witness is measured by how much its past testimonies have reduced the truster’s uncertainty regarding the trustees’ behavior. Such a reduction can be quantified as the reduction of \(a_s \)’s inconsistent predictions given the witness’s testimonies in the past, i.e., the reduction of inconsistent predictions as \(a_s \) goes from Case (1) to Case (2). Therefore, \(TT_{s,w} \) is evaluated according to the following formula:

\[
TT_{s,w} = \frac{(1 - \sum_i (R_i/N)^2) - (1 - \frac{1}{N} \sum_i \sum_j (n_{ij}^2/C_j))}{1 - \sum_i (R_i/N)^2}
\]

\[
= \frac{N \sum_i \sum_j \frac{n_{ij}^2}{C_j} - \sum_i R_i^2}{N^2 - \sum_i R_i^2}
\]

(4.2)

\(TT_{s,w} \) takes values in the range of \([0, 1]\). \(TT_{s,w} = 0 \) implies that agent \(a_w \)’s testimonies has not reduced \(a_s \)’s uncertainty at all. \(TT_{s,w} = 1 \) implies \(a_s \)’s perfect predictability of direct trust on the trustees given witness \(a_w \)’s testimonies. Note that different trusters may have different evaluations of credibility of the same witness. This is because the credibility is basically a subjective measurement of the usefulness of the witness’s testimonies, and different trusters may have different experience in receiving testimonies from the same witness.

4.4.2 Bootstrapping of the Profile and Credibility

As mentioned in Section 4.3, each cell \(n_{ij} \) in the profile should intuitively be initialized to 0. However, it is easily derived from Eq. (4.2) that this leads to \(TT_{s,w} = 0/0 \) after witness \(a_w \)’s first successful testimony-reporting to agent \(a_s \).
In order to avoid the undefined 0/0, *dummy cell* is introduced to initialize the profile. That is, every cell in the profile is initialized with a dummy value of 1/Z instead of 0. Then all the dummy cells in the jth column are cleared by replacing the dummy cells with 0 after agent a_w’s first successful testimony-reporting with a testimony as j. After the dummy cells are cleared, the corresponding cell in the jth column is updated with real count of successful testimony-reporting accordingly.

There is another case leading to the undefined 0/0 even with the introduction of dummy cell. That is, as Figure 4.3 shows, each column in the profile has only one non-zero cell, and all the non-zero cells are in the same row. This represents the fact that a_s always has only one possible prediction in light of a_w’s testimonies. This implies a_s’s perfect predictability of its post-interaction direct trust given a_w’s testimonies. Consequently, \(TT_{s,w} = 1 \) in this case, as discussed before.

After initializing the profile with the dummy cells, according to Eq. (4.2), the initial value of \(TT_{s,w} \) is 0. However, \(TT_{s,w} = 0 \) means that witness a_w’s testimonies are not useful at all. It implies that testimony reported by a_w would not be aggregated. This consequently makes \(TT_{s,w} \) remain as 0 as the credibility is measured based on a_w’s past testimony-reporting. Therefore, a non-zero initial credibility is necessary to *bootstrap* the testimony aggregation and future computation of the credibility. Moreover, the gap between the initial credibility and its future values should be as small as possible to smooth the credibility evolution.

To this end, \(TT_{s,w} \) is initialized to be close to the updated value of \(TT_{s,w} \) after a_w’s first successful testimony-reporting to agent a_s. After a_w’s first successful testimony-reporting, there

<table>
<thead>
<tr>
<th>a_s’s post-interaction direct trust</th>
<th>a_w’s testimonies</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 . . . j . . . Z</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0 . . . 0 . . . 0</td>
<td>0</td>
</tr>
<tr>
<td>i</td>
<td>: . . . : . . :</td>
<td>(n_{i1}) . . . (n_{ij}) . . . (n_{iZ}) (R_i)</td>
</tr>
<tr>
<td>Z</td>
<td>0 . . . 0 . . . 0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>(n_{i1}) . . . (n_{ij}) . . . (n_{iZ}) (R_i)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.3: A special case leading to 0/0 when evaluating credibility
Figure 4.4: Agent a_w’s profile after its first successful testimony-reporting is only one non-zero cell in a_w’s profile. Assume that the non-zero cell is in the pth row and qth column, i.e. $n_{pq} = 1$. a_w’s profile is updated by a_s as shown in Figure 4.4. By applying Eq. (4.2) on the updated profile, it is obtained that $TT_{s,w} = 1/(Z + 1)$. Therefore, agent a_s initializes agent a_w’s credibility as $TT_{s,w} = 1/(Z + 2)$, since $1/(Z + 2)$ is close to $1/(Z + 1)$. Moreover, $1/(Z + 2) < 1/(Z + 1)$. This corresponds to the intuition that a_w is more credible after its first testimony-reporting to a_s since its testimony has reduced a_s’s uncertainty.

4.4.3 Evolution of the Credibility

Since a_w’s credibility is measured based on its past testimonies, $TT_{s,w}$ is updated when a_w makes more successful testimony-reporting to agent a_s. Update of $TT_{s,w}$ is triggered each time after agent a_s obtains its post-interaction direct trust on the trustee, i.e. its uncertainty about the trustee has been updated in light of the trustee’s new behavior in the interaction. Suppose witness agent a_w’s testimony on trustee agent a_o for a_s’s pre-interaction trust evaluation is j, and a_s’s post-interaction direct trust on a_o is i. The update of $TT_{s,w}$ is carried out with the procedure shown in Figure 4.5.

4.5 Testimony Filtering and Aggregation

Before aggregating the testimonies to obtain the overall trust that it should place in trustee a_o, agent a_s will evaluate the credibility of all the witnesses that have reported testimonies on a_o. Then it will choose a subset of testimonies to be aggregated. Unlike the filtering method presented
Procedure TT_Update (s, w)

\(a_s \): the truster agent,
\(a_o \): the trustee agent,
\(a_w \): a witness of the trustee agent \(a_o \).

1. if \(a_w \) is a newly-encountered witness for \(a_s \) then
2. \(a_s \) initializes the profile to record \(a_w \)'s testimony-reporting
3. for \(c = 1 \) to \(Z \) do
4. for \(r = 1 \) to \(Z \) do
5. \(n_{rc} = 1/Z \) \{fill in the dummy cell\}
6. end for
7. end for
8. end if
9. if \(a_s \) interacts with \(a_o \) after the pre-interaction trust evaluation then
10. \(a_s \) evaluates the post-interaction direct trust on \(a_o \) with new observation of \(a_o \)'s behavior
11. if \(a_w \) makes a successful testimony-reporting with a testimony of \(j \) for the first time then
12. for \(r = 1 \) to \(Z \) do
13. \(n_{rj} = 0 \) \{clear the dummy cell in \(j \)th column\}
14. end for
15. end if
16. \(n_{ij} = n_{ij} + 1 \)
17. \(a_s \) re-evaluates \(TT_{s,w} \) with Eq. (4.2) based on the updated profile
18. end if

Figure 4.5: Procedure to update credibility

in Chapter 3 in which the testimonies are filtered based on the “uncertainty” that the testimonies contain, \(a_s \) now filters the testimonies according to the corresponding witnesses’ credibility with the credibility model deployed.

The filtering of the testimonies is done by comparing the corresponding witness’s credibility against the confidence of truster agent \(a_s \)'s own evaluation of direct trust on the trustee. In order to evaluate the confidence, truster agent \(a_s \) also maintains a profile for itself, which is organized in the same form as Figure 4.1. Nevertheless, the cells are attached with different meaning in this case. Each cell \(n_{ij} \) in the profile that agent \(a_s \) builds for itself records the number of interactions with the trustees in which \(a_s \)'s pre-interaction direct trust are \(j \) while its post-interaction direct trust are \(j \). Then the confidence is derived with Eq. (4.2) according to the profile, and it is denoted as \(TT_{s,s} \).

Then the testimony reported by a witness agent \(a_w \) will be aggregated if:

\[
TT_{s,w} \geq TT_{s,s} \tag{4.3}
\]
where $TT_{s,w}$ is agent a_w’s credibility, and $TT_{s,s}$ is agent a_s’s confidence about its own direct trust evaluations. Unlike the filtering method presented in Chapter 3, which filters the testimonies based on a predefined filtering threshold ε, this filtering criterion is more adaptive, in that only those testimonies that are more useful than a_s’s own evaluations of direct trust are aggregated.

Then the selected testimonies will be aggregated by truster a_s. A conservative view towards the testimonies is employed in the testimony aggregation. That is, each testimony is considered as possible unfair testimony in first place, and it is adjusted afterward to reduce the adverse effect of the possible unfair testimonies among the selected testimonies.

The testimony is adjusted based on the corresponding witness’s previous testimony-reporting recorded in its profile. Suppose agent a_w gave a testimony of j to truster agent a_s. According to Case (2) in Section 4.4.1, given witness a_w’s testimony j, agent a_s predicts its direct trust on the trustee as v with a probability $\frac{n_{vj}}{N} = \frac{n_{vj}}{C_j}$. Or put it in another way, witness a_w’s testimony j is adjusted to rating v with a probability $\frac{n_{vj}}{C_j}$, i.e.:

$$\Pr(j \rightarrow v) = \frac{n_{vj}}{C_j} \quad (4.4)$$

The rationale of the testimony adjustment is that: if, in the past, each time witness a_w gives a testimony as j, truster a_s’s post-interaction direct trust on the trustee is often found to be v. Then, most probably, its direct trust on the trustee would be v if a_w gives a testimony as j again. The testimony adjustment is important here because it keeps the testimony aggregation consistent with the derivation of the credibility metric (see Case (2) in Section 4.4.1). Moreover, it helps to reduce the adverse effect of the possible unfair testimonies even they are aggregated.

It is possible that truster a_s receives a testimony from a newly-encountered witness. In this case, this testimony is used directly without adjustment as there is no information recorded in the profile to support the adjustment.

An example of the testimony adjustment is given below.

Example 4.2 After the first 3 successful testimony-reporting in Example 4.1, agent a_w makes another 2 successful testimony-reporting to truster agent a_s: a_w gives two testimonies as 4 and 5 respectively on two trustees, and a_s’s post-interaction direct trust on the two corresponding
trustees are 3. Witness agent \(a_w\)'s profile after 5 successful testimony-reporting is shown in Figure 4.6:

<table>
<thead>
<tr>
<th>(a_s)'s post-interaction direct trust</th>
<th>(a_w)'s testimonies</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1/5 1/5 1/5 0 0</td>
<td>3/5</td>
</tr>
<tr>
<td>2</td>
<td>1/5 1/5 1/5 0 0</td>
<td>3/5</td>
</tr>
<tr>
<td>3</td>
<td>1/5 1/5 1/5 1 3</td>
<td>23/5</td>
</tr>
<tr>
<td>4</td>
<td>1/5 1/5 1/5 1 0</td>
<td>8/5</td>
</tr>
<tr>
<td>5</td>
<td>1/5 1/5 1/5 0 0</td>
<td>3/5</td>
</tr>
<tr>
<td>Total</td>
<td>1 1 1 2 3 8</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.6: Agent \(a_w\)'s profile after 5 successful testimony-reporting

Assume \(a_w\) gives a new testimony to \(a_s\), and it is 4. Then, before \(a_s\) aggregates this new testimony, it does the following testimony adjustment:

\[
\Pr(4 \rightarrow 3) = \frac{n_{34}}{C_4} = \frac{1}{2}, \quad \Pr(4 \rightarrow 4) = \frac{n_{44}}{C_4} = \frac{1}{2}
\]

(4.5)

That is, it adjusts this testimony to 3 with a probability as \(\frac{1}{2}\), and adjusts to 4 with a probability as \(\frac{1}{2}\).

If \(a_w\)'s new testimony is 5, then it is adjusted to 3 with a probability as \(\Pr(5 \rightarrow 3) = \frac{n_{53}}{C_5} = \frac{3}{3} = 1\).

Then the testimonies (after filtering and adjustment), including \(a_s\)'s own pre-interaction evaluation of direct trust on the trustee, are aggregated to obtain \(a_s\)'s overall trust. The aggregation is done as a weighted mean of the testimonies (after adjustment) with each individual witness's credibility as the weight:

\[
TA_{s,o} = \frac{\sum_{a_w \in W_{s,o}} (TT_{s,w} \cdot TP'_{w,o})}{\sum_{a_w \in W_{s,o}} TT_{s,w}}
\]

(4.6)

Here \(W_{s,o}\) is a set of witness agents whose testimonies will be aggregated, including agent \(a_s\) itself. \(TP'_{w,o}\) is testimony (after adjustment) by agent \(a_w\), who is one of the witnesses in \(W_{s,o}\). Each testimony is given a weight as the corresponding witness’s credibility. The testimonies from less credible witnesses will have a smaller impact on the aggregation, and vice versa. Truster \(a_s\)'s own pre-interaction direct trust on \(a_o\) is aggregated without adjustment, and is assigned a weight as its confidence \(TT_{s,s}\).
\(TA_{s,o} \) obtained with Eq. (4.6) is in the range of \([1, Z]\), since the testimonies have been pre-processed to become discrete ratings with a scale of \(Z \). In scenarios where the truster has a list of candidate partners from which it chooses one to interact with, this result can be used directly. This is because usually a rational agent would choose to interact with the one with the highest trustworthiness, and the results derived with Eq. (4.6) are enough to differentiate the candidate partners. However, in scenarios where the truster needs to determine whether to interact with a specific partner, \(TA_{s,o} \) obtained with Eq. (4.6) may need to be converted to the range of \([0, 1]\), since the decision may be made based on a threshold on the probability that the trustee agent would behave cooperatively.

Figure 4.7 summarizes the approach taken by the proposed credibility model.

4.6 Experimental Study

Experiments have been conducted to study the proposed credibility model’s performance in mitigating the adverse effect of unfair testimonies.

First of all, a set of experiments are conducted to compare the performance of the credibility model against the uncertainty-based filtering method discussed in Chapter 3.

Experiments with a publicly available dataset have also been conducted to study the credibility model’s effectiveness. The dataset used is the MovieLens dataset\(^3\), which contains agents’ opinions on a number of movies. By using this dataset, the movies become the trustees, while the trusters are the agents. As discussed before in Section 4.3.1, the credibility model does not concern about which specific model is used to evaluate the trustees since it is decoupled from the trust model. Therefore, only the trusters’ evaluations of the trustees matter, which are captured in the dataset. The dataset is used to simulate the exchange of testimonies among the agents. Testimonies are exchanged among agents before they interact with the potential trustees (i.e. whether to watch the movies). Some agent may not tell the truth when giving testimonies. And the credibility model is used to address the presence of unfair testimonies.

\(^3\)MovieLens dataset is publicly available at http://www.cs.umn.edu/research/GroupLens/data/.
The credibility model

a_s: the truster agent,
a_o: the trustee agent,
a_w: a witness of the trustee agent a_o,
$TT_{s,w}$: agent a_s’s evaluation of witness a_w’s credibility,
$TP_{s,o}$: agent a_s’s pre-interaction direct trust on agent a_o,
$TA_{s,o}$: agent a_s’s (pre-interaction) evaluation of overall trust that it should place in trustee a_o,
$TP'_{s,o}$: agent a_s’s post-interaction direct trust on agent a_o with new observation of a_o’s behavior in the interaction.

1: a_s evaluates $TP_{s,o}$ \{agents can employ any computational trust model in making the trust evaluation\}
2: a_s asks for testimonies from other agents in MAS
3: for all witness agent a_w do
4: evaluate a_w’s credibility $TT_{s,w}$ using Eq. (4.2)
5: if $TT_{s,w} \geq TT_{s,s}$ then
6: a_s adjusts a_w’s testimony according to Eq. (4.4) \{a_w’s testimony will be aggregated, and is adjusted before being aggregated\}
7: else
8: a_w’s testimony will not be aggregated
9: end if
10: end for
11: let $\mathcal{W}_{s,o} =$ all the witnesses whose testimonies will be aggregated
12: a_s aggregates all the adjusted testimonies and $TP_{s,o}$ using Eq. (4.6) to evaluate $TA_{s,o}$
13: if agent a_s interacts with the trustee agent a_o after the pre-interaction trust evaluation then
14: a_s evaluates $TP'_{s,o}$
15: for all witness agent $a_w \in \mathcal{W}_{s,o}$ do
16: a_s updates a_w’s credibility $TT_{s,w}$ with $TT_{\text{Update}}(s, w)$ as shown in Figure 4.5
17: end for
18: end if

Figure 4.7: The credibility model

4.6.1 Methodology

For the first set of experiments, same methodology as in Section 3.4 is used. Mean absolute error (MAE) (see Eq. (3.15)) is applied again to evaluate the performance.

For the second set of experiments, the MovieLens dataset has already pre-processed the trustees’ evaluations of the trusters into discrete ratings of 5-point scale. The dataset contains 100,000 entries of ratings about 1682 items by 943 agents. Each entry has four main fields: the ID of the agent who gives the rating, the ID of the item, the rating, and the timestamp when the rating was given.

77
The whole dataset is split into two subsets with 80,000 and 20,000 ratings respectively. Ratings in the first subset are taken as truster agents’ previous experience with the trustees, based on which each truster initializes the profile for every witness. The latter subset is used to simulate the interaction among agents in the experiments. The experiments are conducted in the following manner:

In each single cycle of the experiment, one rating is taken out by the ascending order of the rating timestamp. In each cycle, the real rating is masked intentionally. The corresponding truster (as indicated by the agent ID field in the entry) needs to ask for testimonies from other witnesses and evaluate the trustee (i.e. evaluate the rating of the movie). The truster usually only interacts with the trustee (i.e. watch the movie) when its evaluation of the trustee is higher than a pre-defined threshold. In order to examine the credibility model’s effectiveness extensively, its performance in every single cycle is taken into account by assuming that the threshold is always 0. After that, the truster’s evaluation of the trustee is then compared against the trustee’s real rating (i.e. the rating that is previously masked) to measure the effectiveness of the proposed credibility model.

Two groups of experiments are conducted. The first group is to study the evaluation accuracy without the presence of unfair testimonies. Similar as what we have done in Section 3.4, mean absolute error (MAE) is applied to evaluate the accuracy. Since each truster makes the evaluations individually, it is more reasonable to measure each truster’s trust evaluation separately. For this reason, we employ a different interpretation of the MAE metric in this section, which first calculates the mean evaluation error for each truster and then averages all trusters’ mean errors:

$$MAE = \frac{\sum_{a_s \in \mathcal{A}_s} \left(\frac{|TP_{s,o} - L_o|}{\|\mathcal{A}_o\|} \right)}{\|\mathcal{A}_s\|}$$ \hspace{1cm} (4.7)

where \mathcal{A}_s is the set of all trusters, a_s is one truster in the set of \mathcal{A}_s, \mathcal{A}_ao is the set of trustees that a_s has evaluated, a_o is a trustee in the set of \mathcal{A}_ao, $TP_{s,o}$ and L_o are the a_s’s evaluation of trustee a_o and the trustee a_o’s real rating respectively. A smaller value of MAE is expected to show the credibility model’s effectiveness.
The second group is to study the proposed credibility model’s effectiveness in the presence of unfair testimonies. Another metric, i.e. power of unfairness (POU), is employed as the evaluation metric, which is given by:

$$POU = \sum_{a_{s} \in A_{s}} \frac{\sum_{a_{o} \in T_{so}}(|r_{\text{target}} - TP_{s,o}| - |r_{\text{target}} - TP'_{s,o}|)}{\|T_{so}\|} \frac{\|A_{s}\|}{\|T_{so}\|}$$

where A_{s} is the set of all trusters, a_{s} is one truster in the set of A_{s}, T_{so} is the set of trustees that whose ratings have been manipulated by the unfair testimonies, a_{o} is a trustee in the set of T_{so}, and $TP_{s,o}$ and $TP'_{s,o}$ are truster a_{s}’s evaluation of the trustee a_{o} with and without the presence of unfair testimonies respectively. r_{target} is the target rating of the unfair testimonies. In the experiments, $r_{\text{target}} = 1$ if the unfair testimonies are to deteriorate the target trustees’ trustworthiness (i.e. to lower the target movies’ ratings to the lowest rating), or $r_{\text{target}} = 5$ if the unfair testimonies are to push the target trustees’ trustworthiness (i.e. to push the target movies’ ratings to the highest rating). POU metric measures the extent that proposed credibility model has reduced the effect of the unfair testimonies. A positive value of POU means that the trusters’ evaluations have been manipulated towards the target rating by the presence of unfair testimonies. Otherwise, POU gives a negative value. $POU = 0$ if there is no difference in evaluations with and without the presence of unfair testimonies.

The ratio of agents that are giving unfair testimonies is varied to study the proposed credibility model’s effectiveness in different settings. The ratios of agents giving unfair testimonies are tuned to be 25%, 50%, and 75%. Experiments with the same settings have been run three times, and the average of the results derived in all the three experiments is taken as the final result.

This section also conducts the comparison study against other credibility modeling methods, in particular the method proposed by Yu and Singh\(^4\). Instead of initializing the witness’ credibility as 1^4, each truster agent initializes the witness’ credibility as the similarity between the two agents’ past ratings, which is calculated as the Pearson correlation efficient [LR04] between the two agents’ past evaluations on the trustees in the first sub-dataset (with 80,000 rating entries)\(^5\).

\(^4\)See Appendix A for details about this method.

\(^5\)It is noted that Pearson correlation efficient between two agents could be negative. Those witnesses with negative Pearson correlation efficient are ignored by the trusters when asking for testimonies in the experiments.
Then each witness’ credibility is updated using a variant of the Weighted Majority Algorithm\(^4\). Since all the trustees a truster encounters are new to the truster (the 2nd sub-dataset basically contains the movies that the truster has not rated before), the truster’s confidence is always 0\(^4\). Therefore, the evaluations of the trustees are made by only aggregating all the available testimonies. For both methods, it is implemented that the trusters ask for testimonies from all the witnesses.

In all the experiments presented in this section, the proposed credibility model is implemented with \(Z = 10\).

4.6.2 Results

First of all, the effectiveness of the credibility model is compared against that of the uncertainty-based filtering method discussed in Chapter 3. As shown in Section 3.5, the filtering method’s effectiveness deteriorates when the unfair testimonies’ qualities very close to, or even the same as, the truster’s current belief about the trustee. In particular, its effectiveness deteriorates significantly in two cases:

- The provider’s willingness is low, i.e. its willingness is fluctuating around \(IL = 0.1\), while there are more than 50\% ballot-stuffing unfair testimonies and \(p_{unfair}\) is high, e.g. \(p_{unfair} \geq 0.5\).

- And the provider’s willingness is high, i.e. its willingness is fluctuating around \(IL = 0.9\), while there are more than 50\% badmouthing unfair testimonies and \(p_{unfair}\) is high, e.g. \(p_{unfair} \geq 0.5\).

Results shown in Figure 4.8 and Figure 4.9 present the comparison between the credibility model and the filtering method in various experimental configurations.

In Figure 4.8 and Figure 4.9, the filtering method’s effectiveness (in terms of \(MAE\)) are plotted as lines with labels suffixed by “(O)”, while the credibility model’s are with labels suffixed by “(C)”. It is observed that, the proposed credibility model manages to achieve lower MAE (i.e.}
Figure 4.8: Comparison of the credibility model and the filtering method in the presence of ballot-stuffing testimonies
Figure 4.9: Comparison of the credibility model and the filtering method in the presence of badmouthing testimonies
higher evaluation accuracy) than the filtering method in all the experimental configurations studied. Another obvious improvement of the credibility model over the filtering method is that, the credibility model’s performance does not decrease significantly with the increase of unfair testimonies ratio, especially in the two cases mentioned above (see Figure 4.8(a) and Figure 4.9(c)). This validates that the credibility model does improve the filtering method in mitigating the adverse effect of the unfair testimonies.

Then the performance of the credibility model is studied with a real dataset, and compared with other credibility modeling methods, in particular the method proposed by Yu and Singh.

We first study the two methods’ performance without the presence of unfair testimonies. Table 4.1 shows the average MAE achieved by the two methods. MAE achieved with the proposed credibility model is labeled as Cred, while the one achieved with Yu and Singh’s method is labeled as YS.

<table>
<thead>
<tr>
<th>Method</th>
<th>MAE Achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cred</td>
<td>0.9736</td>
</tr>
<tr>
<td>YS</td>
<td>1.0035</td>
</tr>
</tbody>
</table>

Table 4.1: Comparison of performance without unfair testimonies

It is observed that when there is no presence of unfair testimonies Cred outperforms YS, though it is not significant. This is because YS applies a strategy that is too sensitive to the presence of unfair testimonies. Every testimony that is not exactly same as the trustee’s real rating will be considered as unfair, and the witness’s credibility will be decreased accordingly. However, as there is no agent giving unfair testimonies, such a sensitive strategy would reduce the fair testimonies’ contribution to the evaluations, which compromises its performance.

After studying the performance without the presence of unfair testimonies, we examine the two methods’ effectiveness in the presence of unfair testimonies. Effectiveness of both methods (measured by POU) in the presence of different ratios of witness agents giving unfair testimonies are shown in Table 4.2. In this table, “Push” denotes the case in which the unfair testimonies are to push the target trustees’ trustworthiness to the highest rating, i.e. \(r_{\text{target}} = 5 \), while “Pull” denotes the case in which the unfair testimonies are to pull the target trustees’ trustworthiness down to the lowest rating, i.e. \(r_{\text{target}} = 1 \).
CHAPTER 4. COPING WITH UNFAIR TESTIMONIES: A GENERAL CREDIBILITY MODEL

<table>
<thead>
<tr>
<th>Unfair testimony ratios</th>
<th>POU (Push)</th>
<th>POU (Pull)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cred</td>
<td>YS</td>
</tr>
<tr>
<td>25%</td>
<td>0.0450</td>
<td>0.0738</td>
</tr>
<tr>
<td>50%</td>
<td>0.1003</td>
<td>0.1461</td>
</tr>
<tr>
<td>75%</td>
<td>0.1376</td>
<td>0.2102</td>
</tr>
</tbody>
</table>

Table 4.2: POU w.r.t. different ratios of witness giving unfair testimonies

The first observation from Table 4.2 is that POU > 0, which shows that the presence of unfair testimonies does bias the trusters’ evaluations toward the target ratings. This clearly exemplifies the adverse effect of the unfair testimonies. Nevertheless, Cred still manages to achieve higher effectiveness than YS in mitigating the adverse effect of unfair testimonies. One of the reasons leading to this observation is that YS aggregates all the testimonies without filtering. Therefore, unfair testimonies still exert certain influence over the trusters’ evaluation when they are aggregated, though testimonies are assigned different weights when being aggregated. Another reason is that Cred also adjusts each testimony based on the corresponding witness’ past testimonies, which makes it possible to make a testimony useful even it is unfair.

4.7 Summary

This chapter revamps the uncertainty-based filtering method proposed in Chapter 3 with a credibility model. The proposed credibility model preserves the merits that the filtering method has. For example, it also does not require additional mechanism and information other than the collected testimonies. Besides preserving the filtering method’s merits, the proposed credibility model also improves the filtering method in many aspects and has its own merits:

- The proposed uncertainty-based filtering methods only measures the usefulness of the testimony based on the amount of uncertainty it contains. As discussed in Section 3.5, this is not always sufficient, e.g. it is not sufficient in the case in which the witness somehow manipulates the testimony to be “opposite” to the truster’s current belief about the trustee. To solve this problem, the credibility model measures the usefulness of the testimony based on how much the testimonies from the same witness have reduced the truster’s uncertainty.
This measurement of usefulness is consistent with the effect of third-party testimonies recognized in traditional research on trust [BK95].

- With the same approach, the truster also evaluates the confidence of its own pre-interaction evaluation of direct trust. With the witnesses’ credibility and its own confidence evaluated, the credibility model improves the uncertainty-based filtering method with an adaptive filtering criterion, which filters the testimonies that are less useful than the truster’s own evaluation of direct trust.

- To facilitate the measurement of the witness’s credibility, the credibility model maintains the witness’s profile by storing its past testimonies and the truster’s own evaluation of direct trust on the same trustees in a contingency table. The information recorded in the profile also enables the testimony adjustment, which helps to further reduce the adverse effect of unfair testimonies. Compared with the testimony adjustment in the trust model proposed by Abdul-Rahman and Hailes [ARH00], in which only the witness’s last testimony counts, the testimony adjustment in the proposed credibility model takes into account all the past testimonies of the witness. This treatment is able to capture the difference between the views of the truster and the witness more accurately.

- Another merit of the credibility model is that it is a generic solution to the problem caused by unfair testimonies and can be applied to most computational trust models. It does not require a specific trust model to be used due to its decoupling from the trust model. It can be applied to any computational trust model where outcomes of trust evaluations can be represented in the form of discrete ratings. Since the credibility metric takes discrete ratings as input, it is readily applicable to computational trust models that use discrete ratings to represent the trust evaluations outcomes (i.e. testimonies), e.g. the trust model proposed by Abdul-Rahman and Hailes in [ARH00]. With the preprocessing of testimonies (see Section 4.3.1), the credibility model is also applicable to those trust models which represent trust evaluations outcomes as continuous values, e.g. the basic trust model presented in Section 3.2 (i.e. Beta Reputation System [JI02]).

85
Experimental results have also been presented to show the effectiveness of the credibility model.

Having presented the proposed credibility model and discussed its advantages, the next chapter presents a more intensive study of its effectiveness in a testbed that simulates the interactions among agents.
Chapter 5

Empirical Evaluation of the Credibility Model

A credibility model was proposed in Chapter 4 to enhance the uncertainty-based filtering method. This chapter conducts a more intensive empirical study of the credibility model’s effectiveness. It describes the design of the testbed used to carry out the empirical evaluation. Following that, the methodology used and results achieved are presented. This chapter also presents the results of empirical evaluation with the Agent Reputation and Trust testbed, which is a publicly available testbed and provides a common platform for fair comparative study of the proposed credibility model’s effectiveness against related work.

5.1 Introduction

The experiments in Chapter 3 are conducted in a way that the consumers frequently interact with the same provider. By doing so, it facilitates an intensive study of the adverse effect of unfair testimonies and the proposed filtering method’s effectiveness. However, this may not be the case in realistic settings, where there is usually more than one service provider, and an agent usually has few interactions with the same interaction partner [RZ02]. Chapter 4 addresses this problem by conducting experiments with a real dataset. Nevertheless, the experiments in previous chapters primarily concerns about how the accuracy of the trust evaluation is influenced by presence of unfair testimonies. However, users of the trust model usually are concerned not only about the accuracy of the evaluations, but also about whether the model would be beneficial to the interac-
tions with their partners. Therefore, it is desirable that the model can be studied in a configuration that is similar to realistic settings, and that the effectiveness could be evaluated more practically.

Given this, a testbed, named “TrustBed”, is designed to empirically study the effectiveness of the proposed credibility model. This chapter also presents the results obtained in ART (Agent Reputation and Trust) Testbed, the only publicly available testbed.

This chapter is organized as follows. Section 5.2 presents the design of TrustBed. Section 5.3 describes the experimental methodology used. Section 5.4 summaries the parameters used in the testbed. The experiments conducted with TrustBed are presented in Section 5.5, 5.6, and 5.7. The results obtained with the ART testbed are shown in Section 5.8. A summary of this chapter is given in Section 5.9.

5.2 Design of TrustBed

In TrustBed, there is a number of agents that are assigned a number of problems to be solved. There is more than one agent providing the service that can be utilized by others. Those service-providing agents have differing behaviors in providing services. TrustBed applies the basic trust model (see Section 3.2) to evaluate trustee’s trustworthiness based on the trustee’s past behavior. The proposed credibility model is employed to combat unfair testimonies.

Instead of merely concerning about the accuracy of trust evaluation, the effectiveness of the model is assessed by studying how much benefit the model could bring to its users, namely the agents TrustBed. To achieve this goal, a cost and gain is assigned to each agent for each invoked service usage. Additionally, we exclude all the other factors that can affect an agent’s cost and gain, such as the negotiation of the payment between agents. Thus, the credibility model becomes the only factor that influences agents’ cost and gain. By doing so, the effectiveness of the model can be measured in terms of agents’ cost and gain.

Ideally, the effectiveness should be evaluated in all possible situations. However, the scope for all possible situations would be prohibitively large, making it impractical to study the credibility model in all situations. To address this problem, we apply settings that are believed to be typical for some factors, while for some other factors, we introduce randomness to simulate the real
environment. In doing so, the credibility model can be reasonably evaluated in a wide range of environments.

5.2.1 Interactions among Agents

Similar as in Section 3.4, it is assumed that a service-providing agent does not use services provided by other service-providing agents\(^1\). Thus, the agents in TrustBed are separated into two sets: a set of service-providing agents, called *service providers*, and a set of service-consuming agents, called *service consumers*. Usually, the performance of a provider in a particular service is independent from that in another service. Hence, without loss of generality, it is also assumed that provider agents provide the same service.

Each consumer agent is assigned \(N_m\) problems. It is assumed that each consumer agent will see the same list of service providers, which contains all the providers in TrustBed. As rational agents, consumers will select the providers with higher trustworthiness than those with lower ones.

There is a service-level agreement between the consumer and the selected provider, which specifies the provider’s obligations. The outcome of the interaction is binary. The outcome is *successful* if the provider fulfills the obligations in the agreement and the consumer solves the problem with the service provided by that provider\(^2\). On the other hand, the outcome is considered as *unsuccessful* if the provider defaults its obligations. If the outcome of the interaction is successful, the consumer agent proceeds to the next problem. Otherwise, the consumer will keep trying other providers according to its trust evaluations until it finds a provider to solve the problem. In the worst case, all the providers have been found to default their obligations. The consumer will abandon the problem in this case. Table 5.1 summarizes the agents involved and their interactions in TrustBed.

\(^1\)If we lose this assumption and service providers are allowed to interact with one another, each service provider will also act as consumer and request testimonies regarding the other providers’ behaviors. It incurs extra communication overhead as there will be more messages exchanged among agents. Nevertheless, it does not impact the complexity of the proposed credibility model itself.

\(^2\)Since the goal of the experiments is to investigate the effectiveness of the proposed credibility model but not how the problems are solved, it is assumed that a problem is solved if and only if the selected provider fulfills its obligations.
CHAPTER 5. EMPIRICAL EVALUATION OF THE CREDIBILITY MODEL

<table>
<thead>
<tr>
<th>Categories of Agent</th>
<th>Primary Attributes</th>
<th>Interactions in TrustBed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provider</td>
<td>Level of willingness(^a)</td>
<td>1. Providing services to consumers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Colluding with consumers to manipulate other consumers' evaluations(^b)</td>
</tr>
<tr>
<td>Consumer</td>
<td>1. Account Balance(^c)</td>
<td>1. Utilizing providers' services</td>
</tr>
<tr>
<td></td>
<td>2. Cost for each service invoked(^d)</td>
<td>2. Asking for testimonies from other consumers(^b)</td>
</tr>
<tr>
<td></td>
<td>3. Gain if a problem is solved (^e) by the selected provider</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)This is discussed in Section 5.2.2.
\(^b\)This is discussed in Section 5.2.4.
\(^c\)This is discussed in Section 5.2.3.

Table 5.1: Interaction among Agents in TrustBed

5.2.2 Provider Population Configuration

The behavior of the provider is again controlled by its willingness. Providers with various levels of willingness are implemented to simulate the scenario where agents in MAS normally possess differing natures. For example, some are highly willing to fulfill the obligations, some are moderately willing to do so, and some are reluctant to do so. There are four types of providers in TrustBed: excellent providers, good providers, ordinary providers, and bad providers. The willingness of the 4 different types of providers are given in Table 5.2. For example, the willingness of the excellent providers is 0.8. This means that the excellent providers would fulfill their obligations in 8 out of 10 interactions with the consumers.

<table>
<thead>
<tr>
<th>Category</th>
<th>willingness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>0.8</td>
</tr>
<tr>
<td>Good</td>
<td>0.6</td>
</tr>
<tr>
<td>Ordinary</td>
<td>0.4</td>
</tr>
<tr>
<td>Bad</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table 5.2: Configurations of providers’ willingness

Moreover, in MAS, it is usually the case that agents’ behaviors are not static. Instead, their behaviors change from one interaction to another. To simulate such dynamism, TrustBed also implements the fluctuation of the provider’s willingness, similar to what we have done in Section 3.4. An initial willingness is assigned to each provider when it enters the testbed. Provider’s
CHAPTER 5. EMPIRICAL EVALUATION OF THE CREDIBILITY MODEL

initial willingness is set according to the nature of the provider based on Table 5.2. Then in each subsequent interaction with the consumers, the provider can change its willingness. Each change is randomly chosen from the range of $[0, 0.01]$.\(^3\)

The four types of providers have different ratios of presence in TrustBed. The population mix used is shown in Table 5.3. Such a population can be considered as hostile to the consumer agents because (1) only a small percentage of providers are highly willing to fulfill their obligations, (2) most of the providers only fulfill the obligations occasionally, and (3) a large percentage of providers tend to not fulfill their obligations. This population setting will be used throughout the experiments in this chapter, as well as those in the next chapter. TrustBed chooses such a population as the default setting due to the consideration that if the credibility model is able to show its effectiveness in such a hostile environment, its effectiveness can generally be guaranteed in other settings which are relatively more friendly to the consumers.\(^4\)

<table>
<thead>
<tr>
<th>Category</th>
<th>percentage among all the providers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>10%</td>
</tr>
<tr>
<td>Good</td>
<td>10%</td>
</tr>
<tr>
<td>Ordinary</td>
<td>40%</td>
</tr>
<tr>
<td>Bad</td>
<td>40%</td>
</tr>
</tbody>
</table>

Table 5.3: Population of the providers

agents because (1) only a small percentage of providers are highly willing to fulfill their obligations, (2) most of the providers only fulfill the obligations occasionally, and (3) a large percentage of providers tend to not fulfill their obligations. This population setting will be used throughout the experiments in this chapter, as well as those in the next chapter. TrustBed chooses such a population as the default setting due to the consideration that if the credibility model is able to show its effectiveness in such a hostile environment, its effectiveness can generally be guaranteed in other settings which are relatively more friendly to the consumers.\(^4\)

5.2.3 Consumer’s Cost and Gain

For a consumer agent, say a_s, there is a cost associated with each interaction (i.e. each invocation of provider a_o), which is calculated as $C \ast T_{A_{s,o}}$.\(^5\) $T_{A_{s,o}}$ is the agent a_s’s evaluation of overall trust that it should place in provider a_o. C is a constant which denotes the cost of the consumer if a_o is evaluated to have full trustworthiness (i.e. $T_{A_{s,o}} = 1$). There is also a gain assigned to each consumer agent if the problem is solved by the selected provider, and it is calculated as $G \ast L_o$.

\(^3\)Compared with the fluctuation of willingness in the experiments in Chapter 3, the fluctuation of willingness in TrustBed is much smaller. This is to make sure that the behaviors of the four types of providers are still differentiable after the introduction of willingness fluctuation.

\(^4\)We have also run experiments with different population mixtures. Similar trends as shown in this chapter are observed.

\(^5\) $T_{A_{s,o}}$ is applied here to differentiate the consumer’s payment according to its evaluation of the chosen provider. By doing so, the consumer is penalized if the chosen provider’s behavior is not as good as its evaluation.
CHAPTER 5. EMPIRICAL EVALUATION OF THE CREDIBILITY MODEL

L_ω denotes the willingness of the provider when it solves the problem. G is a constant which denotes the gain if the problem is solved by a provider with full willingness (i.e. $L_\omega = 1$)\(^6\). With such a strategy of calculation, an agent’s cost and gain in different interactions varies according to the selected provider’s trustworthiness and willingness.

G and C are set as 5 and 1 respectively, and each consumer agent is allocated an initial balance of $G_{\text{init}} = 50$. With such a setting of G and C, each consumer agent can gain some profit if it manages to find a provider with higher willingness to solve the problem with fewer tries. Otherwise, its profit gained from solving the problem decreases with more tries. The consumer may even lose its profit due to too many tries.

5.2.4 Presence of Unfair Testimonies

As discussed earlier in Chapter 1, unfair testimonies can happen because of the differing views of the witness and the truster. This is implemented as individual unfair testimonies in TrustBed.

Individual unfair testimonies mean that providers do not collude with consumers, and each consumer gives unfair testimonies independently. In more detail, we simulate five categories of consumer agents with different strategies in giving testimonies: H, P, HP, N, and HN. Consumer agents of category H always reveal their own evaluations of direct trust on the providers honestly as testimonies. Agents in the other 4 categories give different types of unfair testimonies with different magnitudes. Agents in category P and HP give ballot-stuffing unfair testimonies, i.e. unfairly positive testimonies that are higher than their real evaluations of direct trust on the providers, while agents in category N and HN give badmouthing unfair testimonies, i.e. unfairly negative testimonies that are lower than their real evaluations of direct trust on the providers.

Since the testimonies are given in the form of single scalar rating value, the strategy to simulate the unfair testimonies used in Chapter 3 is not applicable here. Instead, we apply a strategy to generate the unfair testimonies by adding offset to the witnesses’ real evaluations of direct trust on the provider. For ballot-stuffing unfair testimony, the offset is positive, while the offset

\(^6\)Here, L_ω is applied to differentiate the consumer’s gain according to its selection of service provider. If the consumer selects a provider with higher willingness, it will receive more gain, and vice versa. By doing so, together with the application of TA_{ω} in calculating the consumer’s cost, the “quality” of the consumer’s trust evaluations can be reflected by the gain it has received.
is negative for **badmouthing** unfair testimony. The difference between category P and HP, and N and HN lies in the magnitudes of offset for respective categories. The magnitude of offset for category P and N is randomly chosen from the range of $(0.1, 0.4)$, i.e. the agents of these two categories are giving moderately unfair testimonies. The respective range for category HP and HN is $(0.8, 1)$, i.e. the agents of these two categories are giving highly unfair testimonies.

There are various configurations of unfair testimonies simulated in the TrustBed. Each configuration of unfair testimonies is a mix of consumer agents of H category, and agents either giving ballot-stuffing unfair testimonies or badmouthing unfair testimonies. That is, a configuration of unfair testimonies contains a mix of consumer agents of the following category combinations: \{ H, P, HP \}, or \{ H, N, HN \}. In each configuration, the agents of category P and HP, or N and HN have equal presence. Configurations differentiate from each other in the ratios of consumer agents giving unfair testimonies. For the convenience of referring to various configurations of unfair testimonies, each configuration is named with the direction of the unfair testimony (i.e. Pos for ballot-stuffing and Neg for badmouthing) and the ratio of agents giving unfair testimonies. For example, $Neg60$ denotes the configuration in which 30% of the consumers are of category N (i.e. giving moderate badmouthing testimonies), 30% are of the category HN (i.e. giving highly badmouthing testimonies), and the rest 40% are of category H. There is a special configuration which is named Hon, where all the consumer agents are of category H.

There is another cause of the unfair testimonies. That is, some agents may deliberately give unfair testimonies on certain trustees when being asked by other agents. In this case, the unfair testimonies are usually given with a clear target in order to manipulate the truster agents’ evaluations of trust on those target trustee agents. This is implemented as another type of unfair testimonies in TrustBed, i.e. the **collusive unfair testimonies**. Collusive unfair testimonies mean that a number of providers colludes with consumers, who intentionally give testimonies in favor of the colluding providers in order to promote the colluding providers’ trustworthiness in the eyes of the non-colluding consumers.

To simulate the collusive unfair testimonies, Bad providers (see Table 5.2 for the definition of Bad provider) are implemented as colluders with a number of consumers. Since the Bad
providers generally have the lowest trustworthiness in the eyes of the consumer agents (assuming the evaluations are not manipulated by the presence of unfair testimonies), they can only attract a few consumers to use their services. Hence, they have the motivation to manipulate the non-colluding consumers’ evaluations of their trustworthiness. The configuration of the collusive unfair testimonies is similar to the case of individual unfair testimonies. But in the case of collusive unfair testimonies, the testimonies given by the colluding consumers are always ballot-stuffing since the goal is to promote the non-colluding consumers’ evaluations of trust on the colluding provider. That is, the agents giving unfair testimonies are only from the category combination of \{H, P, HP\}.

5.3 Methodology

5.3.1 Comparison with Related Work

To compare the effectiveness of the proposed credibility model with that of other approaches, the consumer agents in TrustBed are separated into three groups. The number of consumer agents in each group is the same and it is denoted as N_c. Consumers in one of the groups are equipped with the proposed credibility model, while the other two groups consist of (1) agents with no mechanism to tackle the presence of unfair testimonies, and (2) agents with other methods to tackle the presence of unfair testimonies. This facilitates a perceptible and objective study of the effectiveness of the proposed credibility model against other methods as they act in identical experimental settings.

For the third group, the method proposed by Yu and Singh\(^7\) [YS03] is chosen. The reasons for the choice are: first, its applicability has already been validated by some successful applications, such as the P2P system in [YSS04]; second, other than this method, most of the notable methods require additional mechanisms or knowledge, such as the one applied in ReGreT [SM03] and the trust model proposed by Jurca and Faltings [JF03, JF04].

Other than the three groups mentioned above, there is another group of consumers, who do not aggregate the third-party testimonies and make the trust evaluations solely based on their own per-

\(^7\)See Appendix A for details about this method.
sonal interaction experiences with the providers. This group is denoted as NoAggr. This group is introduced to investigate whether the aggregation of testimonies improves the consumers’ performance in identifying the right providers (i.e. with higher willingness). The aforementioned four groups are labeled as Cred, NoCred, YS, and NoAggr respectively.

5.3.2 Measurement Metrics

The effectiveness of the credibility model is measured in terms of the benefit agents may gain by using it. In the context of TrustBed, the trust model is used to help agents identify the right service providers to maintain their profit. Each individual agent in the four groups uses the same trust model, namely, the basic trust model presented in Section 3.2. The only difference is that each group employs a different model or strategy to combat the unfair testimonies in order to maintain the basic trust model’s effectiveness in the presence of unfair testimonies. The effectiveness of the trust model is evaluated by the profit that the agents gain. Moreover, TrustBed excludes other factors that can influence an agent’s profit. Therefore, the profit gained by agents in different groups can be interpreted as the effectiveness of the corresponding strategies in addressing the unfair testimonies. Consequently, we record the gain of each agent for each problem. The average over all agents’ gains in each individual group is interpreted as the performance of each group. This performance reflects the effectiveness of the strategy used in the corresponding group to mitigate the influence of unfair testimonies. This measurement metric is termed the gain metric. The higher the gain, the more effective the corresponding strategy is. Since agents in group NoCred employ no mechanism to combat the unfair testimonies, the gain of group NoCred is considered as the baseline. The difference between the gain of group Cred and that of group NoCred as well as group YS will reflect the value of the proposed credibility model.

Besides this gain metric, we also measure the collusion power in the evaluation of the effectiveness of different strategies in the presence of collusive unfair testimonies. The collusion power is calculated as follows:

\[
collusion\ power = \frac{\sum_{a_s \in A_{nc}} \#try(a_s)}{|A_{nc}| \times N_m}
\]

(5.1)
where N_m is the number of problems each consumer is assigned to solve, A_{nc} denotes the set of non-colluding consumers, $|A_{nc}|$ is the number of consumers in the set of A_{nc}, a_s is a consumer in this set, and $\#\text{try}(a_s)$ denotes the number of times consumer a_s has tried to invoke any colluding Bad provider.

In other words, the metric of collusion power basically measures the ratio of attempts that the non-colluding consumers have engaged with the colluding Bad providers to the total number of problems that the non-colluding consumers need to solve. If the adverse effect of the collusive unfair testimonies is not fairly addressed, the collusion is able to manipulate the non-colluding consumers’ evaluations of trust on the colluding providers, and attracts more non-colluding consumers to use their services, which leads to a higher collusion power. Hence, a low value of collusion power is expected to show the effectiveness of the proposed credibility model.

For example, suppose there are 20 non-colluding consumers (i.e. $|A_{nc}| = 20$), and each of them needs to solve $N_m = 100$ problems. If these 20 non-colluding consumers have attempted to invoke the services provided by the colluding providers 4000 times, the collusion power in this case would be $\frac{4000}{20 \times 100} = 2$. This value can be interpreted that each of the non-colluding consumers has tried the colluding Bad providers twice on average for every problem.

5.4 Experimental Setup

In summary, the experiments are conducted to study the influence of the unfair testimonies in various configurations. More importantly, we also examine the proposed credibility model’s effectiveness in mitigating the adverse effect of unfair testimonies, and the effectiveness of the proposed credibility model is evaluated empirically by the model users’ final gain. If the proposed credibility model is effective as expected, the consumer agents should be able to choose provider to complete their problems with few tries even in the presence of unfair testimonies, thus accumulating higher gains. Therefore, a higher gain of the consumer agent (in group Cred) is expected to validate the proposed credibility model’s effectiveness.

The experiments are controlled by the following factors:
• The population of the testbed. In each experiment, TrustBed is populated with \(N_p = 10 \) providers. There are different groups of consumers, each of which applies different methods to address the adverse influence of the unfair testimonies. Each group contains \(N_c = 100 \) consumers.

• The number of problems each consumer needs to solve is denoted as \(N_m \). Each consumer agent is assigned 200 problems, i.e. \(N_m = 200 \).

• The initial balance of each consumer agent, \(G_{\text{init}} \), is set as \(50^8 \).

• The constant \(C \) used to calculate the cost individual consumer needs to pay for each service usage is set as 1.

• The constant \(G \) used to calculate the gain of consumer if a problem is solved by the provider is set as \(G = 5 \).

• The providers’ willingness. It is set according to Table 5.2 and Table 5.3.

• The probability that each provider changes its willingness in each interaction, i.e. \(p_{fluc} \). It is set as \(p_{fluc} = 1/3 \).

Consumer agents in different groups are equipped with the basic trust model presented in Section 3.2 to select the provider. The basic trust model (i.e. Beta Reputation System (BRS)) is mainly controlled by the decaying factor, i.e. the value of \(\lambda \) in Eq. (3.4), and the number of ratings that are taken into account when generating the rating summary, i.e. \(W \) in Eq. (3.4). These two parameters are set as \(\lambda = 0.9 \) and \(W = 10 \) as in the experiments in Chapter 3. All the consumers in TrustBed use these same settings.

Table 5.4 summarizes the parameters used in the experiments.

There is also a number of variables, which control the presence of unfair testimonies in TrustBed. In the experiments, we apply different settings of these variables to generate various

\(^8\)Setting \(G_{\text{init}} = 50 \) is to make sure each consumer agent has enough balance to pay for the service and testimonies it requested initially. Changing this setting does not impact the results presented in the following sections, as the results study the average gain of each consumer agent instead of the balance.
Table 5.4: Experiment parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_p</td>
<td>number of providers</td>
<td>10</td>
</tr>
<tr>
<td>N_c</td>
<td>number of consumers in each group</td>
<td>100</td>
</tr>
<tr>
<td>N_m</td>
<td>number of problems assigned to each consumer</td>
<td>200</td>
</tr>
<tr>
<td>G_{init}</td>
<td>initial balance of consumer agent</td>
<td>50</td>
</tr>
<tr>
<td>C</td>
<td>The constant used to calculate consumer agent’s cost for each service usage</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>The constant used to calculate consumer agent’s gain for each solved problem</td>
<td>5</td>
</tr>
<tr>
<td>p_{fluc}</td>
<td>The probability that each provider changes its willingness</td>
<td>$1/3$</td>
</tr>
<tr>
<td>λ</td>
<td>decaying factor in the basic trust model</td>
<td>0.9</td>
</tr>
<tr>
<td>W</td>
<td>number of past ratings taken into account in the basic trust model</td>
<td>10</td>
</tr>
<tr>
<td>G_{init}</td>
<td>initial balance of consumer agent</td>
<td>50</td>
</tr>
<tr>
<td>C</td>
<td>The constant used to calculate consumer agent’s cost for each service usage</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>The constant used to calculate consumer agent’s gain for each solved problem</td>
<td>5</td>
</tr>
<tr>
<td>p_{fluc}</td>
<td>The probability that each provider changes its willingness</td>
<td>$1/3$</td>
</tr>
<tr>
<td>λ</td>
<td>decaying factor in the basic trust model</td>
<td>0.9</td>
</tr>
<tr>
<td>W</td>
<td>number of past ratings taken into account in the basic trust model</td>
<td>10</td>
</tr>
</tbody>
</table>

The proposed credibility model itself also has a parameter for fine tuning. This is the scale of discrete ratings that represent the discretized testimonies, namely, Z in Figure 4.1. The default value of Z is set as 10. We also investigate the impact of the value of Z over the effectiveness of the proposed credibility model by running experiments with different values of Z.

5.5 Effectiveness in the Presence of Individual Unfair Testimonies

First of all, as the baseline, we study the performance of each group with the unfair testimonies configuration Hon, where none of the agents give unfair testimonies. Table 5.5 summarizes the configurations of unfair testimonies, and to study the effectiveness of the credibility model in a wide range of settings. Five individual experiments are run with each setting of these variables, and the average of the aforementioned metrics obtained in the five experiments are taken as the final result of the corresponding configuration.
average gain of each group. It is observed that group NoAggr achieves the lowest performance (in terms of the gain metric). Figure 5.1 plots the average gain of the agents for each problem in each individual group. It is observed from Figure 5.1 that for almost every problem, group NoAggr is outperformed by the other three groups which aggregate the testimonies. This observation shows that solely depending on an agent’s personal interaction experiences with the provider is not sufficient to make a trust evaluation that truly reflects the provider’s behavior. This observation also confirms the effect of third-party testimonies [BK95], that aggregation of third-party testimonies does reduce the consumer agent’s uncertainty about the provider’s behavior.

<table>
<thead>
<tr>
<th>Group</th>
<th>Average Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cred</td>
<td>3.45</td>
</tr>
<tr>
<td>NoAggr</td>
<td>2.66</td>
</tr>
<tr>
<td>NoCred</td>
<td>3.09</td>
</tr>
<tr>
<td>YS</td>
<td>2.95</td>
</tr>
</tbody>
</table>

Table 5.5: Comparison of performance without unfair testimonies

Figure 5.1: Average gain of each group without unfair testimonies

We then run the experiments with different configurations of unfair testimonies to see whether each group is able to maintain its performance in the presence of unfair testimonies as in the case where there were no unfair testimonies.

Table 5.6 lists the average gain of each group, and Figure 5.2 plots the average gain of the agents in each individual group for each problem in the presence of unfair testimonies Pos100.
In the presence of Pos100 unfair testimonies, all the consumer agents are giving ballot-stuffing unfair testimonies (50% gives moderately unfair testimonies, and 50% gives highly unfair testimonies). In this case, group NoAggr manages to maintain its performance as in the case of no unfair testimonies. This is because it is not influenced by the presence of unfair testimonies since it does not aggregate testimonies at all. However, group NoCred’s performance has been greatly aggravated by the presence of unfair testimonies, and it is outperformed by the other groups in almost every problem as shown by Figure 5.2. This is due to the fact that it blindly aggregates all the testimonies, including the unfair testimonies. Compared with group NoCred, group YS manages to mitigate the adverse influence of the unfair testimonies, but the performance is not as good as in the case of Hon, i.e. no unfair testimonies. Its performance is below that of group Cred, which is able to maintain its performance even in such an extreme case at a comparable level as in the case of Hon.

Experiments have also been conducted to study the four groups’ performance in presence of other configurations of unfair testimonies, namely, Pos80, Pos60, Pos40, Pos20, Neg20, Neg40, Neg60, Neg80, Neg100. Due to the large number of experiments conducted, a sum-
mary of the average gain over all the problems of the four groups are presented in Figure 5.3. Group \(\text{NoAggr} \)’s performance is relatively stable for all configurations of unfair testimonies considered. As discussed above, this is because it is not influenced by the presence of unfair testimonies as it does not aggregate testimonies at all. However, since the provider’s behavior is changing from one interaction to another, solely depending on the consumer agent’s personal interaction experience with the provider is not sufficient for the consumer agent to make a trust evaluation that can truly reflects the provider’s behavior. Hence, group \(\text{NoAggr} \) achieves a performance lower than the other groups that aggregate the testimonies (i.e. group \(\text{Cred} \) and group \(\text{YS} \), but not \(\text{NoCred} \)), though its performance is stable in the presence of unfair testimonies.

Group \(\text{NoCred} \)’s performance exhibits a great fluctuation in the presence of various configurations of individual unfair testimonies. Generally, group \(\text{NoCred} \)’s performance (in terms of average gain) decreases when more consumers giving unfair testimonies. This is because it aggregates all the testimonies blindly. The presence of unfair testimonies exerts a great impact over the consumer agents’ evaluations of trust on the providers, which confuse the consumer agents’ identification of the right providers (i.e. those with higher willingness to fulfill their obligations). Consequently, the agents in group \(\text{NoCred} \) need more tries before each of their problems can be solved, leading to their lower gain for each problem. This observation exemplifies the adverse effect of unfair testimonies.

Both group \(\text{YS} \) and group \(\text{Cred} \) manage to reduce the adverse effect of unfair testimonies, and thus their performance is more stable, as compared with group \(\text{NoCred} \). Nevertheless,
group YS’s performance is still lower than that of group Cred. Group YS is even outperformed by group NoCred in the case of Hon. This is because, group YS applies a strategy that is too sensitive to the presence of unfair testimonies. That is, every testimony that is not exactly the same as the truster’s post-interaction direct trust on the trustee will be considered as unfair, and the witness’ credibility will be decreased accordingly. However, as there is no agent giving unfair testimonies in the case of Hon, such a sensitive strategy would reduce the fair testimonies’ contribution to the trust evaluations, making it even less effective than the strategy of not measuring the credibility (i.e. as group NoCred does).

As expected, group Cred consistently outperforms group NoAggr and NoCred. Moreover, group Cred also outperforms group YS. Several reasons contribute to group Cred’s superiority over group YS:

- A consumer in group YS first aggregates the testimonies as a weighted mean of all the available testimonies. Then the aggregation of testimonies is linearly combined with the consumer’s own evaluation of direct trust to obtain the overall trust on the provider. The factor assigned to the aggregation of testimonies is based on the number of past interactions with the provider. That is, after the consumer has a number of interactions with the provider (the number equals to or is more than the value of W, see Appendix A for details), the testimonies are not aggregated. However, since the behavior of the provider changes from one interaction to another, not taking account of the third-party testimonies after a number of interactions with the providers will deteriorate the trust evaluation.

In contrast, consumer agents in group Cred apply a more adaptive strategy in aggregating the testimonies. Only those more useful than its own evaluation of direct trust on the provider will be aggregated.

- Consumers in group YS aggregate all the testimonies without filtering. Although different testimonies are assigned different weights when aggregating the testimonies, unfair testimonies still exert certain influence over the consumer agents’ trust evaluation when they are aggregated.
Apart from only filtering the testimonies based on corresponding witnesses’ credibility, consumer agents in group Cred also adjust each testimony based on the corresponding witness’ past testimony-reporting. This enables group Cred to maintain its performance even in the extreme case as Pos100 where all the consumers give unfair testimonies, since the testimony adjustment helps to make a testimony “useful” even it is unfair.

5.6 Effectiveness in the Presence of Collusive Unfair Testimonies

We also study the performance of different groups in the presence of collusive unfair testimonies. The collusive unfair testimonies are implemented as a number of consumers colluding with Bad providers. Those colluding consumers give ballot-stuffing unfair testimonies to manipulate non-colluding consumers’ evaluations of trust on the colluding Bad providers. As the colluding consumers are always giving ballot-stuffing unfair testimonies, the configurations of unfair testimonies considered are Hon, Pos20, Pos40, Pos60, Pos80.

For the measurement of the effectiveness, the gain metric is measured again, as in the case of individual unfair testimonies. However, this metric is only calculated over the non-colluding consumers, since the colluding consumers’ unfair testimonies only affect the non-colluding consumers’ evaluations of trust on the colluding Bad providers. Beside the gain metric, we also measure the collusion power, which reflects whether the colluding Bad providers have succeeded in manipulating the non-colluding consumers’ evaluations of trust. Figure 5.4 presents the average gain and collusion power of each group in the presence of various configurations of collusive unfair testimonies. Since the performance of group NoAggr is not influenced by the presence of unfair testimonies, it is not included in the figures for the sake of simplicity.

The first observation from Figure 5.4 is that collusive unfair testimonies does lure the non-colluding consumers to try the colluding providers more frequently. In Figure 5.3, group NoCred was still able to achieve an average gain above 2.3 even in the presence of most powerful individual unfair testimonies, i.e. Pos100 and Neg100. However, as shown in Figure 5.4 (a), presence of collusive unfair testimonies Pos20 already pulls group NoCred’s average gain down to 2.3.

*Pos100 is not considered since there is no non-colluding consumer in this case.
Figure 5.4: Performance of different groups in the presence of various configurations of collusive unfair testimonies: (a) gain; (b) collusion power

This observation shows that the adverse effect of collusive unfair testimonies is more powerful than that of individual unfair testimonies in influencing the trust evaluations.

The proposed credibility model does mitigate the adverse effect of collusive unfair testimonies, as the collusion power of group Cred is kept below 0.25 in the presence of various configurations of collusive unfair testimonies. However, the average gain of group Cred is still lower than that in the presence of individual unfair testimonies. This also shows that the collusive unfair testimonies are more powerful in influencing group Cred than the individual unfair testimonies.
testimonies. This is because, the colluding consumers do not give unfair testimonies on non-
colluding providers. Their testimonies on other providers are still considered as useful for the
non-colluding consumers. Hence, the colluding consumers are able to “cheat” the credibility
model and achieve a high credibility and then give unfair testimonies on the colluding providers.
This makes the non-colluding consumers’ filtering and adjustment of the testimonies inaccurate,
which consequently lowers their average gain. Nevertheless, due to the reasons discussed at the
end of Section 5.5, group Cred still outperforms group YS.

5.7 Influence of Value of Z

So far, the proposed credibility model applied by consumers in group Cred uses a Z value
of 10. To study the influence of this parameter on the performance of the proposed credibility
model, we change the value of Z and re-run the experiments. It is noted that the experiments
are re-run with only the presence of collusive unfair testimonies due to the consideration that the
credibility model is less successful in this situation. The smallest possible value of Z is 2, that is,
the continuous testimonies are pre-processed to become binary ratings. We have also studied the
other possible values of Z, i.e. $Z = 5$ and $Z = 7$.

Figure 5.5 presents the collusion power obtained with different settings of Z value. It is
observed that the effectiveness of the credibility model (in terms of collusion power) is gener-
ally improved with an increase of Z value. This is because this parameter basically controls the
credibility model’s “sensitivity” to the witness’ unfair testimonies. With a smaller value of Z,
the discretization of the testimonies is coarser, which makes the discrimination between fair and
unfair testimonies relatively coarser too. Hence, a witness is able to achieve a high evaluation
of credibility even if its testimonies are greatly different from the truster’s own post-interaction
direct trust. This will consequently decrease the effectiveness of the testimony filtering and ad-
justment. On the other hand, with a larger value of Z, the discrimination between fair and unfair
testimonies becomes relatively finer. The evaluation of the witness’ credibility can thus reflect
the usefulness of the witness’ past testimonies, which consequently enhances the effectiveness of
the filtering and adjustment.
There is a trade-off in the selection of Z value. It is expected that the effectiveness of the proposed credibility model would be enhanced with the larger value of Z, i.e. $Z \geq 10$. Nevertheless, the value of Z determines the size of the profile that the truster maintains for each witness. The storage for maintaining the profiles increases with Z. Based on the results shown in Figure 5.5, an optimum value of Z is in the range of $[5, 10]$ as this achieves a balance of effectiveness and storage overhead.

Figure 5.5: Influence of parameter Z

5.8 Empirical Evaluation with the ART Testbed

The effectiveness of the proposed credibility model has also been evaluated by the Agent Reputation and Trust (ART) testbed\(^\text{10}\), which is a publicly available testbed. There is also an annual competition based on the ART testbed held by the International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), which provides a common platform for fair comparative study of different credibility models. An agent equipped with our proposed credibility model took part in the competition held in 2006, and was ranked 2nd among all the participants. This has validated the proposed credibility model’s effectiveness in combating the unfair testimonies in a fair and objective manner. This result is presented in detail in the following subsections.

\(^{10}\text{ART testbed: http://www.lips.utexas.edu/art-testbed/}\)
5.8.1 Overview

The ART testbed simulates the interactions in art appraisal domain, in which agents function as painting appraisers, each with varying levels of expertise in different artistic eras. Each round of simulation consists of a series of discrete time steps. In each time step, clients buy (with a cost defined as “client fee”) appraisals for paintings from different eras; if the requested appraising agent does not have enough expertise to complete the appraisal, it can also buy (with a cost defined as “opinion cost”, which is much less than “client fee”) opinions from other appraiser agents. The accuracy of each opinion generated by individual appraiser depends on how much (not necessary the same as “opinion cost”) the appraiser pays in appraising the painting. There is no guarantee about the fairness of the replies from other appraisers. That is, an appraiser agent may provide unfair testimonies regarding the values of paintings. Hence, before the appraiser agent requests for opinions, it evaluates the reputation of other appraiser agents, and requests opinions from more reputable agents. In the context of ART testbed, an agent’s reputation basically captures its credibility in giving opinions of paintings [FKM+05, FKM+06, OKY06]. To evaluate an agent’s reputation, the appraiser would also buy (with a cost defined as “reputation cost”, which is much less than “opinion cost”) others’ reports on this agent’s reputation. Similarly, the agent evaluates the sociability of other appraisers before requesting for reputation reports. An appraiser’s sociability denotes the credibility of this appraiser in providing reputation reports [FKM+05, FKM+06, OKY06]. After the appraiser collects the opinions bought from other appraisers, those opinions are aggregated with its own opinion to generate the final appraisal of the painting, which is finally passed to the requesting client.

At the end of each time step, the true value of the painting is revealed to the appraising agent. This allows the appraising agent to compare its final appraisal with the painting’s true value, which helps to update its evaluations of the other agents’ reputation and sociability consequently. An appraiser agent’s updated evaluations of other appraisers’ reputation and sociability will influence its selections of agents from which to buy the opinions or reputation reports in next time step. At the same time, an agent that provides more accurate appraisal will more likely attract
future clients. Thus, each appraiser’s client share in the next time step is determined and clients are assigned to the appraisers before the next time step starts.

The aim of each agent is to achieve a higher bank balance at the end of the simulation. Like the testbed designed in Section 5.2, ART testbed also excludes other factors that can affect the agents’ bank balance, such as the negotiations between appraisal agents about the cost of each request. Thus, it makes the model used to evaluate the agents’ reputation and sociability the only factor that influences the appraiser agent’s bank balance.

5.8.2 Architecture of ART Testbed

The ART testbed consists of a simulation engine and a database. The simulation engine runs the simulation by manipulating the communications among agents through various types of messages and making the necessary computations (e.g. the generation of agents’ own opinions and final appraisals of the paintings). The database is used to host information about each round of simulation.

The parameters are set at the beginning of each run of simulation. Some parameters, such as the expertise values of each appraiser agent for different eras, are set randomly by the simulation engine. Most of the other parameters have predefined values which remain fixed throughout the execution of each simulation run. These parameters are summarized in Table 5.7, and are revealed to all the agents that participate in the simulation [FKM+05, FKM+06, OKY06].

The simulation engine enforces the following sequence of actions of each appraiser agent [FKM+05, FKM+06, OKY06]:

1. `prepareReputationRequest()`: The appraiser agent determines which agents to request reputation information about other agents from.

2. `prepareReputationAcceptsandDeclines()`: The appraiser agent determines whether to answer the incoming reputation requests.

3. `prepareReputationReplies()`: According to the received accept or decline messages, the appraiser agent generates reply messages for the agents that have requested reputation information.
CHAPTER 5. EMPIRICAL EVALUATION OF THE CREDIBILITY MODEL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Steps</td>
<td>number of discrete timesteps in the simulation</td>
</tr>
<tr>
<td>Painting-Eras</td>
<td>number of possible eras to which paintings can belong</td>
</tr>
<tr>
<td>Client Fee</td>
<td>the fixed fee paid by clients to appraisers for painting appraisals</td>
</tr>
<tr>
<td>Opinion Cost</td>
<td>the fixed fee paid by opinion requesters to opinion providers</td>
</tr>
<tr>
<td></td>
<td>(Opinion Cost << Client Fee)</td>
</tr>
<tr>
<td>Reputation Cost</td>
<td>the fixed fee paid by reputation requesters to reputation providers</td>
</tr>
<tr>
<td></td>
<td>(Reputation Cost << Opinion Cost)</td>
</tr>
<tr>
<td>Sensing Cost</td>
<td>relating opinion-generation cost to resulting opinion error distribution</td>
</tr>
<tr>
<td>Accuracy ratio</td>
<td>standard deviation</td>
</tr>
<tr>
<td>Old Client Share Influence</td>
<td>the influence of previous client share on client share in the next timestep</td>
</tr>
<tr>
<td>Average clients per Appraiser Agent</td>
<td>Determines the total number of clients (i.e. this parameter times the number of agents in the simulation)</td>
</tr>
</tbody>
</table>

Table 5.7: Parameters of ART testbed and competition

(4) prepareOpinionRequests(): The appraiser agent determines which agents to ask for opinions about the paintings that the clients have requested it to evaluate.

(5) prepareOpinionCertainties(): After receiving the opinion requests, the appraiser agent determines the certainties of its opinions if it wants to respond to the requesting appraisers.

(6) prepareOpinionRequestConfirmations(): According to the certainty values that the responding agents send, the requesting appraiser agent sends confirmations if it really wants to buy opinions from those responding agents.

(7) prepareOpinionCreationOrders(): For each incoming opinion request and the appraiser agent’s own appraisal assignments, the appraiser agent orders the simulation engine to generate its own opinions.

(8) prepareOpinionProviderWeights(): For each bought opinion as well as its own opinion, the appraiser agent sends the corresponding weights of each opinion to the simulation engine. As the simulation engine has both the opinion values and the weights, it can make the final calculation of the appraiser’s appraisal of the paintings at a later stage.

(9) prepareOpinionReplies(): The appraiser agent responds with opinions on paintings to agents who have bought opinions from it.
Each individual appraiser agent employs a certain strategy to evaluate another agent’s reputation and sociability, which is embedded in the above nine actions. The employed strategy also helps the appraiser agent to determine (1) how to buy information (both opinions on paintings and reputation reports on other appraiser agents), and (2) how to reply to others’ information requests (requests for opinions on paintings and reputation reports). The communication among the participating agents is handled by the simulation engine via exchange of various types of messages.

In each round of simulation, there is usually more than one participating appraiser agent. They compete with each other for client share in order to achieve a higher bank balance. In ART testbed, the sole factor that influences agents’ bank balance is the agents’ strategies to model other agents’ reputation and sociability. The effectiveness of agents’ strategies can thus be measured according to their bank balance. Therefore, bank balance is employed as the metric to measure the effectiveness of participating agents’ strategies [FKM+05, FKM+06, OKY06].

5.8.3 Results of ART Competition 2006

Table 5.8 lists the setting of the parameters fixed for the final rounds of ART competition 2006.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Steps</td>
<td>60</td>
</tr>
<tr>
<td>Painting-Eras</td>
<td>10</td>
</tr>
<tr>
<td>Client Fee</td>
<td>100</td>
</tr>
<tr>
<td>Opinion Cost</td>
<td>10</td>
</tr>
<tr>
<td>Reputation Cost</td>
<td>1</td>
</tr>
<tr>
<td>Sensing Cost Accuracy Ratio</td>
<td>0.5</td>
</tr>
<tr>
<td>Old Client Share Influence</td>
<td>0.1</td>
</tr>
<tr>
<td>Average clients per Appraiser Agent</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 5.8: Parameter settings of ART competition 2006

Due to the large number of participants in ART competition 2006, this subsection only shows the results of the final rounds of the competition\(^{11}\), in which there were 5 participants, namely iam, Neil, Frost, sabatini, and Joey.

\(^{11}\)There were a total of 17 participants, each of which engaged in 6 rounds of simulation with others. Every round of simulation had 5 participants. Complete results of ART competition 2006 is accessible at http://www.lips.utexas.edu/art-testbed/competition_results.htm.
Agent Neil was equipped with the credibility model presented in this thesis. Recall that the proposed credibility model is used to measure the usefulness of witness agents’ testimonies in reducing the truster agents’ uncertainty about the trustee. When it is applied in the context of ART testbed, the trustee is in fact each individual painting, which is not a living object and does not have its own behavior. The trustworthiness of the trustee is basically the true value of the painting, and it is set randomly by the simulation engine, instead of being evaluated with a trust model based on its past behaviors. From agent Neil’s viewpoints, the other appraiser agents act as witnesses of the trustees (i.e. the paintings). Neil evaluates the witnesses’ reputation with the proposed credibility metric (see Eq. (4.2)). Similarly, the proposed credibility metric is applied to evaluate agents’ sociability. At the end of each timestep, Neil receives information about the true values of the paintings for which the clients have requested his appraisals, and updates its evaluations of other appraiser agents’ reputation and sociability according to procedure shown in Figure 4.5.

According to the filtering criterion in the credibility model (see Eq. (4.3)), Neil only buys opinions and reputation reports from appraiser agents that have a higher reputation and sociability than its own confidence in appraising the paintings and evaluating other appraisers’ reputation. For each incoming opinion request, the cost that Neil pays to generate an opinion is calculated as:

$$Rep \times cp$$ \hspace{1cm} (5.2)

where Rep denotes Neil’s evaluation of the opinion requester’s reputation, while cp denotes the cost that Neil pays to generate an opinion for paintings that the clients have requested it to appraise. That is, Neil employs a reciprocal strategy in generating opinions for other appraisers, namely, it generates opinions of various accuracy depending on the requesting appraisers’ reputation.

Other than agent Neil, only the strategy of agent Frost is publicly available, which is reviewed in Section 2.3.3.4. Furthermore, similar to agent Neil, Frost applies a reciprocal strategy in responding to the incoming opinion requests. Nevertheless, the description of Frost’s
strategy in [OKY06] does not specify clearly how it determines the cost it pays to reply incoming opinion requests.

There were a total of 10 rounds of simulation conducted. In each individual round of simulation, every agent’s bank balance is recorded. The average of each agent’s bank balance in all the 10 simulations is taken as the final score of the corresponding agent.

Table 5.9 summarizes the final results of ART competition 2006. It is seen that agent Neil, equipped with the proposed credibility model, outperformed almost all the other agents in the competition. This result has validated the proposed credibility model’s effectiveness in a fair and objective manner. Agent Neil was only outperformed by agent iam. However, currently, it is not possible to conduct a detailed comparative study of the strategy used by iam and Neil, since the former is still not publicly available.

5.9 Summary

In Chapter 4, we have revamped the uncertainty-based filtering method with a credibility model. We have seen the advantages of the proposed credibility model. For example, the measurement of credibility is consistent with the effect of third-party testimonies recognized in traditional research on trust [BK95]; the testimony adjustment is able to capture the difference between the views of the truster and the witness more accurately than other methods, e.g. the one in the trust model proposed by Abdul-Rahman and Hailes [ARH00]; it does not explicitly require a specific computational trust model to be used. All these advantages contribute to make the proposed credibility model a generic solution to address the adverse effect caused by the presence of unfair testimonies.
The empirical evaluation in TrustBed further validates its effectiveness in mitigating the adverse effect of unfair testimonies. A number of experiments has been conducted to investigate the effectiveness of the proposed credibility model in mitigating the adverse effects of various configurations of unfair testimonies. In all the experiments, the proposed credibility model is able to maintain the basic trust model’s performance at a comparable level to that without the presence of unfair testimonies. It also consistently outperforms related work, e.g. the method proposed by Yu and Singh [YS03]. The results in the ART competition 2006, which is a common platform for comparative studies of different credibility models, have also validated the proposed credibility model’s effectiveness in a fair and objective manner.

With the proposed credibility model incorporated, a trust model works as Figure 4.7 shows. However, in Figure 4.7, there is one issue left unaddressed. That is, how the agent is able to find the relevant witness and collect the testimonies in an efficient manner (i.e. line 2 in Figure 4.7). Related work usually assumes that agent would directly ask all the other agents for testimonies. Such an assumption is unrealistic as there is usually a large number of participating agents. The communication cost would be high if each individual agent asks for testimonies from every other agent directly. In fact, one of the reasons that ART testbed is not employed as the primary empirical evaluation tool in this thesis, though it is publicly available, is that agents in ART testbed always contact each other directly.

To address this issue, we propose a credibility-aware referral process on top of the proposed credibility model in the next chapter.
Chapter 6

Counteracting the Unfair Referrers: Measuring the Referral-Credibility

We have discussed how to mitigate the adverse effect of unfair testimonies in the previous chapters (Chapter 3, 4, and 5). This chapter describes how an agent is able to find relevant witnesses and collect their testimonies. This chapter proposes a credibility-aware referral process on top of the proposed credibility model. It also proposes an approach to tackle the presence of malicious referrers during the referral process, which would intensify the adverse effect of unfair testimonies. Empirical evaluation of the proposal is also presented.

6.1 Introduction

One of the fundamental issues in the research on trust modeling in MAS is how to mitigate the adverse effect of unfair testimonies [JIB07]. In previous chapters, we have presented our effort to address this issue. This chapter describes how an agent is able to find relevant witnesses and collect their testimonies (i.e. line 2 in Figure 4.7). This is also an important issue in the research on trust modeling in MAS [YS05, YS03, YSS04], since the working of the trust model depends on the availability of the testimonies. As it can be seen from the review in Chapter 2, most existing notable work does not address this problem explicitly, but assumes that the agent would ask for testimonies from all the agents in MAS. However, this assumption is unrealistic as there is usually a large number of agents present in MAS. The communication cost would be prohibitively high if each individual agent asks for testimonies from every other agent. Hence, a
more efficient approach is desired. To address this issue, this chapter proposes a credibility-aware referral process to facilitate agents’ testimony discovery on top of the proposed credibility model. The basic idea of the credibility-aware referral process is that each truster agent contacts other agents for testimonies, and requests those agents to collect testimonies for it iteratively if they are not witnesses. And during the referral process, the truster agents adaptively direct the testimony discovery toward those agents with high credibility.

It is not possible that the truster would evaluate the credibility of all the agents in MAS. Hence, the truster agent needs to depend on credibility report from the agent that is currently being contacted. However, depending on credibility reports from other agents induces the presence of malicious referrers, i.e. those agents who do not give unfair testimonies themselves, but direct the truster to agents who give unfair testimonies. For example, agent a_s is evaluating the trust it should place in agent a_o. Agent a_s first asks agent a_{w1} and a_{w2} for testimonies. Agents a_{w1}, a_{w2}, a_{w3}, and agent a_o have formed a collusion. Every time agent a_{w1} and a_{w2} receive a request from other agents outside the collusion for testimonies on agent a_o, they decline to give testimonies and intentionally refer the truster agent a_s to a_{w3}, who always give unfairly positive testimonies on a_o. The presence of malicious referrers would intensify the adverse effect of unfair testimonies. Despite the fact that it would intensify the adverse effect of unfair testimonies, the presence of the malicious referrers is left unaddressed in the existing work.

Motivated by this problem, apart from presenting the credibility-aware referral process, this chapter also proposes an approach to counteract the presence of malicious referrers. The main idea of this approach is to measure each agent’s reliability in reporting other agents’ credibility during the referral process. Since it is about an agent’s reliability in reporting credibility, it is termed as the referral credibility of the agent in order to differentiate it from the credibility of the agent.

This chapter is organized as follows. First, the credibility-aware referral process is presented in Section 6.2. Section 6.3 discusses how the introduction of referral-credibility modeling revamps the referral process. Following that, the approach to model and update referral-credibility is presented in Section 6.4. We empirically evaluate the effectiveness of the modeling of referral-credibility in Section 6.5. Finally, Section 6.6 summaries this chapter.
6.2 Credibility-aware Referral Process

As it can be seen from the review in Chapter 2, most existing notable work does not consider how the truster agent is able to find relevant witnesses. There is only one notable work that has addressed this issue, namely, the referral process proposed by Yu and Singh [YS02, YSS04]. In this chapter, we exploit the design of this referral process, and improve it with the credibility-awareness.

The original idea of the referral process is similar to the word-of-mouth process which is commonly seen in human society. That is, each agent maintains direct relationships with a number of agents, and requests each of those agents to find witnesses that the latter have direct relationships with in an iterative manner. In other words, the truster agent a_s finds the relevant witnesses on the trustee agent a_o with the following procedure:

- Agent a_s contacts all those agents with which it has direct relationships. Those agents are called agent a_s’s neighbors. Usually, agent a_s has a small number of neighbors, and the number of neighbors it maintains is denoted as N_h.

- Each of a_s’s neighbors, upon being contacted, tries to recall experiences related to agent a_o’s past behaviors. It becomes a witness of agent a_o, if it does locate such experiences. It will then evaluate its direct trust on agent a_o and return the outcome of evaluation as testimony to a_s.

- If any of agent a_s’s neighbors cannot discover such experiences, it will return referrals containing its own neighbors to agent a_s.

- If agent a_s receives referrals from an agent, it will further contact those referrals to check whether they are witnesses. Moreover, truster agent a_s will contact an agent only once during one instance of referral process, even if this agent has been returned more than once as referral.

- The above process is carried out repeatedly on the contacted referral until the length of the referral chain reaches the predefined threshold U. Here, a referral chain is made up of the
series of referrals that agent a_s has contacted. Its length is basically the number of agents that a_s has contacted by following that referral chain. Setting a threshold is to prevent a truster from endlessly finding relevant witnesses. This is necessary due to the consideration that the resources available to each agent may be limited (in terms of agent’s memory and the communication cost) and, more importantly, the truster usually has limited time for trust evaluation before it has to engage in the interaction.

This process can be presented as a sequence diagram as shown in Figure 6.1. In summary, the referral process is basically an iterative process in which each referral is requested by the truster to give testimonies or referrals. Hence, for an agent along the referral chain, it may take on more than one role. Names are assigned to these roles for ease of reference. The agent who returns referrals is called the referrer. A referral, when contacted by the truster, can in turn become a witness or referrer based on whether it has previous experience with the trustee: it is a witness if it has interacted with the trustee before; it can also become a referrer if it is not a witness and returns referrals. An agent, when taking the role as a referrer, is denoted as agent a_r, while it is denoted as agent a_t when taking the role as a referral.
In the original design of the referral process, all the referrals returned by a referrer will be contacted by the truster agent. However, since there are unfair testimonies, some would be more credible than the others among all the referrals. It is rational that the truster would prefer to contact agents with higher credibility. This inspires the design of the credibility-aware referral process. That is, with the referrals’ credibility known, not all the returned referrals will be contacted. Instead, the probability with which a particular referral is contacted by the truster is biased, in the sense that it is proportional to the credibility of that referral.

To facilitate the credibility-awareness, each referrer is also required to report the referral’s credibility. The credibility-awareness depends on the referrer’s report of the referral’s credibility. This is due to the fact that it is not possible for the truster agent to meet and evaluate all the agents in MAS.

It should be noted that the credibility-aware referral process does not assume the transition notion of credibility. For example, agent a_2 is one of agent a_1’s referrals, and a_1 is truster agent a_s’s neighbor. a_1’s credibility is x, while a_2’s is y. If credibility is transitive, the probability of a_2 being visited could naturally be calculated as $x \times y$, which is basically a_2’s credibility discounted by a_1’s credibility. The advantage of transitive credibility is that eigenproblem-based method can be applied to calculate the probability that an agent would be visited by the truster agent during the referral process, like the one used in PageRank algorithm [PBMW98]. This works when the referrer is credible enough, which corresponds to the metaphor of “friend’s friends should also be friends”. Nevertheless, it does not work when the referrer is not credible, i.e. the referrer is “enemy”. In this case, there are two possible consequences: (1) enemy’s enemies should be friends as they share interest in fighting same opponent, and (2) enemy’s referrals should not be taken into account as it has strong incentive to cheat. However, transitive credibility is not able to distinguish these two cases. Given this, the credibility-aware referral process does not assume credibility is transitive. Consequently, eigenproblem-based approach is not applicable here. Instead, the credibility-aware referral process only helps truster agents to discover possible witnesses via referral. Whether to visit an agent is left to the truster agents to decide, which is discussed in the rest of this section.
Suppose the truster agent a_s is currently requesting testimonies from agent a_r. As agent a_r is not a witness, it returns a set of referrals to truster a_s. Among those referrals, the probability that a referral, say agent a_t, is contacted by the truster a_s is determined as follows:

$$\Pr(v_{s,t}) = \frac{TT_{r,t}}{\sum_{a_t \in \mathcal{R}_c} TT_{r,t}}$$

(6.1)

where $TT_{r,t}$ is the credibility of agent a_t as reported by agent a_r, \mathcal{R}_c is the set of referrals returned by a_r, and $\sum_{a_t \in \mathcal{R}_c} TT_{r,t}$ is the sum of the credibility of all the referrals returned by agent a_r.

Figure 6.2 summarizes the credibility-aware referral process.

Procedure referral(s,r)

a_s: the truster agent,

a_o: the trustee agent,

a_r: the agent that is currently being contacted by a_s during the referral process,

\mathcal{R}: the set of agents that have been contacted by a_s before,

\mathcal{R}_c: the set of referrals returned by agent a_r.

1: if a_r is a witness of a_o then
2: a_r returns its evaluation of direct trust on a_o as testimony to a_s
3: else
4: a_r returns a set of referrals \mathcal{R}_c
5: end if
6: for all $a_t \in \mathcal{R}_c$ do
7: if $a_t \in \mathcal{R}$ or $\text{length}(a_t) \geq U$ then
8: a_s ignores a_t
9: else
10: with probability $\frac{TT_{r,t}}{\sum_{a_t \in \mathcal{R}_c} TT_{r,t}}$, a_s contacts a_t
11: add a_t to \mathcal{R}
12: referral(s,t)
13: end if
14: end for

Figure 6.2: Credibility-aware referral process

A simplified example of the referral process is shown below.

Example 6.1 In the context of Figure 6.3, truster agent a_s is finding witnesses on trustee agent a_o, with threshold on the referral chain length $U = 4$.

Agents a_1 and a_2 are agent a_s’s neighbors. Both of them are not witnesses of the trustee. Hence, they return referrals to truster agent a_s. Agent a_3 and a_4 are the two referrals returned by
agent a_1, while agent a_2 returns agent a_5 and a_6 as referrals. Based on the probabilistic strategy of the credibility-aware referral process, a_s does not contact a_3 (the dotted line between a_1 and a_3 in the figure) but only contacts a_4. With the same probabilistic strategy, agent a_s contacts both agent a_5 and a_6.

Agent a_4 is not a witness, and returns a_7 and a_8 as referrals. Agent a_6 is a witness (shown as double circle in the figure) of a_o, and returns testimony to truster agent a_s. a_5 is not a witness, and returns a_1 and a_4 as referrals. As a_1 and a_4 has been contacted before, a_s does not contact these two referrals.

Truster a_s contacts both referrals a_7 and a_8 returned by a_4. Agent a_7 returns a_1 and a_8 as referrals, but both of them have been contacted before. Truster a_s further contacts the two referrals returned by a_8, i.e. a_9 and a_{10}. Agent a_{10} is a witness, while agent a_9 is not. Agent a_9 returns a_{11} and a_{12} as referrals. However, since the referral chain already reaches the threshold
(i.e. \(U = 4 \) in this example), \(a_s \) will not contact them.

Hence, in this example, the truster agent \(a_s \) manages to find two relevant witnesses, i.e. agent \(a_6 \) and \(a_{10} \). The corresponding referral chains are \(a_2 \rightarrow a_6 \) and \(a_1 \rightarrow a_4 \rightarrow a_8 \rightarrow a_{10} \).

It should be noted that in the referral process we implicitly assume that agents contacted by the truster \(a_s \) are always willing to help \(a_s \) find the relevant witnesses. That is, they will return some referrals if they are not the witnesses of the trustee. In MAS where the participating agents usually represent different stakeholders with self-interests, this assumption will not always hold. However, in this thesis, we do not consider how it is guaranteed since it is beyond the control of the trust model and credibility model and highly depends on the application domain considered.

Compared with the original referral process [YS02, YSS04], the credibility-aware referral process brings the following advantages:

- Instead of contacting every referral, the truster only contacts a subset of the referrals. This helps to further reduce the communication cost.

- As the truster agent has the full control over the referral process, it can adaptively direct the referral process. Agents with higher credibility have a higher probability to be contacted. This helps the truster to find more credible witnesses, which also helps to reduce the adverse effects of unfair testimonies.

- Truster agent will also explore the witness agents with lower credibility, though with a lower probability. This gives those less credible agents an opportunity to promote their credibility in the eye of the truster. It also serves as load-balancing, which protects the more credible agents from receiving too many testimony requests.

6.3 Revamping the Referral Process with Modeling of Referral-Credibility

Despite the merits of the credibility-aware referral process, its dependence on the referrers’ reports of the referrals’ credibility induces the presence of malicious referrers. That is, there are
agents who do not give unfair testimonies themselves, but refer the trusters to those referrals that may give unfair testimonies by giving unfairly higher reports of those referrals’ credibility. The presence of malicious referrers would intensify the adverse effect of unfair testimonies, since the malicious referrers’ credibility reports would direct the “flow” of the trust information (e.g. testimonies) to a “polluted” source. Therefore, to make good use of the credibility-aware referral process, the presence of a malicious referrer must be addressed.

Our strategy to address the presence of malicious referrers is to measure the referral-credibility of each referrer to capture its reliability in reporting the referrals’ credibility, and to discount the referrer’s reported credibility of the referral with that referrer’s referral-credibility. With the referrer’s referral-credibility taken into account, instead of contacting a referral agent \(a_t \) with a probability of \(\Pr(\upsilon_{s,t}) \), the truster agent \(a_s \) contacts the referral agent \(a_t \) returned by referrer agent \(a_r \) with the following probability

\[
MT_{s,r} \cdot \Pr(\upsilon_{s,t})
\]

Here, \(\Pr(\upsilon_{s,t}) \) is derived with Eq. (6.1), and \(MT_{s,r} \) is truster agent \(a_s \)’s evaluation of agent \(a_r \)’s referral-credibility as a referrer. \(MT_{s,r} \) is applied to reduce the probability that the referrals returned by the malicious referrers are visited, and is defined in the range of \([0, 1]\).

An example referral process to find relevant witnesses using referral-credibility is shown in Figure 6.4 (only a snippet of the referral chains is shown in the figure).

In Figure 6.4, \(a_s \) is the truster agent who is finding relevant witnesses on the trustee (not shown in the figure). Each edge pointing from a referrer to its referral is labeled with the probability that the referral would be contacted by the truster agent. It is noted that the edges connecting the truster agent \(a_s \) with its neighbors are not labeled. It is because the truster agent will contact its neighbors first to find relevant witnesses.

6.4 Modeling Agent’s Referral-Credibility

Intuitively, the referral-credibility of an agent can be modeled with the proposed credibility model presented in Chapter 4. Similar to how the proposed credibility model was applied in the context
of ART testbed (see Section 5.8.3), the referral-credibility can also be considered the truster’s subjective evaluation of the agent’s reports on the referrals’ credibility. In the proposed credibility model, the credibility of an agent is updated if (1) this agent has given a testimony for the truster’s pre-interaction evaluation of overall trust, and (2) the truster updates its post-interaction evaluation of direct trust on the trustee with the new observation of the trustee’s behavior in the interaction. To make the credibility model applicable here, two similar conditions must be satisfied. That is, (1) the referrer returns a referral (including this referral’s credibility) to the truster, and (2) the referral’s credibility can be directly evaluated after the truster contacts the referral. However, a witness is generally found by following more than one referral along a referral chain. Thus it cannot be guaranteed that a referral would always be the witness of the trustee. Hence, condition (2) will not always hold. Given this, the credibility model presented in Chapter 4 is not applicable to model the referral-credibility.

Moreover, because the truster agent finds a witness by following a certain referral chain, which contains a series of referrals, the referral process would be manipulated if any agent along the referral chain gives unfair reports of its referrals’ credibility. Therefore, the referral-credibility
of all the referrer agents along the referral chain should be updated each time when the truster agent obtains a new observation regarding the witness agent’s credibility. In other words, the update of the referral-credibility must be propagated to all the referrer agents along the referral chain. Such a propagation can naturally be modeled as a spreading activation process.

Spreading activation was originally proposed in cognitive science [CL75], and has since then been adapted in other fields, e.g. [ZL04, Cre97]. Generally speaking, it is about determining the energy of each node within a network of a number of interconnecting nodes. After injecting an initial activation I^0 into a specific node, the node will fan out part of the activation to the nodes it is connected to. Those nodes then iteratively fan out the activation to the other nodes they are connected to. In doing so, the activation spreads over the whole network. If we use $e_i(m)$ to denote the activation that a node m receives, the node retains $(1 - d) \cdot e_i(m)$ to update its current energy, and fans out the rest $d \cdot e_i(m)$ to the nodes it directly connects. The activation that a node n receives from node m is determined as:

$$e_i(n) = d \cdot e_i(m) \cdot \frac{E(m, n)}{\sum_{(m, s) \in \text{OE}} E(m, s)}$$ \hspace{1cm} (6.3)

where d is the spreading factor, $e_i(m)$ is the activation that node m receives, $E(m, n)$ is the weight of the edge from node m to n, and OE is the set of node m’s outgoing edges.

When the spreading activation process is applied to model the referral-credibility, the counterpart of the node is each individual referrer agent along the referral chain, and the energy that each referrer agent has is essentially its referral-credibility in the eye of the truster. The activation each agent receives during the course of propagation is in fact the magnitude of the update of the referral-credibility that each agent should undertake. Each agent’s referral-credibility is initialized as 1.

The update of the referral-credibility is carried out on the reversed referral chain. This is because the update of the referral-credibility is triggered each time the truster agent updates the credibility of the witness agent, which is at the end of the referral chain. Therefore, the initial activation of the spreading activation process is fed in from the end of the referral chain, and propagates backward along the referral chain.
The reversed referral chain is constructed by retaining the edges in the original referral chain and then reversing the directions of the edges. Figure 6.5 shows examples of reversed referral chains based on the referral chains in Figure 6.4. For example, there are outgoing edges from agent a_2 to agent a_5 and from agent a_5 to agent a_7 in Figure 6.4. The corresponding reversed referral chain contains an outgoing edge from agent a_7 to a_5 and another outgoing edge from agent a_5 to agent a_2.

The quantity of the initial activation I^0 is the absolute change in witness agent a_w’s credibility after truster agent a_s obtains its post-interaction direct trust on trustee agent, i.e. $I^0 = |TT'_{s,w} - TT_{s,w}|$, where $TT'_{s,w}$ and $TT_{s,w}$ are the credibility of the witness agent a_w after and before truster agent a_s obtains its post-interaction direct trust on trustee agent respectively. And the initial activation I^0 is fed into the immediate successor of the witness along the reversed referral chain (i.e. the direct referrer of the witness along the original referral chain). We use $ei(r)$ to denote the activation that a referrer agent a_r receives. Truster agent a_s retains $(1 - d)$ of the activation to update referrer agent a_r’s current referral-credibility, and spreads the rest $d \cdot ei(r)$ along the
reverse referral chain. By retaining $(1 - d) \cdot e_i(r)$ to update its referral-credibility, agent a_r’s referral-credibility in the eye of the truster a_s ($MT_{s,r}$) is updated as follows:

$$MT'_{s,r} = (1 - (1 - d) \cdot e_i(r)) \cdot MT_{s,r}$$ (6.4)

Since each reversed referral chain contains no branches, the third term in the right-hand-side (RHS) of Eq. (6.3) is always 1, i.e. $\frac{E(m,n)}{\sum_{(m,s) \in OE} E(m,s)} = 1$. Hence the activation that spreads from agent a_r flows completely into its immediate successor along the reversed referral chain. For agent a_r’s immediate successor, the truster agent a_s will repeatedly retain $(1 - d)$ of the activation to update its referral-credibility, and then spread out the rest of the activation. The propagation stops at the last referrer in the reversed referral chain. For this referrer a_r, truster agent a_s will retain all the activation to update its referral-credibility:

$$MT'_{s,r} = (1 - e_i(r)) \cdot MT_{s,r}$$ (6.5)

The procedure to update the referral-credibility of all the referrer agents along a referral chain is summarized in Figure 6.6.

An example of referral-credibility update is shown below:

Example 6.2 Here, we re-visit Example 6.1. In the referral process shown in Figure 6.3, truster agent a_s finds two relevant witnesses, i.e. agent a_6 and agent a_{10}. The corresponding referral chains are $a_2 \rightarrow a_6$ and $a_4 \rightarrow a_8 \rightarrow a_{10}$. The update of referrers’ credibility is carried out on two reversed referral chains shown in Figure 6.7. The other agents that are not involved in the referral-credibility update are not shown in the figure.

For the reversed referral chain $a_6 \rightarrow a_2$, the initial activation is fed into agent a_2 since a_2 is the direct referrer of the witness agent a_6. The initial activation in this reversed referral chain is $I^0_1 = |TT'_{s,6} - TT_{s,6}|$. Since agent a_2 is the only referrer along this referral chain, a_s retains all the activation to update its referral-credibility. Hence, its referral-credibility is updated as $MT_{s,2} = (1 - I^0_1) \cdot MT_{s,2}$.

For the reversed referral chain $a_{10} \rightarrow a_8 \rightarrow a_4 \rightarrow a_1$, the initial activation is fed into agent a_8, and the quantity of the initial activation is $I^0_2 = |TT'_{s,10} - TT_{s,10}|$. Agent a_s retains $(1 - d)$ of
Procedure \(\text{MT_Update}(s, w) \)

\(a_s \): the truster agent,
\(a_o \): the trustee agent,
\(a_w \): a witness of trustee agent \(a_o \),
\(TT_{s,w} \): agent \(a_s \)'s original evaluation of witness \(a_w \)'s credibility,
\(TT'_{s,w} \): agent \(a_s \)'s new evaluation of witness \(a_w \)'s credibility after \(a_s \) obtains its post-interaction direct trust on trustee agent \(a_o \),
\(\mathcal{R} \): the series of referrers along the referral chain that leads truster agent \(a_s \) to witness agent \(a_w \), and they are sorted in the order of appearance in the corresponding reversed referral chain,
\(|\mathcal{R}| \): the number of referrers in \(\mathcal{R} \),
\(a_r \): a referrer in \(\mathcal{R} \), \(r \) is its index in the sorted series of \(\mathcal{R} \),
\(MT_{s,r} \): agent \(a_s \)'s evaluation of agent \(a_r \)'s referral-credibility,
\(d \): the spreading factor.

1: \[I^0 = |TT'_{s,w} - TT_{s,w}| \]
2: \[ei(0) = I^0 \]
3: for \(r = 1 \) to \(|\mathcal{R}|\) do
4: \[ei(r) = ei(r - 1) \]
5: if \(r = |\mathcal{R}| \) then
6: \[MT_{s,r} = (1 - ei(r)) \cdot MT_{s,r} \] \{this is the last referrer along the reversed referral chain\}
7: else
8: \[MT_{s,r} = (1 - (1 - d) \cdot ei(r)) \cdot MT_{s,r} \]
9: \[ei(r) = d \cdot ei(r) \]
10: end if
11: end for

Figure 6.6: Spreading activation based referral-credibility update

the activation to update the credibility of agent \(a_s \) and agent \(a_4 \), and spreads out the rest to the next agent along the reversed referral chain. Each edge connecting the two agents is labeled with the activation propagating between the two agents. referral-credibility of agent \(a_8 \) and agent \(a_4 \) are updated respectively as

\[
MT_{s,8} = (1 - (1 - d) \cdot I^0_2) \cdot MT_{s,8};
\]
\[
MT_{s,4} = (1 - (1 - d) \cdot d \cdot I^0_2) \cdot MT_{s,4}
\]
6.5 Empirical Evaluation

Having presented the modeling of agent’s referral-credibility as well as the credibility-aware referral process, we now turn to the evaluation of the modeling of referral-credibility.

6.5.1 Experimental Setup and Methodology

A number of experiments has been conducted to evaluate the effectiveness of the referral-credibility model. The experiments are again conducted in TrustBed. The default settings of the testbed parameters are applied as shown in Table 5.4. The credibility model used by the consumer agents retains 10 as the Z value.

The referral process to find the relevant witnesses is controlled by the following parameters:

- The number of neighbors that each agent maintains, i.e. N_h.
- The threshold of the referral chain length, i.e. U.

Generally speaking, N_h limits the breadth of the range in which the consumer agents will search for relevant witnesses, and U limits how far the agents will go for the relevant witnesses. These two parameters in combination define the search range of the referral process. Larger values of N_h and U result in a broader and deeper search range for each individual consumer.
agent. This generally leads to a better performance than smaller one since more testimonies are
made available as evidence for the agent to make the trust evaluations. Nevertheless, as a trade-
off, a broader and deeper search also requires more resources (e.g. both in terms of memory,
waiting time, communication costs and etc.) from the consumer agents. In light of this, these two
parameters are usually set with moderate values. In the experiments, it is set that \(N_h = 3 \) and
\(U = 6 \). The referral process has already been applied in the empirical evaluations in the Chapter
5, and same settings of \(N_h \) and \(U \) are applied.

In the experiments, the malicious referrers are implemented to present together with the presen-
tce of collusive unfair testimonies. This is due to two considerations. First, collusive unfair
testimonies are more successful in cheating the proposed credibility models. Second, with the
presence of collusion, the malicious referrer has a clear target whose credibility will be manipu-
lated in its referrals reports. That is, it will give unfairly higher reports of the credibility for those
colluding consumers to make them more likely to be contacted by the trusters. When a referrer \(a_r \)
generates a referral, it will reveal its evaluation of the referral’s credibility without manipulation
if it is not a malicious referrer. Otherwise, it will give an unfairly higher report of the referral’s
credibility if the referral is a colluding consumer, which is implemented as \(0.5 + \max(TT_{r,t}) \),
where \(\max(TT_{r,t}) \) denotes the maximum of the credibility of all the referrals returned by referrer
\(a_r \). The report of the referral credibility after manipulation is clamped in the range of \([0, 1]\).

With the presence of malicious referrers, the collusion with Bad providers (see Table 5.2 for
the definition of Bad provider) contains two types of consumers. One type of consumers are wit-
tnesses who give ballot-stuffing unfair testimonies on the colluding providers, while another type
of consumers are malicious referrers who give unfairly higher reports on the colluding witnesses’
credibility in order to make them more possible to be contacted by the trusters.

We study the effectiveness of the referral-credibility model in the presence of various com-
binations of collusive unfair testimonies and malicious referrers. A methodology similar to the
one used in Section 5.3 is applied here. That is, the consumers are separated into two groups.
One group of consumer agents are equipped with the referral-credibility model (denoted as group
Meta), while the other group of consumers are not (denoted as group NoMeta). Each group is
again populated with $N_c = 100$ consumer agents, and both groups are applying the same basic trust model and the proposed credibility model. Then the effectiveness of the referral-credibility model is investigated by comparing the performance of the consumer agents in the two groups. The performance of different groups is measured in terms of \textit{collusion power}, which is defined in Section 5.3.2. This metric basically evaluates how many times the non-colluding consumers in each group have tried the colluding providers’ services to solve their problem. It is noted that the collusion power is only calculated on the non-colluding consumers. For instance, if the configuration of collusive unfair testimonies is Pos60, and 20% of all the consumers are malicious referrers, the collusion power is evaluated on the other 20% of the consumer agents.

\subsection*{6.5.2 The Results}

Figure 6.8 presents the performance of group Meta and NoMeta in the presence of various combinations of malicious referrers and collusive unfair testimonies. The first thing this figure shows is that the presence of malicious referrers has increased the \textit{collusion power}, as compared with the results obtained in previous chapter (see Figure 5.4 (b)). In Figure 5.4 (b), group Cred (without referral-credibility model, i.e. group NoMeta here) is able to achieve a \textit{collusion power} of less than 0.25 (i.e. try the colluding providers’ services once for every 4 problems encountered) in the presence of various configurations of collusive unfair testimonies but without malicious referrers. However, Figure 6.8 shows that the presence of 20%, 40% and 60% malicious referrers have increased the collusion power of group NoMeta to higher than 0.3, 0.35, and 0.5 respectively. This observation confirms that the presence of malicious referrers does exacerbate the adverse effect of unfair testimonies. This is because the malicious referrers increase the probability that a truster contacts a colluding consumer who gives unfair testimonies on Bad providers. Consequently, the unfair testimonies will have a higher presence in the testimonies that are collected by the trusters. Since the collusive unfair testimonies are more successful in cheating the credibility model, a higher presence of collusive unfair testimonies will adversely manipulate the non-colluding consumers’ evaluations of trust on the colluding Bad providers, which results in a higher collusion power.
Figure 6.8: Performance of different groups in the presence of various combination of malicious referrers and collusive unfair testimonies: (a) 20% malicious referrers; (b) 40% malicious referrers; (c) 60% malicious referrers;
On the other hand, consumers in group Meta, equipped with the referral-credibility model, are able to mitigate the influence of malicious referrers. With the modeling of referral-credibility, consumer agent’s referral-credibility decreases every time it is found to give a unfair report of its referrals’ credibility. By discounting the referrers’ future reports of referrals’ credibility by the referrers’ referral-credibility, the probability that the colluding consumers would be contacted by the trusters is reduced. This consequently accounts for the reduction of the presence of unfair testimonies in the testimonies collected by the trusters.

It is noted that the referral-credibility model only reduces the probability that the colluding consumers would be contacted during the referral process. The colluding consumers would still be contacted by the non-colluding consumers, though with a lower probability. Hence, unfair testimonies still exert influence on the non-colluding consumers’ evaluations of trust on the colluding providers. Nevertheless, results in Figure 6.8 show that the deployment of referral-credibility model is still able to maintain group Meta’s performance (in terms of collusion power) at a comparable level to that in the case without presence of malicious referrers.

The referral-credibility update process has one parameter, i.e. the spreading factor d in Eq. (6.4). With a smaller value of d (i.e. $d < 0.5$), the truster agent tends to assign more penalty to referrers close to the witnesses, while with a larger of d (i.e. $d > 0.5$), the truster agent tends to give more penalty to referrers far away from the witnesses. The above results are obtained with $d = 0.5$. That is, truster agent retains 50% of the activation that each referrer receives to update the corresponding referrer’s referral-credibility. $d = 0.5$ shows a balance between the aforementioned two cases. Other values of d (both $d < 0.5$ and $d > 0.5$) have also been applied in the experiments. Similar trends are observed, which shows the effectiveness of the referral-credibility modeling in various configurations.

6.6 Summary

One of the fundamental issues in the research on trust modeling in MAS is to mitigate the adverse effect of unfair testimonies [JIB07]. Previous chapters (Chapter 3, 4, and 5) have presented our proposal to address this issue. An implicit assumption of previous chapters is that the truster
The Complete Trust Model

a_s: the truster agent,

a_o: the trustee agent,

a_w: a witness of the trustee agent a_o,

$TT_{s,w}$: agent a_s’s evaluation of witness a_w’s credibility,

$TP_{s,o}$: agent a_s’s pre-interaction direct trust on agent a_o,

$TA_{s,o}$: agent a_s’s (pre-interaction) evaluation of overall trust that it should place in trustee a_o.

$TP'_{s,o}$: agent a_s’s post-interaction direct trust on agent a_o with new observation of a_o’s behavior in the interaction.

1: a_s builds and maintains each witness agent a profile in giving testimonies
2: a_s evaluates $TP_{s,o}$ with past personal interaction experience {any trust model could be employed to make the trust evaluations here}
3: Agent a_s finds relevant witnesses with the credibility-aware referral process (see Figure 6.2)
4: Let $W_{s,o}$ = the set of witnesses on the trustee agent a_o located in the previous step
5: for all witness agent $a_w \in W_{s,o}$ do
6: a_s evaluates witness agent a_w’s credibility $TT_{s,w}$ using Eq. (4.2)
7: a_s adjusts the testimony given by a_w according to Eq. (4.4) if its testimony is not filtered
8: end for
9: a_s aggregates all the adjusted testimonies and $TP_{s,o}$ using Eq. (4.6) to evaluate $TA_{s,o}$
10: if a_s interacts with trustee agent a_o after the pre-interaction trust evaluation then
11: a_s evaluates $TP'_{s,o}$
12: for all witness agent $a_w \in W_{s,o}$ do
13: if a_w’s testimony has been aggregated by a_s in the pre-interaction trust evaluation then
14: a_s updates a_w’s credibility $TT_{s,w}$ with $TT_{Update}(s, w)$ as shown in Figure 4.5
15: a_s updates the referral-credibility of the referrers along the referral chain leading to witness a_w using $MT_{Update}(s, w)$ as shown in Figure 6.6
16: end if
17: end for
18: end if

Figure 6.9: The Complete Trust Model

agent would ask for testimonies from all other agent in MAS. This assumption may not always hold. This chapter further improves our proposal by discarding this assumption.

This chapter proposes a credibility-aware referral process to help agents to find relevant witnesses in an efficient manner. With the credibility-aware referral process, each agent maintains direct connection with a number of agents, and asks those agents to find relevant witnesses for it iteratively. Moreover, the truster agents are able to adaptively direct the witness discovery process toward those credible agents. On the other hand, this opens the possibility of presence of malicious referrers, who do not give unfair testimonies themselves but direct the truster agent to other agents who do give unfair testimonies. The presence of malicious referrer aggravates the
adverse effect of unfair testimonies. To address the presence of malicious referrers, we model the referral-credibility of each agent to capture its reliability in reporting other agents’ credibility. The empirical studies validate the effectiveness of the modeling of agent’s referral-credibility in combating the malicious referrers.

The proposed credibility model and referral-credibility model are generic and can be applied to most computational trust models. With incorporation of these two models to combat unfair testimonies and malicious referrers, a complete trust model operates as shown in Figure 6.9.

This chapter has concluded the research of making the trust models robust in the presence of unfair testimonies. The next chapter summarizes the contributions of this thesis and outlines the directions for future work.
Chapter 7
Conclusions

Trust is an ubiquitous concept that underlies each interaction in human society. Due to its importance, trust has long been a research topic in various disciplines such as sociology, economics, and philosophy. In recent years, a large body of research work has emerged on trust modeling in MAS [BK02, RHJ04, JIB07]. Generally, trust models help one agent to evaluate its trust on another agent primarily with two sources of information:

(a) an agent’s personal interactions experience with another agent;

(b) third-party testimonies about their past interactions with another agent.

The problem arises when third-party testimonies are taken into account. That is, there exists the presence of unfair testimonies. The presence of unfair testimonies would deteriorate the effectiveness of the computational trust models [JIB07, Del00, WJI04].

Mitigating or even avoiding the adverse effect of unfair testimonies is a problem that every computational trust model should address [JIB07]. This chapter summarizes our efforts in addressing this problem. Section 7.1 reviews the contributions of this thesis. Following that, Section 7.3 discusses the possible directions in which this research can be continued in future.

7.1 Research Contributions

This thesis devotes itself to making the trust model robust in the presence of unfair testimonies. By accomplishing this goal, this thesis has made the following contributions:
(i) As a starting point, Chapter 3 proposes a testimony-filtering method. The filtering method identifies the possible unfair testimonies by measuring the uncertainty that each testimony contains. Then the remaining testimonies are aggregated with the truster’s own evaluations of direct trust on the trustee.

Compared with the existing work, the proposed filtering method does not require any additional mechanism or knowledge other than the testimonies exchanged between the agents. Moreover, the proposed uncertainty-based filtering method outperforms other related work, e.g. a typical endogenous filtering method proposed by Whitby et al. [WJI04] both in terms of processing time and effectiveness to mitigate the adverse effect of unfair testimonies.

(ii) The uncertainty-based filtering method is then revamped in Chapter 4 with a credibility model. With the proposed credibility model, the truster measures the credibility of each agent, which essentially evaluates the usefulness of this agent’s testimonies.

The proposed credibility model preserves the merits of the uncertainty-based filtering method. For example, it does not require any additional mechanism or knowledge other than the testimonies exchanged among agents. Apart from preserving the filtering method’s merits, the credibility model improves the filtering method in many aspects and has its own merits. It improves the uncertainty-based filtering method with a more adaptive filtering criterion. It also improves the filtering method with a method to adjust the testimony which makes a testimony useful even it is a possible unfair testimony. The empirical evaluations in Chapter 5 also show that it consistently outperforms related work in all the experimental settings considered.

Another significant merit of the credibility model is that it is decoupled from the trust model. It does not explicitly require a particular trust model to be used. Although the Beta Reputation System is employed as the basic trust model in this thesis, other computational trust models can also be used as long as the outcomes of the trust evaluations can be represented in the form of discrete ratings. This makes it a generic solution to tackle the presence of unfair testimonies.
Unlike the existing work, which assumes that agents would ask all the other agents in MAS for testimonies, this thesis makes no such assumption. Chapter 6 proposes a credibility-aware referral process to facilitate agents to find relevant witnesses efficiently. During the referral process, there are malicious referrers who direct agents to others who are giving unfair testimonies. The presence of malicious referrers aggravates the adverse effect of unfair testimonies. However, the presence of malicious referrers are generally left unaddressed in current research on trust modeling in MAS due to the naive assumption that the agents would contact directly all the other agents when discovering testimonies. In Chapter 6, an approach based on the theory of spreading activation is proposed to counteract the presence of malicious referrers. To the best of our knowledge, it is the first to address this issue in research on trust modeling in MAS.

7.2 Potential Applications

It is reiterated that the proposed research can be applied to many application domains. Some typical application domains include Peer-to-Peer content-sharing networks, Grid, and massive multi-player online role playing games (MMORPGs).

7.2.1 Application in P2P Network and Grid

The real problem underlies the Peer-to-Peer content-sharing networks and Grid is resource sharing among various users [FKT01]. Generally, the reliability of the providers who manage the resources (either digital files or other computing resources) are unknown to the users before utilizing the resources, i.e. the users who manage the resources may fail to provide the resources with the quality they agreed to deliver. For example, in the context of service-oriented Grid, a service provider may intentionally discard a user’s computing request in favor of another user’s request as the latter can pay more. It is desired that users have the ability of making prudent resource selection decision regarding the reliability before utilizing the resource. Establishing trust within P2P networks and Grid is an alternative to meet this requirement. There is also a
number of existing attempts to achieve this goal, e.g. [DdVP+02, AVvLA03, KSGM03]. However, the existing work is usually built on an assumption that all the witnesses would not share unfair testimonies. There is a lack of mechanism to address the unfair testimonies, which renders the existing work susceptible to the presence of unfair testimonies. The research reported in this thesis can be applied to enhance the existing attempts’ robustness in the presence of unfair testimonies.

When this research is applied in the context of P2P network and Grid, each user within the system is modeled as an agent. Each agent is allowed to give feedbacks for its interaction partner. Based on these feedbacks, the trustworthiness of the interaction partner can be evaluated with any of the existing attempts, e.g. [DdVP+02, AVvLA03, KSGM03]. Subsequently, the proposed credibility model can be incorporated to evaluate the credibility of other testimony sources. As discussed in Chapter 4, the credibility model also filters the third-party testimonies and aggregates the third-party testimonies, which contributes to mitigate the adverse influence of unfair testimonies and make the trust evaluations more accurate. Moreover, thanks to the distributed nature of P2P network and Grid, the modeling of referral-credibility can easily be incorporated to further reduce the adverse effect of unfair testimonies.

7.2.2 Application in MMORPG

MMORPG is often afflicted with problems such as dishonesty, theft, and malice [Smi04]. Most of the current MMORPGs provide the mechanisms for the players to manually block or ignore certain players if the former consider the latter are harassing them. However, such mechanisms are not very useful when players are stuck halfway in a raid or in completing a quest. It is preferred that the players are able to automatically block the other players from contacting them based on the latter’s past behaviors, such as the trust rating system built into the Xbox Live [xbo07]. Establishing trust within the game is a promising approach to meet this requirement [Smi04].

When this research is applied in the context of MMORPG, each player avatar is basically an agent, who is responsible for evaluating the trustworthiness of other player avatars. Furthermore, with the proposed credibility and referral-credibility model applied, each player avatar also
measures the credibility and referral-credibility of other player avatars. This helps to improve the accuracy of trust evaluations, which consequently leads to a better identification of “bad” players.

7.3 Future Directions

There are several areas in which current research can be extended:

(i) Agent may also change its behavior in giving testimonies over time. The current design of the credibility model is able to capture such behavior change during a witness agent’s existence in MAS by storing all its past testimonies in its profile. Furthermore, the model can evaluate credibility based on the full history of the witness’ past behaviors. However, in some application domains, agents may not be so prudent in evaluating the witnesses. For those agents, a witness that is credible within a relatively shorter period of time would suffice. In this case, when evaluating a witness agent’s credibility, the credibility model should maintain a “shorter memory” of a witness’ past testimonies. However, the current design of the credibility model records the witness’ behavior in giving testimony by updating the counting information in the witness’ profile. There is no temporal information recorded in the witness’ profile, namely, it does not record when the witness has given a testimony. Therefore, it is not able to forget a particular testimony given by the witness in the past by forgetting a past testimony as in the basic trust model presented in Section 3.2 (see Eq. (3.4)).

One possible way to equip the credibility model with the ability to gradually forget a witness’ past behavior would be as follows: besides maintaining the counting information, each cell in the profile also needs to store the time of each corresponding testimonies. Then before each update to the profile, old testimonies beyond a predefined time window will be discarded. Then the credibility is calculated on the updated profile. In order to enable such modification, the current design of the profile needs to be significantly extended to incorporate the temporal information. And such extension would definitely induce extra storage overhead for the agents. However, such an extension is expected to enhance the
credibility model’s applicability in above-mentioned domains where “shorter memory” of the witnesses is desired.

(ii) The next potential extension is with the counteraction of the presence of malicious referrers. In the current research, the influence of the malicious referrers is addressed by modeling the agents’ referral-credibility. Incorporation of referral-credibility into the credibility-aware referral process reduces the possibilities that colluding witnesses could be contacted by the trusters, which accounts for the reduction of the presence of unfair testimonies in all the available testimonies collected by the trusters. Although the results of the empirical evaluations validate the effectiveness of the modeling of agent’s referral-credibility, there is still room for improvement. The counteraction of the presence of malicious referrers can be further improved by building a (weighted) graph to represent the relationships between all the agents involved (including the referrers, referrals, and the trustees) during the referral processes, and then applying social network analysis [WF94] to discover the hidden collusion among the agents. With the hidden collusion detected, the trusters can then focus only on reducing the probability that the colluding witnesses would be contacted. This is preferable to reducing the probability that all the referrers returned by a malicious referrer would be contacted. The result of the collusion detection can in turn contribute to reducing the adverse effect of unfair testimonies.

(iii) All the work discussed above focuses on extending the capability of the credibility model or referral-credibility model. Nevertheless, when the credibility model and mete-credibility model, as well as the trust model, are deployed in real environments, it is not realistic for an agent, say a_s, to select its interaction partner solely based on the evaluations of trust on the candidate partners. Agent a_s may also need to consider other factors like the importance of the interaction, the cost, and the gain. For example, suppose agent a_s is looking for an interaction partner for a not-so-critical task. Assume there are two candidates: one is more trustworthy but asks for higher payment, the other is marginally less trustworthy but asks for lower payment. In this case, the latter might be a better choice. On the other hand, in
another example, with the same two candidates, the task is now very critical to agent a_s. In this case, a_s might select the former since it cannot accept a catastrophic outcome if the selected partner fails to accomplish the task. As these examples show, simply comparing the trustworthiness of candidate partners might not always suffice. Therefore, a decision-making model that takes into account the partners’ trustworthiness, the importance and risk of the interaction, the cost, the gain and so on, is obviously desirable.

(iv) Another promising future work is the design of a special type of agent, namely trust agent. By using the term trust agent, it means that: other than the basic characteristics that an agent has, e.g. ability to adapt and ability to learn, agent also has (1) the ability to evaluate potential interaction partners’ trustworthiness, and (2) the ability to make trust-aware decision regarding the selection of interaction partner before engaging in an interaction.

Trust agent acquires the first ability with the application of trust models, which evaluate trustworthiness based on the interaction partner’s past behavior. The research presented in this thesis, as well as the future direction (i) and (ii) shown above, contribute to enhance the performance of the trust models in the presence of unfair third-party testimonies. Trust agent’s second ability is enabled with the decision-making model mentioned above in (iii).

It should be noted that trust agent makes the trust-aware interaction partner selection before any interaction. Although this would incur overhead, both in terms of computation (for evaluating the trustworthiness) and communication (for collecting the testimonies), the use of trust agent appears to offer certain advantages. An obvious advantage is that it increases agent’s confidence in interacting with others, reduces agent’s utility loss, and enhances agent’s applicability in MAS, in which each agent maximizes its own gain even at the cost of others.
Appendix A

Credibility-modeling Method proposed by Yu and Singh

The method proposed by Yu and Singh [YSS04, YS02] restricts agent’s credibility to be in the range of \([0, 1]\), and initializes each individual agent’s credibility to be maximum value, i.e. 1. Then the credibility is updated with a variant of the Weighted Majority Algorithm [LW94]. If the last testimony given by witness \(a_w\) is similar to truster \(a_s\)'s direct trust in trustee \(a_o\) after interacting with that trustee, witness \(a_w\)'s credibility remains unchanged. Otherwise, as a penalty, \(a_w\)'s credibility is decreased with the following formula:

\[
TT'_{s,w} = TT_{s,w} \cdot \theta
\]

\(\theta\) denotes the amount of the penalty. It is determined according to the distance between \(a_w\)'s testimony and \(a_s\)'s post-interaction direct trust in the same trustee, and it can be any value that satisfies:

\[
\delta |TP_{w,o} - TP_{s,o}| \leq \theta \leq 1 - (1 - \delta)|TP_{w,o} - TP_{s,o}|
\]

\(TP_{w,o}\) and \(TP_{s,o}\) denote witness \(a_w\)'s testimony and truster \(a_s\)'s post-interaction direct trust on the trustee \(a_o\). \(\delta\) is a constant. In the empirical studies in this thesis, \(\theta\) is chosen as the upper bound of the range, i.e. \(\theta = 1 - (1 - \delta)|TP_{w,o} - TP_{s,o}|\), and \(\delta\) is set as 0.5. This setting is consistent with the empirical value as reported in [YSS04].

Then the testimonies are aggregated with the truster \(a_s\)'s evaluation of direct trust in the following manner:
Suppose \(\{w_1, w_2, \cdots, w_L\} \) are a group of witnesses on trustee \(a_o \), then the aggregation of testimonies is done as:

\[
\mathcal{P} = \begin{cases}
\sum_{k=1}^{L} TT_{s, w_k} * TP_{w_k,o}/L & L \neq 0 \\
0.5 & L = 0
\end{cases}
\]

(A.3)

The overall trust that \(a_s \) should place in trustee \(a_o \) is:

\[
TA_{s,o} = \begin{cases}
\eta * TP_{s,o} + (1 - \eta) * \mathcal{P} & L \neq 0 \\
0.5 & L = 0
\end{cases}
\]

(A.4)

where \(L \) is the number of the witnesses that have reported testimonies, \(\eta \) is truster \(a_s \)'s confidence about its evaluation of direct trust in trustee \(a_o \). It is calculated as:

\[
\eta = h/H
\]

(A.5)

where \(H \) is the predefined number of ratings that are taken into account when \(a_s \) evaluating the direct trust in \(a_o \) (like the parameter of \(W \) in Eq. (3.4)), and \(h \) is the number of \(a_s \)'s past interactions with \(a_o \). Eq. (A.4) implies that \(a_s \)'s evaluation of direct trust in trustee \(a_o \) becomes more and more important in evaluating the overall trust in \(a_o \), and when \(h \geq H \), third-party testimonies are not aggregated at all.
Appendix B

List of Publications

The work reported in this thesis has contributed a total of nine international publications, including a few other awaiting review results. The list is given below.

Journal Papers

Conference Papers

Bibliography

Index

agent, 5
context, 25
cost, gain, 88, 91
credibility, 17, 64
current belief, 49
decaying factor, 46
dummy cell, 71

MAE, see mean absolute error
malicious referrer, 18, 116, 122
MAS, see multi-agent system
mean absolute error, 53, 78
multi-agent system, 6

POU, see power of unfairness
power of unfairness, 79

referral, 117
referral chain, 117
 reversed, 125
referral credibility, 116
referrer, 118
testimony, 5, 23
trust, 4, 12
 direct trust, 65
 overall trust, 65
trust information, 4, 23
trust model, 3
 cognitive, 21
 computational, 21

trustee, 14, 22, 44
truster, 14, 22, 44
unfair testimony, 5, 15
 collusive, 93
 endogenous method, 26
 exogenous method, 26
 individual, 92
willingness, 52, 90
witness, 45, 118
witness profile, 67